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Lecture I;

QUANTUM MONTE CARLO FOR COMPLEX-VALUED STATES I

FIXED-PHASE CONSTRAINT

Lecture I1I:

QUANTUM MONTE CARLO FOR COMPLEX-VALUED STATES I11:

RELEASING THE CONSTRAINT




[Astrophysical Applications

¢ Some Compact Stellar Remnants U;ﬁiérgo Flux Compressiq

WD

A 10'B
_—

R/100000 R/100

o Main Sequence (MS) R ~ 10" cm, B ~ 10°G |
o White Dwarf (WD) R ~ 10°cm, B ~ 108G
o Neutron Star (NS) R ~ 106 cm, B ~ 1012G

e Stellar ngh Magnetic Field Laboratorles

o Observed White Dwarf Stars with Fossil Fields B > 108 G-
o Neutron Stars with B 2 10'* G |
o Anomalous Magnetized White Dwarf Spectra (GD229)
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'Solid State Applicationsl

¢ Excitons in Semiconductors with Large Dielectric Constants

fle _v2_ 2# Lop (M) L.+ 8%z%+ )

m*r my -+ m

Ry* = (m*/me®)Ry, B* = p(me/m*)?, B =B/4.701 x 10°G
o Effective mass of electron, m*, hole, m,
o For my, > m*, recover Hamiltonian for magnetized hydrogen
o InSb: m* = .013m, € = 16, 8* = 1.5 x 1053
e Other Systems:

o Quantum Dots |
o NHMFL Initiative to Achieve Sustainable B > 10 T



]General Outline of these Lectures I
Lecture I I

“In search of a stable stochastic solution free
from the Fermi demon”

A) Statement of the problem

B) Constraining the configuration (state) space:
— General quantum mechanical formulation
— Fermions in the euclidean continuum:
(Applications: ] |

Broken time reversal symmetry:

e Fractional QHE: fluid-solid transtion
¢ Normal Matter in superstrong magnetic fields

Excitations:

e Vortices in boson superfluids

— Fermions in curved space-time:
@\pplications: ]

e (Dirac) monopole-particle problem
e Fractional QHE on the sphere: energy gaps
C) Constraining the Slater-determinant (state) space:
— General auxiliary-field formulation

~— Lattice Fermions:

[Applications: J

e Hofstadter-type problems

-l -



Lecture 11 I

“Trying to live with the demon”

A) Improving a given phase function

— Cumulant expansion

[Applications: ]

e Vortex problem revisited-

B) Releasing the Constraints: — “exact”
— General quantum mechanical formulation

— Ground and excited states of a given symmetry

(Applications: ]

e Understanding the optical spectra of compact stellar
remnants: Atoms and Molecules in astrophysical con-
ditions



The Fixed-Phase Method

GS properties of a 2D quantum system in a B-field

—System:
N-fermions of mass m*
'L) s on a flat torus L A Lo
Sy
Ao v ¢ A (H=H)
Zi2mt 5 -

g lAr) B = . A(r) = (—By, 0) Landau
L —p,+cA(r;) .B = VAA ,and{ A(r) _ (—By/‘z’ Ba;/Q) Symmetric

Fﬁ; K] #0 (K :time—reversal) = VeC

-—Hydrodynamic Egs.: Reformulation of the eigen-
value problem.

¥ [H ¥)

[19]: ] TIED
where ¥(R) = |¥|explig] € L2(R™) and R € R*
Re {exp [—i¢] (ﬁ ~ E) \.II} =

From 6F =0 =
Sm {exp [—i¢] (ﬁ — E) lll} =0



or (in atomic units):

H|¥(R)| = [zX,% +V(R)|[¥(R)| = E|¥(R)|

=N, Vi [[ER)P (Vi (R) + A(rs))] = 0 :

where the effective potential V(R) is given by

1
V(R) = ¥ +2 3 (Vip(R) + A" + A
i>j |ri — 4
HY = E¥ = "Hydrodynamic MB Egs.”

¢ Interpretation:
® Fermion — Boson Mapping for |¥| (The
phase ¢ contains the statistics)

©® "Singular” Gauge Transformation — ficti-
tious vector potential (V;¢p)

—The Fixed-Phase Method (FPM): Two
steps:
1) Make a choice for ¢ (¢7).
2) Solve exactly the bosonic problem for ||

FPM provides a Variational bound for the energy and, for a prescribed

trial phase @r,the lowest energy consistent with this phase.




YA

FP Method Schematic

¢T) YT, R’O

Fo=|Vinyr(R)

' =r+7FoR) + x|—, .

G(R',R;7)[¢(R' R;T)

if R, R;7) > x thenr =1'|—

Ne

i
By = (Ex)y = 3 Bu(R)| 2.

Metropolis acceptance probability

. , R')’G(R,R/;
A = min(1, q), (R, R;7) = Ilﬁz((n))llz GER’, R;:;

Branching

n.=int lexp (—T(EL(R) + E(R)) —2E7)/2)]

—® -



e Remark:

For Real Symmetric Hamiltonians the FPM reduces
to the Fized-Node Method * when we make the choice

p=n[1-0Vr)] mod (2n)

Yr >0 Yr <0

7 mod (27)

]R,2N

where © is the Heaviside step function.

In this way the Bosonic Eq. is solved in domains of the
configuration space where hard wall boundary conditions
are imposed. Notice that the ”continuity” Eq. is exactly
satisfied inside these domains if there is no B-field !!

* J. B. Anderson ~ 1975



Exploring the set of phases ¢

— General criteria:

e Conservation of the group of symmetries of H
(unless some of them are spontaneously broken).

¢ Physical insight !

— Special set of admissible phases:

Constder trial functions of the form
VUr(z1, 29, -+, 2n) = F({2;}) exp [—Q({z,-, z;})] 1 z; = ¢+,

where F({z;}) € analytic (holomorphic) function of {2;}
(1.e., it belongs to the Bargmann space of analytic func-
tions), and

Eﬁil y} /2¢2  Landau Gauge

Q({zja'z;}) =
=iV |z|?/4€* Symmetric Gauge

These conditions on ¥7 imply:

Vi [[er(R) (Vi or(R) + A(r:))] = 0,
V,; - (V, (pT(R) -+ A(l‘,)) = 0

and

N 1
YR

A
T

Eloc(R) =

~12 -

H

4



)P(R, 1)
ot

4.
by
L

Solving the Boson Problem on the Torus

We use Stochastic Methods which are based on the
observation that the N-particle Schrédinger Eq. in Eu-
clidean time (Wick rotation, ¢ = i7) can be interpreted
as a diffusion and branching process.

For DMC: The master Eq. for the importance-sampled
distribution P(R,t) = |¥7(R)| |¥(R,t)| is given by:

1

_ f;l Ve[ SViP(R,1) — Fi(R) P(R,) - (BuR) — Ex) P(R,1)

|¥r(R)] —— guide the random-walk.
F,('R.) =V, In|¥y| — drift velocity.

Eio(R) = |¥p| ' H|¥7r| — local energy.
¢ Stochastic dynamics:

P(R,t+At) = [dRG(R — R',At) P(R,1t)
G(R — R/, At) : Multiparticle Green’s function.

¢ Asymptotic distribution:
P(R,t — o0) — |[¥7(R)] [¥o(R)| = Po(R)
|Wo| : Lowest FP-energy state with {|Wo| | |¥r]) # 0.

-3



o GS energy:

f dR Poo(R) Eloc(R)
[ dR Po(R)

Ey = lim (Eie(R)) pryy =

o Generalized Periodic Boundary Conditions:

— B =0, Fﬁ; f’] = (0 == Periodic

Wp({r; +L}) = exp[+6 - L] ¥r({r;})

—IfB #0, Fﬁ; P] #£ 0 = Quasi-Periodic

\I’T({l‘j-l-L}) = exXp Lte L — ‘ljg:l AJ(L) ‘I’T({I‘j})

x; L,/ Landau Gauge
Aj(L) = |
(z; L, — y; L) /2€* Symmetric Gauge

= \/Z% ”magnetic length”

Consistently A must change by a Gauge = "Flux
Quantization” (& = Ngo,)

However, all quantities needed to solve the Boson Eq.
( |¥r|, F; ) are genuine periodic functions on the torus
— Simplification of the sampling.

- L=



Physics of 2D electrons in high B-fields

B
j=¢GE
E
Ty
X
|Ug; | , " classical”
e?/h —
T ~0 n= 23
High B 1 _-1,23
he 2n-) ~3°§'”

-3
| | 4nsi =5L ’?’/3 N
Integer : Single-body Problem —n—=§-,§- 4
QHE ‘
Fractional : Many-body Problem
FQHE: Important issue (GS):
Incompressible Liquid {re) Wigner Crystal

O O ()

Ts Ts

” Long-range order” "Liquid”

~% -



Incompressible Laughlin Liquid

— Disk Topology:

Laughlin’s construction:

1) No gapless excitations
Qv el

3) ¥ € antisymmetric

1 X 1 ,
U= Il (2i—z) exp {w—@— ‘21 |z,-|2] , V=M € odd integer
J___.

1<i<j<N
Then, Laughlin’s phase corresponds to:

om = mSm ¥ In(zi — 2;) "statistical phase”
1<j

— Torus Topology:

Haldane’s analysis — Elliptic Theta functions



Wigner Crystal State

(jl *_)1%—_%) (J1:72) €Z

N
Oy = Al &,(r,) (Slater Determinant)

(Svimetric Gauge)

1
\/)71'6)2( 1){ 102

B3: variational parameter

(B%r - R, - L)’ —21(r/\R,~+r/\L+R,/\L):)_]

Fo——- —— Y — —— —— ——— —



Magnetophonon correlations

e Free boundary conditions:

[pi — A(x:))
2

— N 1 . .. .
Hpp = Zl +3 Y z,(1)Dy, (i-5)z(5)
1= LIY) . :

x; =1; — Ry

In the large B-field limit:

1 ¥ *
Wprp = Pw exp [_EZ& B;; 6;‘] , &=2z—R ,
’ L2Y)

-1 __wp —wr i
B;; = © k-R;; ,
ij N 5 Wi + wr exp[a( k+ R"‘J)]
) . ' 5 ’L D12 _ Dn —_ D22
pli®] = T pry At ey Dy b=—">

¢ Torus Topology:

Pragmatic solution:

1
Upp = Pl exp l_@ %fi B;; 51']

- 18-
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“If you like excitement, conflict, and contro-
versy, especially when nothing very serious
is at stake, then you will love the history of

quantization on curved spaces.”

L.S. Shulman

-0 -



Quantun Projector Methods on Curved Manifolds

Let me illustrate the general idea with the following 1d equation:

P (D(rpc(r t)) = dole.t)

£

The “standard™ approach to Ainding the Green's function for this problem is
simply to solve the equation

DA D(rGlr )y = 0G{r. 1)

sihiject to the boundary condition

Gir.0} =d(x)
We can do this by taking the Fourier transform in z:
k2 f Dk — )G, t)dk' = BG (k. t)
with the boundary condition

G(k,0) =1

This is more complex than the usual diffusion equation because we get a
convoiution of D(k) and G(k.t). However, we can find an approximate solu-
tion for G(k.t). valid for small time. by noting that the boundary condition
implies that. for small times t.

Glk.t) — Gk . t) ~ O(t)

and so we have
42 f Dk — )Gk, )dk + Ot} = 3,G (k. )
or, simply,

—kD(z = 0)G{k.t) + O(t) = ARG (k. 1)

where D{r = 0} is D evaluated at the *prepoint*. For small times we can
ignore the order ¢ term (more about this later) and solve for G with the result

1

-2\ -



Glh.ty = e 000

Taking the inverse Fourier transform we finally have

(;{] Py = 1 (,—xr",‘l_-lD(())fl

[ ——

which is just the plain old Green's funetion with D evaluated at the prepoint
and with no quantum corrections. This is. in fact. the result that the
Green's function for the Jacobian times f has no quantum corrections. In
the context of the expansions this result involved the seemingly miraculous
cancellation of niany terms. Here it is. T think. more natural.

(Of course Gl t) is really an approximate Green's function. valid to
order Q(#*). which satisfies the equation

DU D(2)Gle, 1)) = 0G(x, 1) + Ot)

One can easily show that this is all we need for the small time Green's
function (I can tell you more on this if you like — it can be made every bit
as rigorous as the expansions...}.)

To make things clear let’s look at a different equation

Dz} G (x,t) = &Gz, t)

where we know there *are* quantum corrections. and see how things

g0.
Again, taking the Fourier transform we get

—fﬁDwaﬂw%MH:&mkﬂ

Making the same approximation as above, replacing G(K . t) with G(k.t) in
the integrand. making an error of order ¢, we have

A[WDwfm@@mﬂ+om:aGmm

but
/m+k%0uﬂaﬁzHpmy+%apwy+£0m)

2

-2



and =00 solving for Gk 1) as before we have
Gk t) ~ {,v(k—‘uunmzkaru(ua+a§D(0);r

when we take the inverse Fourier transform the terms with derivatives of D
give precisely the gquantnm corrections for this simple case.

We see a simple rule. If *all* the derivatives are brought all the way
to the left of the diffusion constant’. then the Green's function is simply
that for a constant dithwsion constant. no quantum corrections. with the
diffusion constant evaluated at the prepoint.

The general case is just as simple. Following the same argument as above,
given a differential equation of the form

D) o 1)) = D DIV FLe flr ) = E(r) flr ) = 3 f(x.t)

where all the derivatives are all the way to the left, the Green's function
is simply the conventional Green's function with [ and F' evaluated at the
prepoint, with no quantum corrections.

The quantum corrections are then seen to be simply those extra terms
we get when writing the equation

D(x)87f(z,t) — D(z)0(F(2)f(x,t)) — Er{x)f(2.t) = 0.f(x.¢)

in the appropriate form. {(You can check this for yourself — the extra terms
are precisely the corrections obtained using the ‘traditional” Feynman expan-
sion approach.)

The same is true for the general metric g°*:

2 23
ds™ = gay dz*dz?
and
1/2

g = /det gag

In order to find the Green's function for the wonderful “Laplace-Beltrami’
(L-B) operator

g Y20,9"%g"0s f



wo nust Arst write it in the form

.y O g E Y+ ELS

The extra terns should be. precisely. the quantum corrections for the L-B
aperator.

I should also sayv that {Bachelet-Ceperlev...)'s correction to the force for
the position dependent diffusion constant can be derived in one line using
this approach:

VaV [ = Viaf) — Vie(Va/a)f)

We simply read off Va/ja as the correction to the force and we're done.

Let me suunmarize the kev results.

(1) Given any second order differential equation (first order in ), no
matter how many dimensions, with or without curvature, with or without a
position dependent diffusion constant, with or without any complication you
can dream up, the rule for obtaining the Green's function with everything
evaluated at the prepoint is simple: Bring all derivatives in all the terms
all the way to the left. One can then simply write down the Green's
function assuming the D, F, ¢®?. whatever position dependent terms they
may be. are constant and evalnated at the prepoint. Distilled to its essence,
the proof of this statement is threc lines long.

(2) *All* the quantum corrections we have been considering are simply
the extra terms we get when commuting the derivatives to the left.

-2 -



General Problem of Fermions on Curved Manifolds

In a curved space with metric ¢** (g=det g,3) the generalized Fixed-Phase
Hamiltonian is: :
Hep = =Dy ' 20,(¢%7¢" 2050+ V

where

h?

2m

and V is the effective potential. Notice that in this section D is a constant.

Some words on Notation:

ds® = gop dz°d2r? | Gas = Gaa .- Suppose z° = (21, 2%, --)

o dz® 5 .
A = W A contravariant
:L'.
dx'? )
A, = ()——Q—A’J covariant
T

AY = QQJA;} Aa — gadA3

The generalized diffusion equation in curved space for the importance-sampled
function f = ¥yr (1 is a trial wave function) is:

&f = Dg™"?, (9°79"*(83f — fF3)) — (EL ~ Er)f

E; = HppyT

where Fj = 2288 LT T

<25 .



I'o fix notation suppose N =1 and d =246 =01+ it ol = ot = g
Then. the iterated integral representation is

-
—
L2
—~

flzt+7)= /d:’gl‘g(:')(}'{:.::

where

(riz. 2" T) = L‘:T(:) (:i(,,frH::." =

with its short-time approxination given by

=+ DTF”(:’)) Gailz") (_.r“a —rf 4+ DTFS(Z’))
ADT

o KEL(:)tEL{:')) ) ET}

(Glz.2ir) = —— oxp{

where

F,= F,+0F,
Fr = E.+dEL

The “quantum corrections” to the Green’s function:
§F® = 839" — g°°T},

§E, = DF°T? ; + D3.(9°°T},)

ad

where '] is the Christoffel symbol of the second kind

| .
r:’\,i = Sq * (()ﬂg‘ﬂl + djga;x - ajxgad)

Exercises:
1) Suppose the space interval is: ds® = R2(sin? 0(d)? + (d#)?). Calculate
the metric tensor in the following coordinate system (z= x +1 y}:

r= 1g (g) COs
y= ' —tg (g)sinap

2) Get the quantum corrections in the general metric case
3) Write the short-time approximation to G for a single particle in an
external magnetic field. (Assume the metric is constant)

6



FOHE on the Haldane Sphere

The key point of the method is that the function F is ' times both
the trial function *and* the Jacobian. It is then easy to show that the
generalized diffusion equation is the one given. with ail derivatives to the
left. It follows from the arguments given above that the Green’s function
i just the conventional one with [ evaluated at the prepoint — and this
is what we use in the simularion. It is important to nmention that in 2d
it is alwayvs possible to find a "contormal gauge™ where the metric tensor is
diagonal (see Polvakov ~Gauge fields and strings™).

[1n the spherical geometry introduced by Haldane [?] electrons are confined
to the surface of a sphere of radius /2 with a magnetic monopole at its center.
Let N odenote the number of electrons. which we take to be spin polarized,
and 25 denote the number of flux quanta piercing the surface of the sphere
due to the monopole. The magnetic field strength at the surface of the sphere
is then B = Shc/eR?, and. for filling fraction v = 1/q, where ¢ is an odd
integer, 25 = g(N ~ 1). If the positions of the electrons are described using
the stereographic coordinates r; = (cos ¢, sin ¢) tan 8/2 where 0 and ¢ are the
usual spherical angles then the Hamiltonian describing this system becomes
2

1 : e 9 €
H = %;D(rf)(—tﬁvi + A"+ - VIR) (1)

elo
where D(r;) = (1 + r})?/4R? (using previous notation: ¢** = §*93~1/2 and
g~ 4?2 = D(r)). The interaction between the electrons is taken to be

V(R) = Z—l—ﬁ (2)

i< d(ri._rj)Q + A
where R = (r,.ry,---.ry) denotes the coordinates of the N particles and
where
2R|r; — 1y

V(1 +72)

(3)

dir;.r;) =

is the chord distance on the sphere and X is a parameter which accounts for
the finite thickness of the 2DEG {?]. We work in the gauge for which

B
Alr;) = m(% —x;,0) (4)

7
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With this gauge choice the spherical analog of the Laughlin state for
vo=1,q 18

g S
vi=n = [ (—-—l;ﬁ) [Ttz = =% (5)

' 1 +iz)° i)

where 2, = r, + iy; is the complex valued stereographic coordinate.

I the spherical geometry the excited state which corresponds to a charge
e/y quasiparticle and a charge —¢/y guasihole with infinite separation is
constructed hy putting the quasielectron and quasihole at opposite ends of
the sphere. For this state we use the following trial wave function constructed

nsing Jain's composite fermion approach (7]
A R 1
Loy SR R BE2 e
N _ - oag-l . . . .
mn(w—,g) M- or| o ; NG
i ]‘ + ‘""!t rel )} N2 1
1 3_?\.‘ ZA’V Zi;&;\r '—ZN72‘

The energy gap, defined to be the difference in energy 1= and %-g, has
been calculated using these states, with the result for v = 1/3 of A =
0.106(2)e? /el

In order to apply the diffusion Monte Carlo method to this problem we
must first convert the Hamiltonian into an effective bosonic problem. To do
this we follow Ortiz, Ceperley, and Martin [?] and fix the phase of the wave
function using the phase of a many-body trial wave function ¢r. We first
write ¥t as follows

wr(R) = [ip(R)|e ™, {7)

The overall phase of this wave function can be used to perform a gauge
transformation on the Hamiltonian as follows,

H = emiotR goioriR) = Hy 4+ iH, (8)
where
Hp = =5~ Z D(r))V? + U(R) (9)
and
he -
Hi=-5— Z D(r;) (v Ar) + A(r) - V) (10)
8

~25.-



where

~ h
A=A+ ivfa-f (11)

It is straightforward to show that the ground state of the ‘real part’ of the
Hamiltonian. Ay corresponds to the energy of the lowest energy state with
the same phase as the rrial function.

To use the ditfusion Monte Carlo method to study the properties of the
ground state of this Hamiltonian we first transform the time dependent
Schrodinger equation into the generalized diffusion equation Hpy(R,t) =
—%u‘.‘( R.t). It is further convenient to consider the diffusion equation for
thie the importance-sampled distribution

P(R.0) = u(R.Nwr(R) T (12)

The resulting diffusion equation is

_%P R.4) ZW(D (r)P(R.1)) + Vi - (D(x))F:(R)P(R.1))] + EL(R)P(R,t)(13)
where
Fi{(R} = ViInjyr| (14)
and
EL(R) — H!le (15)
[¢r|

All of the trial wave functions we will be using here are entirely in the lowest
Landau level. From this it follows that

E; = AV(R) (16)

This differential equation can be solved numerically by stochastically it-
erating the integral equation

PR .t +7)= fG(R - R, 7)P(R,t)dR. (17)

-9 -



The problem of finding the correet short time Greens function for this prob-
et is uede nontrivial by the fact that the electrons move in a curved space.
We have. in fact. solved the general problem of finding the Greens function
for the case of a general metric the result we give now is a special case of

this resulr.

23 TN N
GR =R . 7)=exp [—7’ ([EL(T)) T EURD E’r” H GYUR — R'.7)(18)

i
- i=1

where

(19)

. —ir ;- ; F.T\’, 2
(;?('R%'R'.T): oxp{ r.—r Dir)rF.({ )}}

da Dir;)r 1D(r; )7

Note that D(r,) and F;(R) are evaluated at the prepoint” in the integral
equation. This fact is crucial for performing the Monte Carlo simulation.

Having inciuded the Jacobian in our definition of P(R,¢) it follows that
the expectation value of the energy is simply

_ JdRP(R.t = 00)EL{R)

[dRP(R.t — o) (20)

(H)

10
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Particle moving on the surface of a sphere
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One Particle Problem

We test our method by solving one particle problem.
If the exact phase is chosen as a trial phase, the exact

solution is obtained in 7 — 0 limit.

0.020 —mmreee— e ——

0.015

¥
'

Lﬂﬂ 0.010

I
o

"U 0.005

Q 0.000 ? J
'® s @
®

L J
]

-0.005

-0.010

-0.015

.

-0.020 L
0000 0002 0004 0006  0.008
T

0.010 0.012

A — —0.05 when the corrections are not included.
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Introduction

1. We present calculation of the quasiparticle-

quasihole excitation gap in the FQHE.

2. Haldane Sphere:

Quasielectron

Quasihole

(F.D.M. Haldane, PRL 51,605 (1983))

3. We generalize the Fixed-Phase Diffusion Monte
Carlo (FPDMC) for the case of curved space and study
the Landau Level Mixing (LLM) effect (A = 9%%(1)

In additon finite thickness effect (3) is included.

-3 -



Comparison to Experiments on Energy Gaps

(R.R.Du et.al., PRL 70,2944(1993}))

Experiment [AE ~ 0.05(e?/ elo)] Theory [AE ~ (0.056(e?/ elo)]

(H.C.Manoharan et.al., PRL 30,3270(1994))

Experiment [AH ~ 0.023(e*/ elo)] Theory [AH ~ 0.049(e?/ elg)]
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