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Variational Monte Carlo

If the wavefunction is given, MC provides a straightforward
mean of evaluating state averages.

Assume that we have a trial wavefunction ¥(R;a)
depending on a set of parameters a = (a;,az2,...,0p). The
variational theorem states that

dRVU(R;a))* H¥(R;a)

E(a) = / ! '~ > Ey,
(a) [dRO(R,a))z = °
with Ej the exact ground state energy.

We know how to generate configurations (say M)

distributed with the probability 7(R;a) = |¥(R, a)|2.
Hence we can estimate E(a),

| M
E(a) = HZEL(Rz';a):
=1

with Er(Ry;a) = $~1(R,a)HY(R,a).

We can optimize ¥(R;a) by minimizing E(a), to obtain
the best upper bound to Ej.
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Variance

The optimization of ¥(R;a) can be also achieved with other
techniques.

e Another quantity enjoying a minimum property is the

variance

_ JdRY(Ra))"(H - B)*¥U(R;a)

[ dR[V(R, a)P 20

o’(a)

The minimum value attainable by o2 is 0, which is achieved
whenever ¥(R,a) coincides with an exact eigenstate of H,
say ¢, with eigenvalue E,, and E is set equal to the E,..

in principle one could judge on the quality of a
minimization by looking at the size of o2. in practice,
variance minimization has a number of bonuses:

~ It can be used to study excited states .

~ Being a sum of squares, o2 can be efficiently minimized
using efficient algorithms like that of Levenberg and
Marquand.

- It requires a smaller number of configurations as
compared with the energy minimization.

- The only way o2 can be made small is by having
Er(R;a) smooth and close to an eigenvalue, whereas
the energy minimization can be biased by configurations
with EL(R;a) to low.
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The Trial Wavefunction

A good trial wavefunction, apart from being flexible enough
should satisfy a minimum number of basic requirements:

1. ¥ and V¥ should be continuous for finite potential V(R).

2. Not only [ %2 and [ ¥*HWV should exists, but also
fW*H2¥, in order that the variance exists and statistical
errors are finite.

3. ¥(R) should have the correct symmetry property, i.e.,
U(R) = (—)P¥(PR) for Fermions and ¥(R) = Y(PR) for
Bosons, for any particle permutation P.

4. The wavefunction should embody all the know exact
behaviours, so as to make the local energy as smooth as
possible.
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Symmetry

Bosons

For an uniform Bose fluid the simplest trial function is of the
Bijl-Jastrow type

Uy (R) = exp[— Z u(ri;)] = J(R).

More refined wavefunctions include three-body correlations to
read

U3(R) = J(R) -exp[— > us(rij,Tik, cos(Pyj - Fix))]-

i<j<k

Fermions

A typical Fermion wavefunction is obtained augmenting the
Bose function by a determinant ensuring antisymmetry, in the
simplest case

(R) = J(R) - det[pi(rk, k)],

with ;(r oi) the i-th spin orbital. One needs, for N particle
N distinct spin orbitals to get a non-vanishing determinant.

Similarly to the case of Bosons, more refined wavefunctions
are obtained with resorting to triplet pseudopotentials:

‘I’(R) = ‘I’g(R) . det[go,—(rk, O'k)].
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Exact behaviours

Simple limiting behaviours of the wavefunction can be
obtained imposing the smoothness of Er(R) for small or large
rij, with the other coordinates kept fixed.

Small » behaviour of u(r)

One looks at the dominant terms in E7(R) when two
particles come close.

e For Bosons
EL(R) = v(r) + 2DV?u(r) — 2D(Vu(r))* + - - -,

with u(r) the pair interaction. So for LJ interaction one is
led to u(r) oc 1/7°, — 0.

e For Fermions one would chose the ;(r) as exact solution
of the independent particle problem; then with an analysis
similar to the one above one would get
u(r) = a, 7, — 0, with

- ayy = €2/(4D), and
- ay, =¢€*/(8D).
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Large r behaviour of u(r)

The study of u for large r is most easily accomplished by
rewriting the variational energy in reciprocal space in terms of
the collective coordinates px = ). exp(ik - r;), with

S(k) = (1/N){pkp—x) the static structure factor.

Using the RPA approximation one gets

Ey=Ep+) (S(k) - (DE*2(k) + %v(k)) _ %’Q)

and
So(k)

&) = T ) Sl

Variation with respect to u(k) immediately yields

_ 1 1 2v(k)
o= gm \/ 5® " DR

which implies, for charged Fermions in 3 dimensions,
u(r) x 1/r, — oo.

For short ranged potential, like Helium, replacing u{k) with a
constant for small k£ one obtains u(r) x 1/r%, — oo.
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Reweighting

Optimization techniques require taking derivatives of MC
estimates with respect to the variational parameters.

In principle one would obtain a sample {R;} from #n(R;a) and
a sample {R.} from 7 (R;a’) to calculate for example

L M
E(a) = HZEL(Rz';a)a
i=1

and
1 M

and from these the derivative of E(a). This procedure,
however, turns out to be unstable due to the independent
statistical errors on the two estimates of the energy.

If the two parameters sets are close enough to each other a

winning strategy is to use the same sample, say {R;} for both
evaluations. in other words,

1 32 Er(Ra")w(R:)
M E:‘ w(R;) ’

E(a') =

with
w(R) = [¥(R;a')[*/|¥(R; a)|*.
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Filtering (projection) techniques

In the VMC a systematic optimization of ¥ is attempted,
which however is limited by one's ability to model the
wavefunction. It would be highly desirable to have schemes
that starting from a given trial function would project out the
exact ground state, by filtering out the higher energy
components.

For Bosons, in fact, such schemes are available (see below).
For Fermions, one has to fix the nodal structure and so these
schemes become variational, though superior to conventional

VMC.

The strategy is very simple and invariably goes through some
suitable evolution either in imaginary time (DMC, PIGS}, or
time integrated (GFMC).

e GFMC

B 1(R) = (Br+ Vo) / dR' g(R, R)®.(R),

1
H+V,

with H + V; positive definite and E7 close to the ground
state energy Ey. Expanding & in eigenfunctions of H

g(R,R') = (R|

|R),
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®o = ¥ = > . ci¢i, one immediately gets

. Er + W " L
28 =% | Frr| e,

which for large n yield

Er+Vy
E.+W

¢, x [ ]nco¢0v

provided that cg # 0.

DMC
B(R, (n + 1)) = / dR' G(R, R'; t)®(R'; nr),

G(R,R';7) = (R|exp(—7(H — Er))|R),
and Er close to the ground state. Again for large n one
projects out the ground state according to

&, o exp(—(Eo — Er))codo.

Note that g(R,R') = fo‘” drG(R, R'; 7) with Ep = -V,

PIGS
(lIJ[e'THsze‘TH/ZPI!)

(Wle=H|¥)
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Both DMC and GFMC involve d - N dimensional integrations,
which require MC technique and can be dealt with by
resorting to random walks.

Evidently, one has to sample also the appropriate Green's
functions and this can be arranged with a small time
expansion for DMC (see Chin lectures) and other techniques
for GFMC ( Domain Green's functions, ...).
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Importance sampling

The GFMC and DMC schemes described above, though
formally legitimate for Bosons, in fact are not stable due to
infinities in the potential energy.

The cure is simple and robust and was discovered by Kalos.

For GFMC, rather than evolving ®,(R) with the initial
condition §9(R) = ¥(R) one evolves f,(R) = &, (R)¥(R)
starting from fo(R) = U?(R). After a transient, for n large
enough fn(R) ox ®o(R)¥(R).

Similarly, for DMC one evolves f(R,n7) = ®(R;n7)¥, with
the initial condition f(R;0) = ¥2(R)a, and converging to
f(R;n1) ox ®o(R)¥V(R) for large n.

The evolution of f is dictated by equations similar to those
given above, with the green’s functions which are replaced by

G(R,R';7) » K(R,R';7) = ¥(R)G(R, R’; 7)¥}(R"),
for the DMC and
9(R,R’) - k(R,R') = ¥(R)g(R, R')¥ '(R'),

for the GFMC.

A detailed discussion of this point will be given by Chin, |
guess.
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Fermion nodes and Fixed-Node approximation

The possibility of sampling f(R) (f(R;¢)) in stabie manner is
related to its positivity. (See however Kalos lectures).

The Fermion ground state, for more than 2 particles has
nodes, i.e., regions with positive and negative sign, which
however enjoy the tiling property. Given one of the equivalent
nodal pocket D, [ a region of given sign] all the other pockets
are obtained by applying permutations to D;. This resolves
the full spatial domain without holes or superpositions.

Assuming that the nodes of the sought wavefunctions coincide
with those of ¥(R) [Fixed-node approximation] one is back to
a nonnegative f which can be treated as a probability. This
yields a stable algorithm, which evidently is variational: one
has restricted the search in the wavefunction space. Moreover,
due to the tiling property one does not need to worry about
which pockets have been populated

Clearly, if one new the nodes (as in 1 dimension) choosing a
trial functions with the exact nodes would lead to the exact
ground state.

e But: transient estimates and nodal relaxation, tough not
stable.

~ G. Senatore -



Ewald sums and N extrapolation

Properties in the long-wavelength limit depend on
long—range behaviour of the trial function as well as on the
modeling of the system under study.

Especially for Coulomb systems it is crucial to consider
periodic replicas of the simulation cell, and to sum
interactions with all the replicas (Ewald sums). It is also
important to Ewald sum the pseudopotential.

Even allowing for Ewald sums Coulomb systems have
residual size effects due to the size of the cell (finite
number of particles).

Important size effects are present in Fermion systems in the
Fermi liquid regime due to levels shell structure.

To study systems in the thermodynamic limit, one can:

— Study the system at various N and then try to
extrapolate to N = oo. This is usually the case with
VMC.

— Assume that the N dependence does not depend e much
on the details of the simulation and borrow the number
dependence of VMC. This is usually done with DMC and
GFMC.
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