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These lecture notes provide a detailed and self-contained discussion of globally su-
persymmetric field theories in four and two space-time dimensions, starting at an
elementary level. The aim is to give a rather complete presentation of the theoretical
background used in the construction of unified supersymmetric models of particle
interactions, with many technical and computational details. The emphasis is more
on the algebraic aspects than on quantum field theoretical problems. For instance,
the superfield formalism is developed and extensively used, but its applications to
the celculation of perturbative quantum corrections (superfield Feynman rules and
diagrams) are not presented. Supergravity theories {local supersymmetry), or super-
strings are however not discussed.

Only a limited set of references directly related to the material discussed in each
chapter is given. The intention is not to provide a survey of the publizhed l.itcratur.c,
or to give complete historical credits, but only $o indicate some useful complements
to the notes.

The organization of the notes is as follows:

1. Introduction

2. The Wess-Zumino model
2.1. The Weyl case
2.2. The Majorana case
2.3. The auxiliary fields
2.4. Interactions and the tensor calculus AT

3. The supersymmetry algebra and its representations
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Chapter 1

Introduction

Symmetries play a crucial role in the theory of strong, weak and electromagnetic inter-
actions of elementary particles. The Standard (Glashow, Salam, Weinberg) Model is
a local gauge theory, which is fully defined once the gauge group SU(3).® SU(2), &
U(1l)y end the transformations of the fundamental fields {quarks, leptons, Higgs
bosons) are given. The symmetry structure of the theory is of the form P x G, where
P is the Poincaré group, containing global space-time translations P* and Lorentz
rotations generated by operators M** = —M*#, and G is the gauge group. Because
of the direct product, G is a purely internal symmetry, It commutes with transforma-
tions of the Poincaré group. As long as G is a compact Lie group, one can construct
a consistent quantum field theory preserving invariance under local transformations
of G.

This scheme is fully satisfactory as long as one does not try to incorporate grav-
itational interactions. According to general relativity, the symmetry principle which
governs gravity is invariance under general (local) coordinate transformations. Grav-
ity can be viewed as a gauge theory of the Poincaré group. It is however impossible
to construct a consistent quantum theory of gravitation along these lines. Such a
theory is desperately non renormalizable. Notice also that the Poincaré group is not
compact. The commutation relations of its algebra are

[M* M*) = —i (n"PM™® 4 5¥° M*° — gho M¥? . g¥e M7},
[P*, M*#] = i (n" P — y#*P*), (1.1)
[PP!PVJ“—‘O; (ﬂ,V,p,U:0,1,2,3)
where the flat space-time metric is

7" = diag(+1,-1,-1, -1). (1.2)

The commutation relations of Lorentz generators M*¥ correspond to the pseudo-
orthogonal algebra $0O(1,3).

The presence of the internal symmetries contained in ¢ does not help to cure
the problem of quantum gravity. The generators T° of G satisfy
(T2, P*] = [T, M**] = 0,
(1.3)
I'Ta, Tb] = t'f‘bcTc,



where f* are the (antisymmetric) structure constants of the compact group G.

Since symmetries have proved to be so important in the description of strong,
weak and electromagnetic interactions, one may be tempted to look for enlarged
symmetry structures, incorporating the Poincaré group and an internal gauge group
in a less trivial structure than a direct product. Specifically, one tries to find new

symmetries (' such that for instance
(@, M*] £0, (14)

which means that the generators of these new symmetries have non trivial Lorentz
transformations, and that they have a spin different from zero. They will then relate
particles of different apins.

The symmetries Q" fall naturally in two classes: integer spin symmetries (bosonic
symmetries) or half-integer (fermionic) symmetries. These two classes will lead to
different algebraic structures. What we are interested in is to find symmetries of a
possibly interacting quantum field theory. According to the Noether theorem, these
symmetries will correspond to conserved currents and will be generated by charges
which are space integrals of some combination of fields and their derivatives. It is
then natural to expect that a bosonic charge is a space integral of a bosonic local
field, while a fermionic charge is a space integral of fermionic local fields. But canon-
ical quantization prescribes commutators of bosonic fields and anticommutators of
fermionic fields. One then infers that commutators [Q*, @] of integer spin symme-
tries will be determined, leading to a Lie algebra extending the P x G structure.
On the conirary, fermionic symmetries should be characterized by anticommutation
rules {Q*, Y}, leading to a new algebraic structure called Lie superalgebra [1] (which
is a particular class of graded Lie algebras).

There exists however a po-go theorem concerning bosonic symmetries. The
Coleman-Mandula theorem (2] forbids the existence, in a relativistic, interacting
quantum theory with a discrete spectrum of massive one-particle states, of any
conserved charges that are not Lorentz scalars, other than those belonging to the
Poincaré group. This theorem does not apply to fermionic symmetries since it holds
only for Lie algebras. In the completely massless case however, the Poincaré group

can be extended to the conformal group. -

One is then led to consider new fermionic symmetries @, for which
(M*, Q) = (4 @), . (1.5)
where b** is a matrix specifying a spinorial (half-integer spinktcprcsentation of the

Lorentz group and

{@Q} =1, (1.6)
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where T/ is some combination of Poincaré generators and possibly some internal
(spin zero) symmetry generators. The only relevant case turns out to correspond to
spin 1/2 charges @, and it is the case of the supersymmetry algebra. Supersymmetry
transformations are of the form
é(boson, spin s) = (fermion, spin s + 1/2),

- . a I-T

6(fermion, spin s') = (boson, spin s' % 1/2). (7
The supersymmeiry algebra is then the only possible non trivial unification of internal
and space-time symmetries compatible with quantum field theory.

Let us conclude this introduction by a brief historical note. The supersymme-
try algebra, as a possible physical extension of the Poincaré group was discovered in
1971 by Gol'fand and Likhtman (3|. It was aiso found in 1971 by Ramond, Neveu
and Schwarz (4} that fermionic strings possess a two-dimensional (world-sheet) su-
persymmetry. Supersymmetry, as an invariance of field theory {in four dimensions)
was introduced in 1973 by Volkov and Akulov [5], in an attempt to understand the
apparent absence of mass of neutrinos by assuming that they are Goldstone particles.
In this article, supersyminetry was non linearly realized. The first field theories with
linear supersymmetry were discovered by Wess and Zumino in a series of articles {6}
which have built the foundations of all subsequent developments of supersymmetric
field theories.

One of the main motivation for the study of supersymmetric theories is that
they could bring new insights on the unification of strong, weak and electromagnetic
interactions with gravity and on the difficulties of quantum gravity. This however
requires that one finds theories invariant under local, and not only global supersym-
metry traneformations. Locally supersymmetric theories are called supergravities,
and have been invented by Freedman, Ferrara and van Nieuwenhuizen [7}, and also
by Deser and Zumino [8]. It is now admitted that all supergravity theories are non
renormalisable: quantizing gravity destroys their consistency. The expectations of
solving the problems of quantum gravity with the help of supersymmetry have not
been fulfilled, in the framework of quantum field theory, at least. At present, only
superstring theories seem to describe quantum gravitation in & consisient way. The
symmetry structure of these theories contains however always a supersymmetry al-
gebra, and the interactions of the light string states corresponding hopefully to the
states of the Standard Model are described by an effective supergravity Lagrangian,
or, at low energy, by a softly broken globally supersymmetric theory.



Chapter 2

The Wess-Zumino model

The Wess-Zumino model [6] is the simplest example of & supersymmetric field the-
ory. It describes the dynamics of n spin 1/2 fields and n coniplex scalar fields.
A complex scalar field ¢ contains iwo real components 4 and B, defined by ¢ =
(A+1iB)/v2. In general, A will behave under parity transformations P : (2%, z') —
(2% —z*) like a scalar field, while B will be a pseudoscalar:
A L A, 21
B _B. =y

The free Lagrangian density for scalar fields is

Ly =(8,9)1(8"9) - m*¢tp

= % (8. A)(8* A) + (8, B)(8*B) — m*(A? + B?)], (2.2)

and the corresponding equation of motion is the Klein-Gordon equation.

A spin 1/2 particle is described by a Dirac spinor ¥ which, when subject to the
Dirac equation, contains four real components describing the two helicity states of
the particle and of its antiparticle. The spin 1/2 Lagrangian is

Ly =¥ (iv*8, — m)¢ (2.3)

when interactions are switched off. One can reduce the number of components to two
by imposing either a Weyl or a Majorana condition. A Wey! spinor has a definite
helicity: the two components of a left- (right-) handed spinor will be the left (right)
belicity of the particle, and the right (left) helicity of the antiparticle. A Weyl spinor
YL or g satisfies

vo=L¥y , $¥r=Ryg , (24)
where

1 1
=3l+m) » R=2(1-) (2.5)

are the helicity projectors. Notice that a Weyl spinor is always massless. The Majo-

rana condition corresponds to
—r

¥p=9%.=Cy¢ (2.6)

where C is the charge conjugation matrix (see appendix A for conventions). This
condition means that the particle is identical to the antiparticle.

A general property of all supersymmetric theories is that the number of bosonic
states is always identical to the number of fermionic states (see ch. 3). Thus, to

each complex scalar field ¢, there will correspond a two-component spinor (Weyl or
Majorana), forming a chiral multiplet which is the simplest supersymmetric multiplet.

In the next two sections, we will study in more details the two simplest cases, the
free Wess-Zumino model for one chiral multiplet with a Weyl or a Majorana spinor.
In each case, we will first write the most general transformation rules of the form

§(scalar @) = Oy(spinor ),
é(spinor ) = Oy{scalar ¢),

(2.7)

where O4 and O, are the two spin 1/2 operators containing an infinitesimal spinorial
transformation parameter ¢. Recalling that the canonical dimension (in units of mass,
¢ = 1) of a Dirac spinor is 3/2 (i.e. 4 has dimension (mass)*/?) while a scalar has
dimension 1 {see the Lagrangian densities 2.2 and 2.3: they have dimension four since

the action § = [d*z.L is 3 number), one finds:

dim[Oy] = —1/2,

. (2.8)
dim[0g) = +1/2.

The parameter ¢ will turn out to have dimension —1/2. These three numbers are
quite useful in writing the most general supersymmetry transformations for specific

cases.

One could in principle take different masses for the scalar and the spin 1/2 states.
This would however turn out to be incompatible with invariance under supersymme-
try. Invariance of the Lagrangian will force the two masses to be identical (and in the
Weyl case to vanish). This is also a general property of all supersymmetric theories
(see ch. 3): all states belonging to a supersymmetric multiplet have the same mass.
We will accept this result when establishing the supersymmetry transformations in

the next section.
2.1. The Weyl case

The fields we consider are a complex scalar field ¢ and a left-handed spinor 4
satisfying

= —(1 +s}¥L = Lz (2.9)



Since _1/7,‘1}:1, = 0, the spin 1/2 state is massless and supersymmetry will be possible
only if the scalar state is also massless. We then consider the Lagrangian
£ = (8,4)'(8"¢) + Prli7u0" . (2.10)

Let us start by writing the most general transformation of the scalar ¢. It is of

the form eM+, where M is a dimensionless matrix. Using Lorentz invariance and the
fact that 459 = ¥y, one gets that M isin fact proportional to the identity matrix.

Absorbing the proportionality constant in the transformation parameter ¢, one can
write (with a factor +/'2 which will become clear later on)

8¢ = V2L,

v 2.11
it = V2yre. ( )

]

The transformation of the spinor is more complicated. §%, should be a left-handed
spinor. This is possible only if ¢ is also a Weyl spinor. Since we want to avoid §¢ = 0,
Eq. (2.11) forces ¢ to be right-handed:

¢= €. (2.12)
The transformation 8y is then necessarily of the form (a and b are complex num-
bers): -

s = V2 [a(1*8,8) + b(7* 8,8")] ¢r- (2.13)

This expression is the most general left-handed spinor of dimension 3/2 such that
Lépy, = &y and —yzen = eg. Transforming the bosonic part of the Lagrangian
(2.10) with Eq. (2.11), one obtains

6LposE = V2 [(8,91)er(8"¢) + (8,8 )ER(8"¥1)] - (2.14)
From the transformation of the fermionic Lagrangian, it is apparent that since there
is no term with ¢! and ¥z (or with ¢ and ¥.) in Eq. (2.14), one should choose
b = 0 in transformation (2.13). Requiring the invariance up to total derivatives of the
Lagrangian will determine the value of the only free parameter, a. The transformation

of the spin 1/2 Lagrangian can be written

L

\/56 PrivO,¥L) =ie”8, [eRe'r* (18, 91)]

—ia"Ere' "1 (8,0.91)
+iapv*7" (8,8, 4)en.

(2.15)

8
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This allows to climinate the 4* matrices, using

BB = L 1BuB, = 0,0". (2.16)
Rearranging terms, one finally gets

1

755 (Frir*8,91) =ia"8, [TRe'v*(v*8,9L)]
—ia*8, [ere'(8"¥1)]
+1ia8, [Fz(0*$)en] (2.17)
+ia"Ex(8,4')(8¥1)
- ia(8,91)(8*$)er.

The last two terms cancel the transformation of the bosonic Lagrangian, Eq. {2.14),
provided @ = —i. The field theory is then invariant, up to total derivatives, under
the supersymmetry transformations:

6¢ = Jiq,ﬁfn
Syp = “i\/i7“au¢fﬂv

6¢1 = \/Eﬁeﬂa

§9L = iV2ery*8.¢'. (2.18)

To close this section, let us compute the action on ¢ and 1y of the commutator
of two supersymmetries (with parameters e, and e};). One finds:

(61,620 = 61(82¢) — E2(610)

= -2 (R’r* ek — ' 1"¢k) Oud (219)
and
{61, 62} = —2i (€& 1€k — TR 7"¢R) [8,.% - %‘m(‘r”f?ud’n )] . (2.20)
To obtain this last formula, one must perform Fierz rearrangements, like
(R B ch = 5 (AR 101, (221)

for anticommuting spinors (see appendix A). Thus, for on-shell fields (y*8.%r = 0),
the commutator of two supersymmetries is a translation:

{61,8] (‘f‘_‘) =iA,P* (,ﬁ) = Au0 (%:51.)

A, = —2i(egv,.€h — TR 1.eR).

(2.22)

with
(2.23)
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(Recall that translations P* are generated by —i8*, since ¢(z + A) = (1 + iA,P¥)
¢(z) = P{z) + A, 8%¢(x) to first order). On-shell, the commutator of two superL;ym-
metries is then a Poincaré transformation and the algebra closes. It does not close
off-shell, because of the additional term in Eq. (2.20). Notice finally that Egs. (2.19)
and (2.20) justify the assertion that the spinorial parameter ¢ has dimcnsi:n‘—l/.Z

2.2. The Majorana case

We now turn to the other case where the spinor field 1 satisfies a Majorana condition
(‘26) (A number of useful identities for Majorana spinors are given in appendix A). It
will prove easier to split the complex scalar ¢ into its real components A (scalar) a-nd
B (pseudoscalar). The reason is that the free Majorana theory is parity-conservin
and supersymmetry transformations should respect this invariance: §4 (6B) sh lgc;
then behave like a scalar (a pseudoscalar) under parity. . a

“The Lagrangian we consider is
_1 1 )
£ =3(8uA)(8* ) + (0, B)(0*B) - 1m*(4° + BY)

+ .;_a(,-.,uaﬂ — (2.24)

Thelif?ctor 1/2in frotft of the Dirac Lagrangian avoids repetition of terms when the
ec;p cit form of a Majorana spinor is inserted (see appendix A, Eq. A17). We have
osen a cc?mmon mass for spin 0 and spin 1/2 states, in order to have supersymmetry.
Under parity, the fields behave according to
P
A— 4,
P
B— -8B,
P
¥ — ¥p ="
The supersymrnetry transformations of the scalars are then
SA=% = e,
§B = ity = iPge, (22)

where ¢ is now a Majorana spinor. Th i
mhe ¢ P ese transformations respect the parity be-

54 L 5a,
s8 2 _sB.
10
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of reasoning as in the Weyl case. These

They are deduced following the same line
(see appendix A). The bosonic

transformations also preserve the reality of Aand B
part of the Lagrangian undergoes the supersymmetry trans

§Lposs =€(0*¥)(,4) + iEvs(8"¥)(8,B)
— m2 (&) A — im?(evs¥) B,

formation
(2.26)
which must be compensated {up to total derivatives) by the transformation of the
Dirac Lagrangian.

To find out how % transforms, we must first write the most general §3% consis-
tent with linearity, Lorentz and parity invariances, the Majorana condition and the
(canonical)} dimension 3/2 of ¥. One finds

byp = liay 8, A + bysy* 3,8 + m(cA + idBys)le, (2.27)

where a, b, c, d are real constants to be determined with the help of the invariance
of the Lagrangian. The behaviour under parity decides whether A or B appears in
each term, by requiring
P
59 Do (69)p = 7°69-

The Majorana condition implies

(671’): - 6¢

or
iy = 9
for our specific choice of y-matrices (see appendix A, Eqs. A20 and A22). This
condition determines the correct  factors.
The next step is to compute the transformation of the Dirac Lagrangian, using
Eq. {2.27) and also

5% = Ej—iay*9,A + bysy* 8,8 + m(cA + idBys)] (2.28)

and, in addition, properties of Majorana spinors (appendix A, Eq. AiB). The terms
containing m? cancel provided ¢ = d = —1. Using the same rearrangement procedure
as in the Weyl case, the terms without m cancel up to total derivativesifa = b = —1.
Finally, the terms linear in m give a total derivative if a = c and b = d, consistently
with the other conditions. The supersymmetry transformations are then

6A = Ey,
B = ‘.E‘YS\‘[':
¢ = — [i7*8,(A4 +iB¥) + m(A + iBys)]e.

(2.29)
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They leave the Lagrangian invariant up to total derivatives:

1 . . ,
8L = - EEB, [(v*8,4 + 17578, B + im(A + iBvs)) 7"

(2.30)
+0, [(8"A +ivs 8" B)Y]. '

Let us now check whether the supersymmetry algebra closes under commutation.
It is straightforward to verify that

[61,82]A = §,(824) — &:(6, A)
= ~2i(6;7"€1 )0, A4, (2.31.a)
[61,62]B = -2i(€27"€1)0, B. {2.31.b)

The same computation for the spinor ¥ is more complicated. It involves again Fierz

rearrangement of terms. One obtains:
. i
(61,6219 = ~2i(E7 1) |08 + S0uli* 8, — m)d) (2.31.c)

For the fields 4 and F, the commutator of two supersymmetries is a translation by

an amount A,, with
Ap ] —21.(22'7”51) = —i(zz‘hfs - 217;1‘2); (232)

analogous to the result of the Weyl case, Eq. (2.23). The same result wili hold for
the spinor 4 only provided it satisfies the equation of motion (iy*8, — m}p = 0.

2.3. The auxiliary flelds

The results obtained in the two previous sections are disturbing for two reasons:
firstly, the supersymmetry algsbra closes only on-shell, using the equations of mo-
tion. It is only under this condition that commuting two supersymmetries gives a
translation P*, belonging to the Poincaré algebra. The second disturbing fact is that
the transformation rule of a Majorana spinor (Eq. 2.29) contains a parameter of the
Lagrangian (the mass m), while the algebra is independent of m. One would then
expect that a representation of this algebra does not contain explicitely m in the
transformation rules.

Another observation is related to the number of degrees of freedom of spinors.
The chiral multiplet always contains two bosonic degrees of freedom (A and B), on-

shell and off-shell. A spinor, constrained to be Majorana or Weyl, has two (real)
components only on-shell, when it satisfies the Dirac equation. Off-shell, it contains

19

four degrees of freedom. The equality of the number of bosons and fermions, which we
already mentioned as being a necessary condition for all supersymmetric multiplets
is then broken off-shell. To construct a supersymmetric quantum field theory, it is
of crucial importance to also possess off-shell representations of the algebra. This
is achieved with the introduction of new fields, which restore the equality between
bosons and fermions and have algebraic equations of motion. Thci do not propagate
and do not bring new on-shell degrees of freedom. They are called auxiliary fields.

For the chiral multiplet, one clearly needs to add two new (real) scalar fields F
and . The number of degrees of freedom for the chiral multiplet is then

4 bosons (A, B, F,G) + 4 fermions () OFF-SHELL,
2 bosons (A, B) + 2 fermions (¢) ON-SHELL.

The presence of the auxiliary fields brings the solution of the two problems
we have mentioned previously. The transformation rules of ¢ will now contain the
auxiliary fields and the term lincar in m, in Eq. (2.29), is obtained only after one
has solved the equations of motion of the auxiliary fields.

To be more precise, let us impose that the equations of motion of F and G are

F=mA,
(2.33)
G =mB
(F is a scalar and G a pseudoscalar). This is obtained using the Lagrangian
Lavx = %(F’ +G?) - m(AF + BG). (2.34)

Notice that F and G have dimension two. This Lagrangian, when F and G are
replaced by mA and mB respectively, generates the mass terms for 4 and B:

1
Lavx|p —mp = _§m=(A’+B’), (2.35)
G =mB
so that the Lagrangian we now consider is
1—, 1

£ =13y 0,0+ 2(8,4) + 2(8,B) + 2(F* + G*)
2 . 2 2 2 (2.36)
- m(?,bvb + AF + BG),

instead of the original Lagrangisn (2.24) for the Majorana casc (which is recovered
by inserting F' = mA and G = mB). The supersymmetry transformations will now
be independent of m. Both the ‘kinetic’ part

1 1 1 1
Lrin = -2"»’11"1"5“1;” + '2'(3;-4)2 + E(auBf + E(Fz +G?), (2.37)

“13



and the mass Lagrangian
1
Laass = —m(-2-¢¢ + FA+ BG) (2.38)

will be supersymmetric invariant (up to total derivatives). -

To proceed, let us first modify the transformation of ¥ in an obvious way:

6% = —[iv"8,(A +iBvs) + F + iG],

M ' i (2.39)
bp = €[y 8u(—A+iBy)+ F + 1G],

instead of Eqs. (2.29). The transformations of A and B cannot get contributions
from F and G which have dimension two. They are again as in Eq. (2.29). As
before, the transformation of the kinetic terms for 4 and B js compensated by the
transformation of the Dirac Lagrangian using only the F' and G independent parts
of §¢ and §y. The contribution of the F and & depending parts is

, - 1. .
—Fe(iv"8,4¢) + Geys(v* %) + 5:8,, E(F + iGys)v*yj. (2.40)
The last term is a total derivative, but the two first terms neced to be compensated
by
1 1
§ (EF’ + EG’) =FéF + G§G. (2.41)
Then, clearly:
5F = {ex*8,¢,
6G = _8757“814';)-
One can easily check that §F and §G are real (se¢ appendix A, Eq. A19) and that
6F is scalar and 8G pseudoscalar under parity. It is then straightforward to verify

(2.42)

that Larass is aleo invariant. To summarize, the supersymmetry transformations of

the chiral multiplet (with Majorana gpinor ¥) are:
A =&,
§B = ity 9,
5% = ~ [i7"8,(A+iBx) + F + iGrse, ' (2.43)
§F = ity* 8,9,
G = —Fpy"8,9.

The supersymmetry algebra closes correctly when acting on F and G:

[63 y 63]F = "'2‘(?31"(; )8,.F,

2.44
{6] y 63}0 = —2‘(?3‘)’“61 )BMG’ ( )

14

in agreement with Eqs (2.31.a-b}. However, instead of (2.31.c), one now gets

[61“52]1!’ = —2f(327"61 )5’“1}’), (245)

so that the algebra closes completely off-shell.

An interesting remark is that the auxiliary fields always transform with a total
derivative. This is related to the fact that F and G have the highest dimension in
the chiral multiplet. This also means that the Lagrangian

Lrinpar=pF  (or u@) (2.46)

is by itself supersymmetric. When added to the Lagrangian (2.36), this term modifies
the equation of motion of F, which becomes:

F=mA-p. (2.47)
Such a linear term can be removed by a redefinition of A:
A =A-pu/m. (2.48)
This corresponds to add a constant chiral multiplet
(A= -p/m B=0,4=0,F=0,G=0)

to the chiral multiplet (4, B, v, F, G). Such a constant chiral multiplet is invariant
under supersymmetry {ransformations (2.43).

Let us stress again that with the introduction of auxiliary fields, the Lagrangian
(2.36) is the sum of two supersymmetric parts: the ‘kinetic’ Lagrangian (2.37) and the
‘mass’ Lagrabgian (2.38), without derivatives and quadratic in the fields. Onecan in
fact obtain supersymmetric Lagrangians analogous to (2.38) but containing product
of an arbitrary high number of fields. This will allow to introduce interactions in the

Wess-Zumino model.

To close this section, let us consider the introduction of auxiliary fields in the
case of Weyl spinors. Since there is no mass, the {ransformation of the spinor ¥
does not require at first sight a modification. It does not depend on a parameter of
the Lagrangian. However, the supersymmetry algebra does not close off-shell (see
Eq. 2.20) and, of course, the number of bosons {two) does not match fermions (four)
off-shell. We then introduce a complex auxiliary field f (2 bosons), and we would
Like its equation of motion to be simply

f=0. (2.49)



This is achieved by adding to the original Lagrangian (2.10) a new term
Lavx = f1. (2.50)

We also need to modify §%r (Eq. 2.18) to obtain a closed algebra off-shell. It is then

necessary to promote ¢ to & Majorana spinor, so that one can write
sy = ~V2L(iv* 8,6+ f)e. (2.51)

In Section 2.1, we only needed a right-handed transformation parameter ¢g. But
there is then no way to add a term containing f and transforming the left-handed
1. Because of the presence of the projector L, the left-handed part of ¢ {which is
related to the right-handed part by the Majorana condition) only appears in the new
term of éyy. This term generates a new contribution to § @Li7“8“¢L), which can

be written

— V2§ [-i(8 B ) — V2 FT [iEy L]

(2.52)
- 1'\/2-(9,. Eb-L’r"fTGL] .
These terms must be compensated (apart from the total derivative) by
§Laux = f(8F)+ f1(81), (2.53)
so that o kg
8f = V2er"dubr, (2.54)
5ft = —iv2(8, ¥ )"
Only the left-handed part of € enters in §f. One can easily check that
[61,82)f = —2i (B2v"Ley — 67" Lea) B, S, . (2.55)
analogous to Eq. (2.19). For a Majorana spinor (see Eqs. A18),
EI‘T’ILég = —Ez‘f“RE] (256)
so that
'e',-r“Lel - EI’Y"LCQ = .6'2'7'“61. : (2.57)

Checking the closure of the algebra off-shell for the spinor ¥y requires a Fierz rear-
rangement. One finally gets

¢ ¢
163, 62] (¢L)=—zi(ez»r“el)a,‘ ¥ | (2.58)
f f
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in complete agreement with the Majorana case, Eqs. {2.44,45). This is the reason of
the introduction of the factors /2 in the transformations of the Weyl multiplet

5 = V2ehy,
Sy = —V2L(iv*8,0 + f)e, (2.59)
5_f =1 2?‘1“8‘,1131,.

The invariant Lagrangian in the Weyl case is
£ = (8,8")(0"6) + Briv*8uvs + 1. (2.60)

Again the auxiliary field f has dimension (mass)?, and transforms like a total deriva-
tive, so that the Lagrangian
Coin = uf +ul (2.61)

is supersymmetric. Adding Lrrv to £ modifies the equation of motion of f which
becomes

f=—-al. (2.62)

Solving for f in the Lagrangian introduces a constant term (irrelevant in the free

case) —|ul>.
2.4, Interactions and the tensor calculus

The introduction of the auxiliary fields has led us to two important observations.
Firstly, suxiliary fields always transform with a total derivative. This follows trivially
from the fact that they have the highest dimension in the multiplet {two for chiral
multiplets) and, since ¢ has dimension -1/2, the transformation contains an expression
whose dimension can then be correct only with a derivative. Secondly, the action
of the frec massive Wess-Zumino model with auxiliary fields is the sum of two parts
which are separately supersymmetric invariant, the kinetic action and the mass terms.
Plausibly, one should be able to construct interactions by obtaining supersymmetric
actions which are trilinear, quadrilinear ... in the fields of the chiral multiplet. It
would certainly be desirable to have a systematic method to construct such higher
order actions. This method, the ‘tensor calculus’, relies upon our first observation.
Assume we could construct a new chiral multiplet whose component fields would
be quadratic combinations of the component fields of two chiral multiplets. Then,
since its auxiliary fields would transform like total derivatives, they would provide
us with supersymmetric invariant quadratic actions. In particular, we should recover
our mass terms with this mechanism. Higher order invariant actions could then be
obtained by iterating the process.
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Historically, the method of tensor calcuius was used to construct the first super-
symmetric field theories. It was later replaced by the formalism of superfields which is
more convenient and straightforward. We will only construct here the simplest part of
the tensar calculus, involving only the chiral multiplets of the Wess-Zumino model.
It can be generalized to more complicated multiplets, for which the superiority of
superfields is however much more manifest.

Starting with two chiral multiplets (4;, B,,%,, Fi, G:) and (A3, By, ¥2, F3, G),
we must construct the components (A12, B12,%¥12, Fi2,G132) of the product chiral
multiplet. The scalar and pseudoscalar components will be quadratic combinations
of Ay, A;, By and B;, with the right parity properties. There is then a unique
symmetric possibility for By,:

By, = A: By + A3 B, (263)

Using the transformations (2.43), one immediately finds that its transformation is

6B1y = ity [(Ay — iByyy )2 + (A2 — iBavs)¥y). (2.64)
Comparing with (2.43), we must then define
Y12 = (Ay — iBiys)¥s + (A — iBays ). (2.65)

The next step is to find A,; such that its transformation matches with our expression
for ¥13. The correct definition is

A2 = A1 A; — B\ B,. (2.66)

The expressions of the auxiliary fields F,; and G); are then obtained from the trans-

formation of ¢,3, which should correspond to the general transformation given in
(2.43). Onoe finds:

$12 =[(F1) + (E1s¥1) s )92 + (1 & 2)
— (A1 —iBy7)(Fy + iGays)e — (1 & 2)
— 78, [(41 +iB1 15 )( Ay + iByys)] e
Using a Fierz rearrangement, the first line of this expression becomes simply
~($1%2)e — (Py15%2 )M,
so that
b12 = ~iv*8, [(A1A; ~ B1By) +i( A1 B, + Az By yys]e
= [($:%2) + A1 F3 + AsFy + B1Gs + B3Gy) e
— b1 [~i($,7%%2) + 4G5 + 4,6, - By F; - ByF)e
=~ 17"8,(A12 + iBiavs)e — Fiae — iGyase,

(2.67)
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with the definitions

Fiz = (¥,%2) + AiF2 + 421 + B1G2 + BaGh,
Giz = —i($y1s¥2) + 41G2 + 4,6, — BiFz — BoFy.

(2.68)

The last task is to verify that

6F]2 = ig‘)‘#apd’l?!
6Gy = —E'TE'Y“BPU"IZ'
It is now clear that the mass Lagrangian (2.38) precisely corresponds to the F com-

ponent of the chiral multiplet obtained by taking the square (in the sense of tensor
calculus) of the chiral multiplet (4, B,4, F,G):

1 1
Lmass = —gm by = ~m(§¢¢ + FA + BG).

The rules of the tensor calculus for chiral multiplets are then the following:

A1z = A1A; - B1 By,

By = A1 By + Ay By,

Y12 = (Ay — iB1ys )¢ + (A2 — iB2ys )¢,

Fiz = ($,%2) + & P2 + A2 F1 + B1Ga + B2Gy,

G2 = —i(¥175%:) + A1C2 + 4:G1 — BiFy — By Fy.

(2.69)

One can then easily iterate the tensor product to get higher order invariant

actions. For instance, a cubic, parity conserving supersymmetric action will then be

Fias =(¥1%23) + A1 Fas + AasFy + B1Gayy + Bas Gy
=,(Az — iBays)¥s + ¥5(As — iByys )1 + ¥3(A1 — iBrys )+

(2.70)
+ A1 A Py + A Fo Ay + Fi A Ay — ByBFy— B1F; By — Fi BB+
+ A;BgG, =+ B;GgAs =+ G]A-_:B; + A1GzBa + G132Aa + B]Ast,
or, for a single chiral multiplet,
%Flu =$(A—iB*y,,)1.b+AzF¥B2F+2ABG. (2.71)

Parity violating interactions are simply obtained by computing the G component of

the corresponding tensor products.



Chapter 3

The supersymmetry algebra
and its representations

;

We have constructed in chapter 2 the transformation rules of the chiral multiplet
(A,B,4,F,G). These transformations contain & spinorial parameter ¢ and satisfy
the following algebra:

A B AB
[61362] ( ‘b = _2‘.(327“51)814 ( 11{’ [ (31)
F.q kG

where the two spinors ¢; and ¢; were assumed to anticommute.

The chiral multiplet is & first example of & linear representation of the super-
symmetry algebra, given in Eq. (3.1). In this chapter, we will study the general
construction of representations of supersymmetry and their particle content. In order

to achieve this goal, we first need to obtain the complete structure of supersymmetry
algebra.

3.1. The supersymmetry algebra

We have already written in chapter 1 the commutation relations of the Poincaré alge-
bra (Eq. 1.1), generated by M** = —M*# and P*. The corresponding infinitesimal
transformations are (¢,, = ~¢,, and A, are real parameters):

Lorentz : b = i%e,,,,M""'@
Translations :  §¢ = iA, P*4.

(3.2)

The explicit form of the generators M** and P* depends on the representation
spanned by ¢: ¢ can be a scalar field ¢(z,.), & Lorentz vector, a spinor, a tensor ...
Finite transformations are generated by group elements of the form

Lorentz : exp (l'%e‘leﬂ’) é=4¢",
Translations : ezp(sA, P*)¢ = ¢

(3.3)

(the factor 1/2 in Lorents transformations avoids duplication of terms due to M# =
—M"*). If for instance ¢ is a scalar field ¢(z), a translation by an amount Ay, acts
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on ¢ according to
#'(z,) = $z + A,) (3.4)

One can write a Taylor expansion
Hon+00) = cep(B,000(z), (335)
50 that the appropriate form of P* is
P* = i~ (3.6)
The corresponding form of Lorentz generators will be:
MP =i(z#8* — z*9"). (3.7)

One easily checks that the Poincaré generators given in Eqs. (3.6) and (3.7) have the
correct commutation relations, Eq. (1.1). Consider now a constant spinor A. The
appropriate representation of the Lorentz generators is:

M» = 2[7»,7"], (3.8)

as can be checked from the commutation relations. The spinor A then transforms
(infinitesimally) according to

1
$A = —-s-c“,!‘r“,-/"].\. (3.9)

This transformation respects both the Weyl (L6A = 6LA) and the Majorana (6} =
8. if A = A,) conditions.

Turning to supersymmetry trmxformnt:ons, we need to express them in a form
similar o (3.2):
6(#) = iZQ(®), (3.10)

where (#) denotes all fields belonging to a supermultiplet, a linear representation of
supersymmetry, Since the parameter ¢ is a Majorana spinor, this is also the case
of the supersymmetry generators denoted by Q. In chapter 2, we have chosen all
spinors as being anticommuting. This is consistent with the canonical quantization
procedure which lpecxﬁu the anticommutators of fermion fields. Considering now
two supersymmetry fransformations with parameters ¢; and ¢;, one gets

[EIQI 520] =—€ g{Qav Qﬂ}: (3'11)
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with the heip of

{en a6} =0, (3.12.2)
{.Q}=0. (3.12.b)

The indices a and 8 in;dicntc explicitely the four components of the spinors. Eq.
(3.12.a) tells us that tie parameters of supersymmetry transformation are Grass-
mann (anticommuting) variables. As a result of Eq. {3.11), it is then natural to
expect that the supersymmetry algebra will contain anticommutators of the Q°’s
(and not commutators as for a Lie algebra). This is a reflexion of the fact that we are
considering a superalgebra, whose generators are split into a bosonic sector B and
fermionic sector F. The superalgebra can be schematically written as

(B,B) C B,

[B,F]C F, (3.13)

{F,F}cC B.
The bosonic sector B forms a closed Lie algebra. In our case, B s the direct sum
of Poincaré algebra and a compact, internal Lie algebra, according to the Coleman-
Mandula (2] theorem mentioned in chapter 1. The fermionic sector contains the

supersymmetry generators ). The Jacobi identities, generalized for superalgebras
become

1

[[B:, Bs), Bs] + ([Bz, Bs), B1] + [{By, By, By] = 0,
((By, Ba], Fs} + (B3, F3), By] + ([Fy, By), By] = 0,
{[By, Ba), Fs} + [{F3, Fs}, By] - {{F3, By], i3} = 0,
HF, B} B+ ({B,R)L A+ {Fs, 7}, B =0,

where F; and B (i = 1,2,3) are generators of the fermionic and bosonic sectors re-
spectively. The second relation can be used to determine the commutator [M*¥, Q.,,]
It should be of the form

(3.14)

(M*,Qal = (4)a"Qs. (3.15)
Using the second equation (3.14) and the Lorentz algebra leads to

[, 871" = ~i (qP5°7 + " b — gobo ey B (316)

which means that the matrices §** form a representation of Lorentz nlgébra for

spinors Q. We have already found this representation (Eq. 3.8), so that
(M*,Q) = 2l 71Q
: (3.17)
= —yhY
279
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defining v** = 1l¥*,4*]. We then conclude that the charges @} have the Lorentz
transformations .

5Q = —ch‘r‘“’Q (3.18)
(€uv = —€u,, arereal parameters). As already indicated, this transformation preserves
the Majorana character of @, since (6Q). = §Q.

The result (3.16) reflects a general property of superalgebras, which says that
generators of the fermionic sector span a representation of the Lie algebra forming
the bosonic sector. This statement is also a consequence of the second Jacobi dentity
(3.14). '

The commutators [P*,Qa] can be obtained in the same way, reproducing steps
(3.15-16). But since [P#*, P*| = 0, one concludes that

(P*Qq] = 0. (3.19)

The commutation relations (3.17) and (3.19) obviously remain the same if one has
several supersymmetry charges

Q; ’ t=1,...,N,

which is the case we will consider from now on.

We still have to find the anticommutators {@¢, Q"H} We have seen in the explicit
example of the chiral multiplet that commuting two supersymmetry transformations
gives a translation. We then expect that {Q}, Qfg} contains a P* piece, and no M#¥
term. Such a term is anyway forbidden by the Jacobi identity

0= [{QL. @4} P] - {10), P, @4} + {(P*, QL) @3}
= [(Qh. @) P],

which implies that only generators commuting with P# can enter the anticommuta-

(3.20)

tors.

We now proceed to establish the most general admissible form for the anticom-
mutators {Q%, Qf,} Since they are symmetric under the interchange a,i «» 3,7, we
must construct products of y-matrices with definite symmetries. This involves the
charge conjugation matrix C, since (v*)” = Cy*C. Cae shows easily that

Capy (15C)ap;  (1*15C)asp
are antisymmetric, while

(1"Clags (Y*1°Clag, pr <V



are symmetric. Clearly the term of the anticommutator containing translations P* is
associated with the symmetric matrix v*C. Since no bosonic generators transforming
under Lorentz group other than P, and M,, are allowed by the Coleman-Mandula
t‘heorem, one concludes there is no term with v*7*C or y#75C. (We have already
argued that there is no M, term). Then:

{Q4, @4} = (7#C)apm™ Py + CapV'¥ +i(1C)ap 2", (3.21)
with R
Vi = v (3:22)
Z = 27,

m'¥, Vi and Z% are real matrices. Their reality is fixed by the Majorana condition
satisfied by the spinorial charges, Q% = (C*y"Q"tf).,. It implies for the anticommu-
tators ‘

{Q4 @3} = (07" )awr (R R Y(C )aa- (3.23)
Notice that one can always perform an orthogonal transformation and a rescaling
of the charges Q, so that m*/ = a6'/. Finally, a is fixed by requiring that two
supersymmetry transformations generate the correct translation, as in Eq. (3.1).
Considering the case N = 1, with only one spinorial charge Q, one gets

[61 . 6:] = [iil Q! ‘.EZQ]
E?EZB{QG: Qﬂ}
= €28 (1" C)ap aP.

Recalling that P, = —i8,,, one obtains

[61,82] = —ia (31’)‘“0‘70‘;T) 8,

= —ia(f7") 0, (3.24)

=1ia (227”51) 8#!

with the help of the Majorana condition ¢z = C*y“e; . Comparing with Eq. (3.1),

one must choose a = —2 so that
{Qm Qﬁ} = —2('}'"0).,191"“. (3'25)
1
in the case of one supersymmetric qhu‘ge (‘N = 1 supersymmetry ), and

L i $ oy i, 3.26
(@, @4} = —2(1"C)apb’ Pu + CapV™ +i(1C)an? (3.26)

na

for ‘eztended supersymmetry’ (N > 1). The new generators V'/ and 2V are central
charges: they commute with each other and with ait generators of the superalgebra.
Thia can be shown by using the Jacobi identities (3.14). To summarize, the fuil
supersymmetry algebra is:

[M* M) = —i(q*? M*° 4 nUTMPP — T pve _ ﬁ"’M‘“’),
(M¥*, P7] = —i(n**P¥ — p*?P*),

[P*,P*] =0,
[M*,QL} = ,:—,(‘r”"Q‘)a, = %{7“.7"],
[P Q] =0, (3.27)

{5, Q2) = ~21"C)apPub + CapV'¥ + i(75C)ap2¥,
[Vij’VH] — [Vij,zhl] = [zl’j,zhl] = 0,

[M* V) = (P, V9] = (@i, V] = o,

[M‘wizij] = [P“!zij] = [Q;!Zij} =0

Since F, has dimension (mass)’, the supersymmetry charges Q' have dimension 1/2.
This number is consistent with the choice we made in chapter 2, that the spinorial
parameter ¢ has dimension —1/2 (the transformation i£Q is then dimensionless, as it

should).

Notice also that the central charges have dimension (mass)!. They will in general
introduce mass parameters in supersymmetric multiplets. The form of the centra)
charges can be freely chosen, since they belong to an abelian subalgebra. Any trun-
cation of the algebra with general central charges is then also admissible.

The relations (3.27) correspond in fact to the simple orthosymplectic superalgebra
OSp(N|4). This algebra has a bosonic sector '

Sp(4, R) x SO(N).

$p(4, R) is isomorphic (as a Lie algebra) to the anti-de Sitter algebra SO(3, 2) (pseu-
do-rotations with signature (+1,—1,—1,—1, +1)). The fermionic sector contains 4N
generators transforming as a spinor of SO(3,2), and a vector (N) of SO(N). The
internal symmetry SO(N) rotates the supersymmetry charges. We have omitted its
generators in the relations (3.27).

The anti-de Sitter group SO(3, 2} is not the same as the Poincaré group. S 0(3,2)
has a subgroup SO(3,1) (generated by, say, M** = ~M*# y v = 0,1,2,3), identi-
fied with the Lorentz group. But the remaining generators M*5 are not translations:
[M**, M**] = —iM** and does not vanish when u differs from v. 50(3,2) would
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be appropriate to describe the isometries of anti-de Sitter space, with a negative
cosmological constant (SO(4,1), the de Sitter group, is relevant for a positive cos-
mological constant). Minkowski space corresponds however to a zero cosmological
constant. The Poincaré algebra is then obtained in the zero curvatuire limit of de
Sitter or anti-de Sitter space. In the language of group theory, the Poincaré group
is the Indni-Wigner contraction with respect to the Lorentz subgroup 50(1,3) of
50(2,3) (or SO(1,4)), denoted by ISO(1,3). ‘Schematically, one splits the anti-de
Sitter algebra into two parts, Lorentz generators M and the remaining part P (the
generators M*5) The 50(2,3) algebra is

(M, M} =M,
|M, P} =P, (3.28)
[P,P] = M. )
Define now generators P by
P =P (3.29)
In the contracted limit, A — 0, one gets
M, M} =M,
[M,P] =P, (3.30)
l}—)’ﬁ] =0,

corresponding to the Poincaré algebra, P being the translation generators.

In the case of the superalgebra, one must perform an analogous contraction. The
OSp(4|N) algebra is, schematically,

[M,M]:M, [M|Q]:Q!

[M,P]zP, (PQl=Q,

[P, P] = M, T.Ql=g@,

TT T (3.31)

(T,M] = [T,P] =0,
{QQt="P+M+T,

where T denotes the SO(N) generators and ‘P + M + T" a linear combination of
bosonic generators. The contraction (3.29) cannot be used since it would give singular
terms in {Q,Q} when X — 0. One clearly must also contract the fermionic sector Q.

There are two relevant possibilities, differing by the contraction of internal symmetries
T. Define:

1) P=AP, §=vAQ, F=r (3.32)

LY.

One gets, in the limit A — 0,
(M, M] =M, [M,?]:ﬁ, [ﬁ1?1= )

[va] = T—:

[T,M!| = [T,P] =0, (3.33)
M,Q]=Q, [P.Ql=0, [T.Q]=0Q,
Q. Q=P

These relations correspond to the direct product of the super-Poincaré algebra with-
out central charges and the internal SO{N) group. It is clear that one can freely
truncate (or enlarge) SO(N) without doing any harm, as long as the internal sym-

metry can be represented on the fermionic sector: [T,Q] = Q.

The second possibility is:

2) P=3P, Q=v2Q, T=2AT (3.34)
One finds: _ — —
(M, M]=M, [M,P|=P, [P,P|=0,
(T,T) =0,
T,M)=[T,P) =0, (3.35)
M,Q1=3, [F.Q=[F.Q=0,
Q. =P+T.

The generators T are now central charges. It is clear that one can obtain simultane-
ously (3.33) and (3.35) by contracting only some of the T's.

We now turn to general results on the representations of supersymmetry, Three
important properties of supermultiplets can be easily proven:

1. All particles belonging to an irreducible representation of supersymmetry have

the same mass.

This is because P? = P, P* is a Casimir operator of the super-Poincaré algebra.
It is straightforward, using Eqs. (3.27), to verify that

[P*, P¥) = (P1, M*) = [P, Q] = 0. (3.36)
2. The energy P, in supersymmetric theories is always positive.
Using the algebra (3.27) and the Majorana condition a' = Q'"C, one gets:

{Q4L. Q%) = 2(v*)uP P8 — Viig8 — i(4s)P 2. (3.37)



Then: i 1.0 ii!.;‘ti)

S ({QL.T°1°) = 3 (Qa@u)' + (9. = 38)
= 2N Tr{y*y°P,) = 8N P,.

Since @ (Q) + (QL)QL is positive or zero, then

E=P°>0. (3.39)

3. A supermultiplet always contains an equal number of fermion and boson degrces

of freedom.

Let us introduce a fermion number operator Ny such that (—1)¥r is either +1
on bosonic states or -1 on fermionic states. It has the property that

(-1 Q= -Qi(-1)". (3.40)
Then, on any finite dimensional representation,
Tr ((-0)"{Q5,0%)) = Tr (-@i(-1V@” + Qu-1¥ Q") =0.  (34)

Using now (3.37) for i = j, one finds

0=Tr ((-1¥1@5,@%)) =20 Tr (VR (342)
Choosing now a fixed non zero momentum F, leads to
Tr(-1)¥r =0, (3.43)

which is the desired result. The case of central charges (or i # j) is exactly the same.

Notice that we have used two different traces in proving properties 2 and 3. In
Eq. (3.38), the trace is taken over spinor indices «,8 while in Eqs. (3.41,42}, one

sums over all states belonging to the representation.

Another important result has been proven by Haag, Lopuszanski and Sohnius [9].
They have shown that the supersymmetry algebra (3.27) is in fact the most general
superalgebra admissible as a symmetry of an interacting quantum field theory. This
result is in fact the extension to superalgebra of the Coleman-Mandula theorem
mentioned in chapter 1.

We will now proceed to determine the particle content of representations of
supersymmetry. They will be characterized by the values of the Casimir operators of
the algebra. In the Poincaré case, the two Casimir ate the mass and the spin of the

no

particle. We have already shown that the mass is also & Casimir of the super-Poincaré
algebra. We will see that one can define a ‘superspin’ which will be essentially
the highest spin of all particles belonging to the supermultiplet. More rigourously,
one should speak of helicity or super-helicity in the massless case. In addition, the
supersymmetry algebra has an internal symmetry part. A g permultiplet will then
eleo be characterized by the Casimir operators of the internal symmetry.

In the next two sections, we will discuss massless and massive supersymmetry
representations for on-shell states (following a line of reasoning given in [11,12]). In
general, there is no method to find the necessary auxiliary fields. It is often impossible
to extend an on-shell multiplet to a (linear) off-shell representation. We will neglect
central charges (see [12]). They generate only massive representations.

3.2. Massless supermultiplets
We shall study first irreducible massless representations of supersymmetry. To do

this, we first choose a special frame for a massless state P*P, = 0, and generate the
states of the supermulfiplet in that frame. We choose

F, =(E,0,0,E). (3.44)

In this frame, the supersymmetry elgebra (3.27), without central charges, reads

{Q4,Q3} = —4E 84, (3.45)

= O oo
cooo
o0 o
o0 0 -

so that one gets
{1, Q1) ={Qi, @]} = —4EsY, (3.46)
all others anticommutators being zero. Since Q' is & Majorana spinor, we also have
Qi = it Qi___QH (3.47
3 2 3 4 1 - * )
The supersymmetry algebra (3.27) is then equivalent to
{0,0{"} = 4E6%,
'_ t ‘ ? - ‘ I3
{05,9') = (@},0f'} = {5, 0"k =0,
{QLQ{} = {Q;! Q;} =0,
{Q1,Qd} = 0.

(3.48)
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Consider now only @}, @ . One can easily absorb the factor 4E into the charges

{or choose E = 1/4) so that {Q;‘,Q{f} = 6", Define now the 2N quantities 'y by
o=@+ Qi .

. _..1‘_ 1” i=1,...,N. (3.49)

A1 = ‘(Q1 - Q1 )

!
They form a Clifford nlg}\,bra, with anticommutation relations
{Ta,TB} = 26.48; A,B=1,...,2N. (3.50)

The automorphism group of this Clifford algebra is SO(2N). It is well known that
this Clifford algebra has a unique representation of dimensioni 2¥. The states of the
representation are easily constructed using the Q{T. The relations {@3, Q{ '} = &
correspond to a set of N Fermi creation {the Q'i*’s) and N annihilation (the Qi’s)
operators. One then starts from a Clifford vacuum [ > such that

Q2 >=0. (3.51)

The states of the representation of the Clifford algebra are then obtained by .acting
on |1 > with Qgt:

> : 1 state
Qi'lﬂ > : N states
it gt 1
191 10> : EN(N — 1) states
i;f .‘.f . N _ N!
T Q0> -(k)—k—"-———!(N-k)!ltates
1 N
i ?’ 1”"0) : (N) =1 state
Since
[N/3) iN/3)
B@- B ()
b=t k=10 2k + 1
(2k+1< N)

([---] meamlinteger part) we have precisely constructed 2V lt;tu,flﬂmgnatunﬂy
into two classes: . ) S - ) .
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2N-1 ¢iates obtained from |2 > by acting with an odd number of Q7 ',

2N—1 giates obtained from |1 > by acting with an even number of Q‘i?.

All this states are characterized by a vanishing mass. They also possess a helicity,
generated by M'? = —M?!. This generator leaves our choice of P, Eq. (3.44),
invariant. It is then an admissible quantum number. So the vacuum state |2 >

possesses a helicity Aprax. Then, according to Eq. (3.27),

[Mu-QJT] = —%QlT;

: (3.52)
(M2, Q1] = +20s.
A state ',"1 e li"‘tm > has then a helicity
A= Apax —k/2, (3.53)
which can be written in an operator form
A=Auax -3 Y ei'el (3.54)

i=1

The 2V states representing the Clifford algebra (3.50) have then helicities ranging
from Aprax to Aprax — N/2. Returning to Eq. (3.48), one sees that

QG=ei =0 (3.55)

This result follows from the following argument: a physical state should have positive
norm and all states of the form Q%|¢ > or Q§t|¢ >, where |¢ > is a physical state,
have necessarily zero norm due to the vanishing anticommutators in Eqs. (3.48).
The 2V states constructed with Q{T are then the basic blocks of each supermultiplet.
There is a further constraint due to the CPT theorem of field theory. A physical
massless state always contains two helicities +A and — A (except A = 0). In terms of
our 2% states, one checks easily that this constraint will be satisfied only if

Apax = '4—. (3.56)
for N even. These massless supermultiplets, containing 2% helisity states, will be
called CPT-le]I-conjuSMe multiplets. If Eq. (3.56) is not verified, one gets all nec-
essary helicity states by doubling the multiplet, choosing a second Clifferd vacuum
|2 > with

Asrax' = 7~ AMax. {(3.57)
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A massless, non C PT-self-conjugate, supermultiplet contains then 2¥+! helicity
states.

The last points to investigate are the internal quantum numbers. The algebra
(3.48) is clearly invariant under

Qi - U%Q1, (3.58)
where U is a unitary matrix. This gives a U(N) invariance group generated by
i init
Ui =1Q1 (3.59)

with the algebra

(U, U] = 83U°% - §U*;. (3.60)
The abelian part of U(N) ~ SU(N) x U(1) is generated by the number operator
E-._x Q' Q% which is part of the helicity operator, Eq. (3.54). SU(N) is then
the natural symmetry to classify states of given hehc:ty If one assumes that the
Clifford vacuum is an SU(N) singlet, the states Q 1 . Q"t|ﬂ >, with helicity
Aarax — k/2 belong to the fully antisymmetric tensor representation of rank k of
SU(N), denoted by {k}n. Its dimension is: '

_ N N!

One could however assume that [ > belongs to a representation R of SU(N). The
states Q';JQ;"1 .- :"tlﬂ > are then in the representation R x [k]n of SU(N).

A massless supermultiplet is then fully determined by the helicity Aprax of
the Clifford vacuum |§} > and by its SU(N) representation R. CPT corresponds
to the condition that to each state with helicity A and SU(N) representation r,
there corresponds a state {‘antiparticle’) with helicity —A and representation 7. The
condition is satisfied by associating to the vacuum a second vacuum with helicity
N/4 - Apax and representation F. Clearly, CPT doubling is not necessary for the
self-conjugate multiplets with

Amax = N/4,

R=R. (3.6

When constructing supersymmetric gauge theories, we will consider only states
with helicities 0 (scalar fields), +1/2 (spin 1/2 fields), +1 {vector fields, spin 1). This
implies that the helicity extension of the multiplet is then at most two, which means
N < 4. The complete list of acceptable supermultiplets is then given by the following
table:
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Helicity states of supersymmetric gauge theory multiplets:

1] (2] (3} 4] (5] (6]
N=1 N=1 N=2 N=2 N=3 N =4
’1\ Amax =3 Ama i(= 1 Amax =% Max =1 Apmax=1 Apyax =1
1 1

1/2 1 1 1+(1) 2 3+1 :
] 1+1 24 (2) 1+1 3+3 6
-1/2 1 1 1+(1) 2 1+3 1
1 1 1 1 1

(The numbers of states correspond to SU{N) representations. They are given for a
SU(N)-invariant Clifford vacuum).

(1] N =1 chiral multiplet: 2N+ == 4 states.
(2] N =1 vector multiplet: 2¥+! = 4 states,
(3] -N¥ = 2 ‘hypermultiplet’: 2¥+1 = 8 gtates.
(4] N = 2 vector multiplet: 2V1! = 8 states.
[5] N =3 vector multiplet: 2V+! = 16 states.

(6] N = 4 vector multiplet: this multiplet is C PT-seli-conjugate, without doubling
(2V = 16 states).

Two remarks are in order:

The N = 2 hypermultipiet has a peculiarity. Since Eq. (3.56) is satisfied, there
is at first sight no doubling. However scalars transform as an SU(2)-doublet which
is & pseudoreal representation. CPT however requires scalar fields to belong to real
representations. One must then double the states.

Whez constructing a N = 3 supersymmetric gauge theory, one gets automati-
cally a fourth supersymmetry. The states in multiplets [5] and [6] are in one to one
correspondance and it turns out that the most general renormalizable field theory
contructed with the N = 3 multiplet is also the same as the N = 4 theory.

The other massiess supermultiplets of interest are those containing one (and only
one) spin two state (with helicities £2) to be identified with the graviton. These

33



multiplets will be used to construct the supergravity theories:

A |IN=1 2 3 4, 5, 6, 7, 8
2 1 1 1 1 1 1 1 1
i 12 3 4 5 6 741 8
1 13 6 10 15+1 2147 28
i ; 1 3 1041 2046 35421 56
0 141 B45 15+15 35+35 70
-1 T 4 1410 6+20 37 +35 56
-1 1 3 6 ™ 1+ 7+21 28
-2l 1 23 1 5 § T+1 B
-2 | 1 1 1 1 1 1 1 1

Agnin the N = 7 supergravity theory is in fact the N = 8 theory (the numbers of

states also match). But the N = 3 supergravity theory is now different from N = 4
theory.

3.3. Massive supermultiplets

Since all particles in the representation will have a mass M, one can simply go to the

rest frame of the multiplet and choose

P, =(M,0,0,0). (3.63)

The supersymmetry algebra (3.27) without central charges reads then:

0 0 (L |

{Q4, Q%) = ~2M(1°Clapt® = —ams+ | 0 0 -1 0
o Wal = T Clape” = 0 -1 0 o (3.64)

1 0 o0 o

Using the Majorana condition, one finds

{@1,0f't = {94, 0f'y = 2ms,
tehei'y = {eh et =0, (3.65)
{1, @i} = {Q},@j} = {el. @} =0.

Absorbing the factor 2M in the normalization of charges {or choosing M = 1/2}, one

realizes, comparing with the maseless case, that relations (3.85) are equivalent to a
Clifford algebra of 4N operators defined by

i it i i
Fa=Q1+@}; Panwian =@ + Q,t;
Taies =@ — Q') Tamaaacy = i(Q4 — @31);
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The representation of this algebra will have dimension 22¥ 1ts automorphism group

is SO(4N). States are again easily constructed by defining a Clifford vacuum | >
such that ,
Qi >= Q3 >=0, (3.67)

. it i 1
and acting on |1 > with the 2V creation operators ) and @ .

In the massive case, states are no more classified with an helicity. The Lorentz

generators leaving our choice of P, invariant are now
12 pq13 pg23
M MY, M®.

They form an SO(3) ~ SU(2) algebra. Each particle state will then be characterized
by its spin, the SU(2) Casimir, and by the quantum numbers of the subgroup of

SO(4N) which commutes with the SU{2) spin group.
Under the spin group, the crestion operators behave like a doublet (spin 1/2):

it T=12,  Js=-1/2, (s.68)
it g=1/2,  Jy=+1/2

SU(2) is a subgroup of SO(4N). The embedding is defined by the observation
that all states of the 4N vector representation {which contains the 4N operators
(Q{,Q;,Q}'T, 51)) belong to an SU(2) doublet:

4N = (2,2N). {3.69)

The group acting on the representation 2N is the symplectic group USp(2N). It is
the largest subgroup of SO{4N} which commutes with SU(2), since SO(4N) has a
maximal subalgebra SO(4N) D SU(2) x USp(2N).

States with a given spin will then be classified in representations of the symplectic
algebra USp(2ZN) (to be compared with the massless case where states of given
helicity are in SU{N) multiplets).

The explicit construction of the states of the fundamental supermultiplets goes
along the same line as for the massless case. One starts with a Clifford vacuum
|© > which, in the simplest case, has spin zero (SU(2)-invariant) and no internal
(USp(2N)) quantum pumbers. A more general situation, which we will only shortly
consider, would be to start from a vacuum with non zero spin and/or with non trivi:l
U/Sp(2N) quantum numbers. One then acts on |} > with the creation operators (1
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(with Jy = —1/2) and with Q3" (with Jy = +1/2). The states
[ >
e >
itnit
Qi'ed'Ia >

1oy elein >
form the 22¥_dimensional representation of the Clifford algebra, which contains the
two fundamental spinorial representations of SO(4N), both with dimension 22N-1
The states belonging to each spinorial representation are constructed with an even or
odd number of creation operators. Each representation contains then only fermions

or bosons.

To determine the particle content of the supermultiplet, we need the SI7(2) x
USp(2N) quantum numbers of the states. One finds that

7= (%’[01) * (Hni__l’m) * (N—Z_E’[zl) + (3.70)

+o 4 (0, (N},
where the notation (spin, USp(2N) representation) is used. (k] denotes the k-fold
antisymmetric traceless irreducible representation of U Sp(2/N), with dimension

dimlk] = (?f ) - (kziv 2), (3.71)

The simplest massive supermultiplets, with a spin zero vacuum without internal
quantum numbets, contain states with spins ranging from zero up to Nj2.

If one uses a Clifford vacuum with & spin Jn, one constructs in the usual way
(2Jg + 1)23N states. All massive supermultiplets with spin up to two are given in
the following table:

Massive supermultiplets with maximal spin two:
{n is the number of states and s the spin of [ >)

JIN=1 1 1 1 2 2 23 3 4
2 1 1 1 1
i 1 2 1 4 1 6 8
1 1 1 1 4 5+41 6 1441 27
il 201 4 541 4 14 1446 48
ol 2 1 5 4 1 14 14 42
n| 4 8 12 16 16 32 48 64 128 256
sl 0o L1 % 0o 3 1 0 i 0
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The internal quantum numbers are the USp(2N) representations. Notice however
that U Sp(2N) cannot be used as an internal symmetry since it does not exist in a gen-
eral frame. Lorentz transformations only preserve the U(N) subgroup of USp(2N).
USp(2N) can only be used for classification purposes. Also, a general Clifford vac-
uum can only carry a non trivial representation R of U{N). CPT invariance requires
R to be real (if not one must also take the conjugate representation K). The quantum
numbers of states of given spin arc then obtained by multiplying those given in the
table by R (or R+ R).
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Chapter 4

Superfields

As we have seen in ch.apter 2, constructing supersymmetric field theories requires
in general painful calcnlations. This is particularly true for interacting theories.
This observation is to be compared with the case of translations. Invariance under
translations is always manifest, since P, acts with a derivative, P, = —i8,:

bd(z) = A0,

(4.1)
§L=A,8"L = total derivative.

However, supersymmetries are ‘square root of tranclatjons’, as is clear from the super-
Poincaré algebra. It is then attractive to try to represent supersymmetry transfor-
mations as being some generalized translations. If possible, such an idea can be
achieved only in an enlarged space with some new coordinates which are translated
by supersymmetry. This enlugéd space is called superspace.

Usual tranelations in space-time act on a vector of coordinates z#. Their pa-
rameters then also form s vector A* and the translatior is

¥ — * 4+ AF,

We know already that the parameter of a supersymmetry transformation (we consider
only the N =1 case) is an anticommuting (Grassmann variable) spinor ¢, subject to
the Majorana condition. It is then natural to' expect that the coordinates of a point
in superspace will be given by

(=*,8),

where # is also a Majorana anticommuting spinor. The spinors ¢ and # have only two
independent components. We will then adopt a two-component notation which will
prove much useful to handle the algebra of the Grassmann variables contained in 8.

4.1. The two component notation

We have chosen -y-matrices such that a Dirac spinor ¥ can be written

b= (i’:) . (4.2)
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$1 is a left-handed two component Weyl spinor, transforming under the Lorenf,z
group SO(1,3) ~ S¥(2,C) according to the (1/2,0) representation (i.e. like a spin
1/2 for ‘left’ transformations and a scalar for ‘right’ transformations). Accordingly,

¥ transforms like the (0,1/2) representation. We will then use the notation

‘d’L = Pay a=12

(4.3)
vR=¥, =12

to indicate these transformation properties. The Lorentz group SO(1,3) ~ §1(2,C)
acts on these two-component spinors via 2 x 2 matrices M of unit determinant (i.e.
§1(2,C) matrices) which represent the Lorentz group. Since M*, (M7)™! and (M1)~!
are also 51(2,C) matrices, they also represent the action of the Lorentz group on .twO_
component spinars. The indices « and & correspond to the following transformations:

YomMles =D (4.4
Bh = (M2, = (M), T
This definition means that $%yo and §; $p4 are Lorentz invariant:
Wobhe = WM Moy = 90, s
B Tae = PUM )5 (M*)a" Bay = 91 b2a
We now have the identity
Cay M, " Ms™ = det(M) ey, (4.6}

where e, is the antisymmetric tensor. This identity means that ¢,g is Lorentz

invariant, since det (M) = 1. Defining now €28 = —¢P* such that

eage?” = 67, (4.7)
one gets
Cay M, Mg &8 = 65, (4.8)
or
(M7)a” = earMy"e?, (4.9)
One can then use €*? (e.g) to raise (lower) indices:
a __ af
vE =T, (4.10)
Yo = faﬂ'p”-
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Notice that for anticommuting spinors
¥ra = Peartag¥] = —Via¥h = ¥1¥us. TRV
We will use the convention
1%z = ¥i¥aa = Y2t (4..12)

Four component spinors are then written

_ [ ¥a
v’_(i"‘)’ ' (4.13)
E = (x“ gé) t
which implies that _
P = x"Ya + PuX"- (4.14)

It is then natural to choose the convention

$i¥, = Elda‘: = ¥a%1,. (4.15)
with .
ad = Edﬁ;ﬁﬂ,
3" = 5, (4.16)
e&ﬂea" =48]

A Majorana spinor satisfies the condition

X = (i)

(4.17)
= gy = )"

The last equality is due t6 Eq. (4.4). This forces us to choose &8 = (i0?)%, or

A = . : . 1,

4.18
€53 = —€3i = ~h (4-18)
el = ¢ = €1 = €3 = 0.

The set of y-matrices appropriate to the two-component notation reads

v = ((Eg?)éa (6“0)“"“) : (419)
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with ‘ _
(7)* = 2P (o*) gy (4.20)

In agreement with the y-matrices of appendix A, we choose

o* =(1,-0%), i (4.21)

and we would like to find '
7 ={1,0%). (4.22)

This is the case if €P = (i0?)?f or

? = ¥ =1,
€12 = —€3 = -1, (4.23)
el = 2% = €1 = €33 = 0.

Then, in matrix notation, Eq. {4.20) reads
(3*)" = o?0*a?, (4.24)
which leads to the result (4.22).

One can prove several useful identities in this formalism. Some of them are
collected in appendix B.

We can now rewrite the supersymmetry algebra in two component notation.
Since the superfield formalism is available essentially only for N = 1 supersymmetry,
we consider only one supersymmetiry charge Q. It is & Majorana spinor:

Q= (%3) . (4.25)

The anticommutator in Egs. (3.27) reads

{Qa, Qs} {Qaﬁﬁ}) _ 0 —2P,(io*a?)
({ad:l Qp} {6&;6’} (2P“("Eﬂa3) 0 ) + (4.26)
where (io*a?) = ar"“c“. One then deduces that
{Qq.Qp} = ‘,és,{QmaJ’} = ~2Py(0*)aae* ey,
= 2Pﬂ(a’.)aﬂ'

‘{Qmaﬁ} = fﬁa{a&: Qa} = —2P‘.(&"‘)""e.,¢e“
= -2P,e“¢"(0“)58‘7°‘ﬂa
= 2P,(o"* )nﬁ'
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The supersymmetry algebra is then

{Qa, @5} = {65,53} =0,
{Qmaﬂ} = 2Pﬂ(a“)uﬁ‘

(In trying to compare thitp algebra with, for instance, (3.45) or (3.64), one must
remember that ai = —-Q-’ = —Q4 and a-, = al = Qy). Introducing a spinorial

parameter
€= (;g) , (4.28)

a generic supersymmetry transformation (see Eq. 3.10) will read

8(¢) = i (¢Q + Q) (¢)

(4.27)

4.29
=i (<Qu+2R") (9, (429)
and the algebra is
[6Q + 0@, aQ + &) = (4 + &) {Qu Qal (4.30)
=2(€1U”E;-€30321)P“, .
so that ‘
[61,5:](¢) = —2(e10%€ — e20%E ) Py, (4.31)
where

€rPE = (0" )aa?.

In order to obtain the algebra (4.30), one assumes that the parameters ¢ and & are
Grassmann variables: i :

{2, f} = (e, T = {&,#) =0,

a a a 7 <& —& 7Y (432)

{7, Q }=1{.Q }=A{7 @ ={E,Q }=0.

4.2. Superflelds

The parameters of supersymmetry transformations are the two component spinors
= and 7. We want to introduce new fields {superficlds) ¢ such that the charges
Qo and Q@ act on ¢ through derivatives only, in analogy with translations. We

then enlarge space-time to superspace, with new coordinates 4° nad 7 which are

Grassmann variables: .
0= (7,0} = (.7} = 7). (4.33)
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A point in superspace has coordinates
—&
X =(z*,6%,8). (4.34)

We must then find the representation of the charges @%, Q acting on the superfield
#(z,9,8), and satisfying the correct algebra (4.27). Notice that since €” and # have
dimension {mass)~*/2, §, and 8, should have the same dimension.

We want to find charges @, and Q, (dimension 1/2} containing derivatives 3,
(dimension 1), 3 and ﬁ; (dimension 1/2). Then:

8
Qa—aa8F+baaa+caf.E,
s _» (4.35)
Qd':aé‘a”*—bbg:-l-c"’g@:'

In these expressions, b, b, ¢coq and T3 are dimensionless, while a® and @’ have dimen-

sion -1/2. Their natural form is:

a¥ = a(c* )m-,ﬁa,

- (4.36)
@ = T0%(6 o
with @ and @ dimensionless. Then, observe that
a —& [ 8
{@Jﬂ")ﬂao 3»} = —(0*)pab [Wﬂf’n] =0,
; )
2 8%(0") 58 t = 0, 437
{06* (%)as 0 (437)
8
{Ba_u”ﬁ("“)ssa“} ={7")ap%-
Also
8 . a —d
[‘“o*é“s’(""v:f“)m] = (ot 7, (4.38)

which is precisely of the form required by the supersymmetry algebra (4.30). To
avoid other unwanted terms, we then assume that a, G, b and b are complex numbers,
and, in order to obtain {Q.,Q@s} = {a&,(_jb} = 0, one must choose cpe = ¢ = 0.
The only non trivial anticomrmutator iz then

{Qus @3} = (30 + aBY(#*)opsr

(7 Qe Ezaaé] = (@b + ab)(€10")8,. (4.39)
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Then:
1€$Qa + 016G Qs + 22,56‘"] = (@b + ab)(e;0"E — €20%6,)8,. (4.40)
To reproduce (4.27) (with P, '= —i8, ) and (4.30), we must choose
b+ ab= -2 (4.41)

(Recall that a and @ or b and b are independent complex numbers and not conjugate
each other). The form of the anticommutators is not strong enough to completely
determine the charges. One can choose:

Qra = ~i (% - ;(a"),éa“a,,) ,

A (4.42)
T+ bt
a9

(The index 1 indicates that other choices exist).

Another approach is to write (formal} group elements generalizing again the case
of translations for which

$lzu +4,) = em'(_iap)d’(zp)-
The grou-p elements we are looking for will be of the form
G(B,€,7) = i(BeP +:Q4+7Q) (4.43)

As in the case of translations, the action of a group element G on a superfield ¢ will
induce & motion in parameter spate. Since [P#, Q. = [P*,Q,) = 0, one can casily
calculate this motion. One has

eheP = aAtBt+ia,B) (4.44)

since all higher commutators vanish. The action of the group element G(0,¢,%) on
the superfield and group element G(z,8,8) is

G(0,¢,6)G(z,60,8) = G(z* + iecchP - ibote, e+ 8,8+ 0) (4.45)
since in this case 4 + B + [4,B]/2 is
i (2, P + (¢ +0)Q + (24 9)Q + icc*BP, — i80"2P,).
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-space and & translation ¢ of the coor-

. * - “
enerates a translation ies”8 in .
e 9.8 ghould contain a term

dipate §. Since z* translations are generated by —i8,, Qa e
(aﬂ)“ﬁ"a,,. Analogously, @, should contain a term —8(0")aadu. To obtmn-t e
translation operators for the spin_c;ria.l coordinates, we study t.hc case of functions
F(9) and F(#) which, since 8* =6 =0 have the powcr.expansmns
F(8)=a+ E"_’: + cg"g:, (4.46)
F@) =a+baf +20a0 .

Then, using the identities listed in appendix B, one gets the Taylor expansions

1 o 8 5_1)[‘
¢ BF) (‘ 807

a 8
— = | F
c) (Eﬂ 805)

——

F(8+¢)=F(8) + e“Eg—,F +

—
[
&
=]
o

B
= F(B) + EaEa—u'F+
(4.47)

I IR ]

:}:l‘l
L~ -1
+
‘f_hL
1]
o
o
+
"
1
gl
+

9 ) |
L2 F. -_‘1_) 2 \F
; )__)F; 3 (ed. 5. (cp 335)

To first order, it is apparent that §-translations are generated by

i
=
Sl
+
™
o
K
*ry
+
|

—t 0= (To).,

and #-translations by

.8 E D 4.49)
+i—r = (Tg)an (
s ’

so that 2 general translation group clement to first order is
1+ i(eTo + &5) = 1 +i("Toa ; @ls) , s
=1+i(Toa — ¥T5,) =1+ 500 +E&§§T
QOne then obtains

Qa = —i (5%: + i(a“}ué-a‘&ap) ]

8
0.,=-i|l-—3 —iﬂ"(a”),é,a,.) .
Qa ( o
Notice that {see appendix B):
=i (-a% + iﬂﬁ(a")ﬂaeﬂ""ﬁu) ) (4.52)
&

as required by expansions (447}

(4.51)
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so that

80a

The supersymmetry charges (4.51) satisfy an algebra with the wrong sign of P,
(compare with the condition 4.41):

Q+iQ = —i ( Og“ + ed,-i- + i(ea®d — 8058, ) _ (4.53)

I {Q,_,, Qa} =2(0*)aal(38,). {4.54)

This sign atises only becnunc we have chosen to act on the left with the group ele-
ments. We could also choose to act on the right. Since

G(z,8,0)G(0,¢,8) = G(z* — iea”F + 0o, + 6,2 + §),

we find new charges with reversed 8, parts:

@ = i ggz = He")ash a)

&
i =<2 4 i09(0*)asb )
( a-éd ) i

(4.55)

0|

a
These charges are identical to those given in Eq. {4.42). They then satisfy the algebra
{@0, Q) = —2(0*)aali®y),
with the usual sign. Conventionnally, the charges (4.51) are used in the literature.

In the following we will accept and follow this convention.
A general superfield F(z,8,0) is defined by its expansion in powers of § and 8:
F(2,6,8) =f(2) + 09(z) + FX(z) + 88m(z) + Bon(z)+ (50
+ 00#8v,(z) + 860X(x) + BB6y(z) + 6906d(=). )

In this expression:

f.m,n,d are complex scalar fields,

éc,i"',?, o are two-component spinors,

v, is a complex vector field.
We then have in general 16 real bosonic components (two for each scalar, eight for
v,)} and 16 real fermions (four for each spinor). We have an equal number of fermions

and bosons, but far too many fields to describe small multiplets like for instance the
chiral multiplet. In general, F can alsc have Lorents quantum numbers (F,,, Fy,, Fa,
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F2,...). Each field (f, m,...)of the expa.nsxon will then carry the same indices as F,

in adchtmn to its intrinsic quantum numbers as given in (4.56). Such a multiplet has
then k(1640,. + 167,r.) Teal components, & being the number of Lorentz components

of F.
The supersymmetry transformations of the components of F' are simply given
by N ~ .
§F = i(eQ + €Q) F(z,6,6). (4.57)
The transformation of each component is obtained by identifying the term of §F
with the same # and ¥ structure as the component. One can construct the superfield
corresponding to any component supermultiplet by starting from one of the compo-
nents and acting on this component with the transformation (4.57) iteratively until

the multiplet is closed.

The superfield F contains too many degrees of freedom to describe small mul-
tiplets like the chiral multiplet. 1t is however reducible in the sense that one can
impose constraints which are preserved by supersymmetry transformations (4.57).
To do this, we first need to introduce covariant derivatives. These covariant deriva-
tives D, and D will be used to impose constraints of the form Do F =00r D F = 0.

_ These derivative constraints will prove to have no dynamical content. They only re-

duce the number of components. Covariant derivatives will also play a central role in
the construction of supersymmetric actions in the superfield formalism. To construct

them, one must require that they transform covariantly under supersymmetry:

Da(6F) = §(D.F),  Da(6F)=8DsF). (4.58)
These conditions correspond to
{QarDp} = {@a, D} = {Qar D} = {Qs, D} = 0- (4.58)
We have
8 = 0
Quu—} = {Q ,-——.}:0,
{Qe 535 * og?
8 =3
as = —{(0*)aal B = (0%),40u, (4.60)
{Q 03} 8?6 o H AV
{Qa: 893} 80ﬁ8“(a JaaBy = —(o")gady
Also: B
{ngﬁ(‘ p,éa b= _‘ 0 (a“)pg _i(au)q,e'a,u!
(@ (0" )pa 0.} = Ea(a“)ﬁgo 8, = i(o*)padi, (461)

{Qur (07)54P°8,} = (@4, 0%(0¥) 530} = 0.
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It then follows that the expressions

&
Da = Hoe - l(a“)“éo e.u, (4 62)
Ds = — — i0%(0")aabh,
° e o

satisfy Eqs. (4.59). Comparing with (4.55), we see that @, = -iD, and .Q'; =iD,,
so that D, and D ‘also verify

{Da, Da} = 2(0*)aa(—~i8,),

{Dav Dﬂ} = {Ed’ﬁﬂ} =0, (463)

Constraints like Do F = 0 or DgF = 0 are then preserved by supersymmetry trans-
formations. They give rise to chiral multiplets (see the next section).

Oune can also impose a reality constraint, F' = F*, which corresponds to vector
multiplets (section 4.4).

The superfield formalism is particulatly convenient to combine supersymmetry
representations. This is related to the fact that supersymmetry generators @, and
@, are derivatives, Then, clearly, any linear combination of superfields is a superfield.
Also, @, and @, act with a chain rule:

Qu(FiF3) = (Qaln)Fa £ Fi{QaF2),
Qu(FiF) = (Q.R)F £ R(Q.R),

where the plus and minus signs apply if F; is a boson or a fermion respectively. It
follows that a product of superfields is aiso a superficld.

(4.64)

This calculus prescription suggests a systematic method to obtain supersymmet-
ric Lagrangians. The #6899 component of a superficld always transforms with a total
derivative: in transformation (4.57), the 8666 component of §F arises either through
the eo”88, part of eQ acting on the 868 component of F, or through the 8o#€8, part
of #Q acting on the #84 component. This observation leads to the superfield formu-
lation of the tensor calculus method outlined in ch. 2. To construct supersymmetric
Lagrangians for a set of general superfields F;, one first writes a function of these
superfields (in the simplest cases, this function is a linear combination of products of
superfields). Since supersymmetry transformations act on this function of superfields
with derivatives only, the function itself is a superfield (thu generalizes eqs. 4.64).
One then extracts the 8986 component of the function, which according to the pre-
vious remark always transform with a total derivative: it is then a supersymmetric

Lagrangian.
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Notice also that a constant c is a superfield. Since @, and Q, are derivatives, ¢

is invariant under supérsymmeétry transformations.

4.3. Chiral superflelds

Chiral (or scalar) superfields are defined by the cond.ifiion:
k]

i
!

Dup=0 ] (4.65)
{for left-handed chiral superfields and
Dyg=0 : (4.66)

for right-handed chiral superfields. These conditions are easily solved by observing

that -
Dai“ =90, §“ =z" + 116”8,

Day* =0, =z - a8, (4.67)
D,8=Dab =0.
A left-handed chiral superfield is then a fonction of y and @ only:
Z 8(1,0) = 5(y) + V28$(y) - 005(y)- (4.68)

— e et

The factor +/2 and the minus sign are introduced for convenience: kinetic terms will
be correctly normalized when constructing Lagrangians. We can Taylor expand ¢
around z* with the help of

2{y) = #(=) - 0*86,2(2) - %08@38"8“:(:),
89(5) = B4(z) - 0 BY80,9(2)) = 09(2) + J0Op(=)o*D), 490
085(y) = 00£(=).
(See appendix B for the necessary identities). Then:
#(z,0,8) =z(z) + V20¢p(2) — 88(z) — i(00*8)B,2(2)+

+ %iﬂﬂ(&ﬂb(:)d“ﬁ) - $06960*0,.5(c).

One can derive the same results for right-handed chiral superfields ¢:

(4.70)

#3,9) = 3(9) + V2B(H) - 091(%). (471)
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The expansion is

#(z,0,8) =2(z) + V289(z) ~ 88F(z) + i(80%6),F(2)—

- 5——2-1'793(60" L B(z)) - %asﬁa"a,,z(z), (4.72)
using the power expansons
#(7) = 7(2) + i(805)0,7() ~ 06896+0,3(z),
05(7) = 89(z) + i(0o8)(88,%(=)
(4.73)

= To(z) - 5i00(60"8,3(2)),
067(y) = 86f(z).
One immediately notices that
3(2,6,8) = ¢(2,8,)". (4.74)

The left-handed chiral superfield ¢ contains a complex scalar z, a left-handed Weyl
spinor ¥, and a complex scalar field f.” Chooting ¢ to have dimension (mass)’
gives the standard chiral multiplet (in the Weyl formalism) described in ch. 2. The
transformations are easily obtained by using the charges (4.51). Firstly, observe that

Qay* = a.s.?“ =
Qu¥* = 2(0*B).. (4.75)
Quv* = —2(8c")a.
Then, acting on a superfield F' depending on the variables y, # and 8, one gets
= 8r 8 —
oF 1a)a = oy ) — i ——
QaF(y,6,8) = (Quv) g — i 552 Flv:6,6)

. 8 -
= *‘WF(:!.&G),

§aF(y,9.5) = (Q.s.v")gfg: +i£—.-,F(y.9,5) e
= - (--—‘1 — 2i(fo*) i) F(z,8,
P &0y" (=,9,6).
Also: _
QuF(7,0.8) = (Qui") o5 — i 50 F(#r0.9)
8
= (09" + 2i(e*0)0 — i )F(y,B #,
(4.77)

Q.F(7,6,0) = (5&“ F(y,o 9)

.8 =
=‘Er(y,a,a).
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These results mean that the supersymmetric charges can be written

. H 8
Qa = ~*pga-

Qu=-i (—53— — 2i(60*)a W)

whaen acting on a superfield expressed in ferms of variables y,G,@. For left-handed

chiral superfields,

(4.78)

% .
88"

If the superfield is expressed in terms of 3, 8,8, the appropriate supercharges are

N
Qa = (W + 2i{ a*B)a ng) R
—= )
Qa=1t—5-
85"
These expressions allow an easier computation of the transformation rules of the
chiral multiplet:
8y, 6) = i(eQ + EQ)#(,0)

_ (e 2 it e)——) $(1,0) (4.80)

— V2ep + VIO~ v2ef — V2i{a*E)B,z) + V2i08(Dutpa ).
The transformation rules are then
bz = \/§€¢‘,
bt = ~V2fee — V(0 Eabuz, (4.81)
§f = —V2i(Bup0”e).
These transformation rules can easily be compared with those of ch. 2 by rewriting
Eqs. (2.59) in the two component notation. One finds that the multiplet (¢,v45, f)

(4.79)

corresponds to (2, Y, f)-

If ¢ is a lefi-handed chiral superfield, then ¢™ is also a left-handed chiral super-
field:
Da(¢™) = ng" ! (Dag) = 0. (4.82)
This is however not the case of "¢ (m > 1). Since ¢™ is a left- handed chiral super-
field, its #6 component transforms like a total derivative according to Eq. {(4.81). This
suggests a systematic method to construct supersymmetric Lagrangians by taking

L= Z[ané"]u + cc., (4.83)

nxl
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where [...]es indicates that the 80 component only is rétained. This expression is
clearly not sufficient: ¢" does not contain derivatives of ficlds and there is no kinetic
Lagrangian. Kinetic terms are obtained from the #8808 component of ¢t¢, which is
not a chiral superfield. Computing ¢! (this should be done in variables z,8,8) leads

to

o6 = ot + V35 (8) + VE(BF) — £21(00) — £'=(88) + 284)(B9)
+ (BB (izB,zt —i218,2) + -ﬁ(aa) [21(8,90"8) ~ (8u2")(wa"B)]

, (4.84)
- ﬁ(iﬁ) [2(80+8,%) — (8u2)(80*9)] — V2£(88)(8%) — V2f'(86)(6¢)
+Lx Bﬂﬁ,
with
Lx=ff1~ %(za,‘a“zf +£18,0%0) + %(a“z)(a“zf)
+ 39 0,8) — 5(8:$0") (455)

= ff+(8a2)(8 ") + %wwbﬂ — B,po*P)
+ total denivative.
Recalling that in four component notation YO = ¢o”8,$ - B“d’a“a, Ly corre-

sponds precisely to the kinetic Wess-Zumino Lagrangian (2.37) with z = (A+1iB)/ V2,
f=(F-iG)/ V2. Interactions and mass terms are introduced via £.. In particular:

¢id; =xizi + V2{z:09; + 2;09:) — 08(zif; + 2 fi + Yivhi ), (4.86)
$idibr =ziziza+ V2(ziz;00n + z;zabi + zpzitp;)
— 80(zz; fu + xszafi + manifi + wbYr+ ziut; + 2¥ivi)-

(4.87)
The most general supersymmetric Lagrangian for chiral multiplets is then
L=y, ([¢‘!¢-‘]“ﬁ +
i ‘
+ [aigi + %mij¢i¢j + %Aaji¢i¢,’¢h]aa+ (4.88)

1 1
bl + L old] + DaLudlolols ).

Terms of higher order in ¢; are allowed by supersymmetry but lead to non renormal-
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izable field theories. Explicitly,

c =%(¢i”"3n$s — Bupirt i) + (Buz)(8 ) + fif!

1 .
- m.-j(z‘-fj + E?ﬁilﬁj) + c.c. i (4.89)
~dgalmzife+ nbida)  + e
- fi + ce

The equations of motion of the auxiliary fields are
£l = miz; + Ajuziza + e (4.90)
They can be substituted in the Lagrangian to obtain
L =%('1’e0"8p$.- — 8,909, — ,i_'m"j('ubi'ft’j + P+
+(8,2)(8%2]) - Z: la; + mijz; + Aijazizel’ — {4.91)
— Aijazi¥ide — A.'-,-;ZIE;JM

(choosing m;; = mL—). The scalar potential is a sum of squares. It is of the form

sw
V. = e .
g e (4.92)
where ; 1
W =a;z; + Em.-,-z;z,— + -aw\.'jp,z,‘z,'zi, (4.93)

i.e. W is the same function (of z;) as the chiral Lagrangian £, used in Eq. (4.88).
Also, the Yukawa couplings and fermion mass terms are

N —
—(Aijnzithie + Eml'nfmbj +ee) = =Sty — o ] (4.94)

s0 that the Lagrangian is

£ =L (4070, — 040 F) + (B5)(0°3)
-5 Wi 1 8w 1 8W - - (4.95)

b ¥
The function W(z;) (W does not depend on z!) is called the superpotential.

- 583.'8‘:' acl 58;,?8:,.
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For one superfield ¢ only, and with a; = A;;; = 0, one gets the Lagrangian

= 24078, — Bb0 B} + (8,2)(031) + 111
. o (4.96)
= maf + 2 1) - S £ ).

To compare with the results obtained in ch. 2, one must use the following definitions:

1
1= —(A-iB),

‘{5 . %= (gﬂ) (4.97)
f = E(F+ 3G)| .

With these expressions, the Lagrangian (4.96) corresponds precisely to (2.36), and
the transformation rules (4.81) are equivalent with (2.43). In fact, the expressions
(4.97) are fully determined by matching the transformation rules, but not completely
when comparing quadratic Lagrangians.

4.4. Vector superfields

Vector superfields are real superfields: V(z,8,8) = V(z,8,8)!. We will write their
expansion in the form:

V(z,8,8) =C(x.) +i0x(z) — i0%(z) + G0 Bv,(z)+
+ %eo[m:) +iN(z)] - %MM(;) —iN(z))+

P i = i (4.98)
+ 1888z} + 5 uwx(z)e?] — i008[A(z) - Eo“aui(z)}+

+ %Gﬂﬁ[l)(z) - %B“S#C(z)].

The vector multiplet contains 8 bosons (C, D, M, N and the four components of
v,) and 8 fermions (the 2 two-component spinors y, and As). Am expansion using
peculiar combinations of fields has been chosen to make apparent that the components
C,M,N and x can be transformed to zero by a gauge transformation of the form
(see ch. §)

VoVigte! (4.99)

where ¢ is a chiral superfield. Using (4.70) and (4.72), one finds

¢+ ' =2Rez+ V204 + V20 — 80f — G611 — i880,(z - 1)+

i i — 01— {4.100)
+ 25 98(0,$0°8) - 7570(80"8, %) ~ 50088649, Re =,
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so that
V 4+ 6+ ot =(C +2Rez)+i8(x — iv2y) — (X + 1V2¥) +
+ 0048y, — 8,4z ~ 2T+
+ %99(1\4 FiN 4+ 2if) ~ %W[M ~iN - 2ifhyy

_ 3 __ 'y 1
+ 089X + - Buxo® + %3“1‘!;0'“] - i098[A - St +

V2 V2
+ %aoﬁ[p - %a"a,,(c +2Rez)|.

8,9+

{4.101)
The transformation (4.99) is then equivalent to

€ — C+2Rez,
X — x - ivay,
¥ — ¥ +1V2Y,

M +iN — M +iN + 2if, (4.102)
vy = v, —10,(z - 2,
Ao A,
D - D.

“In particular one can choose:
1
" Rezr=-_C,
ez 3

=, (4.103)
f= (M 4N,

to eliminate C, M, N,x. The imaginary part of z can also be used to eliminate one
component of v,. In this gauge, which is called the Wess-Zumino gauge, the vector
multiplet reduces to four bosons (D and the three remaining components of v,,) and
four fermions (the Majorana spinor A). Notice however that this choice of gauge is
not preserved by supersymmetry transformations which break relations (4.103).

The transformation {4.99) is the starting point of the construction of supersym-
metric gauge theories, which will be discussed in the next chapter.

Since V is only constrained to be real, a linear combination (with real coefficients)
of vector superfields is again a vector superfield. Also, if V is a vector superfield,
then V™ is a vector superfield. In the Wess-Zumino gauge,

Vivz = 80+Bv, + 660 — iBBOX + %aeﬁp. (4.104)
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Then Vigz =90 for n > 3. The only non zero product reads
Vi g = (8c*B)(80 Bvuvy = %99@?»#%. (4.105)

+ contains the necessary fields to construct gauge theories. It
¥ will never generate the kinetic terms for

and spinors A. These terms will be obtained by acting on V with

vector ficlds v,
covariant derivatives D, and Da. Covariant derivatives introduce naturally space-

time derivatives of ihe fields which are needed in the kinetic terms. By inspection,

one finds that the chiral superficlds

The vector multiple
is however cléear that V and powers of

Wo = —f—l(‘ﬁﬁ)nav, 10

— 1 —
Wa = —5(DD)DaVs

have the form required for kinetic terms. They are chiral, since D* = D=0

DaWa = D.Ws=0 (4.107)

W, and W, are anticommuting Lorentz spinors. Under the transformation {4.99),

Wo ~Wa - {(DD)Da(6+4)
= Wat %‘ﬁ"’mnw

W+ %‘D’"{D,,m}.ﬁ (4.108)

1 =&
%’ Wo — i(a“)aéaﬂp ¢
= Wu,

with the help of Dad! = Dad = 0. W and 4 are then invariant under (4.99).
We will only compute Wa and W, in the Wess-Lumino gauge where Eq. (4.104)
holds. Since Wy is a left-handed chiral superfield, it can be expressed in terms of the

variables y and 8. The computation is straightforward and gives .

b = —ihue) + 0D(5) + 50077 o) = 8”02 (1.109)

where '
Fuly) = 8,v.(y) — Bvu(¥): (4.110)

One also finds that

W o 3a(3) + §aD(@) ~ 57T DeFul?) R T
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Th i
. e lo';es.t component of W, is Ay and it contains the familiar (abelian) field strength
.. ‘ N . .
T aking the ‘square’ of W, gives, keeping only the §8 component which tr:x;s-

forms like a total derivative
[WeW,jee = 2ide*8,2 + D* — 1 w_
" 2F,‘.,F - Ze"f""’F,,FP‘,. (4.112)

i

To obtain this result, one uses
Tr(o*5ofa%) = 2(n** 0% — n*Pn"* + nPRQPP — iePVPX) (4.113)

Eq. (4.112) contains all ¢ .
erms needed in the kineti :
plet, which reads . e kinetic Lagrangien of the vector multi-

_1 1w —a
Ly = 4}[W0W¢]oo + 4—[W°W lss
= 3 _ 4.114
5 (A0*0,A — 8,20 2) + - %FwF“'. (4114)

To obtain the correct i i i
physical dimensions for v, and A
. . - , one must assume that V' i
& ::lis:;nlen. The real scalar ficld D (dimension {mass)?) is an auxiliary ﬁelc: Th:s
e case of the states C, M, N, x, which are sbsent in the Wess-Zumino ;a.uge!i

e do‘e th.ls 8 Ctlon by .
g mng thc tran f
uv [ Y ) Orma.hon tuleB O[ thc vector multlplet

5V = i(eQ + EQ)V. {4.115)

One finds:
§C = iex — iex,

by = (M +iN)e — i(0*)(v, — i8,C),
§(M +iN) = 26X + 2i(8,x0"%),
bv, = iea® X —iXoE + Ouxe + €0, %, (4.116)
. 1, .
$A = iDe— E(a“o’ €)(8uvs — By},
5D = 0?8, 3 + 8, 00"E
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Chapter 5

Supersymmetric gauge theories

We now need to gener!alize the formalism of gauge theories to the supersymmetric
case. This will lead us to the most général renormalizable supersymmetric gauge
theory, describing the interactions of a set of left-banded chiral superfields ¢*, irans-
forming according to an arbitrary representation R of the gauge group G, and a set of
vector multiplets V', belonging to the adjoint representation of G (a=1,...,dimG ).

Let us first discuss shorily the case of a theory invariant under global trans-
formations of the symmetry group G. The transformations of the chiral multiplets
are

P = [ezp iA“(T“)]ijqu, (5.1)

or, infinitesimally,

§¢' = A (T°)';¢. (5-2)
The matrices T® are the hermitian generators of G for the representation R of the
chiral multiplets. The transformation parameters A® are real constants. Since a
constant is aleo a superfield, they can be considered as being left-handed chiral su-
perfields so that Eq. (5.1) is a superfield equation. The most general renormalizable
Wess-Zumino Lagrangian for the chiral multiplets is

Le = 646" gsa + W (#)os + W (8]0 (5.3)
where the superpotential W(¢') is
W(¢) = aid’ + ‘;‘mij¢i¢j + }S'Aijh¢i¢j¢h- (5.4)

The kinetic terms [ﬂé"] o059 BIE naturally invariant under ihe transformations {5.1).
The requirement of invariance imposes constraints on the superpotential. Each term
of W(¢*) must be a group invariant. Then, for instance, a; can be non zero only for
fields ¢* which are themselves invariant under G.

When going from global to local invariance, one encounters two difficulties.
Firstly, the local transformation parameters A®(z)} are no longer superfields. The
transformations (5.1) and (5.2) are consistent with supersymmetry only if one allows
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the parameters A® to be complete left-handed chiral superfields. The second diffi-
culty is that when A” is promoted to a chiral superfield, A*t £ A® and the kinetic

terms [¢]#],055 8T= pot invariant:
' —iAt i
(§10) = ple=" e, (53)

omitting indices and using a matrix notation A = A®T?. To restore the invariance
)

one needs to introduce a vector multiplet
vV =v'T (5.6)

with the transformation

eV s et eVemit, (5.7

This transformation is chosen to make the new kinetic terms

Lxin = [¢'e" ¢logss (5.8)

invariant under local transformations of 7. The introduction of the gauge vector
multiplet is completely analogous to the introduction of gauge fields in non super-

symmetric gauge theories. To first order, the infinitesimal transformation of V' is
§V = —i(A — Al). (5.9)

This corresponds to the transformation (4.99) {with ¢ = —1A). The Wess-Zumino

gauge, in which the gauge superfields V* contain only the components vy, A* and
a . !

D* is then a choice of the local gauge in a supersymmetric gauge theory.

. The chiral superfields W, and W, as defined by Eq. (4.106}, are no longer
invariant under gauge transformations (5.7), at least when the gauge group is not
sbelian ([A, V] # 0). Since the gauge transformation is given by exponentials, it is
natural to look for a new form of W, containing only e¥. Since DaAT =0, om;: has

Da(e“"e"’e"“‘) - e""Dn(eVe“A)

= e"ArD,(cV)e'iA+ei‘\'eVDa(e"A). (5.10)
Then, observe that e~V is the inverse of e". It transforms according to
—V _, A -V il
€ ette™ e, (5.11)
Then
Y v o - . .
e VDo e¥ = et eV DoeV)e A + e (D). (5.12}
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Using now DA =0, 0ne finds

PDeV Dae¥ — ¢ DDe~Y Do’ )e ™ + et (DDDac™™). (5.13)
The second term vanishes (see also Eq. 4.108):
DDDue™ = - DaDae™
= *ﬁ&{Du,-ﬁa}C_m
il (5.14)
. —iA
= 2i(0*)aab,D ¢
= 0.
One can then define 1
Wa = -Z'I_Jﬁe'vﬂacv,
. ] B (5.15)
Wé = '—Z.DDC_VD,&CV,
with the transformations . .
W, — AW e, (5.16)
W, — g“‘W&e""A. ’
The invariant kinetic Lagrangian will then be
(5.17)

1 1 R
Ly = ETTIW"Wa]n + ;TP{WaW lsa

where the trace is taken over the gauge group indices and the normalization factor 7

will be determined later.
The full supersymmetric Lagrangian is then
£ =1g}(e")'1'looes
1 « 1 -
+ ETr[W Wales + Z?;T"[W"'W lss (5.18)

+ (W($)eo + W)l

with a superpotential W(¢*') (sce Eq. 5.4) subject to the constraints of invariance
under the gauge transformations of G. If this gauge group contains abelian U(1} fac-
tors, the 9686 component of the corresponding vector multiplets V§ is invariant under
the gauge group {rccording to {4.70), the 9088 component of the chiral superficld A
is a total derivative) and transforms under supersymmetry with a total derivative.
Then, in the presence of abelian vector fields, one can add to the Lagrangian (5.18)

jeces linear in the abelian vector multiplets:

EF;T = Efaivﬂnﬁ'

P
(5-19)
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;I::::: n:ew te;m:k:re cn:led Fayet-lliopoulos terms. They play an important role in
eous breaking of supersymmetry (see next cha

F : pter). The

dimension (mass)?. They then introduce new scales in the) Lngm:;r::l e £ e

YVe now proceed to compute the component form of the most general

metric gauge theory given by (5.18) and (5.19). Although this Lagrang louks won
mn:lm‘h;l;ile, the high order interactions introduced EY the ;g;oneg:?al: c::;:‘ c‘m
z:enii:nlel g ﬁf{;h LY Th.js is obvious' from the fact that ¥ i:l:
i fs su}ée eld. In the Wess-Zumino gauge, V*V*V< = 0, and only terms
mn.liuli:le,o H‘:)‘::“::dﬁt:e!:lvmn. The. Wess-Zumino Lagrangian is then clearly renor-
it Is mot preserved b.y ': ess-Zumino gauge is a choice of & supersymmetry gauge:
isability must then be Pﬂ:ymmetry transformations. The statement of renormal-
order supersymmetry. "‘1:;;: CT"“; ';:i by » proof th.a 4 renormalization preserves to all
beyond the scope of these n:t::’ ma:_:;o;:];.ﬂn given {for these questions which go

We compute the Lagrangian in the Wess-Zumino gauge, for which
v 1
eV =14V 4 V2
+V+zVE (5.20)

In components:
¢V =1+ 6c*Bu, + 080X — iBB8A+

1, — 1
+ 59608(D + Sv*v,), (5.21)
where
v, =viT® . A=A*T* , D=D°T° (5.22)
The generators of the representation R of the chiral multiplets satisfy
Tr(T*T*) = Tré*,
(5.23)

[T, T4 = if*™Te,
hy
where the real numbers %5 are the fully antisymmetric structure constants of the

gauge group G. One then finds:

tyri 4f H . . :
[V 9] s = = SIT50u5 )0t 4 S(8alT" 5 0"+

' o
+ i(!"’”“‘ﬁi)T",‘": + 7'-il.biT",~A -

_.__‘._f ai_ya 1 f 1o i 5
1 ﬁz,.r X¢'+ 2D 21127, (5.24)
fud tVz i 4 _1 ') ‘-
[295.( );'ﬁ’] i 4 (z,‘(T'Tb) J-z’) vhot®, (5.25)
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and [$]']pggs ie @ven in Ba. (4.85). Then:

(A1) 8] g =DaN(DP2) + 540D = (DY )+ ST

(5.26)
| f(w yTe5ad - 7— AT4004) + ¢ D° 1oz
where the gauge cov'nnant derivatives are
(Dus)f = B2 + T30}
(5.27)

(Du¥) = 8,9 + 37970,

The superpotential terms are the same as in Eq. (4.95). In the Wess-Zumino gauge,
the chiral superfields W, and W, have the expansion

1—

We —EDDc’VDatV

]

—%FED.,V + }—lﬁﬁvnuv - ib‘ﬁpavz
= azf)ﬁv v+ ;DD[V D.V],

Wd = «—-}DDC‘VB&BV

(5.28)

= 'EDDE‘V + }EDDVEV - %DDE&V’
= -%mev + %DD{VTD}V],

since DyV? = {DaV)V + V(DaV). The first terms ~iDDD,V snd -1DDDsV
are the same as in Eqs. (4.109-111). The new term reads
LBV, D.V) = — £88[v,, (e*N)al-
8 : (5.29)
- Z(ﬂa"?’), (foprve) — 00788, [v,,v.]) -

This exprel.sion is certainly a chiral superfield and can be written only in terms of
the variables y and 6:

L DDV, Dav] = ~ £ 06f0,(4), (+*M(w))a) - Loz alouln) )] (530

The superfield W, is then

'

W = —ida(y) + 8.D(3) + (07" )aFuu(3) ~ 8 D38V (53)
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gIeL Ze.

with :
Fpu = B“Uy - 3»-”# + %[U#,’b‘y],

e e i (5.32)
DA =8, + E[v,,,,\ ].
In components and using (5.23), one has:
a o 1 abc c
Fp, = 8,05 — 8yu) — of beubul,
3¢ 32 1 obe b7 (5.33)
DN =80 — Ef v
It then follows that
[WW,les =2ire*(D,X) + D? - lF”"F v — is*‘”""FF,F‘,X,
(5.34)

[(WaW' 55 = — 2i(D,A)e*X + D? — F‘”’F,w Ze‘“’”xFu.,pr
Taking the trace gives

Tr[WW,)os =tr(2iA°*(D,3)° + D" D" — %F:,,F“‘“’ 45"”""}7“‘ Fe),

wv px

s tpx
' ‘ (5.35)
We finally need to iniroduce the gauge coupling constants g. This is easily done by

Tr[W&—W—a]a_e :TH(A-21'(D“A)"G'“T 4+ Dep° _ %F:anuu ZCFVPXFB Fe )

redefining the fields A* and v{ according to

A% — 2gA°,
vj, — 2gv, (5.36)
D® — 2¢D°,
or, for the superfield ¥V, V — 2gV, We then have
Tr[WWy)ee =4¢°Tr(2iA°0*(D,A)* + D°D*
1 1
L pe popy _ k¥ o
. 2F'“,F i "XF:",,FPX),
Tr[WiW | =4g°tr(-2i(D, A)“ *}* + DD~ (5:37)
1 a LV v 13 &
_EF’"’F# 45# XS F )

LA

The normalization factor n in the Lagrangian {5.17) is then given by

n= 4g2'rg,
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so that
oW
Ly = 1692 TT[W Walgg + lﬁgz T‘I‘[W ]99 (5 38)
a Jha i a 1 anae a opv -
=§A a* (DAY - E(DPA) o* A + ED D°— ZF’“‘F o
To summarize, the most general supersymmetric gauge theory Lagrangian is, in
superfields,
TR TLAYIPY]
L= [¢ (8 ) ¢ ]0909
+ W)+ Tr(W"'W) +
. 16 ir P
. (5.39)
Ww(s! Tr(W W l
b [ + g P T+
+Y g€V,
where: ) .
W(¢') = aid® + Emij¢'¢’ + 5"-‘jk¢'¢’¢h- (5.40)

The component Lagrangian contains the covariant derivatives
(Daz)f = 8,2° +igua{(T*);2,
(Do) = 89" + igod(T*) ;97 (5.41)
_ (DuX)® = 8,2 — gf** v, )%,
and the gauge field strengths
FS, = B,v% — 8,05 — 9f vy} (5.42)
The complete component -Lagra.ngian is
£ (D )}(D*2) + 59 aH (D) — 5 (Dud)ie i
1 i, wa F . _uve
- ZF:,F“" + §A aP (D A)" - E(D,,A) atA +
|
+f,‘1f' +§D‘D-“+
+ V2ig(P XTI 2 — VEigaI T (A7)~

_18W(=) 1d8°W (s} (5.43)
z . )= =
T2 dzidg eyl A 2 dz -sz'- $¥i+
Wiz}
+ gD (21T 27) - dW(z ) g df,:k)'f‘?'*

+3et°D".
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The equations of motion of the auxiliary fields are
= dw(=")
* dei (5.44)
D* = —g(21T%;29) — g€°.

Once substituted into the Lagrangian, one finds:

£ =(Dua)}(D*2) + S9'oH(D,B)i = F(Du¥)'" P

i ' . —
- P F 4 1)\‘#(0@)’ - %(D,,A)*-au +

‘ + \/-Ighb )TszJ \/.Z.igz'T“",-(qb",\")— (5.45)
].JZW(,;) i 1d2W(z)..__ .
~ 3 ada V)T o0 '; @:3,) ~ V(& 2),
where the scalar potential is
2
V{z",z:-) =Z %-;W-l- %g’ Z (ZET‘ijzj + fa)z
: i (5.46)

=S+ 3 T

The scalar potential is a sum of positive terms. This is a reflexion of the positivity
of energy for supersymmetric multiplets.

Some comments on the Lagrangian (5.45) are in order. The kinetic terms (the
two first lines of 5.45) have nothing particular. Supersymmetry only imposes that
the fermions transform in the same way as their bosonic supersymmetric pariners.
The representation of the chiral multiplets is arbitzary, but the ‘gauginos’ A* have to
belong to the adjoint representation of G: they are the supersymmetric partners of
the gauge fields v}.

The other interaction terms are fully dictated by supersymmetry. The Yukawa
interactions

V2ig(d X' )T, 27 — V2igzT*; (A7)

with Feynman rules

¥ &

el
= ~VET*s  agd Vag(T*s



have a strength given by the gauge coupling constant. The presence of these inter-
actions is not due to gauge invariance, but only to supersymmetry. They arise when
supersymmeiry transformatione are applied to the vertices

a
Q,
" 5 v
_.‘_EJ 21-’
-, ,/ —w-——
»
‘l'// "
Z, zlf

replacing v} and #* by A® and ¥* respectively.

Chapter 6

Spontaneous breaking of supersymmetry

The supersymmetric gauge theories obtained in ch. 5 lead to complicated non linear
equations of motion for the various fields they contain. The usual way to study
this dynamics is to use perturbation theory. To be sensible, perturbation theory
should be performed around a stable configuration, which is by itself a solution of
these equations of motion. The standard choice for this background (er vacuum)
configuration is to allow for constant velues of Loreniz invariant fields. Thus only
scalar fields z° are allowed to have non zero vacuum expectation values (v.e.v.},
denoted by < #* >. For this configuration, the theory reduces to the scalar potential
V (8 < 2* >=< Pt >=< A% >=< v¢ >= 0). The equations of motion are then

simply
v

87| i 0. (6.1)
Moreover, the criterion of stability corresponds to the requirement that the vacuum
< z' > minimizes the energy of the system, and cannot evolve towards an energet-
ically more favourable vacuum state. There are two stability criteria. Firstly, local
(or classical) stability corresponds to the condition that < z* > is a local minimum of
the potential V. It can be any kind of minimum, not necessarily a global minimum
of V. The condition of local stability is then that the matrix
a'v 8V

oy _8'v

Bx18al  8z)Bet
has only positive or zero eigenvalues. This matrix is, in the language of field theory,
the (mass)? matrix of scalar fields z*. Local stability is then equivalent to the absence

of scalar fields with negative mass squared (absence of tachyonic states).

Classically, a local minimum is stable. At the quantum level, one can have
transitions by tunnel effect towards another local minimum with lower energy. For
constant configurations, the energy (the Hamiltonian) is the scalar potential. Global
stability then means

V(< >) < V(z") forall 2 (6.2)
Such a tunneling process is characterized by its lifetime describing the decay rate
of the false vacuum. Depending on dynamics and on the shape of the potential,
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this decay can be slow or fast. False vacua could even be sensible vacua for 2 time
comparable to the time scale of the evolution of the Universe.

In the case of supersymmetric gauge theories, the scalar potential is

Vi) =11+ 5 lpepe, (6.3)
with .
_ W) 6.
fl=—g (64)
and .
D = —g* ()7 +€). (6.5)

The potential is semi-positive. If the equations
i o i t _ .
Fleal>) =D <2 > <z >)=0 (6.6)

have a solution, then the corresponding vacuum configuration is a global minimum
of V. 1t is then a stable vacuum. Notice that

dv 4w
P = dzidzd
does not imply that all minima satisfy Eq. (6.6). Therc are also in general local
minima, satisfying (6.1} but not (6.6). The corresponding energy will always be
positive (see Eq. 6. 3), and these Jocal minima will all be metastable, except if the
Lagrangian is such that (6.6) has no solution. Thc minimum equation (6.7) can be

written in a peculiar but useful way:

(o (_ g:‘,(‘._;:’.). TV =0 o) (6.8)

-~ gD (}(T*);) = 0 (6.7)

(the brackets < ... > indicate v.e.v.). The second condition introduced in eq. (6.8),
TV =0, (6.9)
iz only the statement of gauge invariance of the superpotential: since

dW

i (6.10)
! dz!
Eq. (6.8) reads (using 61,! = -ifa(Td)ijz;' = ‘n'sﬂzaj):
T 1777 A}
AW ani 1 WD) g (6.11)
E;'T(T Yz =t dz] baz;
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The form (6.8) is useful since the matrix it contains is related to the fermion mass
matrix. The non derivative bilinear fermion terms in Lagrangian (5.45) are

1 W

Ry - VEslyx

and can be rewritten as
1 £ (T, P
_= i 2'\5 dzids? ) i s g .
2(1# \/_i ) (—gz-'(Tb)'r 0 ) (\/i'gxi) ’ (6.12)
i 3
with the same matrix as in {6.8). The consequence is the Goldstone theorem for
supersymmetry: a minimum of the scalar potential for which

<D*>#0 or < fi>#0 forsomei,a (6.13)

generates a massless spin 1/2 state defined by
cd
Ag =< f; > 9 - ——=g < D* > A%, 6.14
G f ¥ \/Z—g ( )

up to an irrelevant normalization factor. Ag ie called the Goldstone spinor, or the
Goldstino. The vanishing of its mass is due to the fact that the minimum equation
(6.8) implics that the cigenvalue in the direction (< fi > < D* >) vanishes.

This result is fully analogous to the usual Goldstone theorem of field theory:
starting from a potential V invariant under symmetries generated by T*:

do;

one assumes that this potential is minimized at ¢; =< ¢; >

dv .
)5¢ = E(T')«’% =0, (6.15)

av l
— = 0. (6.16)
d¢i $i=<hi>
Differentiating (6.15) leads to (¢* are arbitrary):
av i .
0 =ie? (-——(T")."’ ¢;,) . (6.17)
i g ‘M bz <>

The first term vanishes and the second term indicates that for each direction < ¢; >

for which (T®) < ¢; ># 0, the scelar mass matrix < E%W > has a zero eigenvalue,
corresponding to 2 massless Goldstone scalar boson.
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The existence of a Goldstone fermion is & signal that supersymmetry is sponta-
neously broken. This is also confirmed by the fact that a vacuum with non vanishing
suxiliary fields < f' > and/or < D*® > corresponds to a positive energy, since

<Ve=<fifl> +% <D°D*>. (6.18)

We have seen in ch. 3 thit the energy in a supersymmetric multiplet is always posi-
tive. One can in {act show that a vacuum state |{ > which preserves supersymmetry
has always zero vacuum energy. The vacuum energy can be written

<QIP’la >= 3 < 0Q.QL +QLQ.ln > (6.19)
according to Eq. (3.38). Then
1 1
<P >= 2igaln > I+ Lot > 17, (6.20)

where ||... ] indicates the (Hilbert space} norm of the state. The vacuum state |Q >
is invariant if

Q.i >=10, ' {6.21)
which implies that a supersymmetric vacuum has always zero energy. Thus, vacua
satisfying (6.6) are supersymmetric while vacua with (6.13) break (spontaneously)
supersymmetry. This last statement can be made more explicit. Consider & field ¢
with an infinitesimal supersymmetry transformation §¢. The vacuum expectation
values < ¢ > of ¢ preserves supersymmetry only if

< dp>=0=<icQ¢ > (6.22)

(we use four-component notation here). Then, to break supersymmetry, one must
have a sct of v.e.v.’s such that there exists a field ¢ with < 6¢ >3 0. Considering
now the transformations of the chiral multiplet (see Eq. 4.81), we see that if

< fi>#0, (6.23)

then
<8P >= V2 foe#0. . (6.24)

In the case of the vector muitiplet (Eq. 4.118) in the Wess-Zumino gauge, one finds
that if
< D* »>#0, (6.25)

then
<A >=i<D*>e#0. (6.26)
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We conclude that a vacuum breaking supersymmetry is characterized by a positive
vacuum energy (< ¥V >2 0} and, equivalently, by a non zero vacuum expectation
value of auxiliary fields (< f* > and/or < D® >). The consequence is the existence
of a massless Goldstone fermion, with a supersymmetry transformation containing a

constant term.

A supersymmetric gauge theory will break spontaneously if it possesses only
vacua breaking supersymmetry, i.e. if equations (6.6) have no solution. It is a mat-
ter of choosing the form of the superpotential and of the D?* auxiliary fields in an
appropriate way. These two chaices give rise to two mechanisms of spontaneous su-
persymmetry breaking called Q'Raifeartaigh and Fayet-Iliopoulos mechanisms. This
will be the subject of section 6.2.

An important aspect of spontaneous supersymmetry breaking is the existence of
mass formula. These relations have no counterpart in non supersymmetric theories.
They would play an important role in constructing realistic supersymmetric gauge
theories, containing the Glashow-Salam-Weinberg model of strong and electroweak
interactions. In such models, each quark and lepton would have a scalar supersym-
metric partner {scalar quarks or ‘squarks’ and scalar leptons or ‘sleptons’) and each
gauge boson would have a spin 1/2 partner (‘photino’, ‘gluinos’, ‘winos’ and ‘zino’).
Since no such new particle has been detected, we have from experiment lower limits

on the masses of superaymmetric particles. In any case, mass inequalities like
: Muquarks = Mguarks

Mgleptons > Mileptonss

(6.27)
Mphatine = Mphoton = o,

Tgluine > Myluon = 0,
must be obtained in a realistic model. Supersymmetry has then to be broken, and

in a very specific way. Inequalities (6.27) give strong constraints on the choice of the

mechanism of supersymmetry breaking.
6.1. The mass formula

We have seen in previous section that a realistic, supersymumetric model of parti-
cle interactions must produce mass inequalities able to justify the absence of any
supersymmetric partner of quarks, leptons and gauge bosons in the energy range
accessible to present day experiments. This must be achieved by the mechanism
breaking supersymmetry.

A very particular feature of supersymmetric theories is the existence of a mass
formula valid for all possible vacua, breaking spontanecusly or preserving supersym-
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metry, relating the masses of all fields present in the theory. This mass formula is
very convenient when discussing realistic models. We will now proceed to derive it.

We know already & mass formula valid when supetsymmetry is not broken: all
states belonging to a given supermultiplet have the same mass. This result has for
consequence the following sum rule. Consider the ‘supertrace’ of the mass matrices

sqguared of all states:
STr M? = 3Tr M? — 2Tr M35 + Tr Mj, (6.28)

where M3, Mflg and M3 arc respectively the mass matrices squared of the spin
1, 1/2 (two-component spinors) and 0 (real scalars) states of the theory. For a
supersymmetric multiplet of mass M, STr M?2 is defined so that

$Tr M? = M? x (number of bosons — number of fermions)

=0.

(6.29)

This is an example of a ‘spin sum rule’ characteristic of supersymmetry. Of course,
5T M? = 0 for a supersymmetric theory is much weaker than the statement of the
equality of all masses within a supermultiplet. A formula for §Tr M?* can however
be generalized to arbitrary vacua, including those breaking supersymmetry.

In order to calculate ST+ M3, we need the explicit form of the three mass ma-
trices in Eq. (6.28). We start by considering M3, When scalar fields z; acquire 2
vacuum expectation value, some gauge bosons will become massive in general. This
is related to the presence in (D,uz})(D*2') of a term of the form

_ ot < TV AT 25 > (6.30)
The part of the Lagrangian bilinear in the vector fields is then
< [(Bus)(Ere™ - 80) — 267 < AT > o], (6.31)
omitting the indices of scalar fields. This expression means that the mass matrix
(squared) of spin 1 particles is
(M3)** = 2¢* < 2'T"T*z >, (6.32)
or, introducing the notations

aD*

D; = 8 '9‘}"“5“
] ap* o (5.33)
. D" E\ a 1 = _gTﬂ‘sz’
. R

onc geis )
(M3)** =2 < DIDY >. (6.34)

Then,
3Tr M? =6 < D}D* > . (6.35)

Turning to the spin 1/2 mass matrix, we callect all terms bilinear in fermion fields
with possible vacuum expectation values < z* >. They read:

i o 0, — 00T - < fi > ¥ - < T > ¥,

- o {6.36)
Fir%e# 8,3 — iB,A0* X" - 2v2i < D% > ¥ 3 +2V2 < D} > 'A%,
where 2 AW
_ &W -ij _ d&W
£y = dzidz?’ f= dz!dz}' (6:37)
The mass terms can be writien in a2 matrix form:
1. ., < fii > V2i < DY SN (ot
— L A“ " 1 i
2(¢ )(\/i1<D; > 0 ) Ab (6.38)
+ hermitian conjugate.
The mass matrix is then
_ < fij > V2 < .Dr >
M= (\/5:' <D%> 0 ' (6.39)
and then N
—2Tr MypM) = -2<F fij > -8<DID™ >. (6.40)

Notice that in {6.38) we have taken out a factor 1/2. This is appropriate for two
component spinor notation where the kinetic part of the Dirac Lagrangian contains
the same factor (sce 6.36).

The last thing we need is the scalar mass matrix (squared). The scalar La-

grangianh has the form
Ls = (8,2)(8*2]) - V(&2 (6.41)

the scalar potential V being given in Eq. (6.3). The bilinear terms are

g EV N L BV Ny 1 BV e
(8B (a;m;}.)“i 2\&: /" "2 \5desl | (6.42)

which can be written as
. ] St
(8,.5°)(8"=]) - % ( z}) (M3) ( z”) , (6.43)
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in a matrix form. The scalar (mass)® matrix M3 reads

e () (D) »
T\ (a)
It is hermitian. Then: E

v
TrM;=2 : 6.45
" " 8si62} (6.45)
From the scalar potential (6.3), one has
O:V i 7. a pai o el
le?azf:Vj =f,'§f +D,>D + D Dj y
v . —ijh L
e =V = + D% D%, (6.46}
51105 I
v —k
gw = Vo = Sk ¥ DD
where: _
fas W g _OW
HE = 971811077 = 621821020
. W75 (6.47)
ai — = —gu (T i
! Bziaz‘-' 9a{ )"
Then:
TrMi=2< fi;f’ >+2< DD > +2< D°D*; > (6.48)

Finally, collecting results (6.35), (6.40) and (6.48) leads to the supertrace mass for-
mula

STrM?=2Y < D* >< D"} >= -2 ¢" < D* > Tr(T*), " (6.49)
a a

which is valid for arbitrary vacuum expectation values < P

We are now ready to consider the implications of supersymmetry breaking for
the mass spectrum of the theory. We will consider separately. the possible vacuum
expectation values < f¥ ># 0 and < D* ># 0. In explicit cases, we will quite often
encounter simultencously both and then nieed simply to add both effects.

Consider first the case < f* ># 0, < D* >= 0. Then, from (6.49), STr ME=0.
More informations can be obtained from the scalar mass (squared) matrix {Eqgs. 6.44

T4

and 6.46), which in our case reads:

b _ aq2 2
My = Méysy + MBREAK

. < faft4DeD¥ > < DD
Msusy = - —il |
< peipat > < fuf + DD > (6.50)
—
MpREak = ke < ff >}
< fj ‘f" > 0

We have divided M2 into a supersymmetric part Moy, independent of < f; >,
and a supersymmetry breaking part MLppax: The new mass terms, induced by
supersymmetry breaking are then

ik 1 —k .
< TJ fr > z'-Tth + 5 < f.'_,‘),f > 2tz (6.51)

B3| -

Notice that fijx is proportional to the Yukawa couplings (see Eq. 5.40):

-

Fiie =< fije >= Zhiju. (6.52)

. £l L _.E
Choosing for simplicity Aije < f > real, the supersymmetry breaking mass terms
are

Z/\"jk <f > (z'z’ + z}z}-) =

1,5,k
1 _k ' _ _ ‘ (6.53)
=3 E’A‘-ﬂ, <f > ((z' +2D( + z,t) iz — 22’ - z;)) .
(B2
Defining the real fields
1 .
~—A; = Rez*,
2
‘{_ ‘ (6.54)
~—=B; =Im:?*,
V2
one finds the supersymmetry breaking mass terms
1 —k
2 Z)ujg < f > (A;A; — BiBj). (6.55)

.5k

T‘he effect of supersymmetry breaking due to < f; ># @ is to split the complex scalars
z' into two real fields A; and B;. The masses of A; and B; are shifted with respect

to the mass of the fermion t#* by an equal and opposite amount. The spectrum is
depicted in Figure 6.1,
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The quantity A? is proportional to < f; >. Clearly, inequalities (6.27) are never
satisfied, and supersymmetry breaking with < f; ># 0,< D* >= 0 does not give
realistic mass relations, at least at the classical level (tree graphs).

Fij. 6.4:

mts A"

A; or B¢
m: V¢, 2t ' 3 Yl mt

_ - _Bi or A¢ m"-Aa
{gir=0 4 #0

We now turn to the case < f; >= 0,< D® ># 0. Then, according to (6.49},
STr M? # 0 provided the associate generator of the gauge group I is not traceless.
This is only possible for a generator of an sbelian U/(1) group, characterized by the
charges ¢F of the fields z*:

Z(T“)‘.J'zj =Q?zi)--

’ (6.56)
STy ia) = - gt .
)
{no sum on ). The supersymmetry breaking mass terms are now
~ Y 0T < D* > alef = =Y gugt < D* > (2]2Y). (6.57)
a,i,j a,f
For every non zero < D® >, the spectrum is depicted in Figure 6.2.
z¢ 2 @, na
Fig.6.2: m +9aq; <D°2
- yi mt
Y L] 0 n
L pt 2 Ja% &% >0
m [
—hE— g% ¥

(D% =0

z': 2 a
m* ~[9.97 (0%
In principle, the phenomenological inequalities (6.27) can be satisfied as long as
=Y gt <D*>>0 (6.58)
a .
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for indices i corresponding to quark aud lepton multiplets. The weak hypercharge Y
of the standard model does not satisfy the requirement, since

Y = —1/2 for lepton doublets,

Y = 1/3 for charge 1/3 antiquarks,

Y = —2/3 for charge —2/3 antiquarks,
Y =1 for (charged) antileptons,

Y = 1/6 for quark doublets.

Both signs are present and (6.58) is violated. The way out would be to introduce a
new /(1) gauge group with npprof;rinte charges gi. One encounters several difficul-
ties nt this construction, due to the fact that condition (6.58) hardly coexists with
the other requirements one must impose on U(1):

Absence of chiral anomalies,
Broken supersymmetry, i.¢. non existence of a minimum of V with < D® >=
< fi>=0.

Also, we will sce in the next chapter that quadratic divergences will be present in
the theory, except if the new U(1)' is traceless, 3, ¢} = 0. This condition is in fact
highly desirable, since it also corresponds to the absence of gravitational anomalies.

Many attempts to construct realistic models using additional U(1) groups have
been performed. They have quite generally failed and this idea has now been aban-
doned, even though there is no ‘no-go’ theorem closing the subject. (For reviews
on the construction of realistic supersymmetric modelsand their phenomenology, see

refs. [14, 15]).

From the previous discussion, it seems that spontaneous breaking of supersym-
metry never produces realistic mass relations. This statement is however only true
at the tree-level since loop corrections will in general lead to different mass relations.
One can construct satisfactory models with the help of the following strategy. One
introduces some new chiral multiplets {other than quarks, leptons and Higgses), used
to break supersymmetry with 0 #< f; > A%, < D® >= 0. At treelevel, only
these new fields receive non supersymmetric mass terms. Quantum corrections will
bowever propagate supersymmetry breaking to the sector of quark, lepton, Higgs and
gauge multiplets, provided there exists some coupling of the new multiplets to this

_sector. At-some order (depending on the model), all scalar pariners of fermions and
gauginos will have received positive mass corrections, allowing to satisfy inequalities
(6.27). Since these mass corrections are obtained at loop level only, they will be large
enough to survive the experimental bounds on supersymmetric partners of quarks,
leptons and gauge bosons only if A is much larger than these bounds (which are
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now in the range of 100 GeV). Even though elegance is not their main quality, mod-
els following this line of reasoning have been successfully constructed (see [14} and
references therein).

The difficulties of obtaining a realistic spectrum in spontaneously broken glob-
ally supersymmetric models seem to indicate that global supersymmetry is not the
fundamental symmetzy of a unified theory. It turns out to be much easier and natural
to obtain a correct speetrum for the supersymmetric particles if one consider super-
gravity theories (i. e theories with local supersymmetry), with a spontancously
broken local supersymmetry (the so-called super-Higgs phenomenon). (For reviews,
sec [14], [16] and also [17] for supergravity).

We will conclude this chapter by a discussion of the explicit realization of

spontiancous supersymmetry breaking in the two cases of O'Raifeartaigh and Fayet-
HNliopoulos mechanisms.

6.2. O’Raifeartaigh and Fayet-Iliopoulos mechanisms

These two mechanisms correspond to the two fundamental methods to induce spon-
tancous supersymmetry breaking. It is clear from the preceding discussion that
spontanecous breaking of supersymmetry is possible only if the equations

¢ _ dW

— =0,

f=g o (6.59)
Dt = —g(z{(T*)';#" +¢*) =0 ’
have no solution. In order to forbid the solution < z* >= 0 (all i's), one must have
cither a linear term a;z* in the superpotential or at least one non zero parameter £°.

The first posaibility leads to the O'Raifeartaigh mechanism. The superpotential

contains the terms

.1 R | .
W=ag;s'+ Emg,-z'z’ + sk;jgz'z’z".

It must be chosen so that there is no solution to g = 0. Since we nced a linear
term, the gauge invariance of W implies that at lenst one gauge singlet field, say Y,
in preseat. The idea is then to use ¥ to force another field, say X, to have a vacoum
expectation value. A third field, transforming in the simplest case in the same real

representation of the gauge group as X, forces then the v.e.v, of X to vanish. For

instance, one takes .

W =Y(M* - X?) + pZX + w(X,s'), " (660}

]

where z* denotes all the other fields. Then:

W _ M- x,

% (6.61)
aw

Bz T HY

and both equations cannot vanish simultaneously. Several variants of this superpo-
tential are possible. They have in common the singlet field ¥ and the presence of
the linear term Y M? in the superpotential W. For instance, if X trensforms in a
complex representation R of the gauge group, one introduces two fields Z, a.nd Z,

transforming in the conjugate representation R*. One can take

W = Y(M? - X21) + u(X Z2) + w(X, ), (6.62)
sc that
oW
=— =M?-X2Z,,
0 =%y !
aw
s :XY, 6-63
0 =57, (6.63)
ow
= =p X
8z, *

have no solutions. The O’Raifeartaigh mechanism requires always at least three
fields.

We now compute the supersymmetry breaking mass terms for the simplest su-
perpotential (6.60). We first need to determine the minimum of the scalar potential

2
g;‘: + % 3 (D). (6.64)

a

Sw
V= M- X NP+ 2 -2XY 4 oo P4 Y
Assuming that the equations
PRy TR, (6.65)
o

have solutions, the minimum of V corresponds to the vacuum expectation values

1
<X >=M?- Epz,
(6.66)

bw
<pZ—2XY+5'X'“>—0.

where M? and u® have been chosen real by a choice of the phases of X, ¥ and Z.
The auxiliary fields f,’; and f; receive a vacuum expectation value

1
1oL
DA I (6.67)
<f3> =M - ol
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All others are zero. At the minimum

< V>___ #2 (%#3+]M2ﬂ%“2

) > 0. (6.68)

The non supersymmetric mass terms are (sec Eq. 6.51):

1 ' 1 1
3 < JASS D S 3 < Y > flax(Xh) = 5#’(-’(’ +X1?), (6.69)

Only the chiral multiplet X has then a non supersymmetric spectrum.

We now turn to the case of the Fayet-Tliopoulos mechenism, requiring a non zero
£°. Since the Lagrangian [¢* D],z is only gauge invariant for abelian multiplets, the
gauge group must contain one or several U(1} factors. This is however not sufficient
to break supersymmeiry since the absence of chiral anomaly for 2 U (1) group with
charges g; of the chiral multiplets imposes

Z: g =0, (6.70)

which implies that charges of both signs are always present. Then,

0=D%=—¢ (Z qglzilz + f“) (6.71)

has always solutions and supersymmetry cannot be broken. One needs further con-
straints arising from the superpotential, or from other U(1) groups with their own

£
Broken supersymmetry arises in the following U(1) supersymmetric gauge the-
ory. The chiral multiplets and their U(1) charges @ ere

E with @Q=-1,
E with @=1.

This model corresponds to supersymmetric electrodynamics of an electron E, E being
the positron. The D term is

D= —e(zfz%— zpzh +£), (6.72)
and can vanish for non zero scalar ficlds. We however take the superpotential
W = mEE, (6.73)
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m being the electron mass. The equations

=— =mzg=0,

Ozg (8.74)
aw

— =mzgp =0

oz !

are then incompatible with D = 0 and supersymmetry in broken, but only for m # 0.
This example shows that a conspiracy of the superpotential and a D-term, but not
a single D, can break supersymmetry.

6.3. The Higgs mechanism in supersymmetric gauge theories

The vacuum expectation values of scalar fields will also induce spontancous gauge
symmetry breaking, for fields with non trivial gauge transformations. Even though
the Higgs mechanism in supersymmetric theories can in principle be treated in the
same way s in non supersymmetric theories, the particular structure of the scalar
potential (6.3) leads to interesting features. The potential contains two terms, with
different gauge invariance. The f-terms of the potential are derived from the super-
potential W, which is a gauge invariant polynomial in the complex fields z'. Geuge
invariance is the statement

0= %Szj = %iw“(T“)j.z*, (6.75)
with real infinitesimal transformation parameters w®, and hermitian generators T°
of the gauge group for the representation of the chiral multiplets. It is however clear
that if W is gauge invariant, in the sense of eq. (6.75), it is also invariant under the
complezified form of the gauge group, with transformations obtained by promoting
w® to complez parameters. The superpotential is then invariant under a group with
(real) dimension twice bigger as for the gauge group. Applying now the Goldstone
theorem, as explained in (6.15-17), each broken gauge symmetry corresponds to two
massless real Goldstone bosons {or one complex Goldstone scalar).

For a minimum with unbroken supersymmetry, < fi >=0, this can also be seen
in the following way. Gauge invariance of the f-terms of the potential reads

F1;D% - T f:D§ =0. (6.76)

Differentiating, and using < f; >=0 leads to
<FfaD} >=< Fr D% >=0. (6.77)
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Since < f” fix > is the scalar mass matrix, onc sces that for broken symmetries,
both directions < D¢ > and the complex conjugaie < D®* > are massless: for each
broken symmetry, onc gets two real massless Goldstone states.

However, the second term of the scalar potential is certainly not invariant under
the complexified gauge;group: under & transformation (6.75) with complex parame-
ters, (omitting scalar igdices i,7,k,...)

] (%D"D") =D*bD*

=i Z:. Dog* [ (' TP T 2) — Wwh(2! T T*2))]

=%i Zg‘D“ [(wh — )T, T}z - («® + )T, T%):]
a,b

=) ¢*D*Imwt T T%2 - 3 f**Rew' D" D
a,b ab )

=Y ¢"D*Imu*:T* T}
a,b

6.78)
(To get the fourth equality, one uses that a Fayet-Iliopoulos term can be pres(ent in
D* only for abelian vector muitiplets, for which [T%,7*] = 0). As it should, only
the usual gauge group with real parameters ie an invariance of the full potential.
Because of the D-terms in the potential, the unwanted massless { Goldstone) scalars
arising in the f-terms receive a mass. This can be explicitly seen in the scalar mass
matrix, eqs. (6.44) and (6.46). Consider & minimum of the potential with unbroken
supersymmetry, satisfying (6.6). The scalar mass matrix (6.44) simplifies then to

—=mbk
< fim >+ < DD > ape
M;=( fmf ™ >+ < LSDibE> ) (ere)
< Deipsh > < fimf >+ < DD >
Using {6.77), one finds that
af <DY> Y __ pekpp o ppekne <D >
M"(:l:(D”)) =< D DLiD Di> <D“j> . (6.80)
But one can also repeat (6.76-77) for the D-terms of the potential. Gauge invariance
of D*D®/2 reads '
D*D;D* - D*D}D* =0, (6.81)

and differentiating with respect to 7 or z;- implies

< D}D;D¥ >= < D}DID* >,

< D.le-.DH = DliD:Doi >, (682)
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for supersymmetric vacua, < D® >= 0. Returning to {6.80), one finds that the states
corresponding to the directions

1

75(( D> — <D™ >)=Im <D} > (6.83)
are the massless Goldstone bosons, while directions

71—§(<D2>+<D“' >)=Re < D} > (6.84)
have a mass matrix given by 2 < D¢D® >=2¢* < 2tT*T?z »: These states have
the same mass as the corresponding gauge bosons (see the spin 1 mass matrix, q.

6.32).

Analogously, acting with the spin 1/2 mass matrix, and using < fi; DY >=0,
one finds immediately that the fermion

(< Df>viv")
Al

is a Dirac fermion with the same mass matrix as the gauge bosons.

With unbroken supersymmetry, the Higgs mechanism operates then in the fol-
lowing way. To give a mass to a vector multiplet, one uses a full chiral multiplet
in which the complex scalar splits into a massless real Goldstone state giving the
longitudinal polarisation of the gauge field in the unitary gauge, and a real physical
scalar, with the same mass as the gauge boson. In the fermionic sector, the gaugino
and the chiral spinor form a Dirac fermion with again the same mass as the gauge
boson. A massive vector multiplet in then constructed, with four bosonic and four
fermionic degrees of freedom (This supermultiplet was already described in chapter
3).

If supersymmetry is not broken, the Higge mechanism can be completely ex-
pressed in superfield language. The vacuum expectation values < z* > of the scalar
fields contained in the chiral superfields #¢, are themselves superfields:

<P m=<t>. (6.85)
One can then define new superfields, with vanishing expectation values, by the shift
o =¢'- < ¢ >, (6.86)

and substitute these new superfields in the original superfield Lagrangian. One can
also directly define the unitary gauge in the following way: the chiral superfields &
are parametrized by

¢' =T (dp+ < ' >). (6.87)
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In this superfield equation, the chiral left-handed superfields ¢ and ¢% denote re-
spectively the Goldstone and physical superfields. There are ns many $% as broken
generators, T < ¢ ># 0, and the superfields ¢% contain -all remaining, physical
chiral multiplets. The unitary gauge is obtained when the gauge transformation

& e iaT gl

—i($HT* 20V idpT" (6.88)
. 3

29V

e —t e

is applied. The resulting Lagrangian is expressed in terms of the physical superfields
4, < ¢* > and V. There is a mass term for the vector superfields of the form

(MBYRVOV s = 29" < ol > (T°T*Y; < ¢ > VeV 05 (6.89)

which corresponds to the spin 1 mass matrix also obtained in (6.32).

Notice however that the unitary gauge must be chosen in a supersymmetric way,
by a gauge transformation with full superfield parameters. One cannot simultane-
ocusly take the unitary and the Wess-Zumino gauge. The superfield Lagrangian in
the unitary gauge must then be computed with the complete vector superfields, with
components C, M, N, D, v,, X, A, 85 in eq. (4.98).
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Chapter 7

Non renormalization theorems and
softly broken supersymmetry

We have seen in the preceding chapter that the necessary breaking of supersymmetry
is a source of difficultics when constructing realistic supersymmetric models. The
Fayet-lliopoulos mechanism is inadequate and unesthetic. It would require a larger
gauge group and a terribly complicated structure in the matter multiplet sector. The
O’Raifeartaigh mechanism, because of its tree-level mass relations, can be used only
with the help of loop corrections.

It is when invoking quantum corrections that supersymmetric gauge theories
differ in the most spectacular way from normal gauge theories. Supersymmetry is
able to cancel many divergences usually present in field theory, leading to ‘non-
renormalization theorems'. These theorems have important implications for super-
symmetric unified theories. It turns out to be much easier to obtain independent
scale parameters m;, corresponding cither to masses of scalar particles or to scales
of symmetry breaking, with very large ratios m;/m;. In normal field theories, loop
corrections have the effect of bringing these ratios back to m;/m; ~ 1. This is no
more the case with supersymmetry. Thus, supersymmetric theories allow hierarchies
of scales which are necessary to unify strong and electroweak interactions (and also
gravity). Even though supersymmetry does not help in understanding why scales of
unification are so different (the electroweak scale is ~ 102GeV, the gravity scale is
Mp ~ 101%GeV), it is at least technically possible with supersymmetry to construct
a ficld theory where vastly different scales coexist at the quantum level.

7.1. The non renormalization theorems

Supersymmetric gauge theories are renormalizable field theories, and renormalization
can be performed to all orders in perturbn.tibn theory without breaking supersym-
metry [13]. This mcans that the counterterm Lagrangian to be added to the classical
Lagrangian discussed in chapter 5:

L = Lotggsical + Loountertarmy (7'1)

can also be expressed in the superfield formalism and contains the same terms as the
classical Lagrangian. Divergences are absorbed by redefining the parameters of the

’
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classical Lagrangian (gauge couplings ¢°, parameters of the superpotential W, and |

Fayet-Niopoulos terms {%), and by rescaling the superfields.

Counterterms will fall into two classes. Those who have the form of a 99 com-
ponent of a chiral uuperﬁeld :

cPnloet+ (... 055 3  Dapi=0,

will be called F-counterterms, and those who are obtained by taking the #668 of a
vector superfield

[-lossw

will be called D-counterterms. Clearly, F-counterterms will be added to renormalize

.

the superpotential and the gauge kinetic terms.

The interest of this classification is due to the fact that loop diagrams can be
fully analysed in the superfield formalism. In general, a loop Feynman diagram will
have supersymmetric partners, with the same external states, but with fields on the
loops replaced by their supersymmetric partners. For instance, a diagram containing
a loop with a scalar field belonging to a chiral multiplet will have a partner diagram
with the chiral fermion on the loop. It is however possible to include all the different
diagrams in a superfield formalism for Feynman diagrams. One defines superfield
Feynman rules (superfield propagators and superfield vertices), and loop integrations
are now taken over all superspace, d*kd®9d*8. We will not discuss here the superfield
formalism for quantum corrections (see for instance [17]). The divergent parts of dia-
grams, compensated by the counterterms can then be studied in superfield formalism
and onc can prove (to all ordere) the following non renormalization theorem:

Any perturbative quaatum contribution to the effective action must be expres-
sible as one integral over the whole superspace.

This means that loop corrections are always of the form |. . Jegge» they are only
‘D-contributions’.

As a consequence, the parameters of the superpotential are not renormalized.
There is no need for F-counterterms. Notice that the non renormalization theo-
rem means that the parameters of the superpotential do not receive any quantum
corrections (even finite) as long as supersymmetry is preserved.

The only necessary renormalisation constants are then (Z,)‘ to renormalize the
wave functions of chiral multiplets ¢*:

iy = (2 7) ¢, (12)
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where (r) stands for renormalized, and (Zv)®, to renormalize the vector multiplets
Ve, = (2,17, (1.3)

There is then one renormalization constant for each superfield. The renormalization
of the gauge coupling constant is related to the one of V* by Ward identities. The
renormalizations of the trilinear Yukawa couplings A;jx and of the mass parameters

m;; present in the superpoiential are given by

Meyin = (23725237 (2 )% (22)5H At

(7.4)
mieyis = (235 (25)57 (Zm )it + 6,
with, a8 a consequence of the non-renormalization theorem,
(22 = slepsg,
(Bm)iT = 8167, (7.5)
6m,>_,< = 0.
One then finds - c
(Aijad' ¢’ ")) = Mijad’ ¢ 7, 76)

(mi;#' ¢ Yy = mi;d'd7,
and the superpotential is not renormalized at all, as stated by the theorem.

Notice that Z4 and Zy cannot contain quadratic divergences. As long as there
is no Fayet-Iliopoulos term [£*V®], 2, a supersymmetric theory contains only loga-
rithmic divergences. The renormalization of the Fayet-Iliopoulos term is controlled

by another non renormalization theorem:

If £ is associated with a traceless generator T (Tr T = 0), there is no quadratic
divergence and £° is only multiplicatively renormalized.

The non renormalization theorems mean for instance that if one imposes a scalar
field to be massless at tree-level, then it will remain massless to all orders. Also, a
tree-level vanishing {* will remain zero to all orders, if T+ T = 0. This is a sharp
difference with normal gauge theories, where quadratic divergences generate quantum
corrections to a zero tree-level scalar mass.

7.2. One-loop renormalization

In perturbation theory, at a given loop order, the non renormalization theorems
correspond to cancellations of terms arising from different Feynman diagrams. For
instance, in a Wess-Zumino model, the Yukawa couplings and the scalar self-couplings
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are related: both are obtained from the superpotential W(¢;) of the theory. These
relations between couplings, which do not exist in non supersymmetric field theo-
ries, are preserved by renormalization to all orders [13], and they lead to related
contributions from Feynman diagrams which would be completely independent in
the absence of supersymmetry. Notice that the cancellations can slways be obtained
before performing loop integrals: there is in general no need for a regularization (or
any cut-off). After summing (with correct combinatorial and statistical factors!) the
Feynman diagrams contributing to a Green’s function, the integrant of loop integrals
is found to vanish as a consequence of the non renormalization theorems.

There are actually two mechanisms of cancellation. They can be simply illus-
trated at the one-loop level in a Wess-Zumino model, with chiral multiplets only.
Firstly, the scalar fields z* = (A + iB')/V2 contain real scalar ficlds A' and real
peeudoscalars B'. The couplings of the pscudoscalars B; carry additional i factors
which will cancel contributions of the scalars 4;. This scalar—pseudoscalar cancella-
tion mechanism is for instance at work in the vanishing of the one loop corrections to
chiral fermion masses in the Wess-Zumino model. The Yukawa couplings contained

in
1 d% . 1 &W ——
_= igi _ = S LB
2dzidzi vy 2 dz‘-'dz; ¥i¥;
read
Azt - Ay = -2 (AipnA'P* + A BYyt) —he  (17)

V2
The additional  factor for pseudoscalars B; brings & minus sign in diagrams where
this Yukaws coupling appears twice. This can in fact be summarized by depicting
scalars by oriented lines corresponding to the vertices

- W
)‘ijk ¥ z- - >--<
"

Yukawa couplings: _
+ijk _+ 7 J
)\ J z; Yj;ﬁ z'{-— -y -<
. - ‘*k
Propagator: 2 e -2

Consider now the one-loop contribution to the mass of chiral fermions Y. Siqce the

mass term is 1 1 e
Emiﬂf’"ﬁ’ + '2‘171"’\5.'!"5,
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it is depicted by

——)—— + ———

where the cross represents the tree-level contribution I.Ld the black dot the one-loop
graph, which would be !

?
O
’ ~
» 4
’ Y
! )
—— g — Yl

The circle requires the reversing of the scalar arrows, but there is no term () +(=1)?
in the Lagrangisn. Then, the diagram does not exist. This rule of oriented scalar
lines summarizes that the diagrams with scalars A; and pseudoscalars B, cancel,

N B,

P ~ 1“-“
’ A ’ ~
v ’ N

O:—b—‘-—d-—x-."—l—‘—‘" : b —t el . ’

because of the additional i? factor in the contribution of the peeudoscalars B;. In
generel, the scalar-pscudoscalar canceliation mechaniam operates along fermion lines
traversing a Feynman diagram.

The second cancellation mechanism is well known: fermion loops carry a minus
sign due to Fermi-Dirac statistics, and are able to cancel scalar loops provided masses
and couplings of scalars and fermions are related as implicd by supersymmetry. In
some sense this cancellation mechanism is the supersymmetric partner of the A-B
cancellation described above: the vanishing of one-loop corrections to scalar measses
is due to the minus sign of the fermion loop diagram. It is simple to verify in a
(massive) Wess-Zumino model that

¥ \ A
0 _ 1 1 -+ - Pt -- -
—_— LY ! :
AT
_——— - —— \‘__'/
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As required by non renormalization theorems, the sum of these diagrams is already
zero before loop integration.

The use of the oriented lines for scalars and fermions is very useful to identify
the vanishing diagrams where a cancellation between A and B has taken place. It is
of little help when the Ta.ncellntion arises between boson and fermion loops.

7.3. The hierarchy g]'roblem and supersyminetry
¢

Unified theories of particle interactions contain at least two scales. The lightest scale
corresponds to the spontaneous breaking of SU(2) x U(1} into U{1).m, giving & mass
to the W% and Z° gauge bosons and also to quarks and leptons. The order of
magnitude of the electroweak scale is then 10° GeV. It is obtained from the scalar
potential for the SU(2) doublet of Higgs scalars H,

V=—uHBRH + %A(HH’)’, (7.8)
which gives a vacunm expectation to H at its minimum:
< HH' >= u?/x. (7.9)

To get < HH' >~ 10* GeV?, since ) cannot be arbitrarily small, u? should not be
very far from the same order of magnitude.

One must however take into account the other scales relevant to the unification
of particle interactions. Firstly, one can have a ‘grand unification’ of sirong and
electroweak interactions, SU(3) x §U(2) x U(1) being embedded into a larger simple
gruge group like SU(5), SO(10) or E, for example. The scale of this unififcation,
which corresponds to the scale at which the unified group is spontaneously broken
into SU(3) x SU(2) x U(1), cannot be smaller than

Mgyt ~ 10M-1°GeV.
Also, gravitational corrections should be taken into account. The scale of (quantum)

gravity is the Planck scale,
Mp ~ 101GV,

At these energies, gravitation is of comparable strength v:th the other foreu and

quantum gravity corrections become siseable,

Thequuhonofthem;ﬂnmufthewukmtenchonlcdemmpandmththe
other scales then arises. At tree-level, one can easily choose a form of the potential

such that the mass term, with parameter —p?, of the Higgs doublet has the right
magnitude. However quantum corrections will not in general preserve this choice.
The renormalized parameter y.(,_) will be related, at one loop, to the bare parameter

u?, chosen at the adequate scale, by
phy = Ca®*M? + u?, {7.10)

'where C is a number of order 10°*! | « is some coupling constant and M is the large
scale of the theory, i.e. M = Mgy ot M = Mp. These quantum corrections are for
instance due to diagrams where the loop contains a heavy (mass ~ M} gauge field of
the unified group. In this case, the coupling constant a is a gauge coupling, related
in general to the strong or electroweak coupling constant at low energies. Then, o
cannot be chosen arbitrarily small and the gquantum corrections to u* are at least
10 orders of magnitude too large. The only way out in this situation is to tune p?

so that ,u.f,) has the right order of magnitude, i.e.
Ca’M? 4 p* ~ O(10*GeV?).

This tuning condition must be modified at every order in perturbation theory, making
the appearance of a small scale completely unnatural. Quantum field theory always
favours a unique mass scale. This problem is called the hierarchy problem.

Supersymmetry however changes completely the picture. The corrections of
order M? in (7.10) arise only if the theory has quadratic divergences. Realistic
supersymmetric models are always free of quadratic divergences, so that u® is at

most logarithrically renormalized. At one loop,
#ey = #* (14 Co’in(M? [u?)) , (1.11)

so that pf'_) is not very different from u?. Supersymmetry then solves the hierarchy
problem, at least in the technical sense: a tree-level hierarchy is stable under quantum
corrections. There remains the physical question: why is there a hierarchy of scale
in nature?

This solution to the hierarchy problem is one of the main motivation to introduce
supersymmetry in unified theories of particle interactiops. There is no other known
mechanism powerful enough to obtain the same result, This is related to the fact that
only supersymmetric theories {with unbroken supersymmetry or with spontaneously
broken supersymmetry ) possess non renormalization theorems, which then have deep
physical implications. These theorems are however too strong in the sense that they
remove quadratic divergences, but also some logarithmic and even finite quantum
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contributions which arc not at all incompatible with » hierarchy, and are even useful
in realistic applications. Requiring only the absence of .quadratic divergences, in view
of the hierarchy problem, leads to softly broken supersymmetric theories.

7.4. Soft breaking of supersymmetry

The hierarchy problem is solved, at least in the technical sense, if the theory is
free of quadratic divergences. Thie is the case of supersymmetric gauge theories,
even if supersymmetry is spontancously broken, if all gange symmetry generators arc
traccless. We have however seen that spontaneous breaking of supersymmetry hardly

gives realistic models.

The absence of quadratic divergences does not however imply that the the-
ory must be supersymmetric. One can add some terms to the supersymmetric
Lagrangian, breaking supersymmetry, but introducing only new logarithmic diver-
gences,

These new terms are in fact present in the low-energy effective Lagrangian of
spontaneously broken supergravity theories [14, 16]. They are then natural ingredi-

ents of supergravity unified theories.

These new terms, which break supersymmetry without introducing quadratic.
divergences, are called aoft breaking terms. Their enumeration is particularly simple
at one loop because of the following argument. We have secn that in supersymmetric
theories, all divergences are found in the wave function renormalization of chiral
multiplets and in the renormalization of gauge coupling constants g° (equivalent to
wave function renormalization of vector multiplets). It is then sufficient to consider
the one-loop renormalization of the scalar potential, which contains a gauge part
(3D*D*) depending on ¢°, to determine all renormalization constants of the theory.
The one-loop divergent contributions to the scalar potential are given by i18, 19|

_ A 2y 4 e . Mz(z)) 712
5V = .:E_EST,-M (z)+ “ﬂstrM (z)in( ) (7.12)

where A is & cut-off mass parameter. The first terta contains the quadratic diver-
gences. STr M?3(z) is the quantity calculated in section 6.1, but now considered as
a function of the scalar fields 2 and not only of their vacuum expectation values

"¢ 7t >. §Tr M*(z) is the analogous superirace for the fourth power of the mass
matrices. The second term contains all logarithmic one-loop divergences.

The problem of finding soft breaking terms corresponds to add new gauge in-
variant terms to the Lagrangian such that STr M?(z) does not receive any new field
dependent contributions, which would correspond to new quadratic divergences. A
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;?hnita:nt tlerm oi t:e ‘:’lorm {constant)A? is of course irrelevant in the Lagrangian
a simple metho ows to investigate easil i .
y one-loop soft breaking terms. One
cfm then show that these terms are also soft to all orders [20], provided they do not
g;u;re nf:ly field dependent contribution to the trace of AM3(z) for all states of a given
51:: (ll: no t:ontnbutlon ?o Mi(z), Mi(z) and Mi(z)). Since a mass term for
gauge bosons is not gauge invariant, we only need to consider AM3(z) and M} ,,(z)
17282}

The spin zero mass matrix is gi i
. rix squared is given by equations (6.44-48). It is clear

s . .
sorr(z,2') = () + n'(z") + M2z, (7.13)
where 5(z) is an arbitrary gauge invariant cubic function of z':
n(2) = s’ + b 4 2t
132" + 3Mayis2 2+ gayje’e 2 (7.14)

generates a new contribution to M3(z) of the form

2 1/ M7 .
Mosorr = 5 (nt;j ]3;?*) v {7.15)
where
d*n g St
;= ——— tii _ n
M dpida 7T dztdzl’ (7.16)
1]
Since ’
Tr Misopr = M} = constant, (7.17)

the terms i i erms

sc; ” in 6£3-om~ are soft breaking t . Eq. (7.13) contains the most general
c ar:: t btea.h.ng terms. They contain scalar mass terms of both forms 2z' and

z? + z13, and trilinear ‘analytic' interactions z* + z13.

The spin 1/2 mass matrix is given in Eq. (6.39). Clearly, & gaugino mass term
_1 abyayb 1 byoY 2
2A AtAb — EA. A A (7.18)

will only give a const ibuti bAd i
i Ml::t t nstant contribution 'A' A to Tr M} ;. 1t is then a soft term. All
ions to A, are not soft in general. For instance, a mass term

1 PR G-

_5,5‘,.,;, i — Egh:,l,‘,d,j (7.19)
gives a new contribution to T'r M],; which reads

_f.-,-&ﬁj + ?,6.',' + 5.'_,'5”5, (7.20)
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in the notation of chapter 6, This is field dependent except if §;; is non zero only
when f;; is a constant. Such a choice however leads only to one-loop’ soft breaking
terms. In general higher order contributions spoil the softness.

The soft breaking terms (7.13) and (7.18) contain all what we need to satisfy
the mass inequalities ( .27) for an acceptable spectrum of supersymmetric particles.
We have scalar mass spft terms to rise the masses of scalar quarks and leptons, and
we also have gaugino iass terms to rise the mass of gluinoe and of the photino.

§

7.5. One-loop renormalisation group equations

We have already discussed briefly the different possibilitites of incorporating super-
symmetry in realistic models of strong and electrowenk interactions. We have seen
that the main difficulty lies in the mechanism used to break supersymmetry, which
should give large enough masses to the scalar partners of quarks and leptons. Our
conclusion was that only the addition of soft breaking terms is a satisfactory option.
The question is now to'discuss the origin of these soft breaking terms. -

The important observation is that soft breaking terms arise naturally in the f-
fective low-energy theory of spontanecusly broken supergravity theories coupled to
matter multiplets (see [14, 16] for reviews). These theorics possess a local supersym-
metry which can be spontaneously broken using the super-Higgs mechanism. At en-
ergies much lower than the Planck scale, Mp, gravitation decouples and the effective
gauge theory (which is obtained in the limit Mp — oo) is globally supersymmetric
except for a set of soft breaking terms characteristic of the super-Higgs mechanism.
In general, one could construct the sector which induces the super-Higgs mechanism
in such a way that any possible soft breaking terms could be generated. However,
most of the phenomenologically interesting theories lead to strong constraints on
the structure of the soft breaking terms. For instance, all mass terms of the form
(m?)iz]27 are equal: (m?)} = m?6}. These constraints are very useful to reduce the
arbitrariness of the soft terms, but they are subject to important renormalizations
from the Planck scale at which they hold strictly, to energies close to the masses of
the weak gauge bosons where supersymmetry is phenomenologically relevant. These
renormalization effects are controlled by the renormalization group equations of the
theory, which we will now derive at the one-loop level,

We consider the most general supersymmetric Lagrangian with arbitrary soft
terms, gauge group G and representation of the chiral multiplets R. We will only
assume that there is no Fayet-Tliopoulos terms, and all formula will be given for a
simple gauge groups, with a unique gauge coupling constant g. The generalization
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to non simple groups is straightforward. The scalar potential is then
V=Ff+ %D“‘DA + (m?)22lz + n(z) + 7(2h), (7.21)

where f(z*) is the superpotential and

df AR
fﬂr - dz“ 1 f - dzl 1
the D-terms read
DA = —galT4, 2%, (7.22)

in terms of the generators T4 of the gauge group for the representation of the chiral
multiplets, and finally #(z) is an arbitrary gauge invariant polynomial of third degree
in the fields z°. The superpotential will be written

1 1
f= gfabczazbzc + Eﬂ-abznzb + a,2°%, {7.23)
with Y
fabe = Tadibdze (7.24)

We will use for n the decomposition given in Eq. (7.14).

We further need to add gaugino terms of the form
1 A
m-lz-a.*f’,\‘,\” - SA4EX R, (7.25)

The gaugino masses can always be chosen real (as it was done in 7.25) by a phase
redefinition of the gaugino spinors, and we will also diagonalize the matrix A in the
form A4F = A4545,

With the exception of the gaugino mass parameters, one can obtain ali renor-
malization constants by only considering the scalar potential. The gauge coupling
constant renormalization is present in the gauge potential and all Yukawa couplings
are either proportional to ¢ or directly given by fas.. Since all soft breaking terms
are at most of dimension three, Yukawa coulings are not affected by them and their
renormalization is the same as in the fully supersymmetric case. It can then be ob-
tained from the scalar sector. We will now compute all renormalization constants and
the correponding renormalization group {RG) equations to one loop. The one-loop
contributions to the scalar potential are given in Eq. (7.12). Since by definition of
soft breaking terms STr M?(z) does not receive any field dependent contribution,
and since we have assumed there is no Fayet-Iliopoulos term, our theory is free of

quadratic divergences. All divergences are then logarithmic, and they are given by
1
§V = —WST!'M‘(Z) inA. (7.26)
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The renormalization constants are then obtained by the condition
V(g“,;_l,earametera) = V(z*, z:,parameters) +&8V(°, zE,parametera), (7.27)

where parameters stands for all coupling constants and mass parameters and under-

lined quantities are renormalized.

The main task is then to compute the supertrace of the quartic mass matrix for
arbitrary values of {he scalar fields z°. We first write the mass matrices for every
spin, including the arbitrary soft breaking terms. Spin one states are not affected by
goft breaking terms. Their mass matrix squared is then the same as in Eq. (6.34):

(M3)AB = D2 DB + DID*, (7.28)

so that
3Tr M} = 6(DADP*)(D**D]) + 6(DADB*)(DADEY). (7.29)
Compared with {6.39), the fermion mass matrix will now include the gaygino mass

terms and become
Myjs = fa ~ V2DZ (7.30)
1/ ﬁin AAB ) ’

One then obtains
—2Tr M}y = — 2fasf* feaf** — 16 fusf*DADA* ~ 16(DADAY) (D5 DY)
4 8£.,DASAABDB® 1 8f**DARA? DF — 16K"°ACBDL D™
_ 2AABRICACDRPA,
(7.31)

The mass matrix squared of scalar fields can be expressed in terms of second deriva-

tives of the scalar potential:

Vﬂ Vlc
LI B 7.32
MD (de V; ) + ( )
where
4V
V= Jagzs = Juwef + DD + e,
an = _d;_V_‘ — f-“fc + DAuDAb +ﬁeb' (7.33)
edzy -
4V a . "
V: = m = f“‘fbc + DAbDA + I)A“DfI + (mz)b.
[

Then, since STr M* is invariant under the transformations of the gauge group, it can
be reexpressed only in terms of group invariants, without any use of explicit group
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generators. This is achieved by exploiting the group invariance of the superpotential
and of the gauge potential. We have

df

fuD** = ‘QET":Z' =4q, (7.34)
which, when differentiated, also implies

faDA® = - f, DA,

- faseD*® = ~fouDA] — foeDH,. (7.38)
The invariance of the gauge potential reads
, ' DADADB* — DADADP — 0. (7.36)
Analogously, the polynomial 5 is group invariant:
naDA* =0, (7.37)

which can be used in the same way as for the superpotential. These identities can
be used to reexpress STr M* in terms of the group invariants

T(R)§A® = Tr(TATP) = TA{TE,,

. 7.38
C(R)§; = TA.T4,, (7:3%)

and also C(G) (the quadratic Casimir invariant of the gauge group) which ia the
same as C(R) when R is the adjoint representation of G, and can be obtained from
the structure constants f45€ by
C(G)648 = f4°P£5°P. (7.39)
Notice the obvious relation
T(R)dim G = C(R)dim R. (7.40)

One can as well use the gauge invariance of the mass terms (m?)§z} 2%, which reads

(m®)3z} DAY — (m?)§*DA = 0. (7.41)
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By combining these various identities due to gauge invariance, one gets new expres-
sions for many of the terms present in STr M*, like for instance:

'Z_f" kaA: = —f.kf“.DAc - '-f'kf“D:,
. f“,f DADAl _ g’C(R)f.f’,
f"}feD“Ds = PC(R)uf* - FOR)LAS,

Jate ‘EDMD‘“ = g’C’(R)f.f‘ -9 G(R)z.f fat,
L feDiDE = -gC(R)f s,
fabDA.DAb = -—g’C(R]f,z",
na DA DA = _g?C(R)naz®, (7.42)

- DADE = —g'C(R)T* 2L,

(m?)§ DD = o' C(R)(m?)§2{s",

DA(DADB D.Bi) . zC(R)D‘D‘
DA(DED*,DP*) =4 [C(H) - 5c(G)] DDA,

DAD®(DA;DB.) = ¢*T(R)DADA.
Finally one finds
STr M* =29 [T(R) + 2C(R) ~ 3C(G)}DAD* - 88’ C(R)f* fa
+4f*fu DALDA + 2 fouuf*fe — 26°C(R) [2° f* far + 2L fo Y]

~8g°C(R) Y 8A(far* + f2}) - 169°C(R) Y A4 (s2]) -2 ) A%
A A A

+ 2% fnap + 2fape fT*
— 20*C(R)(7" 2} + 1a2°) + 247"
+4f* fu(m? )} + 49" C(R)(m?)2l 2
+ 2(m¥)(m?)s + 4(m? 3 (DA)DA,
{7.43)
Notice that the last term vanishes as a consequence of Schur's lemma for traceless

generators of semi-simple groups. This is not generally true for possible U(1) factors
present in the gauge group.

One can easily rewrite this expression in terms of the scalar fields, the coupling
constants and the mass parameters by inserting the expansions on the superpotential
f (Eq. 7.23) and of n (Eq. 7.14). The following terms are then present in STr M

Terms of order zzzist:

2¢°[T(R) - 3C(G)|DAD* +4g’cm)n‘o‘ - gsl{X,TA);: "D“

_49,30(}2){-&’.‘." 12920 4 x‘f“‘f""’z‘z‘z' z' (1.44)
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Terms of order zzz¥ + h.c.:

k793C(R)f45:*“d b.z"::d + h.c.
FXE facai 222 + hoc

Terms of order z* + h.c.:

~4g?C(R) Y A*faper®2e" + hec.
A
f*'zfﬂbcfcdeﬂ!abd'zdzt Zd, + h.c.
—2¢°C(R)Msabe2" 22 + hec.

Terms of order zz1:

—12520(}2)“,5#’%“2: + 2X PR a2 4
—16¢*C(R) Z(A‘)z(zlz“) + 4{(m?)2 fucafteozls?
A

+4g*C(R)(m?)p 2] 2° + Bnaapciist¥z 2},

Terms of order zz:

Terms of order z:

The notation

—~6¢*C(R) fape@® 22" + hec.
{»Xf&bf“dz“zd + h.c.

~8g*C(R) Z Arpgz®2® + hee.
A

+ 5 fgempaszé 2t + hec.
+4f°“p¢4113,,5,z"z' + h.c.
~2¢°C(R)m2ap2°2® + hoc.

—109*°C(R)pasa®z® + h.c.
+2X7a U, 2 + hee.
+4 foeai®(m?)oz? + hoc.

~8g7C(R) Y Ata,z® + b
A

+2f % amaasz® + hec.

+4f**a g4z + hoc.

~20°C(R)maz" + hec.
+47308773°2° 4 hec.

X3 = £** frua
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(7.46)

(7.47)

(7.48)
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i 1.1
has been used. As already discussed, the dimension four terms of o‘rder zz21z
are not affected by soft terms. The renormalization of ¢ and of the chiral Yukawa
couplings f,s. are then the same as with unbroken supersymmetry. One then defines

a
the following renormalization consiants:

e 10 b
3.“= 65—§Eb xr,
g=(1+p)9 1
. Foogt P 10' L o ob ' -y
f = fab -I-(.Yn:'c +%(:6:6: +§6‘t:5= +§5°5|,Ee)fn|,;.
Zabe abc a

(7.50)

These renormalization constants can then be obtained with the help of the renormal-
t
ization condition (7.27) applied to the terms of order zzz1zt. One finds

p = —2kg*(T(R) - 3C(G)],
¢ = 4kg?C(R)ép — 2kX}, (7.51)
225 = 2kg? [C(A) + C(B) + C(O)] 626062,

with the notation 1

= ——InA.
k=gomm

The expression C{A) + C(B) + C(C) corresponds to the sum of the group mv’;:-
ants C{R) computed for the representations R of the three indices a, b and ¢. The
renormalization of the Yukawa couplings is then given by

1.5, =fabe + 4kg’[C(A4) + C(B) + C(C))fare

(7.52)

‘ (7.53)
— k(X2 furre + X fowe + X fose') s
which can also be writien
fope = (BEIREPN fwver (7.54)
ith ) |
" (Z1/2)8 = 6 + 4kg*C(A)8} — X} (7.55)

This renormalization constant £ corresponds to the wave function renormalization
applied to chiral superfields in the case of unbroken supersymmetry.

The other renormalization constants can be obtained in an analogous way. The

do not depend on the soft terms. This implies that also the

) of order 12 the case of unbroken

mass parameters jigy will have the same renormalization as in
supersymmetry. One defines

rpt 1

: 4 | T .
a ‘6 4 260 e ) parw- (7.58)
B = Mot t+ (#.: + 2‘: & + 25.; fa) o'V
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Comparison with one-loop terms of order zzz! leads to
u = 2kg’(C(4) + C(B))6z 6} (7.57)

and, as expected from supersymmetry,

By = Hab + 4kg*[C(A) + C(B)lhas — k (XS sars + XY )

. : (7.58)
= (202 ) pa.

All other parameters are influenced by the soft breaking terms. In general, these
parameters will not be multiplicatively renormalized. For-instance, gaugino masses
will generate at one loop terms of order zz!, irrespective of the other couplings, so
that zero values of (m?)§ are not stable at one loop. This is also the case of the
parameters in 7, since there is at one loop a term proportional to the product of
gaugino masses by the superpotential. The missing renormalization constants can

then be obtained in the following way: the terms of order zz! will define (m?)2,

. those of order z* determine Myos.- Lhere is then an ambiguity for terms of order

2* and z relsted to the fact that these terms (already at tree-level) arise from the
superpotential part f*f, in presence of parameters @, a5 well as in the soft terms
7. One can then define g, by the requirement that the structure of supersymmetric
theories is preserved, leading to the requirement
2 = (2)}a
= a, + 4kg’C(A)a, — kX}ay.

One then gets for the remaining parameters

(7.59)

(m)} =(m®)} — EX2(m?)f - kX§(m?)2 — 4k fuc, £ (m?)5

~ 8kmacdy + 8kg*[C(A)AL + C(B)AL)5;, (7.60)
Bsase =Mabe + 4kg°[C(4) + C(B) + C(C)lnsase

= k(65 fuca f* 4 8 facaf 4 6 furaf* mperie

~ kXS Daarhe + X Ngape + XS Nyase]

+4kg’[C(A)A4 + C(B)A3 + C(C)Ac] fuse, (7.61)
Raup =Mas + 4kg7[C(A) + C(B)inzas — BXS mws + X} maav]

~ 2k fusc U Mde — 451 Nsecaiias + Mbediiea)

+8kg*[C(A)A L + C(B)AB)pas, - (762)

Ny =Ta + 4k C(A)m, — kX 2y,
= 2k 2 imres ~ 4k P auny a0 — dknyap Tt :
— 4k fouci(m?); + Bkg*C(A)A sa.,. (7.63)
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omitting from now on the summations over gaugino indices 4.

The renormaligation group equations are then straightforward to obtain. Renor-

malization is specified at an energy Q. Then the quantity k eutering the one loop

expressions should become

1
= gon1(A/Q).
!
RG equations control the freedom we have in choosing Q. For instance,

d d
Q;5£~ “A;xz

= -*—[30(0) T(R))

which gives the standard one-loop beta function for gauge couplings in N = 1 su-
persymmetric gauge theories. One then gets the full set of renormalization group
equations which read:

Q359=- ———[sc(c) (), (e
Q d‘;f.., - 5555 (47 10(4) + C(B) + C(ON e

~O et X fove + X ), (7.65)
Qggshas = = g HG(C(A) + C(B)as = (X s + o
a%a.=—§§;[4s’0(A)a.—x:a4, . (en

Qg(mk == 5o [84°1C(4)A% + C(B)ARISE - R - X

Qe = = 55 W71C(A) + OLB) + C(Clmas

- 2(’»-»#!‘ 4 frcd + 'rwb-'f' b + m.wef' ¥ ‘f-u)
e — X Mave = X s ‘

+ﬂa(A)A4+_c(B)A.+c(cmajf;], R ('mo) L
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7 e ) = B, S sy

d 1 y ,
Q‘d—éﬂzab == 3m [49°[C{A) + C(B)mas — X2 M2ars — Xy M2as
— 4{n3acdf et + Mabed S ea) = 2fabef < Maae
+8¢*{C(A)A4 + C(B)BBlpar], (7.70)

d 1

QE’ha == 3om
- 4"73nbcﬂ: — 4 fanefE” d(mz)d - 2.fk HabN2cd _
+8¢2C(A)Ana,). (7.71)

[4gzc(a4)ﬂ1¢ - X:'hb - 4’?Jacdfcdcae

The generalization of these equations to non simple gauge groups is very simple.
Combinations like g*{C{ A}+ C(B}] only need to be replaced by a sum over all factors
in the gauge groups (all simple components and [/(1) factors) of the same combination
with the gauge coupling constant and the group invariant C( Rj corresponding to each

factor group.
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Chapter 8

The minimal supersymmetric Standard Model

The minimal supersymmetric Standard Model is obtained by supersymmetrizing the
Lagrangian of the Standard Model in the simplest possible way. The spin 9, 1/2 and
1 fields of the Standard Model are supplemented by their supersymmetric partners,
with spin 1/2, 0 and 1/2 respectively. It turns out that the Higgs sector must be
doubled: the supersymmetric Standard Model contains at least two complex Higgs
doublets (and their supersymmetric partners called Higgsinos).

As stressed in ch. 6, the model can only be realistic if the supersymmetric par-
ticles are always heavier than the known quarks, leptons and massless gauge bosons:
no such state has been detected (yet 7). Eleciron and proton colliders provide precise
lower limits on the masses of the supersymmetric partners, but for our purposes it
will be sufficient to require a supersymmetry breaking mechanism which increases the
mass of all supersymmetric particles, without specifying numbers, However, the min-
imal supersymmetric Standard Model does not break supersymmetry spontaneously
and we must include soft breaking terms to make it realistic. This theory can then
only be physically justified as the effective theory resulting at lower energies from
a more unified theory, which plausibly includes gravitation and gives a justification
for the introduction of soft terms. At present, the best candidate for this ‘supe-
runified’ theory is a supersiring theory. The soft breaking terms are thought to be
the remnants at low energy of spontaneous breaking of local supersymmetry (the

‘super-Higgs’ mechanism) in the superunified theory.

The minimal supersymmetric extension of the Standard Model is a perfectly
consistent and well defined theory. It can be experimentally tested and its phe-
nomenological aspects have been extensively studied (see for instance [15]). We will
only outline here its construction, and discuss the structure of its scalar potential,
with the characteristic mass relations satisfied by the physical scalar states.

8.1. The supersymmetric Lagrangian

The first step in the comstruction of the minimal supersymmetric version of the
Standard Model is to introduce the spin 1/2 partners of the gauge bosons of SU(3), x
SU(2), x U(1)y as well as the scalar partners of quarks and leptons:
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gluons — gluinos,

W# — winos,

2° — zino,

photon — photino,

quarks — scalar quarks or squarks,

leptons — scalar leptons or sleptons.

The chiral multiplets containing the quark and lepton generations will have the usual
SU(3). x SU(2)y x U(1)y quantum numbers:

Q% :(3,2,1/6) : left-handed quarks,

U2 :(3,1,-2/3) : left-handed antiquarks, charge —2/3,
D? :(3,1,1/3) : left-handed antiquarks, charge 1/3,
L®:(1,2,~1/2) : left-handed leptons,

EZ :(1,1,1) : left-handed charged antileptons.

The index a runs over the quark-lepton generations. Ozne could also add a left-
banded antineutrino, with quantum numbers (1,1,0) for each generation, but this is
not necessary in the minimal model. The left-handed antineutrino is anyway a singlet
of the gauge group: as long as neutrino masses need not be included, its presence
would not influence the following discussion.

With these chiral multiplets, one can construct a superpotential of the form
W = a**“UZDIDS + B**Q° DEL® + v**L* L*EF. (8.1)

(In this expression, SU(3), and SU(2) indices are omitted. It is understood that
gauge inva.rinnt combinations are constructed. For instance, UeDiDE means €ijk
(U2) (D) (Dg)*, with colour indices ¢, 7,k = 1,2,3). This superpotential will induce
Yukaws and scalar interactions. The phenomenological implications of the latter
cannot be very problematic. Scalar quarks and leptons must have a large enough
mass to make their phenomenclogy consistent with the absence of any experimental
evidence for their existence, and this turns out to be rather easy and natural, with
the use of soft breaking terms. The Yukawa interactions on the contrary would have
dramatic physical implications. Clearly, the superpotential (8.1) violates baryoen
number B and lepton number I conservations. The first term has B = -1, L =0
while the two other terms have B = 0 and L = 1. The exchange of a scalar partner
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of D? induces a four fermion interaction of the form

1

auLC(ﬁnde )o m,(D:)

UtD:o°T (8.2)

where m?(D?) is the mass (squared) of the scalar partner of the antiquarks D®. We
will see later that the scalar masses find their origin in the soft breaking terms which
are used to break supersymmetry, and simultaneously to break SU(2); x U(lly
into U{1)em. These scalar masses are then naturally of order 10 GeV. The four
fermion interaction (8.2} generates nucleon decay via the processes like v +d — T+¢
or u +d — d 4 7 at an unacceptably fast rate. These interactions must then be
suppressed: the casiest way out is then to assume that the dangerous terms in the
superpotential are not present at all.

Also, since the couplings a®t®, 4% and yob¢ gre naturally non diagonal in the
generations, these couplings generate flavour changing neutral current interactions at
unacceptable rates.

It is then & common assumption which we will also adopt that the interactions
described by the superpotential (8.1) do not exist. Because of the non renomalization

theorems (even with soft breaking terms) assuming the vanishing of Yukawa couplings
is natural since radiative corrections will not generate them.

The construction of the supersymmetric Standard Model becomes slightly more
involved in the Higgs sector. In the Standard Model, quarks and leptons receive
their mass through their Yukawa couplings to a unique (in the minimal model} Higgs
doublet H, which breaks SU(2); x U(1)y. H has quantum numbers (1,2,-1/2).
Quarks with charge ~1/3 and charged leptons couple to H, while charge 2/3 quarks
couple to H'. In the supersymmetric case however, Yukawa couplings arise from the
superpotential, which is a function of the chiral superfields, but not of their conjugate.
It is then clear that one cannot use a single Higgs chiral multiplet to give s mass
to all quarks and charged leptons. To obtain massive charge 2/3 quarks, we need a
second, independent Higgs chiral multiplet

H:(1,2,+1/2)
with a superpotential
Wg = MIQUH. (8.3)

Notice that even though the quantum numbers of H are identical to those of L?, one
cannot use L as a Higgs multiplet. But the scalars of L* can only give masses to
quarks and leptons via the last term of the superpotential (8.1). This would however
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leave the quarks with charge 2/3 massless. To give them a mass, we need a multiplet
H. which contains also chiral fermions, the Higgsinos. If the theory only contains
th:a chiral multiplets for H and the generations, the chiral Higgsinos remain massless
and the theory has a chiral anomaly, destroying its renormalizability. This is cured
by the necessary introduction of the chiral multiplet H.

Taking into account a minimal Higgs sector H, H, the complete superpotential
of the minimal supersymmetric Standard Model is
W = MPLEEPH + 38Q°DEH + MPQ°UMH + mHH, (8.4)
with summations on the generation indices @ and b. The superpotential for the Higgs
multiplets introduces a mass parameter m. The matrices Ag, Ap and Ay contain
the {complex} Yukawa couplings. Quark and lcpton_mass matrices will be generated
when both Higgs multiplets & : (1,2,—1/2) and H : (1,2,+1/2) acquire vacuum
expectation values < H > and < H . The fermion mass matrices will then arise
from
AP H> , Mp<H> , Ay <H>,
exactly as in the (non supersymmetric) Standard Model. The vacuum expectation
values correspond to the minimum of the scalar potential obtained from the complete

superpotential and from the D-terms associated to the gauge group.

As in the non-supersymmetric Standard Model, the fermion masses and the
mixing parameters arising from the Yukawa couplings are all free parameters. Su-

persymmetry does not predict any new relation on these parameters.

To obtain the complete Lagrangian, we first write the gauge transformations of
the various chiral superfields. Under SU(3)., we have:
Q" — et1Qe,
U —e Mg,
Di —e Dy,
L*,E*,H,H - L* E¢ , H,H,

(85)

where Ay = E;m A#A4/2 parametrizes an SU(3). transformation: the A4 are
Gell-Mann matrices, and A are the eight left-handed chiral superfields used as pa-
rameters. For SU(2),

Qa — ciAgQG,

Ln - C‘A’La,

H e H, (8.6)

H - c“"ﬁ,

v, D Eg - UL, D B,
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and Ay = E:=1 Aja'/2, in terms of the Pauli matrices ¢*. Finally, U(1)y involves a
single left-handed chiral superfield A, as parameter and the transformations are:

Q* — editi@®,

Ue = e—i‘A‘U:r

D2 — ¥t D2,

L* = c—-}iAlLa, (8.7

B — e EL,

H e ditg s

H - 0T,
To write the complete, gauge invariant Lagrangian, we introduce the following vector
multiplets: .

Va= 3 Via4/2  for SUQ3).,
A=1

LI (8.8)
Va= ) Vio'/2 for SU(2),
i=1
Vi for U(1)y-
The vector multiplets VA, A=1,...,8, Vi, i=1,23and ¥ contain respectively
the SU(3)., SU(2)r and U(1)y gauge bosons and their fermionic gaugino partners
as physical degrees of freedom. The complete Lagrangian for the supersymmetric
Standard Model is then defined by the expression
Covy =l(Q) eVt ¥i@e + (U2)e e 3V0L

+ (DYt VsedViDe 4 (LY PN Le

(B MBS + Bl e Nl + H etV Hl o

+ [Wlee + [W'lg

1 = ok
+ g;‘ (TT[W;'W;‘,]” + Tr[WsaW, ]'6'6)

1 N —
+ "B-F (Tr[W;W:n]u + Tr[WmW;];,T)
2

(8.9)

1 — w—d
+ Togt ([Wf'wla]n + [WiaW, ]”) .
The kinetic Lagrangian for the gauge supermultiplets is built with the chiral multi-
plets W for SU(3)., W for SU(2)z and Wg for U(1)y, as defined in eqs. (5.15),
(5.31) and (5.34). We could have introduced a Fayet-Tliopoulos term

[e Vi ]“FE
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for the abelian vector superficld of the weak hypercharge. The parameter { has di-
mension (mass)? and corresponds to & second free mass scale in the theory. The
Fayet-Tliopoulos term does not however induce a spontaneous breaking of supersym-
metry: the equation of motion of the associated [} auxiliary field is

Dy =~ (5(Q")1Q" - JW'2 + (DD - 5(£)' 1+
; (8.10)
+ (ES)ES - %H’H + %?"zh.s) .

One easily finds solutions to the equations for a supersymmetric minimum of the
potential:

D& =Di=Dy =0,
W 8w 8w SW aWw  OW OW (8.11)

In general, these solutions lead to unrealistic gauge symmetry breakings of § U(3). x
U(1)y, and supersymmetry is anyway not broken. We then just omit the Fayet-
Tiopoulos term. It is & non-renormalization theorem that since the weak hyper-
charge is traceless, no Fayet-Tliopoulos term can be generated by higher order loop
corrections to the theory.

8.2. The soft breaking terms

Since supersymmetry is not broken in the Lagrangian L,.,y, we must include soft
breaking terms, as discussed in section 7.4. In the framework of the minimal super-
symmetric Standard Model, one just assumes their existence. These terms should
ultimately find an explanation when a completely unified theory, including gravita-
tion, is available. Their form and magnitude will be related to the mechanism of
(spontancous) breaking of supersymmetry in this ‘superunified’ theory. The proto-
type of this generation of soft breaking terms is the super-Higgs mechanism breaking
spontancously local supersymmetry in N = 1 supergravity theoriea.

The possible soft breaking terzs have been described in section 7.4. They involve
mass terms of the form z,-iz" for all scalar fields, and analytic scalar terms, as given
in (7.14). Notice however that only those terms which are already present in the
superpotential W of the theory (as functions of the chiral superfields) will in general
be generated as soft terms (as functions of the scalar fields only, like in (7.14), and
with different coefficients as in W). For the supersymmetric Standard Model, the
complete Lagrangian with soft breaking terms is then:

L= Lnuy + ﬁlo!!v (8'12)
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where L,,,y i8 defined in {8.9) and
Lyopr = Z[(m?;)’lzai’ +{(my, )25, + (mp, )25, 12
- 3
+ (myPl2L + (m, 125, P] + m [z + mElegl
+ E (A":azt;.zy; + A‘Bzazh Ia + Ai‘zzzb& 5 + c.c.)
ab -
#

+ %M, HETSTD v
A=l

3
1 i
+ M 08 4 B

(8.13)

1 -
-+ §M1()‘131 + A1dy)

Indices a,b run through the generations of fermions, # denote scalar fields and A
denote the gauginos. The last three lines contain the gaugino mass terms for SU(3),,
SU(2)r and U(1}y respectively.

If the origin of the soft term is to be explained by a spontaneous breaking of
supersymmetry in a supergravity theory, all scalar soft breaking terms are of the
same scale, the graviting mass My, But gaugino soft masses My, M2 and M, can
in general correspond to rather different scales.

8.3. The scalar potential and the scalar fields

The scalar potential V' of the supersymmetric Standard Model contains ‘supersym-
metric’ terms arising from the superpotential W and from the auxiliary fields D of
the vector mulitiplets. It also receives contributions from the soft breaking terms
(8.13). The vacuum of the theory is given by the minimum of this potential. In gen-
eral, the magnitude of the soft breaking terms is such that the vacuum expectation
values of all scalar quarks and leptons naturally vanish. Only £z and/or 23; can be
non zero, inducing the correct symmetry breaking to SU(3): x U(1)em.

All equations for the minimum of V for scalar quarks and leptons,
8y i - - a
a—;;=0, 2 =28,%0,,2D,, 21, 2.,
are satisfied when scalar quarks snd leptons have zero vacuum expectation values,
for arbitrary values of 2y and z57. We can then limit our study of the potential to
those terms of V which only contain zy and z37, which we will from now on denote

by H and H respectively. The scalar potential for these fields reads
V = Vsusy + Vsorr, (8.14)
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with
—te, 1 etz L o2t 72
_ 2t t gt His"H + H o*HY + -¢*(H'H - H' H)?,
Vsusy =m " (H'H+ H H)'+‘ Bg ;( 8 (8_15)
et — =t
Vsorr = siH'H + #;HtH —u3(HH + HYH). (8.16)
The quadratic terms in the supersymmetric part of the potential, Vs gy, are obtained
using the superpotential .
W=mHH, (B.17)
where the notation HH means e.-,»H‘Fj. The parameter m is in general complex,
but since it appears in the potential only via |m?|, one can choose it real. The quartic

terms arise from the D-terms for SU(2):

D* = —%y(HTa“H + B H), (8.18)
where g is the weak coupling constant and o are Pauli matrices, and from the D-term
for the weak hypercharge:

Dy = —%g‘(-—H’H +E'H), {8.19)

where HYH denotes EJHi, and ¢’ is the coupling constant of weak hypercharge.
The most general SU(2} x (1) invariant soft breaking terms are contained in
Vsorr. In Eq. (8.16), reality of the Lagrangian implies that the parameters u? and

2 are real. Notice that they can be negative. Reality does not imply that uf must
be real. One can however redefine H (or H) and absorb a possible phase of p2. We

will then choose u} real and positive.
The scalar doublets H and H contain the components
= ( A= (2 8.20
a-(a) - 7=(5) =

where the subscripts indicate the electric charge. One can then easily compute the
component form of the potential. The rearrangement formula

Y {™Nilo®)] = 68t — 2e™ep, (8.21)
-3

{with ¢!? = ;5 = 1) allows to rewrite the quartic terms in the form

M (Hte"HY H'o"H) = (H'H)?,
S (H'oH)E'e"H)=(B'H)(H'R) - AH'H'(HH), (8.22)
S (#'*B)E' o°H) = (F'H).
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In components, the quartic terms of the potential are then
%D“D" + %DYDY =18(9’ +9%) [(HoHJ —H,Hy 4+ (H.H! - ‘EJﬁf]
+ %g’(HuH,} +HEWE_H + H.H))
+ Lo n) - HENE-HL - T, HY)
+1gt [(m ) EEY) + (B E-)EH )] .

The quadratic terms are casily obtained:
o = t
(m? + ) BV H + (m? + p)) T H - pl(FH + B'H) =
(m? + W) H HY + H_BL)+ (m® + WA ELHL + B HY) (8.24)
—p}(HoHo + HYH, -~ H-H, — HTE).
The supersymmetric part of the potential, Vsusy, is a sum of positive terms. It is

then bounded below. This is however not true in general when soft breaking terms are
introduced. The quartic terms possese directions where they vanish, corresponding

to the solutions of equations

D® =0, (8.25.8)
Dy =0. (B.25.b)

Conditions (8.25.a) are straightforward to enalyse using the method _of Ref. (21].
The only SU(2)-invariant one can construct with H and H is [ = HH (2 power of
I is irrelevant). Then, (8.25.8) is equivalent to the condition

4oy 826)

where z* denotes all fields of H and T and C is an arbitrary complex constant. The

solution is _t
Hy = e""F.',, H.=-¢"H,, ' (8.27)

and it also uoh-res (8.25.b). For these directions, the full scalar potential reduces to
V = (2m? + p? + p3 — 2corax W) HH} + H_H!). (8:28)
The potential is then bounded below only if .
am? + pl + 43 > 1283 (8.29)
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Since the parameters of the potential are subject to the renormalization group equa-
tions studied in the previous chapter, they depend explicitly on the energy scale.
Condition (8.29) must then hold at all scales in order to have a sensible theory.

Minimization of the potenticl:

To be acceptable, the global minimum of the potential lléould have non zero vacuum
expectation values for both Hy and H,. This is necepsary to give masses to all
quarks and charged leptons. The parameter u? plays a crucial role in obtaining such
a minimum: without it, one always has either < Hq >=0o0r < Hy >=0.

We are interested in finding vacuum expectation values which leave U(1)em
invariant. Then, no charged scalars will have a v.e.v. and, since there is no term
linear in charged fields, it is enough to study the minimum of the potential with only
neutral fields,

The potential for neutral fields only reads

V = Vsysy + VsorT,s (8.30)
with
—t — 1 =
Vsusy = m}(HHo + HyHo) + 5(6" + 6" (Ho* — [HoPY,  (831)
Vsopr = st{Hol? + d(Hal? - pi(HeHo + HIHL). (8.32)

Let us first consider the supersymmetric potential Vsysy . The minimum equa-

tions are av 1
o =B} (4 506" + "B - Fo)) =0,
8V° t , (8.33)
A (m? - 3007+ 570800 - Ha)) =0.

For m? # 0, the only solution is obviously < Hy >=< Hy >= 0. For m = 0, the
only constraint comes from the D-terms which give < |Ho|? >=< {Hol* >. This is
ot sufficient since the states of the Higgs chiral multiplet will remain massless, and
supersymmetry is not broken.

Adding now the soft terms, we have the following minimum equations:

% = ((m3 T+ }4‘(9’ + 9% )(IEl - 1Fol’)) - u3H, =0,
( (8.34)
gl" - ((m: ta)- }4'(’3 +97)(IHl* ~ |Ti°|=)) —WiHy=0.

113



Apart from the obvious solution < Hy >=< Hy >= 0, for which < V >= 0, one
shows easily that one can only have < Hy ># 0 #< Ho > when p? # 0. I however
p3 = 0, this possibility is completely unnatural. Assuming v =< Hy ># 0 and
v =< Hy ># 0, one finds

D—n‘f+.r41+ (g + g1 H? = |H*) - ':, {8.35.a)

0= ﬂ} +u - ;(9 + %) (Ho - [Hol®) - 3 %- (8.35.b)
Summing these two equations leads to

v-i-v
0=2m2+,u3+u, ,ui e

(8.36)

Clearly, this solution ie compatible with ui = 0 only if 2m? + pd + 3 = 0 which is
completely unnatural. The case u3 = 0 has then for solutions

1) < Hy>=0, <Hyg>=0, <V>=0,

mtp g (m? + )
g2+gu, < Ho > =0, <V>=-2—2—+9ﬂ—’ (8-37)
m? + ] (m? + u3)?
gz + glz ? 92 + glz :

2) <Hl>=-4

3) <Hy>=-4 <Hy>=0 <V>=-21——"12
Solutions 2) and 3} exist only if respectively m? + u} < 0 and m? + 3 < 0. If one of
these two conditions is met, SU(2) x U(1) is broken into U(1)em, but in case 2}, all
charge 2/3 quarks are massless and in case 3), all charge —1/3 quarke and all leptons
are massiess.

We finally consider the general case, with 4 # 0. Then, the non trivial minimmm
has always v # 0 # ¥ and the corresponding minimum equations are given by Egs.
(8.35). The solution is best parametrized by an angle § defined by

v v

coal = —rm—— sind = —re
‘”"*“’ Voi +3 (8:38)
. o? — '—)3 )
sin(20) = 2,,: 5 i’ , cos(26) = =
The value of 8 is given by (8.36), which indicates that
. :
sin(28) = —— 2K (8.39).

2m? +pl + 43

Notice that the condition of boundedness of the potential corresponds to jsin(26)] <
1. It is then straightforward to combine (8.35.a) and (8.35.b) in order to obtain a
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condition on v? — #°. Subtracting (8.35.b) multiplied by ¥ from {8.35.a) multiplied

by v* gives: 2,22 2, ,2),2
4+ = 4(m® + p3)v" — 4(m +ai)v (8.40)
(¢ +92)(? ~7)
or .
2 g2 4 (m? + ud)sin?@ — (m? + p?)cos’d (8.41)
vy = g? + g cos(28) ’ )
A more convenient writing of Eq. {8.41) is
g+ gt +7) = — (2l 4+l + B b (8.42)
g9 9 e R (29) '
The quantity v? + ¥ is related to the weak boson masscs:
1
Miy = 5g° (" +7), (8.43.2)
1
ME = Z(g* + ) + %), (8.43.b
772

so that (8.42) gives directly the mass of Z in terms of the parameters of the potential.
The two minimum equations (8.35) are then equivalent to

. 2p3
am(29) = m, (844.3)
1 2 2
Mk =— (2m2 ol ol 4 2;(2‘;;) . (8.44.b)

A natural situation is then to have all mass parameters in the potential at the scale

of the gauge bosons Z°.

Masses of physical scalars

The spectrum of the spin 0 fields is easily obtained from the scalar potential. It
shows a structure characteristic of models with two Higgses. Notice however that
compared to a generic two Higgs model, supersymmetry implies that all quartic
terms of the potential include only one coupling constant, g* + g'%. The spin zero
fields in H and H correspond to four charged and four neutral states. Two charged
and one (pseudoscalar) neutral states are however the Goldstone bosons of the Higgs
mechanism: they provide the longitudinal polarizations of the gauge bosons w
and Z° The spectrum of physical spin 0 fields contains then two scalar and one
pseudoscalar neutral states, and a pair of conjugate charged scalar fields. It turns out
that the mass specirum is completely characterized by the mass of the pseudoscalar
{neutral) state which reads

g0 + 7 2 3 2u

2 _ = 2 =
mP = K3 T 2m + -u'l + Ha am(?ﬂ) . (8‘45J
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The charged scalar has then a mass given by
m?, = Miy +mp, (8.46)
and the two neutral scalars satisfy the sum rule

m}, + mb_ = Mg +mbp

B.47
_ ML My + M3, (84

where 5, (5_) denotes the heaviest {lightest) scalar state. The complete formula for

the masses of scalar bosons is

ml, = % [M} +mb £ /(M3 + m},)“lM%m_zpcos’(?.ﬂ)] : (8.48)

Notice that the lightest scalar state S_ is always lighter that the gauge boson Zp.
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Appendix A: Conventions and spinors in four dimensions
The metric for flat space-time is
n* = diag(+1,-1,-1,-1). (A1)
For the Dirac algebra, gamma matrices satisfy
(v, 7'} =29*,  (mr=01,23). (A2)

We then have o i .
(v )2:;(7') = Iy, (111,2,3]

() =",
(1) =
)u ’ (A3)
oty = (),
7 =y,
'T‘- = —is

where I, is the 4 x 4 identity matrix, and ! denotes the hermitean conjugate. Defining

vs = i7" v,
7' =, {A4)
() = L,
the helicity projectors are given by
L= 5l +1),
R= %(14—‘75)1 (45)

[*=1, R*=R, LR=RL=0

where I and R mean respectively lefi and right. Weyl spinors are subject to the

constaint

Ry, =0 (4o =1¥),
Lyp=0 (¥r = RY).

They contain only two independent components. The {Dirac) conjugate spinors are

(A6)

given by

vL = (Lp)17° = ¥R,
(AT)



Then S —
YL = Yrvsvr =0,

Py dr = 0.

It is convenient to use a representation of the v matrices such that Weyl spinors take

(AB)

a simple form, and can be written as two-component objects only:

o_(0 b i_ (0 -oi .
‘7 - (I2 0 ) ‘T - 0'.' 0 b ‘_1!2131 (Ag)

in terms of the Pauli matrices,

{01 o —i {1 0
a={y o) 2=\ o) T \o -1)0
*‘J'-'2 = I, Uit =T

{0"‘,0’_1'} = Zfij, [o'i,a_,-] = Zit“jj,aj,, (i,j,k = 1,2,3).

With this choice of ¥ matrices,
(L 0 (L0 _fo 0
"5‘(0 —I,)’ L“(o o)’ R‘(o 12)’ (A10)

and a Dirac spinor reads
¢=(:;) (A11)

in terms of two-component left-handed (right-handed) Weyl spinors X1 and xR-

Majorana spinors satisfy the condition
A= Ao = G(ﬁ)', (A12)
where the charge conjugation matrix C is such that
(e = 7" (A13)

In our representation, 40y#"y® = 4*7, 50 that
Cy*7C™t = —*,

CTIpPC = -7

(A14)

One can choose C — ini?
=¥ T (A15)
ct=_1,, C=-Cl=-C"=C,
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so that charge conjugate spinors are given by
Ao =CX =Cy 2 =iy, (A16)
A Majorana spinor can then be written
A= (‘.aﬁn,) . (A17)
For two anticommuting Majorana spinors € and A, using that
A=CY =Cy(Ay, E=€C

leads to the following properties

= = (&),
= dyse = —(EnA),
TPA = —hyte = —(Er*A), (A18)

Bytwsh = dtyse = (B ),
'y A= dytye= (et A, (w# )

The hermitian combinations are then

iEvhA, (A19)

129



Appendix B: Identities in two-component notation, and for

Grassmann variables

In two-component notation, a four-dimensional Majorana spinor is written

v=(%), F-0v T

t
The gamma matrices are

T “o). "“(3 —Ur)’

with (7#)% = 56"65“"(0'")153' a* = (1,—0c%), 7 = (1,0%). Then, for two anticom-

muting spinors ¢ and x:
Fx = ¥x + X = ¥ xa + PaT,
Vrsx = ¥x — ¥X = $7Xa — $aX"
Prx = $OUT — x0T = ¥ )aa X — XN (0 )as®
I 1sx = —$0*T — XOF = —$%(0*)as T — X (" )acP
Pty = $orT X + B0 K = $° (0 )aa(7)¥Pxs + Ba(6")*%(0") 5T -

For anticommuting Grassmann spinors,

one finds 1 1
§°9f = ‘56‘*"09 = ‘5‘0697911

7 = +%¢"'5ﬁ§ = +%e"""§i3".
1 1
Babp = +5¢€apbl =+ cagf0y,
- ) R— 1 - =4
8.0, = —ieéaﬂﬁ = —Ec&ﬁﬂz,ﬂ ,
recalling that

12 i
€0 = tii = -—tn = —éh = —€13 = —Ej3 = €31 = €3] = 1.

The equatit.:n.l (B4) use
. 99 = —20101 = —20193.,

= +28'7 = +28,8;.
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Then:

_ 4 1 =
(088 = — - (88)e°(0*)0 = —08(c*B)°,
o2 o (B6)
(80+8)8" = -}»5(09)8"(0*“)056‘9"‘ = 488(80%)"
(B1) (Obviously, #6787 = E"Eﬁﬁ" = 0). One also finds
_ 1 —_
(B0 8) (80" 0) = En’“‘(ﬂﬁ)( ). (B7)
(B2) This last result uses
(0*)aal@ )= = Tr(o*d”) = 29*. (B8)
The Fierz rearrangement formula read
1
(08)(0%) = —5(00)(¥),
B9)
o P (
(64)(84) = —(88)(¢¥).
(B3)
Derivalives:
o () o- () oo
4 = [ 2 48 N _ _oge
dea(GB) (cw 8 )Hp g (d ﬂoﬂ) 267,
i_a(-g_) = —25‘,,
dg o (B10)
. (66) =26,
d d d d
g = T — &8 Y_op1p2y —
(B4) < 36= 355 %) (2d81 daz)( 20°0%) = +4,
. . _ g
e“p—_‘,i_;—-‘-i-.(ﬂ )= (2-%75) (268) = —4
& 47 d§ df
Notice also that wd ___E__ E a s
€ P T Tae,  "Pdeg  de’
apd _ 4 d__d (B11)
7 o’ “"’dﬁﬁ da*
(BS5)
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