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Outline

Quantum Averages

The Monte Carlo Method

Variational Monte Carlo (VMC)

Green Function Monte Carlo (DMC & GFMC))
Path Integral Monte Carlo (PIMC)

Path Integral Ground State

Auxiliary Field Monte Carlo (7)
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Hamiltonian and notation Quantum Averages

Quantum averages involve multidimensional integrations:
e The N-body Hamiltonian (for a one~component system!} is

H=-DV*+V(R), e (Ground) state average
0y, = (o9 _ J dR ¢(R)* O$(R)
with ’ (¢]9) JdR|$(R)P?
ﬁ2
D= B o) = [ar[WSOE] (98] = [arsmpom)
and (dley 1L o(R) ]~

V= VR: (Vl,Vg,...,VN).

o Temperature average
e R is a d-N-dimensional vector

TrePHO [ dR(R|e~PHOIR)

e O is a generic Hermitian operator ( I, H, 7i(r), a(r,r'), (O = ZB3) Z(B)
A(r,r"), .. .)
J dRAR'p(R, B'; B)O(R, R")
e 7 and 3 are respectively the imaginary time (7 = —it) and - Z(B) ’

the inverse temperature (3 = 1/(KgT)).
Z(B) = TreP¥ = f dRp(R, R; B)

with Z(3) the canonical partition function and p(R, R';3)
the N-body temperature density matrix.
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Multidimensional Integration

o Quadrature (Simpson-like) schemes are unfeasible!

A regular grid with 10 mesh point per axis would require
109" evaluations of the integrand, for N particles in d
dimensions, i.e., 10°° operations for 10 particles in 3
dimensions!

In other words, if the error behaves like h‘, with h the mesh
size*, its scaling with the number M of evaluations is

error oc 1/ M~/ (@N)

As [ is of order unity, the error decays exceedingly slowly
with M. In fact the higher is the dimension d - N the
slower it decays.

For 20 particles in 2 dimensions and | = 4, halving the
error of an evaluation with M points requires going to

22:20/4 . A = 1024 - M points; to reduce the error by a
factor 4 requires 10% - M points, and so on!

* If we integrate over a hypercube with side I, the number
of grid points is M = (L/h)¥V, ie h« pM—1/(dN),
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¢ Monte Carlo Integration is the only choice:

devr(R)O(R) ~ 3 Z O(R;),

with an

error < 1/vV M,

provided that the configurations or walkers {R;} are
distributed with the probability =(R).

To halve the error only 4 - M points are required; 16 - M
points are sufficient to reduce the error by a factor 4; and
so on. Also, there is no dependence on the dimensionality
of the configuration space.

Configurations distributed with a given probability can be
generated with a variety of algorithms:

- (generalized) Metropolis aigorithm,
- Molecular Dynamics,

- Langevin Dynamics,

- combination of the above,

- other.

In the following we shall restrict to the (generalized)
Metropolis algorithm.
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Random Walks (Markov Chains)

The state s of the system is changed randomly according to a
transition probability p(s,s’) = p(s — s') satisfying

Zp(sa ') =

and
p(s,s') > 0,
thus generating a random walk (or sample) (sg, 51,52, ---)-

If p(s,s') is ergodic there exists a (unique) probability measure
n(s) satisfying at equilibrium the stationarity condition:

Z n(s)p(s,s’) = n(s').

8

Moreover if p™(s, s’) is the probability to reach s’ from s in n
steps then

Jim p"(s,s") = m(s") :

the random walk converges to the equilibrium distribution
irrispective of the initial distribution.
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Ergodicity

1. Irreducibility: for each (s, s’) there exists an n > 0 such
that p™(s,s’) > 0;

2. Aperiodicity: p(s,s) > 0;

3. The average return time is finite: it exists NV, » < 00 such
that, for n > N, ., p"(s,s") > 0.

Detailed balance

A sufficient condition to obtain w(s) as stationary distribution
is to chose the transition probability to satisfy

w(s)p(s,s’) = w(s")p(s', s)-

In fact summing the above over s one gets

S w(s)pls, &) = n(s’

3

) s, ) = ol
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Generalized Metropolis Algorithm

The transition probability may be conveniently decomposed

into the product of an irreducible proposal or sampling matrix

T(s,s') and an acceptance matrix A(s,s’)
p(s,s") = T(s,s')A(s, s').
Imposing the detailed balance yields

A(s,s) _
A(s',s)  w(s)T(s,s')

()

which can be satisfied quite generally by chosing
A(s,s") = Flq(s, '],

where the function F : [0, 00] — [0, 1] satisfies

=z, for all 2.

e Metropolis choice:

Flz] = man|1, z]

e An altyernative choice could be:

~ G. Senatore ~

Implementation of Metropolis algorithm

Given a probability 7(s) to sample (it may be not known in
closed form, see, e.g., DMC, GFMC):

1. Chose the proposal matrix T'(s, s’} ;

Initialize the system in the state sy;

To advance from s,, to Sp41:

e sample s’ from T'(s,,,s'),

e calculate
7(s')T(s", sn)

Q(Snysf) - ’;’T(Sn)T(Sn, S’)

e generate a random number r,, and compare it with

g(sn,s'):
— if g(5n,8") > Thi Spp1 =8
— else 8,11 = $5,.

Throw away the first k states as being out of equilibrium;

Collect averages using the configurations with n > &k and
block them to calculate error bars (?77).

Example: T a constant in a cube, 7(s) oc exp(—8V (s)).
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Some facts about Metropolis:

The normalization of the probability, [ ds#(s), is never
needed and in fact cannot be calculated (... easily).

Particles can be moved one at time ( hard spheres!);

For the generalized algorithm (7'(s, s) is not a constant)
one has to sample both forward and reverse transition;

An optimal acceptance is

moves accepted
A= P~ 1/2.
total moves

In fact the overall efficiency may dictate different choices
(see, e.g., DMC).

The length of the necessary thermalization (deciding the
number k of initial moves to discard) can be investigated
monitoring cumulative averages of physically relevant
quantities (energy, density profile, ...).

But ... what are averages anyway?
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Monte Carlo Estimates and Averages

One would like to evaluate the true mean
(©) = [ dsn(s)0),

whereas MC yield a sample (s1, 52, ..., Sam) of lenght ~ M of
states distributed according to 7(s). Evidently, one can define

a sample mean
o-L30
- M i1 "’

with O, = O(Si).

The sample mean is an unbiased estimator of the true mean,
i.e., (O) = (O) independently of M .Also, it is possible to
prove:

e the law of large numbers, limps ,o O = (O);

e The central limit theorem, which states that O is normally
distributed around (O).

Therefore we need to evaluate the variance

a}(0) = (0 - (0))*),
whose root we may interpret as statistical error on O.
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The statistical error

Using O = (1/M) Zf\il O;, one obtaines for the variance

) — 1 t=M-1 |t|
o (0) = — 1——)C(t)
Mt:——(M—l) ( M)
~ 0(0) = —0*(0).

Here
C(t) = (0,0,.,) — (0
is the unnormalized time autocorrelation function, which

evidently reduces to the variance of O at time 0,
C(0) = 0?(0), and the integrated correlation time

accounts for the correlation existing between walkers in the
Markov chain. In general 7 > 1.
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A sample estimate of C(t), with a bias of order 1/M is given

by

M —|t|

; 3 (0:=)(Oiryy - D).

0) = 37—

Thus one has an estimate for ¢2(Q) = C(0) = C(0),

y 1 —
5%(0) = 57 ) _(0: = O),

1=1

and the correlation time can also be calculated from C(t).
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Blocking

The precise estimate of the error bar require the calculation of
time correlation functions, which one would rather avoid.

An alternative is provided by the blocking procedure. The
sample is broken in a number of blocks M = Nyny, with Np
the number of blocks and and n, the length of each block.
New variable are constructed as block averages

1 —
Op1 = n—bz Otr—1ynytis
i1

and clearly have a mean equal to the run mean O. Intuitively,
if ng >> 7, this new variables should become statistically
independent and therefore have a a variance around their
mean O given by

N
1 b

7O = Jy, 1 2 (Ot ~ OF

One can indeed show that provided ny > 7 and yet n, K M
or equivalently N, large

a2(O) ~ a*(O).

A plot of a2(O) versus n, will reveal a plateau, where in fact
the above relation holds, and therefore it also yields an
estimate of the correlation time.
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