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Spin dynamics for arbitrarily polarized and very dilute solutions of "He n
tiquid *He are described. We began at a very fundamental level by deriving u
kinetic equation for arbitrarily polarized dilute quantum systems based on a
method due to Boercker and Dufty This approach allows more controlled
.approximations than our previous derivation based on the Kadanoff-Buym
technigque. Our previous work is here generalized 1o include T-matrix tnter-
actions rather than the Born approximation. Spin hydrodynamic equations are
derived. The general equations are valid for both Fermi and Bose systems. By
use of a well-known phenomenological potential to describe the He-"He T-
matrix we calculate longitudinal and transverse spin diffusion coefficients D,
and D, and the identical-particle spin-rotation parameter u. We confirm that
these two diffusion constants differ at low T with D, approaching a constant
asT—0, and D~ I/T". Estimates of ervors made by our approximations are
considered in detail. Good agreement is found in comparison with data from
both Cornell University and the University of Massachusetts. We find that
the s-wave approximation (s inadequate and that mean-field corrections are
important. Comparison is also made between theory and the recent UMass
viscosily measurements.

1. INTRODUCTION

Recently we presented a theory'? of the spin dynamics of arbitranily

polarized dilute quantum gases that is valid over the entire temperature
range from Boltzmann (o degenerate statistics. This theory was based on a
new kineltic equalion' for the matrix distribution function needed to describe
arbitrarily polarized systems. Transverse and longitudinal spin diffusion,
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identical-particle spin-rotation effects, including spin waves™ and the
Leggett-Rice effect,’ described previously in the Boltzmann case by Lhuiilier
and Lalog’ and by Leggett® in the unpolarized degenerate Fermi case, are
contained as special cases of the theory. Bose systems have also been treated
recently.®* Among the interesting predictions are that the {ransverse diffusion
constant measured in spin-echo and spin wave experiments will differ from
the longitudinal diffusion constant (as originally surmised by Meyerovich”)
and even approach a temperature-independent valye depending on polariza-
tion as 7= 0."?

Our previous derivation' was based on the Kadanoff-Baym (KB)
Green'’s function approach.® While this is a powerful technique, it does lead
to some uncontrolled approximations, and is not very easy to extend to
include higher order corrections and generalizations. We present here the
results of an alternative derivation technique based on work of Boercker
and Dufty’ from some years ago. This approach leads to the same results
in the lowest order as the KB method but is much more straightforward in
its approach (o approximations and generalizations. This new derivation is
given in Sec. 2. A limitation on our previous theoretical work'? was its
restric'ion to a Born approximate interaction, with only the s-wave case
treated numerically. In the present treatment we report an extension of the
theory, easily allowed by the new derivation, to a T-matrix approximation
for the interaction.

Spin hydrodynamics based on this kinetic equation are derived in Secs.
3 and 4. It is here that we see how transverse and longitudinal spin diffusion
processes are fundamentally different from one another. From the derivation
il_ is evident that our analysis makes several approximations and simplifica-
tions, which we attempt to analyze thoroughly in Sec. 6. In Sec. 5 we show
hew to reduce the results 1o forms suitable for numerically computation.

| Dilute solutions of "He in liquid ‘He provide a nearly ideal system for
lesting this theory since they allow the experimenter to vary the temperature
over both degenerate and Boltzmann regimes and, at low enough concentra-
tions. to polarize the system to very large values of magnetization. Data
from (wo recent experiments, by Candela er af.'® at the University of Massa-
chuselts and Nunes ef al"' at Cornell, have now become available and
can be compared with the theory. We approximate the necessary T-matrix
elements by using a phenomenological interaction originally introduced by
Bardeen ¢f al.'? We use a particularly appropriate form of this interaction
due to.Ebnlcr” in our numerical calculations. Corrections to the s-wave
approximation are seen (o be substantial in comparisons with both sets of
cxperimental data. These results are presented in Sec. 7. Descrepancies
between theory and experiment are within the estimates of the errors of the

theory made in Sec. 6, with no adjustments made to the phenomenological
mteraction

-..‘l.—-
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One of the prime results of the present theory, previously reported
elsewhere,? is the distinction, in a degenerate Fermi system, between trans-
verse and longitudinal spin diffusion processes. Since the theory of this effect,
given below, is complicated mathematically we would like to present some
heuristic arguments that may give some insight into the difference. As we
will see, the main effect is a difference in phase space for the colhisions
responsible for the spin diffusion. Consider first longitudinal spin diffusion.
Mathematically, we can write the magnetization as m=mé where m is the
magnitude and & the direction. Then Vm=2&Vr + mVé. The first term drives
a “longitudinal” spin current, which in spin space is parallel to m. The
magnetization gradient is in the magnitude of the magnetization, giving an
uneven picket fence as shown in Fig. la. In the case of a polarized degenerate
system, the Fermi spheres, shown in momentum space in Fig. Ib, corre-
sponding to two positions at x and x +dx, are not quite the same size. The
one at x has an up-spin sphere that is a little larger than that at x +dx, and
the down-spin sphere at x is a litile smaller than that at x + dx. Consider the
diffusion of an up spin from x to x +dx. If that spin is in the narrow annular

(o)
M -

Fig. 1. Longitudinal spin diffusion. The gradient is in the length of the
magnetization vector as shown in (a). Thus the fermi spheres of up and
down spins are of different sizes at different positions as shown in (b}. To
restore equilibrium scattering need occur only right at the Fermi surfaces.
The spin current is parallel to the local magnetization

{a)

x+dx

.
M -dM (

superimposed fermi spheres
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region of up signs that constitutes the difference between the two up-spin
Fermi spheres, it is out of equilibrium when it reaches x+dx and must
scatter to become equilibrated. Up spins that are farther down in the Fermi
sphere may not be able to move from x because their momentum states at
x+dx are already occupied; or perhaps such a spin has a large wave packet
so0 that it is really the same spin as in the momentum state at x +dx. Thus
the scattering occurs just in a little layer around the Fermi sphere and the
spin diffusion coefficient will have the characteristic 1/7? factor that arises
from scattering limited to the Fermi surface.

On the other hand in a spin-echo experiment the spins are tipped at an
angle from the field direction. A gradient field then causes them to precess
at differing rates so that the tips of the spins form a spiral as shown in Fig.
2a. The gradient in magnetization then corresponds to the term mVé. There
is then a *‘transverse” spin current along V&, which is perpendicular to m.
As shown in Fig. 2b below, the Fermi spheres are the same size at x and
x+dx; but they have slightly different direcrions of magnetization. (The
different directions of magnetization are greatly exaggerated in the Figure.)
Thus a spin migrating from x to x + dx in any momentum state between the
up and down Fermi spheres is out of equilibrium and must scatter to return

x x+dx

D ©

M(x) M{x+dx)

i 2 Trangverse spin diffusion In a spin echo experiment the sping are
tpped away from the external field and a gradient Aeld causes a spiral
to form as shown in (a). The spin current, which is now driven by a
rradient in the direction of the magnetization and not its magnitude, is
tzansverse to the local magnetization. To restore equilibnum all spins
telween the two Fermi surfaces must scatter.
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to local equilibrium. On the other hand, an up spin or a down spin in a
state below the Fermi momentum of the down-spin sphere, comes from a
momentum region of zero magnetization into a zero magnetzation region
and “senses” no lack of equilibrium, does not need to scatier. and indeed
cannot scatter. To restore equilibrium in the transverse case. we require
scattering throughout the region between the up and down-spin Fermi
spheres; we will see that the scattering is proportionai to the number of
particles in the intermediate momentum region, (n,. —n,- ), which provides
considerably more phase space. The result is that the transverse relaxation
time can be considerably shorter than the longitudinal relaxation time. In
Fig. 3, we show how these two diffusion constants diverge from one another
with D, approaching a constant as T—0 and D,~1/T? The separation
occurs in the degenerate Fermi system when the chemical potential difference
between up and down spin states exceeds kT Thus for larger polarization
the separation occurs at higher T and the constant approached by [, will

D (10 %am?/s)

T(mK)

Fig. 3. Comparison of the transverse diffusion coefficient D, and longitud-
inal diffusion coefficient Dy. In the degenerate regime the transverse spin
diffusion coefficient goes to a constant at low temperature while the longi-
tudinal coefficient is proportional to T77. The reason is the much larger
density of states for scattering in the transverse case as explained in Fig.
2. The parameters lor this calculation arc the same as in the experiment
described in Fig. 4 in Sec. 7.
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be smaller. Our calculations are for dilute solutions, bul there seems no
reason these general ideas should not be valid for pure liquid *He as weli.

2. DERIVATION OF THE KINETIC EQUATION

In Ref. | we presented a derivation of a kinetic equation valid, in the
Born approximation, for dilute, degenerate Fermi and Bose gases in arbi-
trarily polarized arrangements. Thus it was capable of describing transverse
spin-waves or spin-echo experiments. Basically such an equation completes
a program began by Silin'* who generalized the Landau equation'® to arbi-
trary spin configurations by replacing the up/down spin distribution func-
tion by a 2x2 matrix distribution function. However, in his paper Silin
actually wrote down only the so-called “drift terms”™ of the equation—that
is, he generalized only the well-known mean-field terms of the Landau equa-
tion and did not present the collision integral. Several years later he did
discuss the derivation of the collision integral, in the Born approximation,
in a textbook'® that has never been translated from the Russian. Our deriva-
tion of the same quantity presented in Ref. | reconfirmed his textbook result,
corrected some errors in it, and put it in a more compact form much more
suitable for analysis and numerical calculations. Some general numerical
results without explicit comparison with experiment were presented in Ref. 2.
Some comparison with experiments'™'' was recently presented in preliminary
form "

Our basic formalism presented here is a new one based on work by
Boercker and Dufty’ who derived a general kinetic theory formalism for
degenerate gases, They never assumed in their derivation that their distribu-
tion functions commute, so that their general results may be applied directly
to arbitrary spin distribution matrices. We first give a heuristic derivation
of their final form; there is no need to repeat their full derivation here. Their
result becomes an equation for a distribution function only if one makes a
Wigner transform' of it. This we do in some detail in this section,

The result of the Wigner transform is a highly nonlocal kinetic equation
for the distribution function. One may then make Taylor expansions that
assume that the distribution functions vary only slowly in space. The local
terms that result are, of course, equivalent to considering the distribution
functions to be just functions of momentum and independent of position,
i ¢.. homogeneous funclions. The first correction terms are second order in
spatial and momentum gradients. Certain of these are equivalent in form to
the mean-field drift terms in the Landau-Silin cquation. We keep these in
our further analysis here in order 1o estimate the size of such correctlions.
However, we show that there are also many other gradient terms. Our analy-
siv shows, however, that all of these are smaller than the mean-field terms

-.L*-
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we keep with one exception. There are a set of off-energy shel] terms thqt
correct the so-called spin rotation terms. These lhav; been discussed previ-
ously in the literature' and cailed I;. They vanish in the Boltzmann hmln(l
but in the degenerate case may be the same order as the gma]l mean-fie
terms that we keep. We have not yet considered these numerically. We make
a rather detailed analysis of the order of magnitude of all neglected terms
i .6, as a guide to future work. . .
" Se&l:ﬁrsl gi%': a heutistic derivation of the well-k'nown Smc‘ielr equation,®
a generalization of the Boltzmann equation. This has validity for only
Boltzmann gases; however, the alteration due to degeneracy _takes on an
understandable form in the representation presented. Rlcaders interested in
a more rigorous derivalion of the Boercker-Dufty equation can consult their
original paper.’ | ,
The first BBGKY equation® for the one-body reduced density matrix

p(l) 1s

i 20 (), )1+ TV D012 21
¢

where H; is a one-body Hamiltoman, including kinelic‘energy, Zeeman
energy, etc.; M(1, 2} is the two-body interaction Hamiltonian; and p”(l, 2)
is the two-body reduced density matrix. The trace is over lbe'coordmatcs of
the second particle. A kinetic equation can result from this if one makes-a
decoupling approximation for the two-part{cle zrleduced density matrix
pu{l, 2). We follow an argument due to Snider. .lntroduce thc‘ Mgl]er
operalor £;; “which essentiaily converts a I'rec-parilc!c wave function into
an interacting wave function by tracing freely back into time [before the
collision began so the particles were free and nol yet intcrac{mg] and then
forward an equal amount of time according to interacting motion.” .Thus
we assume that py (1, 2) = 2[00 (1, 2)]berore 2z where [p1(1, 2)Joerore is the
matrix before the collision. The standard assumption is that before the colli-
sion the two-body matrix decouples according to [2u(1, 2)]eetare = £{1 )p(;).
This assumption has recently been called into question® (and alternative
assumptions proposed?’™) because of the failure of the theory to reproduce
the correct second virial coefficient ; but these modifications are too recent for
us to incorporate them into our present analysis. So we accept the df_:coup[mg
approximation py,(1,2)=Qy,p(1)p(2)Ql;. The Snider equation thus
becomes®™

i a"?i”ﬂﬁ,m, o))+ Te{(F(1L 2, Qup(Np(QL]) (22)

This equation is valid for a Boltzmann gas of particles, which can have
internal degrees of freedom such as spin.
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The Boercker-Dufty (BD) equation,’ valid for degenerate systems,
looks very much like the Snider equation but has some important modifica-
tions. The most obvious change is the inclusion of a factor {1+ nPy), where
P2 is 2 permutation operator interchanging coordinates of pairs of particles,
and 7 is =1 or +1 depending on whether the particles are fermions or
bosons, respectively. The other change is more subtle because it occurs in
the character of the Méller operator definition. If the T-operator is defined
as

T=10 (2.3)
then the matrix elements of T are
(Pip2lTIpip2) = (pipilV | pip2) + (Pi o3 VR(E) T py pr) (2.4)
where the resolvent operator R is defined as
R(EY=(E+ig— Hyl,2))7'S(1,2) (2.5)
in the limit o'f € going to 0°, with Hy the two-particle Hamiltonian upon
neglect of V(1,2). The above would be the usual Lippmann-Schwinger
equation except for the “shielding factor”
S(1, 2) = p(1)5(2) — p(1)p(2) (2.6)
where g(f)= 14 np(i). It is § that leads uitimately to the final state factors

in the collision integral that, for example, keep fermions from scattering into
stales that are already occupied.’ The BD equation is then

Ap(]
if -o-‘-)j(!—)={H,(l), P+ Tr{[V(1,2), Qup(p(DQLNT + Pu)) (2.7)

with account taken of the screened form of the Méller operalor. A rigorous
derivation of this resull can be seen in Ref. 9. By making use of Egs. (2.3)
and (2.4) in (2.7), we have

dp(ly 1 !
P e (H). o)+ Tl (Tapos= pipaT i) (14 1P,

i
+ pr Tro{(Th2p1 2 TR 2= R Tipip Tl (1 + nP2)} (2.8)
i

-
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We now are in a position (o replace reduced density matrices by distribution
functions #,(r, #) in momentum and position space. We do this in two stages,
examining first the so-called drift terms and then the collision integral tself.

2.1. Drift Terms
We define the Wigner transform distribution function'® as
b

N P

P
p‘p 2) (29)

The underlining on n indicates that it is a 2 x 2 matrix in spin space. This
quantity is usually interpreted as the distribution function giving the number
of particles at momentum p at position r and time ¢. The normalization here
is such that, in equilibrium, the diagonal elements of n are the standard spin-
up and spin-down Fermi or Bose functions. Fhe Wigner transform for an
arbitrary two-body function f(1, 2) is

Fopr,Ti, P2 1) = J-dpi g™ n J‘dpﬁ e®rrih

P P
],2 [ e 2]0
£ )‘p . p 2) (2.10)

x(p,n;.pﬁ%

We apply this formula 10 both sides of Eq. (2.8) and introduce matrix
elements in spin space as well. Note that the trace over coordinate 2 15
1/k° { dry [ dp;. The result is

g (il (1), 2)m))

ar

l [} e
=lﬁ—hi dpl e'l’l /A J‘dp!

x X(pﬁr% ; ml]HI(pJ;ml)(DJ ;m:‘p.]p. —%;m’.)

+-ﬁ17 J dr, jdpz I"pi f"vé J“"ps J'dp‘ e iR gt
i
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'

3 (Pl*E‘Pz"'%thmz
IIRLTEL)

T|2PP3,IJ¢Q’"3. rm)

2
P, P2
x[(PJJmJ Drlpl—}_;ml)(m;fm £ p:-‘-zﬁ;fﬂz)
+ U(P]Zma ﬂr'Pz*p;;mz)(Pa;m‘; 25! lh*%l;m;)]
+h.c. + (m|Cylm) (2.11)

In this h.c. means Hermitian conjugate and C, represents the Wigner trans-
formation of the terms in Eq. {2.8) having two factors of 7. We will treat
the C, terms separately below; they form a part of the collision integral. The
other terms in Eq. (2.11) give the drift and mean-field terms and contribute
lo the collision integral.

The next step is to substitute the inverse transform of Eq. (2.9) into Eq.
(2.11). This 1s easily seen to be

(P|P||P'):E Jdr A TNt 3 (2.12)

We also assume that the T-matrix is a function of relative spatial variables
anly so that

(P Pz Ty, pas oy, my)
={p2ion, o Talpaa s my, M) 8(Py2~ Py (2.1

where p12*4§(p, =Pz} and Pyy={p, +p;) are the relative and center of mass
momenta respectively. Furthermore, to achieve the standard collision inte-
eral form, such as that of the Uheling-Uhlenbeck integral,™* which is a
-prcial case of our analysis, it is necessary to make use of the optical theorem.
We write T=x(T+TY+HT+T") and T' =} T+T"Y-XT=T") and then
ise the optical theorem in the form®

T-T'=T"R-R"T (2.14)

IMus the terms in T= T transform into second order in T and are grouped
vith the . terms to be considered below.

Further. 1t is convenient, in the exchange term in Eq. (2.11), to inter-
hange dunimy indices pa, po and my, m,. Carrying out these operations

—b-
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leads to

2 (i, vy, D))
ot

—~i(py=pr+p1/2) ry/ A
jdp; P n/A Jdp} (dr‘e Py =P

]
ik
L) (Pl + % ; ml’ H, 1[’3 ; m3)(m3|”i(p1 erniralmi)
my

1

x P TSR ry/h e"-’(PJ*Pl P17y 1y

X g~ 1tPe= P24 PV n/ﬁ5(p|2 +PL 22— Py

IifTuﬁ” ﬂz) Paa, My, ma)

x ): |:(p|3+%3;m|,m2

17.m3.004

x (mlklifp)*p. p{/lJ(r‘)Im'\)(mdlfjatm'Pz m’,«?)(rd)lmz)

%(le+ TI)) — P, ma)

*U(Pu"'?;ml.mz

% (Ma|Myeps+ py - pir{Fallrm )l v g, - pu"?)(r‘)‘m!)}

+he + (m|Chlmt) (2.15)

in which (m,|Cilm)) now includes the terms in T— 71 as transformed by the

optical theorem. ‘ | -
We wanl to identify a “quasiparticle” energy in Eq. (2.15). This quantity
will be the Wigner transform of an effective single-particle Hamiltonian

according to

g,(r)dep'e'v' 'M(p+% H" p—‘;) (2.18)
with inverse relation
(P py = ;]; ’[dr P T TN L (2.17)
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¥

1t is easy to identify 45" by looking for terms that group appropriately with
H,, the first term of H§". Thus we find

(PJ +92‘|‘;m|‘H?W‘PJ;m3)
/ ]
(Pl l; ."Tl‘H: PJ,ms) ;t;jdrz Jsz jdpi’ Jdpa jdl}

x e’P':'r:/ﬂ e—f(m—Pz*?'zﬂ)-u/lg(})lz +P; 2/2 — Pu)

HT+Ti)

P34 5 P13, rm)

3 [t

3y

X (M1 py+ oy - pyrmy(Ta}lty)

+ W(Pm‘f“? iy, mzl%(Tu'*' T1){ =P s, m_\)

X (mSMi(m*p:-py’?}(rd)lmJ):l {2.18)

We will return to a discussion of the character of the resulting £,(r) in a
moment. First we introduce this £,(r) into the kinetic equation by use of
Eq. (2.17). The resulting equation is

d
5, Ul (r, n)lmi)

=_ii_h_6)[dp; Jdpl Jdn jdr‘ e'P-,-r.fﬁ

x g PP R 2R i -yt p D) /A

I G T PSPPI (0 1 Ty 1 1Y PPN | 33 1 L 1)

my

+h.c.+(m|Ciim)) (2.19)

We assume that g,{r) and ny(r) are slowly varying in space so that a local
approximation which puts r; and r, equal to ry 1s accurate. We will also keep
lowest order nonlocal terms, which are second order in gradients coming
from the Taylor series expansion of g,{r,) and a,(r,). The operations are
straightforward even if slightly messy. The gradient lerms involve factors
hke (ro—r1,3- ¥V, n,(r)). The (r;—r;) factor is changed into a momentum

-¢-
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gradient by using
jdr,(r;-— r)e? = —jfi POV J‘dn FAARRL 120

The resulting derivatives of §-functions are handled by integration by parts.
Thus we end up with terms like the drift and mean-field terms in the Landau-
Silin equation. We find

a 1
5 80 0= L&), (D] +3[Vgglr), Vomylr)].
= AV 8,(r), V(D) + € (221)

The commutator gives tise to spin-rotation cffects, including spin-waves,
discussed in Refs. 3-5 and 4. The gradient terms are important in Landau’s
theory in giving rise to longitudinal wave phenomenon like zero sound 8
They also renormalize certain equilibrium and transport properties.'* For
exampie, they lead to the factor [ /{1 + F3) in susceptibility and spin diffusion
constants. For a dilute gas, these renormalizations take on the character of
second virial corrections. Indeed one can show that they lead to the correct
expression {or the second virial correction to the pressure if one uses the
correct formulation of dilute gas Landau paramaters in the interacticn part
of g,(r). 5%

In order to compare our g,(r} explicitly with that of the Landau-Sitin
equation we need to look more closely at the expression for £,(r). We use
Eq. (2.18) in (2.16) from which it lollows that

(i £p,(r1)Im1)

1
= (m,|§:,(r|)|m1) + ;"6 J drs Jdr‘ Jdpz Jdlﬁ Jdpé Jdp‘

x MR IR TR A S (P )+ P2 = Pyt pi/2 - )

(Tt Ti) 13

x 3 [(Plz e} pmy L my =pi/2—pim, rm)

pP
X (4|3 4py + gy - pi/0r(Ta) Ima) + TT(PH + ?II s, mg|3(Tia+ Tl

“%(P! —Ppi/2—pa); M, m‘l)(mdl’_ﬁ(pnp; ~pi/2)(rt}|m2):| (2.22)
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where
Oy o tprsA P _F 3
&(r)=|dpe p+5 Hip 5 {2.23)

The expression for g,,(r,) is nonlocal. A local approximation is easily
made by setting ry=r,. For the gradient terms in Eq. (2.21) this is all that
is necessary in an approximation that is second order in gradients, However,
{or the spin-rotation commutator of Eq. (2.21) in which no gradients appear,
it might seem necessary to go one more order in gradients in the expression
{or &,,(r) to maintain a consistent approximation, However, we wil] show
in Sec. 6 that such additional terms are expected to be small. Thus we give
here only the Jocal expression for &,(r)).

To make cur examination as easy as possible at this slage we also
assume that the T-matrix is spin independent. Note that this is a major
assumption, since the shielding factor $ of Eq. (2.6) that appears in R of
Eq. (2.5) modifies the Lippman-Schwinger equation for T, Eq. (2.4). Thus
T is dependent on the distribution functions, the n,, which appear in the
intermediate states to ensure that scatlering cannot occur into already filled
states, etc. This, of course, makes T spin dependent. However, the pheno-
menological effective potential that we use [ater to describe *He-'He inter-
actions is spin independent. We make that assumption explicitly here. As
discussed in Sec. 6, a more complete theory could possibly include a spin-
dependent eflective potential phenomenologically or via a fundamental com-
putation. {(Of course, because exchange effects are included automatically
in the theory, the equivalent Landau parameters of the theory are spin
dependent.)

With the local approximation and with a spin-independent T-matrix we
find for the quasiparticle energy

§Pl(rl) = §E=(rl) + jdpz[Re(pufT,;fpu)l tr, ’_zp;(rl)

* 7 Re(pual Tl — piadmy ()] (2.29)

where t7, is a trace in spin space, Re means real part and [ is the 2 %2 unit
matrix. The direct term of this expression has been found previously by
Grossmann.” It was examined in detail by Rainwater and Spider® who
showed that it does not agree fully with what one should get in the dilute
fimit of the Landau equation. These authors and Vetrovec and Carneiro®®
have given an expression for the Landau interaction in terms of phase shifts.
Rainwater and Snider,” and Miyake ef o/ 2 showed that use of this inter-
action in the Landau theory yields the correct second virial coefficient for a

-
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dilute gas. The present expression for the Landau interaction yields only

is imph in the
of the second virial coefficient. Presumably this implies an error 1

part cent work®"?* has indica-

i i imate in Sec. 6. Re
ent theory, which we will estima _ work .
{)cr;sthat the grror may reside in the decoupling approximation used 10 g

from Egs. (2.1) to (2.2).

2.2. Collision Integral

i ms
The collision integral is derived from lhg Wigner transforrg of the h:rthe
of Eq. (2.8) having two 7 factors. These arise frc;im ll:e. secron wt;:;'cn; ;n- he
i of E factors from the first term for ‘
ht of Egq. (2.8) as well as the .
\r’ﬁs transt%rmed into two T's by use of the optical th;orem. We wl]ll(:)si;:;
i i transformation although we are going
full mechanism of the Wigner | . " - Boing Lo keep
i Iting expression. This app :
only the local terms in the resu : Pre ore
corz licated than it need be to generate just the lgcal lerms—we Co:,adnjt !
lrcatpa homogeneous system somewhal more easily—however, wre o
set up the formalism that will allow a more general treatment of no

t a later date. ‘
term?l’ﬁe aWigner-lranst’ormed terms from Eq. (2.8) that produce second

order factors in the T-matrix are

(m|Cihmi)
' prn/ A py TR
=_—‘ﬁlh3 Jdrzjdp,jdpi Ja’p; Jdp; jdp., ra FLLaE
i

PP PP— ; ’m)
x ¥ (Pl*j.?:‘*‘a‘,ml.mzi(rn T2} P, Pa, 171y, Pla
BTy 1y

Pz

P _Pz
x[(l");msipl ‘Pt”j?ml)(]h,'m P2 5 ,mz)

: P
Pl‘Pz’_?;(m:)(Pa;m‘t Pl_E.mm)]
-&—-L Jdr; J.dpz Jdp; Jdpg Jdp; Jdm Jdp‘,

ifh’
’ f d, J“’ P J" pa e 1% P!

pi P2
x X Yy x (PI+"2”-P1+2."T|."12

LR TP T TR PR )

P2

+n(p;;m;

Tia|py, pai s, ma)
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X (P33 mal01{Pa s Ma)(Pa s Malpalps ; ms)
X (Par Pos May mbITIZIPc’ Pas ., Mg}

X (pc. Pai e, mJRIz(l + f?Pn)‘Pl *%, pz—%g;mi . m2)+h.c.

(2.25)

As we discussed above, we use the optical theorem of Eq. (2.14) to
convert the terms in 7~ T into second order terms. The resolvent operator,
Eq. (2.5), is then used in the form

R=[P(E~H) '~ ind(E- H)NAAQ) ~ p(1)p(2))  (2.26)
in which P means principal part integral and H%= H, + H,. In this expres-
sion for R the £ refers to the energy of the intermediate state appearing to
the right of the following T. In the corresponding expression for R'(E) the
E refers to the energy of the inlermediate state to the left of the preceding
T'. At this point it is convenient again to make the approximation that
the T-matrix is spin independent to accommodate the form of the effective
interaction that we will use in our numerical calculations. This simplifies our
very complicated formulas somewhat. Note that Eq. {2.26) introduces two
more factors of p. Thase allow the usual four factors of #p and 1+ na, that
one always finds in the collision integral for a degenerate system, We find
the collision integral to become

(m)Calpm)

I .
=51'3 dr; J‘dPZJ.dP; Jdpi J'dPJ Jdlhjdpa
x jdpb fdpr ‘[dpd e"l"l"l/l em': /R

I !
= (Pl +‘I;—'. Pz'*‘Pz{ TI:,{’L P4)

X Z 5

Y,y 2

P P
| = in8(Ee— Eve) — - in§(Ey1s — E,
e )

12+ = Lagp
Py mulBilpa s mY(pa ; malBalps s )
(Prs mulplpa ;s L) (Pa s midpalps s ma))(p., PslThalpe ., pa)
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fim

+"I(Pr;ma

p_‘pi“'ﬂi)
T 2
)

ot
H 2 1 2
!
MTTE Jdr: jdpz Jdpi J'dpi Jdp3 Jd;u Jdpa
I

" Jdl’b J’dl‘c J(dpd PR grrnt

P2

p.lp. J?{ ,mi)(m; "y

'
|

Pi P2

P2 % ) m;)(pd,mb

x ¥ (p,+%,p1+23

myang iy 2

T12

P, Pn)(p; s plpa s omyg)

% (pa; mapalps ) {pa, P Tlalp., pa)

o

P
£3 pl_E;ml)(pd;”’b

'

2 2‘ 2

Pa

p!
P~ 52 : mzﬂ

gl —%;m:)

Pi ﬁ%:mi)]}

P
X | ——————+ind(E— En-) |+ hoe
|:Eab_Et2~ (o™ Bz ):|

N o,
P3Pt _5 ) ml)(pd 3 Py

Pa

- (pf !l mﬂ

P )( A
P:——,m; pd-moPA

+q[(pf;ma 153 2

P2 .
£s Pz“‘E s mz)(Pd. Myl Pa

-(pc;mn

in which E,z. is the energy associated with the state

pi P
+= p+—
P 2 P2 2)

etc. The first integral arises from the optical theorem terms and is therefore
associated with forward scatlering. The second integral is made up of the
original two-T terms and represents lateral scattering.

We now introduce the inverse Wigner transform lo change the p’s into
n,'s. However, we immediately use the local approximation, i.e., in Eq. (2.12)
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we set the r argument of ny.,(r, 1) equal to r,, so that
(Ploalp’y = 8(p— p')n fry, 1) (2.28)

If, as abovci] we assume that the T-matrix elements depend only on relative
momenta, then the momentum integrals simplify considerably. Further we
make use of standard symmetry properties’ of 7

(PITIpY = (=pIT|=p) = (~p|TI-p) = (p|T|p) (2.29)

whlc)re Lhe.equa]ities follow by rotational invariance, time reversal invariance
:;";;t jl.mtu]l;nc;usly. We note as well that the Spin matrix sums can be:
sed Into 2 X 2 matrix products. All thege i i
' : . operations are straightfo d
50 we skip the details and immediat i e ol
. ely wrile the result that the isi
integral, to be placed on the right side of Eq. (221) is colision

'_J'.‘.'

* {“pl l] JZIPJ4)I [[-P)' Lprle l[.r(_rp;_’p.) [_fP L4 -!P ]" “I{ .!D _!Po)]
2 3 ? ] 3 i b
( I ! l R )( ‘I |2i 12 [ —-ppapd P] [-P =pripen -P] ]
” p ?] 2p14 p! ] P ) (] rpd _f + 's” 1"] !I +

+ ’I(Plzlrrzrpu)'(l:’uirlfll"Pu)‘[[’jmﬁm’jﬁ-”m]**[”p Morpe s ] o1}
'} =P prpe s Upy ]+

1 P
-— d d —
mJ‘ sz ps jdp.,(E”_E“) S(p+pr—pi—pJ)

x {l(pr}lTlllpii)lz[[gpn ’_-im]— tr:(&p;’]p.) - {np n ]* tr (np 4 )]
-P1 U Aprlpa
+ U(P|21T|2|P34)(P34frl'z| '_pu)“’lmép:’.’p"- ’jm]k
— [ottp 1p,)- 1} (2.30)

Inhewhmh fio=1+nn,. All distribution functions are evaluated at (r, 1)
fn‘rre'm]'c]lwo general types of terms in (2.30): on-energy-shell andI;)ﬂ'—
m: gg{-sw fh The former are pxpected in a collision integral, and the latter
| )i orr; :h e F?rwargdscaltermg terms. The ofl-shell term involves commut
rtors.and therefore adds a correction o th ‘ i -
: . € spin rotation lerm already
n the dnft term. 1t is essent; e ound
. : 1ally the so-called /, t di ‘ t
e e s e : 2 term discussed previously in
: ond order in T and third i ‘
ferature [ order in the distribut;
unc:on,\ and ]mrlushes in the Boltzmann limit as speculated by Laloé " ﬁg
:ne has vet calculated its value b i t ) ‘
: L ut we will try to esti i
lat mate its size in S
T lurns out that it is probabl o &
; ably about a 10% correction 1 1 :
_ _ O Spin rotation.
‘ln t'hcbnorn approximation the on-shell terms reduce Eio thO;e found
weviously by the present authors.' e
y by ors.” Furthermore, bec i
rev _ X ause we now includ
matrin interaction, our results for €4 reduce, in the Boltzmann limit cla
* 2] o
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precisely those previously found by Lhuillier and Laloé.” That reduction was
limited to the Born approximation only in our previous work. It is easier to
see this if one writes Lon= Cilon shen in terms of real and imaginary parts of

the T matrix elements as follows:

i’:ollﬂg Jdpz Jdp! JdP4 S(En—E)dptp— P~ Pa)

X (Pl Toalpsa) '{ltpy. s trlpitpd) = Uy Bl 11, (1)
+ 1 Re[(pra] Tialpsa) (psal T2l = praX] (g ot g b = (Bottndtpe: )]

+in [mi(P|2|T|2|PJ4)(PJAIT:2|_Plz)]

X [[MpyTipytipa» Apa]+ + [Apy o fip, Yo 2[ g1 1T G”‘]"]}

(2.3

In the Boltzmann limit one sets all 7 to unity and the last four-n anticommut-
ator to zero. The limit is straightforward for all the terms excepl the fateral
spin rotation term. This is the last term in Eq. (2.31). It becomes

in Im{(pial Tralpaa(Pael T2l = P12) 1 20py00 * gy ] ]

Interchange of 3 and 4 in one of the nyn, terms produces -n.1, because of
the symmetry properties of the T matrix given in Eg. (2.29). A similar
argument shows that the term in {n,, n,}. disappears altogether giving the
Boltzmann lateral spin rotation term of Ref. 3:

in Im[{peal Tralpsa)(paal Thal = Pr2) ity 21p] -

It is perhaps useful to summarize in one place the entire kinetic equation we
will work with in the rest of this paper. It is

3 1 !
25 86l 0= = (0, (] 3V, 5(0), Tty (D)) 2T (), Vot (1]

% dp, Jdp: Jdp‘ S(Evz— Es)6(pi+p2 71— Pa)

% {1(P|1|T|2\P14)|2[[’Jp,, A, Jotr(Ap.01.)

= By s 1o s trs(mpfip)]

+ 1 Re{(poal Tualpsa) (Paad T2 = P12) {tpsosttpa s gl e = [Fytpfipus g ]
+in Im[(pi2] Tialpsa) (Paal T1al = p12)]

(2.32)

* ([BoyBpstTpa s Al e + [Apytptines o) = 2[00 ap)+])

-0 -
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3. SPIN CURRENT

The method of analysis and solution of the kinetic equation given in
Eq. (2.32) is similar to that summarized in Ref |, However, the analysis
differs enough in its treatment that we must summarize il here. For one
thing, our previous treatment used only an s-wave Born approximation;
here we have a T-matrix which is a function of momentum. Furthermore,
we treat mean-field terms more accurately here.

We follow the usual linearization procedure: a zero-order local-equilib-
rium distribution function j causes the collision integral to vanish. The true
solution

np=np+ dn, (3.1
is inserted into the kinetic equation. The collision integral is then linearized

in &np.
We can write )

mp=1(fL+ 0y q) (3.2)

where
fo=Y n, (3.3)
op=Y ond, (3.4)

-4

with & the local direction of the magnetization (not necessarily along the
external field), g the Pauli matrix vector, and

g =[P (6 tie) = ] (3.5)

Here po is the chemical potential for spin species s that may depend on
position and temperature. In our previous calculation we took Epr tO be
just the kinetic energy and perhaps the Zeeman energy, because the energy
conservation delta function that arises from our derivation is written in
terms of only the eigenvalues of the single-particle Hamiltonian. However,
it would seem more nearly in the spirit of the Landau theory if the single-
particle energy in Eq. (3.5) included mean-field effects as given in Eq. (2.24).
We can accommodate mean-field terms in the present energy delta function,
without making an ad hoc modification of the theory, if we use an s-wave
expression for them; such mean-field corrections cancel out in the difference
(&1 + &,— €4— £4). Because these terms are small anyway this will be an
adequate approximation for them. The relation between the T-matrix ele-
ment and the effective potential used to approximate it is

]
(PITqu')=F lp—p (3.6)
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For an s-wave approximation we set Hg)y=WH0). The local equilibrium
value of n), must make the collision integral vanish and this will occur
whether in it we use £,, with or without 2 s-wave mean-field correction, so,
on that basis as well, we can choose 10 include the latter. Thus o use in
npe e write the s-wave form of Eq. (2.24):

Epa = 65+ V(0)(n + 1) (37

where €5 is just the kinetic energy, so that deg/dp, = v, n, is the density of
spin species o ; and 7 is the total density. It is convenient to rewrite Eq. (3.5
in the form

Moo =[5 8 — ] (38)
with
Ho=pe— V(O + ) (3.9)

The mean-field terms have merely renormalized the chemical potentials. If
the system were in equilibrium with an external field, £ would also include
a Zeeman energy. However, here we envision a situation such as 2 spin-echo
experiment in which the magnetization direction 8 is not necessarily along
the field B. Nevertheless the momentum distribution remains the same—
albeit out of equilibrium—and the effect of the field is considered to be
included in the value of /.

If we define part of the drift term of Eq. (2.21), not including the spin
rotation term, as

D é
y n(r, 1) = 5, (0 =3V £5(r), Voo (D] + [V, £,(r), Von(r)]. (3.10)

then it becomes approximately

L= Ly Uw{

. i, an° du,
Moo Ho y | o Mo OHa

Dt o 25 " e a0 T o a0
V(0 o\ aE
—(a'nﬁg———() " ””U)—-gf (3.11)
de, / dr,
with i=x, y, z,
d
m=20n6=f—}r—502 (3.12)

- “‘
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the magnetization, and

_ 4P o
""_J'h—s Mpa (3.13)

the density of spin species o. In (3.11) w
; . . e kept only t ilibri
value 5, in all but the first term. Pt ol the focal equiibrium

o AsinRefl. i, we eliminate the chemical potential in favor of the magnet-
tzatton m and density n by use of the Gibbs-Duhem relation

Y Vu,=0 {3.14)
and the relation
N =4{anm+n) . (3.19)
We find from differentiation of Eq. (3.13)
Vn, =G, Vi, (3.16)
where
dp dnl
Go=—| = &
W 360 3.17)

n this equation gradients in the exlernal field are neglected

The use of Eqgs. (3.9), (3.14), and (3.1
: 9}, (314, A5y all imi
he relation, and after a bit of algebra we ﬁ)nd os s to eliminate o from

Vi,=ct,Vm (3.18)

here

] Lo
{G\G_ +VOX1+n) (G‘++E_)+(2+ quV(O)z}

fLE L, -
T {3.19)
“hen we substitute this back into the drift term Eq (3.11) we find
“”"T (J}k+ } v 6nfc . Om and dn
Iak: q?[ N Jp‘ ——‘_0*0‘,_'1_ p_o_’_é‘
23 ae? ar.” el gt T
N Y0y  and\ e
w—(ango‘m—-—qm W)—e'
2 aey /or, ? (3.20)

$pin Diffusion in Dilute, Polarized "He-‘He Solutions 455
The spin-rotation commutator can also be considered as part of the
drift term. We have

Dny = e n)- (3.21)
D spin rot b

This commutator describes the precession about the external magnetic field
as well as the mean-field exchange precession called identical-particle spin
rotation. There is also a lateral scattering contribution to spin rotation as
discussed at the end of Sec. 2. However, it depends on the imaginary parl
of the product of T-matrix elements as shown there. We are going to assume
a real phenological effective potential for the T-matrix and so this lateral
scattering term will not contribute. There is also the off-shell contribution
in Eq. (2.30); we neglect this for now, but estimate its size in Sec. 6. Because
of the relative magnitude of the spin rotation term of Eq. (3.21), we should
not make an s-wave approximation to the mean-field contributions in g,. In
fact it will turn out that the non-s-wave contributions are not very important,
but that is an item that we want to test. From Eq. (2.24), Eq. (3.21) becomes,
to first order in én,,

Dn, iy in
-B!— lPin rot T 5’ [q . B‘ Gpl]- +“ﬁ_ dpz Rc(p‘2|Tu' - Paz)

X ([, 6r1p,]- + (815, 1] } (3.22)

where the Zeeman term is explicitly included, with B the external field and
y the gyromagnetic ratio. If we write

5n,=3(8fp1+ 80, 0) (3.23)
in analogy to Eq. (3.2), then we find

Dio LY (Bx(0%&+60,) a]- L |dp: Re(pilTl
a1 =L &+680,) g —— -
D{ smnrot 2 F g 2ﬁ pz ¢ pl? " p”)
x loléx 8a, + 80, Xobé) 0 (1.24)
Fro.m Egs. {3.20) and (3.24) we can get an equation for the spin current
by 'mulllplymg the kinetic equation by ¢u,, /4", integrating over p,, and
taking a spin trace, because the current is given by

d d
J,(m)=J.;I—¥tr, (u,,g&_:,)=jh%’ vy, 60, (3.25)

—\‘:‘-
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There are no mean-field corrections to this current in $-wave approximation.
The resulting equation is easily found to be

aJ 8
—j—ml~2+ala—mé+alm§—+yBXJj(m)

dt r r,
_-ﬁ_ZF dp, jdpz Re(pialTidf = piz) vy, (03, X 50, + S0, % 020,8)
d

='(h—? ll'.;[Upjg_lmu] (3.26)

where
al=2fana/m* (327)

and
nV{0)n
- kot 1.28

@, I g g ot ( )

where m* is the hydrodynamic mass for an *He atom in liquid *He, and

k,= f%? £ (3.29)
We are going to consider a “quasi-steady-state” solution® of (3.26), which
means that the only time dependence for J; (m) is that caused by the preces-
sion about the magnetic field. That is, J, (m) is assumed time independent
in the frame rotating at the Larmor frequency. Henceforth, then, in our
solution for &n, for inclusion in the current equation, we will neglect the
term dm,/dt and the external field precession term. In order to solve Eq.
(3.26) we must now give a variational form for dny.

To do this it is helpful to write Eq. (3.20) as a matrix notation in which
the coordinalte system for the Pauli matrices is 0, 9, &, three unit vectors with
& along the direction of the magnetization as in Eq. (3.2) and 0 and ¢ two
unit vectors perpendicular to é. The drift term, excluding spin rotation, then
becomes

and,  om |
- + 35 ¢rv-
Dny dey o e
Dtp=>: e i ' f oy am (3:30)
[ P
35 Qi _—
5p0is asd " ar,

- -
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where
Fio oy
5,,:024-17 ——--Zmz _7%?_ (313
2 - de,

and the ¢, are the components of the vector 8&/dr,, or

-

dé
5—=¢mﬁ+¢m? (3.32)

‘

and

$uu=du+ild, (3.33)

where {=x1. (Note that we now have rhree variabies that can be +1- o
which represents the spin component along the direction &, 1 which is +1
for bosons and —1 for fermions, and now &, which gives the complex combi-
nations of the u and v components of a vector perpendicuiar to &)

In either form, Eq. (3.20) or (3.30) it is apparent that Dn, /Dt contains
terms that are transverse to the local magnetization direction & A solution
to the kinetic equation of the form of Eq. (3.1} requires® that &n, be ortho-
gonal to the collisional invariants, !, p, o. A further condition for a solution
to exist is that the drift term also be orthogonal to the collisional invariants.
It is easy o verify that Dn, /Dt is so orthogonal. A simple variational solution
then, which insures the proper orthogonality, is a constant times the drift
term itself. We assume therefore that

dn,. 80,
Smp=|, . " F 3.34
e [%50,,, dn,_ :| ( )
where
and om
Oy = Ay 3 U, — 01, — (3.35)
F ">,: f 552 or,
and
JGP{ = hA&L Z Uplo'g¢|¢ (336}

with the A’s being variational constants. Note that the transverse distribution
function correction § a,; depends on op=nj. —n5_, that is, all spins between
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‘ tl?e two Fcrm‘i sufaces are out of equilibrium. On the other hand. the longitu-

dinal correction dnye is, as usual, localized on the Fermi su'rface by the
factor dng,/d¢;. In designing da,, we have avoided including the small
mean-ﬁe!d_correelion that occurs in the off-diagonal elements of D /Dt
Thg resulting &n, remains orthogonal 1o the collisional invariants —bput is:
eas:ler.to handle mathematically; appropriate adjustments will occu;' in the
vartational constants.

Bccause &np has off-diagonal terms, so does Jy(m), given in Eq. (3.25)
That is, there are longitudinal and transverse components o J, (mj w'hich.
means Fhat_ they are parallel and perpendicular, respectively }lo ll;c local
magnetization itself. We will see that there are two correspondi‘ng relaxation
ltmes given by the theory, one for longitudinal spin diffusion and another
for transverse spin diffusion, and these two times need not be equal. The
standard spin echo experiment detects the transverse spin current Eut a
-*eccnl.cxpcrzmcnt by Nunes e/ al.'' has detected longitudinal spin di%fusion
If we insert the trial forms for dny, we find simple expressions for the s iﬁ

urrents. From Egs. (3.25), (3.35), and (3.36) we find i

Ji{my=J!(m}+ .} (m) (3.37)

he longitudinal component s

dp o 0
JN (I’TI) = | — 6= m_ dp dn T .
/ J‘hl %: UPJ Ué’]poe ar E: All!cr J;‘ U;f L4 e

’ é;
om (o
=— ¥V 4, 2y
ar,g oL {3.38)
¢ note here that the particle current is
dp é o
J",r: FZUW(SW‘,U‘:&Z/‘!,G’IUJ‘@UI (‘;_ntg
- ar, A 65,?
ém Tlaty
-y A —= (3.39)
f} o nr o

T require this 1o vanish in a diffusion experiment. The product t,n, is
ependent o1 7 as can be seen from Eq. {3.19) so that the particle cur:cm
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automatically vanishes. Thus

Jlm)=-D, irfé (3.40)
ar

where

Dn=a,A, (34])
We can easily relate a,, from its definition in Eq. (3.27), to the average
value of v and thus identify Ay as the longitudinal spin diffusion relaxation

time. In the next section we will solve for A,.
The transverse spin current of Eq. (3.37} is

JHm)=J 0+ T8 (3.42)

We can form the combinations
. d dp
J:’E :J}f' + ‘éjjt = J}: Upj 5Un£ =4 équé J;? Ufwﬂsv

=—Afa,m (3.43)
where

] 2 '

a;=- Zo"k,,- {3.44)

Im*m

The solution for Af turns out to be complex so that we will need to wail
for that solution before we try to identify a transverse diffusion constant

and a relaxation time.
Finally we need to write the spin-rotation terms in matrix form. We

can see from Eq. (3.24) that there are only off-diagonal, i.e., lransverse,
contributions to this quantity.

{
Dt :| - Jdpz Re(psal Tisl ~ Pra}{ 0,8 Oy = 05,0 Tt
spin roi

; pa;]
_né _ _ s 0
—EEAC ):@,5 dp; Re(pol Tool = pia) (v = 2, 60,5,
(3.45)
We now move on to consider the linearization and calculation of the

collision integral, and the solution of the kinetic equalion for the variational
parameters.

- “*—
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4. SOLUTION OF THE KINETIC EQUATION

Linearization of the collision integral of Eq. {2.1) leads us to

r
!.con=;J.dP2 Jdps Jdp. S(Er2— Es)5(pi+p,— py— pa)

{IAATBYLISns, 51 + (13, 65,]4) tr, (3%

{85, AV e, (Sfand + 430m) = (B 10, 65, 6m)]

+ 1 Rel(IAT3)CAT121))[[n5 308 + a3 5208 + n% 354, 77,
+[n38308, 8], — (A o n?, 85, 5n,))

+in Im{(12IT134) (341 T121))[[6r25 3 + 158705 + 034 SEma, %),
+{n33n8, 6] + (A0 n?, 84,0 1)

= 2{Smynznl + mySnanl + m3n36na, u¥), — 2Andndnd, Sm ], 1) (4.1

i which « means interchange. As indicated by Eq. {(3.34), &n, has both
diagonal and off-diagonal elements, while np is completely diagonal. Thus a
typica] term in the linearized collision integral, Eq. (4.1), will have one non-
diagonal distribution function factor and the others diagonal. It is then
straightforward to carry out the necessary matrix muitiplications to arrive
at diagonal and off-diagonal elements of the collision integral.

4.1, Longitudinal Case

The diagenal elements turn out to be

2
Lol = 7;5 fdpz Jdpa JdP45(E|2 =Bt pa—p - pa)

x {!( ! 2|TI34)I2[(5nsaﬁ?o +13g8h1s) T e iy + nSoil,

(=3

* Z (Jﬁlv‘"c"a' +520'5n45’) - (ﬁf}o ‘_’nfnan 5ﬁ1aH§nro)J

= 1) Re[(121T134Y(341 T 121)) [ 8110f 261S0Ai Sy + 130 8RonSa A,
! Ff':nfig55n4aﬁ?c + ngaﬁgu"gué‘ﬁla - (ﬁ?cr b nnou s 5’}15 — 6”"0)]
oy Im{1 21T 138) (34 T 121) (8130 5o agA by + 1S 8fzgnS il

3 =0 C 0 0 = = ] =
! ”("-l” gnénﬂrn lo +n3vn 20"‘0‘5nla + ("io Ny, 5":6 — 5nra)
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¢ 0 0 Q 0 0 o 0 0
- 2(5n3a”20”40nlﬂ + n!oanhr’“cvﬂla + n!a‘”!a&"danio
o 0 0
+nlanlan405nla)] i4 2]

It is easy 1o see that, since Im(12|7434)(34|7'|21) is odd in the interchange
of 3 and 4, and the remaining factors are even, that this last term vanishes
even if 7 is not taken as real. In the remaining terms one extracts a factor
Miaea ol 2g = oAt taianyy (equality following by energy conservation)
from each term and also uses

Sfpe = 8(1 + nny0) = ndn , (4.3
5”.06'_ 5r;pcz fnP: (4 4)
Moo Fpe  Mpofing
and
0
a”;“ = fn i, (4.5}
e
Then we find
oo 2
Teonl3™® = J;ﬁ Jdpz Jd{h Jdlh S(E 2= Esa)d(pi+p2—ps—pa)

x {(I(12ITI34)I’ + 71 Rel(12|T34) (34| T 12))))nSo o fi o Se

0 =1 o 1 o -1 0 -1
any, dra,
() onr (G5) one (5 onen(2) o0
L 2 1 ‘L4

(LTS AR,

oy 0 -!
a -a
() s () o
]

an’, - énd -
—(6513) 5""’_( aeE) Sre-o “o

We next substitute the form of Eq. (3.35) for a,,, multiply both sides
of the diagonal elements of the kinetic equation by v,, and integrate over p,.
The left side of the equation contains the drift terms, given by the diagonal
elements of Eq. (3.30), the right side the collision integral of (4.6). One can
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shoyv that the term from Eq. (4.6) in H(12]T)12))* + n Re(12|T|34)(34)7"21)
vapishes by momentum conservation and we find the result

fo 218 A\(ng +n.)
TR "—n""—_ dp, dPZJ’dPJJ‘dPll 3(Ei3— Ey)

m -

x5(py +pz~ps—p4)l(12iT134)|2n§‘an‘3-aﬁ?oﬁg_avu{vu- vy)  (4.7)

[ ns I € lhlS q a[iOIl fOl the ] i ]. Ie [l() W=
w Cca Qv equ on tud nal Iaxa
y gl . 10N l]me 1 Al‘

1_1 _2nfm* (n.+n.)
A, ﬁhl T dp:Jszjdp,Jdp‘5(5,2_534)

*&(pir+p—ps— Pc)!(|2lTI34)l2n35n3-aﬁ?qﬁgkovu(vu“ vy} (4.8)

This 'is essentially the same formula as we found in Refs. 30, but now the T-
natrix element replaces the s-wave approximation ¥(0)%. This result is used
n Eq. (3.41) to find the longitudinal diffusion constant.

4.2. Transverse Case

To treat the transverse case we look at the off-diagonal terms in the

!r?rt terms and collision integral. The first group of transverse parts of the

rift terms arc3 giveq as the off-diagonal elements of Eq. (3.30). We multipl
iem by vy,;/h” and integrate over aj] P:. The integral is i

gg_l Dngj offdiag 1
i UUB;": =5 Peam (4.9)

Iso included in the ofi-dia
+45). Multiplying that by ¢
> call 7" which is

gonal drift terms is the spin- i
Rt . pin rol.atlon te‘rm Eq.
I integraling over all p, gives the integral

[:pnnrol=zin A.I.
K 2 4 b dp: | dp, Re([Z]TlZI)(n?, -nl)
0
X {n3, “’?gf)vu(vu_ vy) {4.10)

Fhe wil-dragonal elements of ision i
. the collision ntegral of Eq. (4.1} are found

P
K

' 2k ‘[dpz J fp‘_[‘dp‘ E=E)8(p+ py~p, - pu)

(
: ?I(IZITIN)I{{M?* +AY )8 Ty + (al, +n8.)86,,)
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x (z ﬁga'nga') - (H?Hn?v 6&"H 50’)]
+ 1 Re[(12{T134)(34/T"21)]

= ] = ] 0 =0
X [(n?++n?)(5a3§ng¢n2¢+n3¢50'2¢m,5 +n3‘.£ﬂ'2_£5{74{)

e L soson]f

a4
in which 384, is the off-diagonal part of &4, or

56, néo, (4.12)

When we multiply this by v/h and integrate over p,, and then substitute
the trial solution for §a, we are able to reduce the integral into a form
amenable to computation. The calculation is straightforward but tedious
and we will not give the details here but just quote the results. In the calcula-
tion we use the symmelry properties of the T-matnx elements (Eqgs. (2.29})

and relations like

6 .0 A0 =0 820 20 0
My Mg A aHa, =€ A3 At lys (4.13)

where
A=B(a.—[.) (4.14)

The calculation shows that the term in Re(12/7134)(34|7"|21) vanishes The
net result is the inlegral

27 ‘
1 =71’§ A ¢, sinh(A/2) jdp. Jdpa Ja’pu Jdpa OUEn= )

x §(pr+p2— pry— p)IU2T34) (0, — vy)?

x [ n_+ e nd, 1A% AL (4.15)
Note the peculiar structure of this integral which has factors like
A _ny_nS.nl. that seem to defy spin conservation in a collision. However, it
is easy lo show that the collision integrai does conserve spin as it should, by
integrating (4.11) over p,. The odd structure is due (o the transverse charac-
ter of the process in which spins in differing angular orientations collide as
discussed in Sec. 1.
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The entire result for the transverse elements of the kinetic equation now
becomes

alm:A(l(Ccol!_}’fnéClr) (4]6)

where we have cancelled out common factors and

4n*
Cco|l=_;;':|_ sinh(A/2) jdpi Jdpz fdp; de 5(512“534)5@1 PP pa)
XM121T134) (01, vy) [ 20 _nd_ + e 4 n)nd 1Al Al (4.17)

and

2
Co=—"" dp, fdpz Re(12]T121) (A%, —n{_)(n3, - I OIS vy)

X
(4.18)
The resuit of Eq. (4.16) proves immediately thaa-
A =(A4Ly | (4.19)
The transverse spin current of Eq. (3.42) can be writlen as
Ji(m) = 3[(JA +TR)a— iU ~-JA)) (4.20)

Each of the Jj; contains a factor ¢,; which we recall is related to the
‘patial derivative of the local magnetization direction @ according to Egs.
"1.32) and (3.33). It follows then that

¢jw°_¢}uﬁ:éx:j_e (4.21)

]
o that from Eq. (3.43)

J )= —%&lm[(x{i + A4 gs—i(Ai —AL)ex Q‘EJ
4]

ar}‘

&
=-—dlm[(Rc Ai)a—+(1m At)éng] (4.22)
ar, o
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Solving Eq. (4.16) for the real und imaginary parts of A%, we finallv 1ind

D, [ dé 2, .., 08 \
Jjm)= = e = (e x 14.23)
s (m) L+ (umin)? ar, ér,
with

D, =20 (4 24)

Cooll

where the transverse relaxation time is
T, =~ i.ll?,‘, (4 25)

Ccoli

and the spin rotation parameter y (not o be confused with the chemical
potential) is given by

pmin= L {4.26)
call

Equation {4.23) is the Leggett equation, with the Showing‘thal the equation
applies Lo bosons as well as fermions. The transverse diﬁ'uglon constant [Eq.
{4.24)] is given by a different expression than the longtl_udmal diffusion
constant [Egs. (3.41) and (4.8)] showing that they can be dlffcrgnl. One can
show analytically that at high temperatures or low polarization lhe‘two
different diffusion constants are the same up to some mean-field corrections.
Notice that the diffusion constant contains a mean-field correction in @, in
analogy to that in Fermi liquid theory.

5. REDUCTION TO COMPUTABLE FORMS

We can summarize our results by writing the spin current in terms of a
single equation:

o D, [ 38 . 5éJ
(m)=—~Dy— &~ ————— | m —~ n(un’/n)éx — (5.1)
J;(m) D[ arj € I +(“m/n)2 ﬁrj a,.}
where
Dy=a,1, (5.2)
Di=a,7, {5.3)
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* with @, and @, given by Egs. (3.27) and (3.28) respectively; 7y and r, given
by Egs. (4.8) and (4.25), and the spin rotation parameter is

nC,,

=— 54
g chcIl ( )

where the integrals C, and C,, are given by Eqgs. (4.17) and (4.18).

In order to do compultations we must reduce the integrals of Eqgs. (4.8),
{4.17), and (4.18) to a form suitable for numerical analysis. This is done by
using the techniques developed in Ref. 30, in which we showed how such
integrals can be reduced to two-fold form. The situation is slightly different
here, however, because we are going to include the effect of the T-matrix
momentum dependence. Nevertheless similar procedures continue to work
well. The ability 1o reduce to two-fold form is independent of temperature,
which allows us to calculate numerically results for lemperatures ranging all
‘he way from completely degenerate to the Boltzmann statistics fimit, This
-ange is important because experiments on dilute solutions often give data
n the intermediate temperature regime near the Fermi temperatlure. We
resent oue integral reduction here: the others are similar.

The T-matrix approximation we will consider is similar that made by
tardeen er al'? in their treatment of dilute solutions We write

1
(piTlp’):P Vilp— o) {5.5)

he effective potential that was fitted to data in Ref |2 was a simple cosine

nnction. Later Ebner'" used high temperature transport data to delermine
e phenomenolagical form

Vg =1Valla + az exp(~ Calg/2ka) '} + ay exp[— Cy(q/ 2k0) ] (5.6)

here Ao =049T A7 A, @, = [0; ;=-148, a;=-9.60; C,=40752: =
0564, and Fo=1298x10"**Jm" This potential is more suitable than
thers in the literature because it was determined at high T and relatively
igh concentration (1.3% and 5%) so that its validity extends to higher q
tlues than other forms. Thus we expect {o be able 1o use it all the way into
e Boltzmann limit where some of the data have been taken W
spect such a phenomenological potential to fit all the new data perfectly
cll. Nevertheless, we will not attempt to adjust any potential parameters,

id we find rather surprisingly that the theory does fit the new data essen-
Wy withim our estimate of the theoretical errors.

e do not
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From Egs. (4.17) and (4.25) we have

1 _axtsinh(a/) £ J i j i, j 490 8(Ers— Ex)(p1 + P2~ py— o)
T, & mm*h'°
A2 0 -A/2,9

0 120 0
% V(Ipl—pgl)z[(Pl‘PJ) , ﬁ]’[e n,_ng_ +e My o Aze A4 fla - (5.7)

in which 4 is an arbitrary unit vector. We change variables in this integral
to

P=p:— P, P=!§(P|+P3)
P=pe-p2. P=i(patps)

The delta functions become 8(p—p'}5(P.~ P;)m*l/p where we P‘u%vc takcln p
as the z-axis for the P and P’ integrations. Carrying out the p' integration

and the P and P angular integrations gives us

T, dlmm‘hm o . o o 0
x V(pYlp - 8 (e n)_n_ +e 8] ng, JAS e (5.8)
By writing the arguments of the distribution functions in terms of the

variables

g PP Al B (5.9)
2m* 4 2m*
_B . _B (5.10)
_Q_,n‘ 2, ¥ Iyt P

we can see that these arguments are all independent of the angulag variables
of p, so that that integral may be done over the quantity (p-4)°. We find

then
'—“”Whﬂmﬂ%@ﬁwmﬂﬁwﬁj mf @J dy
T, g me‘hloﬁm o e o 0 4
x EAH ! - —_)1n+§ J-'+[rf1)]17{A
e)‘-‘-‘l‘]] —{‘_n e—J (r—s 'AI',' e _,7
— ] —-n
it ~as2 _
X;-T(”’?’*C-—__;?Le * eu-uun’-(. -n e*r*tr—nht. -7
x ! S J (5.11)
D) —¢._q ¥ T _p
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where {; = i, and we have wrilten the potential, which js a function of ipl,
as if it were a function of 5. The integrals continue to apply to both fermions
and bosons, however subsequent numerical work reported below wil] be for
fermions only. The integrals over the y’s can be done as well according to

- | | 1 I —n/a
L ¥ efa~ne’/b—n 1= {a/b) 1n(]_,:_:/Lb) 12)

This gives us finally
b 22m)(2m*)*? sinh(A/2) (7
t. 3a,mmh B

ds s V(s)? Jm

0 - o0

X dt - L
stnh(2ts+ A/2) sinh(2t5)

] - —(r+a?+{. | — AT ILE X4 1— —renleg,
xln[ 19 | L= 7€ M=ne 2 (513)

l_ne—u—nhg. (I—ne_('"’)}*c'}(! -*r;e’“*”“c‘)

This quantity is only a two-dimensional integral which is easily computed
numerically. Note that we have not needed to make an s-wave approxima-
tion in order to carry out the calculations shown.

The other integrals we need in order to calculate the diffusion constants
are reducible to simple forms in a similar manner, but we will not show the
details here.

6. THEORY ERROR ANALYSIS

The theory we have presented has made several approximations and
it is useful to analyze the size of the errors that we have made in those
approximations. Further there are some terms that we have not yel been
able to calculate and we should mention those and estimate their size, if
possible. Many of the terms we consider here have been discussed more
cxplicitly in the Boltzmann limit in Ref. 23.

Consider, lor example Eq. (4.16), that is,

Gln?=Aé(Ccoll+“?§Csr) (61)
where from Eq. (3.28)
2 n¥{0)n
= ko + 6.2
a, E— g c - {6.2)

6.1. Mean-Field Drift Terms

I he seeond term in @, is a mean-field correction that is analogous to
the factor (14 #§) in Fermi liquid theory. It arises from the terms V., £,V n,
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of the kinetic equation in Ea (2.32). Such terms are really viral varrections
to the transport coefficients, as well as (o the equilibriun: properues like
pressure that can be calculated from the kinetic equation We can c<timate
the importance of this correction by taking the ratio of this terr 1o the first
one in a, . From the definition of &, as an average energy we have that the
mean-field term is of relative order R, = F(0)n/¢ &) where {er 15 the average
single particle kinetic energy. We can write ¥(0) in terms of a scattering
length, a, as ¥(0)=h’a/m*x so that R.=al?/r} where 4 is the deBroghe
wave length and rq is thz mean particle spacing. In the Boltzmann it A =
Ar=h/(2rm*kT)"? and R, is negligible. In the degenerate limit i passes
over to A=rg as Ar/ry grows Lo unity when the temperature is lowered Thus
the maximum value of this term is of order a/ro which can be related 1o the
concentration, x, of the dilute solutions we consider. We have a= - 14,
ro=3.5x"'"14. The concentrations considered here range from 3 $ < 10" (o
2% 107% 50 that the largest value of R, =0.04. This result agrees well with

4

more precise calculations quoted in Sec. 7

6.2. Nonlocal Lateral Scattering

In our derivation we have neglected gradient terms in the collision
integral in the form AV, ... ¥, ... (the gradient expansion is actually a series
in f). These terms are second order in the T-matrix and include a spatial
gradient of a distribution function and a momentum gradient of either the
distribution function or of the T-matrix element itself. Similar terms have
been discussed in Ref. 23. Consider the real part of Eq. (6.1). The ratio of
the collision integral to the drift term is Cout  /(Drift) = | by the Boltzmann
equation, where Drift = @, m. Correction terms having distribution function
gradients in them will actually be additions to the mean-field drift terms
V., Vpr1p, and should be compared to that term. We can get an idea of the
order of such terms, which we will denote as C,, by use of the relations

on,, Ony,g

Vor,,=——u and Vo= —
P e, S

Ci, Ve (6.3)

We also have the identity

=ﬂnvc(l _”po) (64)

In the Boltzmann limit we set | - n,, 10 | and the resulting integral then has
the form Co=(AB/1)Ceon, where 7 is one of the diffusion relaxation limes.
Since 1= ]/(unaz) in the Boltzmann limit, where v is an average velocity, we
have Cn/(Drift) = huna® /kT=a*A+/ry. Compared to the already small mean-
field terms discussed in Sec. 6.1 above Lhese are of relative arder a/A,, which

-\~
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is small at low T. At high T they can become only as large as the negligible
megn-ﬁeld terms, and so are irrelevant. The terms involving a momentum
derivative of the T-matrix are even smaller as we will see below in Sec. 6.4,
For the degenerate case the analysis is much more difficult and we are unable
to make a reliable estimate, but if we assume that Ar goes over to ry then
these corrections become of relative order {a/rq) and continue (o be small
in that limit.

6.3. Three-Body Collision Terms

These should be smaller than the two-body terms we have considered
by a factor of the small parameter found in the virial expansion. At high
temperature in the Boltzmann limit this is {a/ro)’, a very small number. For
lgw T, but still in the Bollzmann regime, one can show that the virial expan-
sion is. in ak%/ry. Upon lowering the temperature to the degenerate regime
one n_-ught expect Ay to be replaced by ry. For scattering processes on the
Fcrrnl surface the factor should be made smaller by factors of T/Tr and be
unimportant. However, for transverse processes such a factor would not be
present so that these terms might be as important as the mean-field terms
discussed in Sec. 6.1. There is little hope of computing such terms. Moreover
whether a -virial. expansion for the transport coefficients has validity is ar;
open question since the four-body term diverges '

6.4. Spin Rotation Corrections

Thc term C,; in Eq. (4.18) is the spin rotation integral. it is a forward
lscallcrmg term, and so is first order in the T-matrix. The relative size of this
is rLC,,/an{= tumV(0)/h=py where p is the spin-rotation parameter in s-
wave approxllmalion {Eq. (5.4)]. For the Boltzmann limit this is of order
Ar/a, which is, of course, large at low T, since otherwise spin waves would
not be observable in Boltzmann gases. For the degenerate limit the vajue is
{ro/a)(T&/T)" until kT becomes less than the Zeeman energy where the
:;mpefatgre factor becomes a constant. Nonlocal corrections (o spin rota-
ton will 1nyo[ve forward scaltering with a single T-matrix element and will
have a spat!allgradient of a distribution function and a momentum gradient
of the T-matrix element. (A systematic analysis of nonlocal terms first order
i 7 has been given by Meyerovich® for the Boltzmann Iimi;) We can
eva]ual? the gradient of the T-matrix by using a quadratic appfoximaiion
to thc Ebner effective potential. The estimate is not difficult but we omit the
de_lails. W; find thc_ ratio of the nonlocal spin-rotation terms to the ordina
Spin-rotation term in the Boltzmann limit is Cone/ Cor= (8% Arrg)(x/0 05)2’}?
The 0.05 arises because the scale of the Ebner potential is the Fermi rﬁome .
tum of the 5% solution. The ratio is quite negligible. ”
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There is another correction to spin-rotation from lateral scattering. This
exchange term depends on the imaginary part of a product of two T-matrix
elements [see Eq. (2.31)]. We neglected this because our effective T-matrix
is real. We know that, in the Boltzmann limit and at low 7, this term is
unimportant, but, for *He gas, becomes as important as the forward scatter-
ing term at higher 7.% However, for the case of dilute solutions u is likely
to be so small when this high 7 regime is reached that experiments 1o observe
it would be impossible anyway. At the low T end we have from Ref. 3, that
the lateral scattering term is of order (a/A ) when compared to the forward
scattering part. For the degenerate case we expect that this becomes (a/ro).

Thus it seems unimportant for all relevant 7.

6.5. Variational Approximation

We have used the lowest order variational approximation. It 1s likely
that there is nonnegligible error introduced by this approach. 1t would be
best if we could calculate the higher-order terms, but this is extremely difficult
for the large temperature range we consider here. Fortunately, there are
calculations of the higher-order corrections in the Boltzmann limit** and, at
least for longitudinal spin diffusion, at the degenerate limit.”® In Ref. 34 it
is shown that the lowest-order approximation of the spin-rotation parameter
is in error by only a few percent over most of the range, but can be 20 or
so percent right around ! K for "He gas (near a minimum in g). The spin
diffusion constant is also only a few percent in error except right near a
maximum at complete polarization where interference effects cause a 20%
error. Comparison with exact calculations for the degenerate regime’® shows
that the variational approximation error at 10% at M =0, 8% at M=0.6,
and 6% at complete polarization. Thus we estimate the average error in our
present calculations at around 8% or less over most of the Trange. However,
we note that the longitudinal diffusion constant for the dilute solutions
considered here also has a2 maximum at high 7 so we must be aware of the
possibility that there is a greater error there. We will see thal our calculations
are consistent with errors of this magnitude when compared to experiment.

6.6. Ebner Effective Potential

The effective T-matrix ¥(g) is phencmenclogical and involves many
assumptions, V{(g) is non-retarded; it depends only on momentum transfer
g and not on the center of mass momentum; it is independent of concentra-
tion and spin so that it is essentially a T-matrix based on free-particle propa-
gators in intermediate states rather than interacting ones. The concentration
dependence has been estimated by Fu and Pethick®® who find corrections of
order a/ry in Lhe degenerate limit. Such a correction is of the same order as
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the mean-field corrections mentioned above that we have included. The
problem with the Fu-Pethick terms in ¥(g) is that they have been computed
only for the degenerate, unpolarized limit, and at concentrations much larger
than we consider here. We have tried to make a rough estimate of the effect
of this correction by an s-wave approximation and find that it could be
sizeable: For the largest concentration considered in the experiments we
analyze, x=1.9x 10™*, we find that a transport property could be enhanced
by as much as 15% even at the low concentrations that we consider! (AL
higher concentrations there seems to be considerable cancellation.) However,
what is important is not the absolute enhancement, which might be incorpor-
ated in ¥(0), but the relative change from one concentration to another. For
the lowest concentration we consider, x=3.5x107* the enhancement is
estimated at 9%, Thus the relative change is only about 6%. In the Boltzmann
limit it is easy to see that the Fu-Pethick correction will be of order
2A3/ry, which becomes increasingly smaller at higher temperature.

We noted in Sec. 2 that we expect the correct T matrix to be spin
dependent because of the screening factor in the resolvent operator R (see
£q. (2.26)). We might expect such effects to be included in a calculation
for a polarized system that is the analog of the Fu-Pethick analysis. The
‘ontribution could possibly be of the same order as the Fu-Pethick
-orrection.

The Ebner T-matrix is real, which means that lateral scattering contribu-
1ons to the spin rolation parameter are neglected. Fortunately we have seen
'bove that this approximation makes a small error. Retardation corrections
0 the Ebner potential are of order (v/¢c)? where ¢ is the velocity of sound
n liquid “He. This is negligible.

6.7. The Virial Expansion Question

Some equilibrium properties can be calculated using the kinetic equa-
'on. The momentum conservation law as derived from the kinetic equation
ields an expression for a momentum tensor from which one gets the hydro-
tatic pressure. From the Boltzmann equation one finds the ideal gas law.
his is surprising because one might have thought that the Boltzmann equa-
'on considered Lwo-body collisions completely. This question has been dis-
ussed often in the literature; it is the nonlocal terms such as the VigVenty
crms in the Landau equation and in Eq. (2.21) that give second virial
oefficient corrections. We have included such terms but it turns out that
his term, in the form we have it {our &; contains interaction terms depending
m Re(p|T|p) in Eq. (2.24)], gives only part of the second virial coeflicient.
'his defect may be due to the inadequacy of the decoupling approximation
hat allows one to go from Eq. (2.1) to (2.2). A solution to this problem has

Spin Diffusion In Dilute, Polarized *He-*He Solutions 473

been given recently by Laloé and coworkers? by introducing what i called
the ““free Wigner Transform.™ A similar analysis has also been wven by
Snider.*’ This result is still too recent to be included in our present theory.

One way to estimate the discrepancy made here is to note that the correct
Landau interaction for a ditute system, and one that gives the correct virial
coefficient for the pressure, contains the factor Y2+ 18 where 8, is a
phase shift in the partial wave expansion.**** Our interaction term involving
Re(12|T112) is equivalent™ to the factor ¥, (2/+ 1) cos &,sin 8, The two
results agree only for small §,. At low T, but still in the Boltzmann regime.
the relative size of the correction is (a/1;)?, which is small. This presumably
goes over to (a/ro)’ in the degenerate case, also a small correction. Al high
T the difference is presumably as large as the term itself. However, (he
correction affects only mean-field terms, where it is completely negligible,
and probably the spin-rotation term, where it is then the same order as the
lateral spin rotation term discussed in Sec. 6.4. The distinclion between &,
and sin §,cos &, interactions also appears in discussions of statistica! and
dynamical quasiparticles in Fermi liquid theory.’’ Also see Ref. 32 for a
recent brief discussion of this question.

6.8. Off-Energy-Shell Corrections

We have seen above that there are off-shell corrections to spin rotation
as given in Eq. (2.30). These are probably the /; terms discussed previously
in the literature.”” We have not yel tried to analyze these terms, but since,
in comparison with the leading spin-rotation terms, they have an extra T-
matrix element and an extra distribution function factor, we expect these
terms to be of order n¥(0)/kTr in the degenerate limit and nV(0) /& T is the
Boltzmann limit. These estimates translate to a/r, in the degenerate limit
andwuldy/ry in the Boltzmann limit, respectively, just like the mean-field terms
of Sec. 6.1 or the Fu-Pethick corrections of Sec. 6.7. Thus they could be of
order 10% corrections.

We see that the most important approximations that we ought to correct
in future calculations are the low-order variational estimate, and the neglect
of the Fu-Pethick corrections and off-shell spin-rotation terms. All of these
should be straightforward to compute in the degenerate limit and possibly in
the Bolizmann limit. Unfortunately most of the data exist in the intermediate
region around T where the corrections are more difficult. We hope 10 return
to this problem in the future.

7. COMPARISON WITH EXPERIMENT

We compule theoretical results by using the Ebner potential,'® which
was originally determined by fitting thermal conductivity, spin diffusion, and
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Fig 4 Transverse diffusion constan: D, divided by identical-particle spin-
rotation parameter y times polarization M. The experimental data is from
the UMasf spin-wave experiment (Rel. 10) with concentration y=
I 322{( 107 (Tr=398mK) and Bx80 T. The theoretical calculations
result in the solid line when the Ebner potential ¥(g) (Ref. 13) is used, and
the dotted line for an s-wave approximation that uses only ¥(0). i

viscosity data at tlemperatures in the Boltzmann regime of temperatures and
at the relatively high concentrations of 1.3% and 5%. The agreement in Ref,
i3 was generally to within about 10-15%. We use this potential rather than
others that exist in the literature because it remains valid at fairly high
temperatures used for some of the data with which we compare our theory
here. Also we find that the Ebner potential provides better agreemenl with
the data than do other potentials. It has been stressed in (he past that ideally
one should have data and theory where the s-wave approximation is valid.*
For an s-wave analysis we replace the Ebner potential with F(0), the value
at g=0. We find, however, that al] experimenis that we analyze extend over
;uch 4 temperature range that the g-dependence of the potential is quite
important for their interpretation. We have shown above how we may
mc]udc this g-dependence in the theory [t is surprising that hoth the absolute
magnilude and the g-dependence given by the Ebner potential give quite
rca.somblc agreement belween theory and experiment. We could take the
point of view as in Ref. [0 that the experiments can be used Lo determine
the potentiai more accurately. However, our anatysis of Sec. 6 indicales
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Fig. 3. uM versus temperature for the parameters x=1822x107?, B=
8.0 of the UMass experiment. The theory gives the solid Iing with the
Ebner potentiat and the dotted line for the s-wave approximation

that the error in the theoretical calculations is probably bigger than the
discrepancy between theory and experiment so that we do not try to vary
potential parameters here to improve the fit.

The recent experiment of Candela er al.'® involves spin-wave measure-
ment of the quantities D, /u M and uM. The former quantity comes from
the frequency of the spin-wave peaks, and the latter from their width. In
Figs. 4 and 5 we plot these quantities from the present theory and from
experiment versus temperature. For the conditions of the first UMass experi-
ment, x=182x 107" (T,=39.8 mK) and B=8.0 T, the s-wave results fall
considerably below the D, /i M values, but use of the Ebner potential gives
reasonable agreement. The s-wave value of M differs little from its value
with the potential. The maximum discrepancy with the D, /uM experiment
is about 5% at lowest T and about 20% at low T for the 1M dala, although
in the latter case the theory is almost always within the error bars of the
experiment.

InFigs 6 and 7, we show theory and experiment for a smaller concentra-
tion of x=6.26x 107", Here the Fermi temperature is Tr=19.5mK. The
agreement with the p#Af data is about the same as in the higher concentra-
tion (with a maximum disagreement of about 15% at the lowest T). The

_‘a_:-
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Fig. 6. D, /uM versus T for the parameters x =626 x 10" (T, = 9.5 mK}
and B=8.0T of the UMass experiment. Notation is as in Fig- 4.

D, /uM theory is in reasonable agreement at the higher T but falls above
the low T data by around 5%.

For the uM UMass data, the s-wave approximation’s results are quite
close to that of the full potential, while for the data involving D, it is clear
that the full polential is needed.

In Fig. 8 we present the results of calculations of the longitudinal diffu-
sion constant to compare with experiments performed by Nunes er al.
at Cornell. One experiment was at a concentration of x=3.5 x [0™* (Tr=
13.3mK) and an external field of 8=9.2 T. We see from the figure that the
theory with the Ebner potential does quite a good job with an error of only
about 6% at the minimum in the curve. The s-wave approximation falls
below the data over the whole range. The minimum in the curves comes in
the crossover from degenerate Fermi behavior in which D, is proportional
to T7% to Boltzmann behavior where it goes like 7'/%. The high T maximum
occurs because the potential goes from attractive (o repulsive al g~0.5 A"
and its integral over momentum tends to maximally cancei al a correspond-
ing temperature. The position of the maximum in the theory is in good
agreement with experiment. The second experiment was at a larger concen-
tration of x=1.94x]0"? (Tr=41.4 mK). Here the calculations shown in
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15} — Ebner potential
s-wave
+ UMass experiment
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Fig. 7. uM versus T for the parameters x=6.26x 10"*, 8=8.0 T of the
UMass experiment. Noetation as in Fig. §.

Fig. 9 are not nearly in such good agreement with experiment. At the mini-
mum the discrepancy is about 20%; at the maximum it is about 15%—
descrepancies roughly in agreement with the maximum theory error esti-
mates of Sec. 6. At present we have no idea why the lower concentration
data are in so much better agreement with experiment than the high concen-
tration data. The high concentration in the Cornell experiment is much the
same as that in the high concenltration case of the UMass experiment, and
indeed we can multiply D, /uM by uM to extract D; from the data. Such
data fall quite consistently on the curve of experimental D; values in the
range 10-20 mK. This happens to be right where the theoretical curve passes
through the experimental Cornell data. Thus one could say thal we were
somewhat lucky in achieving such good agreement with the UMass data in
Fig. 4. Note that the good agreement between the measurements of the
transverse and longitudinal diffusion constants indicates thal the tempera-
ture is not yet sufficiently low that these two quantities have diverged from
one another as predicted by the theory. Actually the theory predicts that D,
should be less than Dy by 3% at the lowest temperatures reached in the
UMass experiment as shown in Fig. 3. This difference is clearly too small to
be established from the experiment,

-0 -
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Fig. 8. Longitudinal spin diffusion coefficient Dy versus temperature for
the paramelers x=3.5 x O (T, =133mK) and B=92 T involved in the
Cornell experiment (Rel. i1). The data are represented by solid circles. The
theory curves are d_criv:d by use of the Ebner potential (sclid line) and the
s-wave approximation (dotted line).

We havg discussed the size of the mean-field corrections briefly in Sec.
6. \\'/e examine here these corrections, which have been included in both
longxtu_dma[ and transverse numerical calculations, quantitatively. These
corrections are of two kinds: (a) a correction in the calculation of the polariz-
auon‘duc to including the energy mean-field term of Eq. (3.9}, in the Fermi
functions n,,, and (b) one analogous to the (1 + F§) factor in the diffusion
constant of Fermi liquid theory. The former has been discussed previously.’®
Here it causes a change in the magnetization calculated for a given temper.a-
ture and external field and a change in the effective chemical potentials
that enter the calculations. For example, for the high concentration UMass
parameters and at a temperature of § mK, the correction (o M amounts to
a_dccrease of 6% However, the resulting change in D, is less than 0.5%
The effects of this correction are even smaller at higher temperatures Co;rcc;
tions of the typc {b) appears as correction terms to @, and @, in Eq;s (3.28)
and (3.27) with (3.19). In the high concentration UMass situation théy n::sult'
moan mcrease of D by about 7-8% alt the lowest temperatures with smaller
correclions at higher temperatures. Similar corrections occur in the high
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Fig. 9. Dy versus T for the parameters x=1.94 % 167 (T,=41.5mK) and
B=92T of the Corneli experiment, Notation is as in Fig. &

concentration longitudinal diffusion constant. We have used the s-wave
approximation in all mean-field corrections.

In the low concentration Cornell data conditions the mean-field correc-
tions are smaller because the concentration is smaller, but they are not
completely negligible there either. At the lowest temperature of the data, the
type (a) correction leads to a change in D of less than 0.5%, but the type
(b) correction increases D by about 4% at the lowest temperatures.

Type (a) mean-field corrections also affect M only a bit. The nonlocal
corrections to p could be classified as mean-field corrections (and therefore
of type (b)), but as we have discussed above in Sec. 6 these should be small
and have not yet been computed.

In a previous paper”® we have presented theoretical results for the viscos-
ity of polarized dilute solutions and compared them to vibrating wire expert-
mental results. The details of the calculation were not given there and will
not be given here either, because the theoretical treatment is the same as
that described previously by the Nottingham group.® For completeness,
however, we discuss the results here. Figure 10 shows the viscosity as a
function of temperature and polarization. As found in Ref. 40, it is too
difficult to compute the viscosity with the full g-dependence of the potential;
thus we make a Taylor expansion of the Ebner potential and keep only
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Fig. 10. Viscosity n versus temperature and magnelic field. The filled circles
are UMass data for | T and the filled triangles for 8§ T. The theory curves
are as follows: Dotted lines are caloulations for these two Relds using a
quadratic approximation 10 the Ebner potential ¥(g). For the solid curves
the Ebner potential parameter Vy [Eq. (5.6)] was increased by 7. The
downtuen in these curves is an artifact of the quadratic approximation and
the dash-dotted lines show the caleulation in the Boltzmann limit where the
exact potential can be used. The dashed line is the s-wave approximation
that uses the adjusted value of ¥(0).

a quadratic approximation. This should be adequate for the low enough
lemperature. As one can see from the figure, the calculation with the unal-
tered Ebner potential is not in very good agreement with the absolute value
of viscosity 1. There may actually be some difficulty in accurately determin-
ing the absolute value experimentally. However, the polarization and tem-
perature dependence of the theory are in excellent agreement with experiment
and these relative values should be accurately determined in the experiment.
To show this agreement we alter Vo, the overall coefficient of the potential,
by 7% to shift the theory onto the data (curves shifted by about 14%). The
curves agree up to the point where the quadratic approximation breaks down
and the theory falls below the data. For temperatures higher than that we
can then compute n by using the exact potential in the equations derivable
from our theory for the Boltzmann limit. The dashed line shows this calcula-
tion which is again in good agreement with the experiment. The variational

-
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error in the theory is about 7% in the degenerate system’ a1 all relevant
polarizations.

The caleulations reported above show that we can provide s 1easonable
description, within known errors of the theory, of Jbolh Iongm:({inal_and
transverse spin diffusion effects in dilute solutions of *He in liquid *He |f we
use an effective potential to describe the interactions The theory, derx}'ed
from a kinetic equation generalized to account for arbitrary spin polaljzaA
tion, has been improved over its previous Born anc]_ s-matnx approximations
by tncluding a T-matrix description of the interactions. This has the advant-
age of giving the proper Boltzmann limit and a]lowmg the lnclulsxon of a
phenomenological effective interaction that was preylous!y (iglcrmmcd from
transport experiments on morte concentrated solutions at h1ghe.r temperi-
tures. Rather amazingly we achieve good agreement with expcrlmem with
the original unaltered Ebner potential. FuFure wo;k ought to include
improvements to the worst approximations discussed in Sec. 6, namely the
variational approximation, the concentration dependence of the polential,
and the off-energy-shell corrections.
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Magnetization Measurement of “He Film Adsorbed on
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The static magnetization of 'He film adsorbed on sintered 5;‘1u;zr .powder has
been measured for coverages from (.10 to 02.54 amms//i) in :r/eﬁ}v r}c:_:
0.02 atoms/ A and at a coverage of 4.5 atoms/ A Below 0.20 atoms .
magnetization well obeys the Curie law, while above that coverage aferro.mczrg
ne(;!igc tendency appears. The coverage dcpcna’effge gf the mag'rzei:.zar;on g;a;iai

] 0.23 atoms/ A the magnetization has
differs from that for graphite. At ey
ike that for graphite; however, the magnitude of p' 8e
?’tﬁrh;fm{)‘re, f: rfu!!ipeak structure is found in the isotherm of the mag;}erf;
tion at 0.2 mK. It has two prominent peaks a 0.2/3/f§m;70‘29;;;;:::,-/.03;,'0011'
: hese :

eaks are found at .35 and 0.41 atoms/ A",

::Zyoiﬁf;r in J'nterva{of().% atoms/A?, which is nearly equal to the coverag:

of one liguid layer.

1. INTRODUCTION

There has been a great deal of interest recently in the Ferromagnells;:

of adsorbed 'He film. This ferromagnetism appears for temperatures c[)n
in mK region, and is thought to be caused by the spin exchange interactios
] 5. V .
belw;?c fI:rer:;ioar;netism was first observed by Ahonen el al mdttljc experi
ment of liquid "He in contact with Mylar sheets as surface.-mdgc:jc 'crr:rr:iag
netism. They also demonstrated the ferromagnetism has its origin i the hrs
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Anisotropic Spin Diffusion and Multiple Spin Echoes
' in *He-*He Solutions

R. J. Ragan and W. J. Mullin
Department of Physics and Astronomy. Universit v of Massuchusetts, Amberst, MA 01003

(Received October 12, 1995; revised November 29, 1995)

We propose a 0, —t, — @, pulse-NMR experiment to detect the spin-diffusion
anisotropy, AD =D, =D, in degenerate spin-polarized *He-*He mixiyres,
where D | and Dy, are the transverse and longitudinal spin diffusion coef-
Sicients. In such an experiment the nonlinearity of the dynamics produces
multiple spin echoes (MSE). At the *He concentration x = 4% the spin-
rotation parameter vanishes (UM — 0), so that the nonlinearity of the equa-
tions of motion is entirely due to the anisotropy. In this situation, detection
of MSE amounts to observation of 4D. For slight anisolropy, Je.
AD/Dy $0.25, we use a perturbation scheme similiar to that developed by
Einzel et al. (in that case, Sor small uM and small demagnetizing field) to
calculate the second and third echo heights. For lurger GRISOrOpy we numeri-
cally calculate the echo heights. We find that for 4D/D =035 the heights
are 2% of the first echo, and should be detectable. The (0,.0,) tip-angle
dependence of the AD echoes is different from that of the “#M and
demagnetization echoes, and Surthermore, they occur at right angles to (ese
echoes (in spin space). Thus, even when small spin-rotation and demagnetiza-
tion effects are present, the 8, —t,— 0, experiment provides a sensitive
means of detecting the anisotropy.

1. INTRODUCTION

It is well established that spin diffusion in polarized Fermi fluids s
anisotropic at low enough temperatures and high enough polarizations, In
these systems, spin diffusion is parameterized by longitudinal and truns-
verse diffusion coeflicients, Dy, and D, which characterize diffusion
paralle! and perpendicular, respectively, to the local magnetization density
M. As demonstrated by detailed kinetic-theory calculations for dilute
*He-*He solutions, the anisotropy of spin diffusion reflects the underlying
anisotropy of the diagonal and off-diagonal parts of the drift and collision
terms of the kinetic equation for the spin-; distribution matrix.?* In (he
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limit of zero polarization, spin diffusion is isotropic, and at degenerate tem-
peratures both D, and D, diverge as 1/72 In the dilute limit,

D (T, Py=D (T, P)=Dy(T)=tv2t,, PO (1)
f

where P=(n, —n~)/(n* + n~) is the polarization, and n¥ are the occupa-
tion numbers for up and down spins. In Eq. (1), vs is the Fermi velocity,
Tr=3hCp/(8nm¥akiT?) is the temperature-driven relaxation time, m$ is
the quasi-particle effective mass, a,~ —1 A is the s-wave scattering length,
and Cp,=C(—1/3) ~0.843 is the Brokker-Sykes coeflicient.?

At non-zero polarization the diffusion coeflicients differ. D, decreases
due to additional scattering between the spin-up and spin-down Fermi sur-
faces. For slight polarization, the dilute theory predicts that D | decreases
according to*™

Dy(T)

R Y AT

P<l (2)

where the anisotropy temperature at the equilibrium polarization is given
by T,,=(2Cp)"? (nffBy/k y), where B, is the polarizing external field. We
can relate the polarization to the external field via M, = y,B,/u, and
M=n,fiP, where M, is the equilibrium magnetization, g, is the Pauli
susceptability, n, is the density of *He atoms, and # is the nuclear magnetic
moment. For dense concentrations, x,2 1%, we take Eq.(2) as a semi-
phenomenological form, where Do(T) and T,(P) can be measured in a
small-tip & — ¢, — 180 spin-echo experiment.®™

On the other hand, for small polarization, D, increases slightly due to
the larger average squared-velocity of the spin-up and spin-down Fermi
surfaces;

DT, Py=DyTYH 1+aP+ O(PY) (3)

where a ~ 1.3

The deviation of D, from T ~? dependence has been observed in
pulsed-NMR spin-echo experiments of the @ — 1, — 180 type, although only
in pure *He® and dense *He-‘He mixtures (2-4%).” The comparison
between theory and experiment remains unsatisfactory since the kinetic
theory applies only to dilute mixtures ( $1%), and the proper Fermi
liquid renormalization for dense systems is still unclear (although it seems
to involve more interaction parameters).’ Even so, the dense systems
exhibit a D, (T, P) dependence which qualitatively confirms the basic
phase-space arguments of the theory for dilute systems.

e R T T LT T PO RS CP PP

- On the other hand, the polarization dependence of D, has been mo
difficult to observe, since it is rather small effect except at very hig
polarizations (>90%).* Nunes ¢f /¥ measured D)) in dilute mixtures ¢
observing longitudinal spin diffusion between two reservoirs of up- an
down-spins connected via a thin channel, but the polarization ¢ffects wel
smaller than the error bars.

The anisotropy in the spin-diffusion coeflicients leads to nonline:
effects 1n the equation of motion of A7 which ure in addition to the no
linearities due to Leggett-Rice (LR) and demagnetization effecis. Or
might say that the full kinetic equation is not tested until the nonline:
effects introduced by the anisotropy are observed, that is, until the
Jerence AD =D, — D, 1s measured drectly. To this end, we propose
pulsed NMR multiple spin-echo (MSE) experiment of the #, -1 —¢
type at the concentration x, ~ 3-5% where the LR effect vanishes. We ref:
to this concentration as the critica! concentration X3.,. Recently,
26° — ¢, — 180° spin-echo experiment was performed at the critical concer
tration to measure the polarization dependence of D7 LR effects were n
observed (there was no shilt in the echo phase), which made a more precit
determination of P, possible, since the LR effect introduces an addition:
anisotropy between the diffusion coeflicients through O, = D A +u°M
(#M is the spin-rotation parameter) that is typicatly much larger than th
polarization-induced anisotropy. The experiment was perfornied at th
saturated vapor pressure in a magnetic field B,=88T, in which case th
critical concentration was found to be X3, = 3.8%. At this concentratio
and field strength, the spin polarization is small ~3%. and degeneral
temperatures are accessible (T= 300 mK) by dilution refrigeration. Th
anisotropy temperature was determined to be 1, =15mK, so that at th
lowest achieved temperatures, 7= 15mK, finite-polarization  eflec
reduced D, by about 50%.

We propose thata 6, —¢, — 8, experiment bLi¢ performed with the sam
parameters. It is well known that LR and demugnetization effects lead 1
the generation of MSE (higher harmonics) in a @, - ¢, - 6, experiment.” !
In both cases, the local value of M affects the local precession {requency ¢
experienced by the diffusing spins. This spatially periodic variation in th
precession frequency leads to refocusing of the spins at later times, resultin
in multiple echoes. In contrast, the anisotropy of the diffusion coefficiens
aflects the (spatial) motion of the spins, which in turn allects th
accumulated phase of a diffusing spin via ¢ = § Qz(1)] dr, where z(1) is th
trajectory of the spin. As with the LR and demagnetization effects, thi
leads to a refocusing of the spins at later times. At the critical concentra
tion, the nonlinearity of the equation of motion is entirely due to th
anisotropy in the diffusion coefficients—and, possibly, the demagnetizatio
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field—aithough the latter effect should be small {see below) Detection of
MSE at the critical concentration measures AD =D, — D, directly.

In principle, this experiment also provides an indirect means for
observing the polanzation dependence of D, although its effects in a
i — 1, — ), experiment are expected to be small compared to those of D |,
and might not be discernable within experimental error.

In the following. we present a calculation of the MSE generated by
anisotropy 1n the diffusion coefficients due to slight polarization. In Sec. I,
we formulate the problem of calculating the echo heights, with the
polarization dependence of the diffusion coefficients taken into account. In
Sec. 11, we carry out a perturbative calculation, similiar to that of Einzel
el al, which predicts second and third echoes whose heights are propot-
tional to the anisotropy, AD. In Sec. IV, we extend the perturbation theory
results to large anisotropy by calculating the echo heights numerically.

2. EQUATIONS OF MOTION

We consider a pulsed-NMR spin-echo experiment on a spin-polarized
'He-“He mixture.'® If we neglect non-spin conserving processes ( Ty and T,
are typically much longer than a spin-echo experiment) then the dynamics
o the magnetization density is described by a continuity equation

8M(%, = =Y 3T (2 0+ yﬁ?(’j\’, Ox[B (3, 0N+ B, (201 (4)

where J, is thc_.fth component ol the spin current, B,,, is the applied exter-
nal field, and B, is the local dipolar demagnetizion field. In the usual spin-
echo experiment a large polarizing field B, is applied together with a linear
field gradient, B, = (B, + Gz)Z, so that the magnetization varies along the
z-direction only. For an effectively unbounded sample with a large enough
field gradient, the demagnetization field depends only on the local
magnetization density, B,=u,(M .2 — M/3)."" Additionally, spin-dependent
interactions between the quasi-particles give rise to a molecular field,
parallel to the local magnetization, about which the spin current precesses
at a frequency €2, (the spin-rotation effect}.'?

~ For low-frequency, long-wavelength variations of M (the hydro-
dynamic limit}, the spin current is given by' 2

. ‘DM
Jo= DM —-——E (s Sx A ¢
€8, M U+ G (.64 puMExdé) (5)

\yherc uM =Q, 7 s the spin-rotation parameter, and 1, is the relaxation
time of the transverse spin current. We have written A = Mé in terms of

the unit vector é. The transport coeflicients depend on = and ¢ through their
dependence on the polarization P{z, ). ‘ ‘ o

Substitution of Eq.(3) into the conlmulty‘ muahon results in 4 non-
linear equation of motion for A7. The nonlinearities are due not only‘lo .the
demagnetization fields and LR effects, but also the anisotropic pqlamzal;on
dependence of the transport coeflicients. Furthermqrg, anisotropic diffusion
characterized by transverse and longitudinal coeflicients 1s fundamentally
nonlinear, even when D, and D are treated as constants." o

For high temperatures and low polarizationl the. dgmagn;uzauon and
the Leggett-Rice effects are negligible, and diffusion 13 isotropic, Dy=D,,
so that eqs. (4-3) reduce to the linear Torrey equation, .Wthh can be
solved exactly for a uniform field gradient. In the case of a ff,—1 ~1th
experiment the linear prohlem yiclds a single echo at time ¢ =t after the
#, pulse; no multiple spin echoes are expected. One can account foy small
nonlinearities by using first-order perturbation theory with the solutions of
the linear problem as a basis set. Einzel et al. treat the case of very !ow
polarization and degenerate temperatures, where [y M| <‘l. demagneu_za-
tion effects are small, and diffusion 1s essentially isotropic. Perturbation
theory seems to describe the @, —1, — 0, experimental dlam quite well,
predicting a second echo at r=2r, whose height is proporuc_)nul to the ‘LR
and demagnetization terms.® At lower temperatures and ht‘gher p_olar.xza-
tions, we can have large LR effects (M 2 1) but essentially isotropic diffu-
sion (T3 T,}. This regime was studied by Bedford e al, who were .able to
fit second and higher numerically calculated echoes to their experimental
data.'’

We are interested in a multiple spin-echo experiment at the *He
critical concentration where the LR effect is absent, but the anisotropic
polarization dependence of the spin diffusion coeflicients is present, The LR
effect is characterized by an internal precession frequency which, at the
equilibrium, can be represented as Q. (Pt =18, wher.c zl.is the molecular
field parameter, and Q,,{(Py) is the equilibrium polarization, Py = P(B,).
In terms of the Landau interaction parameters, the parameter 4 is given
by A={1 +F¢ '~ (1 +F43)"" As a function of the *He concentration,
A changes sign at the critical concentration, 4=0, i.e, Fg= F4/3.' Bedell®
observed that in this situation there is a singularity in the dispersion
relation of the linearized kinetic equation, and suggested that in the
neighborhood of 1=0 the form of the relation switches from w~k* 10
w~k, so that Eq.(5) would be incorrect. However, Meyerovich and
Musaelian® have recently shown that this only applies to short (micro-
scopic) wavelengths; becaause of the zero-temperature attenuation of the
spin current the dispersion relation retains the &* form, and the dynamics
are purely diffusive in the k — 0 (hydrodynamic) limit.
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In the following, we assume that *He concentration is at or near the
critical concentration, so LR effects can be neglected, ie, |uM,| <1. We
also assume that the relaxation rate of the transverse magnetization
due to diffusion is large compared to the demagnetization frequency,
(Doy?G?)'” » ypy M, so that demagnetization effects are small. Both these
conditions held, for example, in the experiment of Bedford eral and
Owers-Bradley ef af with *He-*He mixtures.

To account for the spatial and temporal variation of the diffusion coef-
ficients during the experiment we write,

Dy(T)
L+3,(M/M,)? ()
DyT, M)y=Do(T)[1+8,(M/M,]

D (T M=

where the parameters &, |, depend only on the temperature and the

equilibrium polarization, & = [ T,(P,)/T']? and d,, = Py. At equilibrium,

the anisotropy in the diffusion coefficients can be expressed as AD =
Dy—-D, =[8,+6,/(14+6,)] D,. .

With these assumptions, the equations of motion for M(z, t) become

0, M=—3,7, +yMxGz$ :

’ D (7)
£ Ma,é

J.= = Do[1+68,(M/Ms)] éa;M— T MM

which are written for the Larmor frame. We put these equations into
dimensionless form by writing ¢ =1¢,, z ={/(yG1,),

D* = Doy*G1}, tiv = M/M,, and f= J yG13 /M,

Q1= =0 j+ntx{F (8)
Dlﬁ
f= —D'(l +5”) éa(m—mmace

where ¢, is the interval between pulses in a 0, —¢, —#, experiment, and
2nfyGr, is the pitch length of the helix when the 8, puise is applied.

It is convenient to express the transverse magnetization and spin
current as m* =m, +im,, and j*=j +i, . Further, we write m* =
e*%a¥ b=m,, and j*=e*4c*! d=,, where the functions a*({, 1),
b({, 1), ¢*({, 1), d({, 1) have spatial period 2n, and b, 4 are real. Making
these substitutions into Eq. (8), we get

d.a*=—0.c* +itc*

3,b=~0,d

(9)

Antsotrapic Spin Diffusion and Multiple Spin 407
and
! S, m’ D=
ct= - D* (r)”m + . ﬁ) at@ lnmr — = (Gt gt
X L+d,m° +d m

. . (A
; O e 0
d= —D*[ 0, m e ;)hﬁ—]nm Ce—
v P+d e * T+d m

,

where mi =g+ 4°

_oInw &1 0, experiment the mitially  wmlorm magnetization
M=M;? is rotated about, say, the v-axis, by an angle . giving
my=sind,, m. =cosf al time ¢ = — 1, Until the second pulse at 1 = 0 the
magnetization evolves as a helix. with m. untform and constant, and
the transverse magnetization described by m" =id(t)¢ ', where Alr)
satisfies the equation

o D*
A L (1
AT eosT )
This equation can be integrated from r= —1 10 =1 to yield an implicen
solution for A4({}),

{(1+3, cos:t’f,}lrl[.ﬂ())/’mt] G+ [ 40 —sint 0, = —D*3 (12

For 8 =0 this reduces to the hinear results, 4(0) =sin #, expl — 3*/3)
At =0 a second pulse is applied that rotites the nuignetization about
the x-axis by a further angle t, giving, for the initial conditions at ¢ = ( ’,

@ *{Z, 0)=icos 0, sin 0, ﬁé AO[(1 = cos 041 e+ (1 +cos ) ¢ <)
{13y
b({,0)=cos ¥, cos 0, — A(0) sin 0, cos {

To caiculate the spin echoes in a &, — 1, — 0, experiment, one numerically
integrates Eqs. (9-10) with initial conditions {12-13). The spatial integral
of the transverse magnetization vanishes except at the times ¢ = nt,, where
spin echoes occur whose heights are proportional to

] aln
= e

27(—0

-y

al{, n) (1)

I

The size of the spin echoes depends on the parameters 4, 0,, D* 5, and
9 n a rather ;omplicate_d way, so it is worthwhile to carry out a pertur-
bative calculation for slight anisotropy, in which case the parametric
dependence can be factored.
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3. PERTURBATION THEORY RESULTS

In the following, we assume that the anisotropy is small, é, <1, s0
that first-order perturbation theory applies. To first order in ), we have
D =Do(TH1=6,m*) + 0(8%), so the anisotropy at equilibrium can be
written as AD >~ (4, +4,) D,. Substituting this into Eqs (8) we get the
equation of motion for s,

! )
dm* = D*am™ +ilm* =8, D*, | - m*d,(m?) —m?d,m*
' @ )3 ¢ ¢

l [ adm*
+55..I)*6c[(—;;;mnw %0(62) (15)
and
6tn11_D‘acgm,=0+O((s) (]6)

where we have written 6=§, +46,,. In the equation for m, we have
dropped terms that are O{4), since their effect on the spin echoes is ({é%).

We treat this problem by first solving the zero-order equation (the
Torrey equation),

]
8 =1 x [+ D*3, 1t (17)
re

and then using the zero-order solutions in the first-order (in &) terms of
Eq. (15).

Following Einzel er a/, we expand s in a Fourier series:

m* =e gt ry=p K Za"(r}e*"c
" {18}
m,=b({, t)=Y b fr)e™

Substituting (18) into (17} and equating powers of ¢“ and using the initial
conditions, Eq. (13), we find the zero-order solutions, for ¢ > 0,

i

a, (t)=3% 2sin(),(1Icos()z)cxp[v%m((rii)’il+l)}

, D*
aolt)=icos f sin B, exp (- S r’)

] 1 (12)
bo(1)= -—;sin &y sin 6, exp[ -~ D* (r+§>]

by=cos i, cos 8,

From (14} we see that the nth echo height 1s given by £, =« (n). Thus,
from (19), the first echo is

Ei=ai{l)= - é sin f7,(1 —cos () exp( —2D*3) (20}

For small antsotropy the correction to (20) s O(J).
To calculate the echo heights we substitute Eqs. (19) into the RHS of
(15), and equate powers of ¢ Now, writing

5

2 |
Y e

n= —|1

N

el
Z i, ¢

n= -

{20

2
M=

we see that the zero-order expression for ni® is a finite series in powers of
e®. As an aside, we note that m? is not uniform (see Fig.[1]) for a
¢, - 1, - 1; experiment, even for the linear problem (6 = 0). This point has
not been fully appreciated in the literature, where the nonuniformity has
been attributed to nonlinearities.'® Now, only the % and ¢ terms in
Eq. (21) give rise to multiple spin echoes. To order 4°, one finds that a
second and third echo are generated which are proportional to 4. Actually,
the 4;, term involves the Fourter expansion of m = {m?)"? which has higher
harmonics, but for 1> 2 these are typically small, resulting in very small

0.8 1

oef

o
£
0.4 }
v \/\/
ol -
0.0 0.2 ¢ 6 0.8 1.0

4 <-/2T\— 0.

Fig. 1. The variation of m*{,t) for =0 over one spatial period for
a 55—+, — 90 pulse sequence calculated from Eq. (13}, with D* =0.2. In des-
cending order the curves correspond to the times T=0, 1, 2, 3.
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higher echoes. Substituting (18), and (21} into (15}, and equating powers
of e*, we obtain the differential equations for &, and a,:

d [
—a,+D*t—nYa,=—iD*(1—n) ,_J e "[8, S+ 8, gldl+ 0%
dT 2]'( [

(22)
with
La,(m*) |
f(C.T)=5(;W50
(23)
gL, r)=%a+a,(m2)~m2(aca* —ftat)

where we have integrated by parts and used the periodicity of a*, b to
eliminate the boundary term. Solving Eq. (22) with the initial conditions
a5(0) = a4(0) =0, we can write the echo heights as

E(D*)=a,n)=48,F,+46,G, (24)
| i

with ;
/

F(D*)= —iD* L" (1~ ) eD07c-ni [ 51; j:" e "L, 1) ch dr (25)

and likewise for G, (D*), with g({, ) in place of f({, 7). At this point we
must resort to numerical calculation. However, by using (19} in Egs. (23)
we can factor out the (4, £#,)-dependence of G, as

G, o cos 0, sin 0, ki@, D*)
2 ¥ 1 { 2 (26)

Gy o sin® 8, sin’® 6,

where the angular dependence of the function A(#;, D*) increases
monotonically from A(0, D*) =0 to A(n/2, D*). The angular dependence of
F, cannot be factored, but is numerically almost identical to that of G,,.
In comparison to Einzel's results, the angular dependence of F,, G,, is
markedly different from that of the second uM-echo,® E,[uM] «
sin? @, sin 8,(1 —cos #,). (The demagnetization echoes have the same
angular dependence as the uM-echoes). In particular, there is no second
AD-echo for 8, = n/2, while the second gM-echo is maximized at this angle
(the second AD-echo is maximized when 8, =cos"(l/ﬁ ) = 55°). In fact,
for a 90—, —90 experiment, there are only odd-n echoes, even for
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arbitrarily large anisotropy. This is evident from Eqs (9-10), since 1f ¢*
consists of only odd powers of ¢, then d.a” consists of only odd powers
as well (m? consists of even powers}. Furthermore, the AD echoes are
imaginary (ie, in the y-direction} while the M and demagneuzation
echoes are real (Recall that the v-axis is the rotational axls of the RF
pulses.}) The second Af) echo occurs in the negative y-direction, while the
third occurs in the positive. This feature persists for Luge anmisotropy as
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Fig. 2. The funclior}s FAD*), G (D*) a) F3 (solid fine} and G, (dashed line) for
a 55 —1, — 90 experiment. b} £, {solid ling) and G, (dashed tine) for a 90 — 1 —-90
eXperiment.
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Fig. 3_. a) Normaiized heights of the first, second and third echoes, E =
£./[5in 8,(1 —cos 8;)/21, for the pulse sequence 53—y, 90 for 5, =1, 4, - 0,03,
The solid line is the first echo height, the dotted line is the second, and the dashed
line is Fhe third For this pulse sequence the second echo is maximized. b) The first
and third echo heights for a 90 — 1, 90 experiment with the same parameters as
Fig [3a]. There 15 no second echo for this pulse sequence

well. Thus, the effects of anisotropy should be easily distinguishable from
the effects of small LR and demagnetization elfects.

As functions ol D*, the functions F,, (, arc very similar to each other;
F,, G, and, hence the second echo, are maximum at D* ~ 0.6, while F,,
(4, and the third echo are maximized at D* =03, In Fig. [ 2] we show
FD*), G, (D*) obtained by numerical integration of Eqs. (20-21) for the
two pulse sequences, 90 — ¢, — 90 und 55 — ¢, - 90.

4. NUMERICAL RESULTS

In recent experiments, the smallest multiple spin echoes that are
reported are typically ~0.5% -t % of the first echo height.” ' This corre-
sponds to an anisotropy 6 ~ 0.5, ie, 7'~ T,. Although this degree of aniso-
tropy is obtainable experimentally, it is not quantitatively described by per-
turbation theory. In the following, we report the results of a numerical
study of the multiple echoes due to large anisotropy (8 2 0.5). We restrict
our attention to two cases: the second echo in a 55—+, — 90 experiment
(where E, is maximized), and the third echo in a 90—, ~ 90 experiment
(where £, 1s maximzed, and £,=0).

To calculate the echo heights, we use a real-space finite-diflerence
scheme to integrate Eqs. (9-10) with Egs. (12-13) as the initial conditions.
We use the experimental parameters of Bedford eral, ie, P,=3%
(8;=003)and 7, =15 mK. We also assume that LR and demagnetization
effects are neghgible, ie, uM,—0, and yu, M,/ Dy*G*)'"* = 0, which
should be the case at the critical 'He concentration and at low enough tem-
peratures and high enough fetd gradients.

0125
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0.075 } P
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i

0.000 L = L
c 2 4 6 8 10

o

Fig. 4.' Maximum normalized echo height for the second echo in a 35—-6-90
experiment (solid line), and third echo in a 90 - ¢, —90 experiment (dashed line).
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In Fig. [3] we show calculated spin echoes as functions of D* for
¢, = |. The main effects of finite & are not only an increase in the echo size
but also a shift of the maximum echo height to larger D* To good
approximation we find D}, ~0.25+ 01254, for the third echo in a

90 — 1, — 90 experiment, and D¥,, ~055 + 0.258 , for the second echo in a
55 —1,~90 experiment. The corresponding maximum (normalized) echo
heights as functions of 4, are shown in Fig. [4]. For the largest anisotropy
shown, § | =10 (T=5 mK), the second and third echoes should be ~10%

of the first echo and should be easily detectable.

5. DISCUSSION

Of course, there will always be at least small LR and demagnetiza-
tion effects present. We conclude by estimating the size of LR and demag-
netization echoes in a 3.8% solution with B,=8.87 at a temperature
T=15mK, as in the experiment of Owers-Bradley et al” The height of
the second demagnetization echo is given by E£ = ff, s(D*), where f; has a
maximum f,(1/8) = 0.18, and B = yuox, Bo /(Do y*G?)'*° Using D T3 =70
(em?s™' mK?), ,~4x 107 and G~ 10(Gauss/cm),” we find that E£ ~
6x 10" is small compared to the expected AD-echo heights, which are
about 2%. Likewise, the second LR echo is given by af,(D*), where
S.(0.4) = 0.05 is the maximum, and a =4M,. Comparing the echo sizes, we
find that LR effects are smaller than-anisotropy effects for M, <04.

Finally, we remark that observation of 60D echoes will be some-
what muddied by any polarization dependence of the molecular field
parameter A(7, P). If the polarization dependence of A is appreciable
then we cannot simply set uM =0 for a given spin-echo experiment.
Meyerovich and Musaelin® parameterize this possible dependence as
uM=A{x ~x(Bym, T)} Qomr (By, T} with  x (T, Hmy=x(T,0)+
ki28Hm)fk s Tr), where k, is an unknown constant. Thus, if in the
neighborhood of x,,, A=(dA/dx)l ;e (X3— X3, then we would
expect uM 1o depend on m as

Qo1 ,(T, O)m

1+4§, m? (27}

UM ={AT,0)—am]
with a=kH{ZZﬁBO/kBTF)(dA/dx):I,,,_x}m. We expect the polarization
dependence of 4 to be a small effect. If it is detectable it would give rise
to a second echo in a 90 —¢; —~90 experiment, in which case it could
accounted for by putting Eq. (27) into Eq. {5) and keeping terms which are
first order in M. But before we speculate further, some experimental data
is needed to see which direction the analysis should take.
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