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Theory of Josephson effects in d-wave superconductor junctions
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" Electrotechnical Laboratory, Tsukuba, Ibaraki 305, Japen

(Received May 25, 1997)

An analytical formuls of the d.c. Josephson current in enisotropic superconductor junc-
tions is presented. The formula is applicable for junctions with arbitrary insulating-potential
height and thickness and with any symmetries including d-wave superconductors. In contrast
to the formulas for conventional s-wave superconductors, the formula includes two additional
effects. One is the intrinsic phase of the pair potential originating from the pairing symmetry
in anisotropic superconductors. The other is the formation of localized states around the
insulator. Using this formula, the Josephson current is calculated in s-wave superconductor
[ insulator / d,s_,2-wave superconductor (s/11d), d;2_,2-wave superconductor [ insula-
tor fd,2_ ,2-wave superconductor (df1{d), d;a_,2-wave superconductor / insulator / normal
metal [ insulator /d a1 _,:-wave superconductor (d/1/n/1[d) junction configurations. In the

case of (d/Jfd) and (d/I/n/I/d)} junction, the snomalous temperature dependence of the
maximum Josephson current is calculated.

§1. Introduction

Recently, a growing amount of evidences have accumulated based on various
theories and experimental data which point to the dy1_y2 wave symmetry of the pair
potentials V), In particular, the observations of anomalous magnelic field dependence
in 7-junctions 2~ 4) clearly verified that the pair potential in high-T¢ superconductors
encounter a phase change between a- and b-axis directions "), Moreover, several
other measurements using SQUIDs, Josephson junctions, or tricrystal tings 7)-10),
showed the results which are consistent with d;2_2-wave symmetry of the pair po-
tentials. On the other hand, the prpperties of the Josephson junctions in d-wave
superconductors have not been sufficiently revealed. At this slage, it is necessary to
develop a new theory for the Josephson junctions in d-wave superconductors con-
structed on a microscopic basis. '

A trial along this direction was done by one of us [Y.T.]. The d.c. Joseph-
son current between s-wave superconductor [insulator/ d,3_,3-wave superconductor
(s/1/d) junctions with a(z), b(y) and c(z) axis orientations are calculated by taking
into account the Andreev reflection!?) and the normal reflection at the interface.

This theory ') explains the anomalous magnetic field dependence of the maximum -

Josephson curtent I¢(T) of the corner junction and corner SQUID %) 6) naturally.
In addition to this theory, several theories of Josephson junctions containing d-wave
superconductors have been presented which take into account the anisotropy of the
pair potential’®)18). Although all of them have succeeded to reveal some aspects
of the Josephson effect, one more essential effect, the existence of the zero energy
states (ZES) around the insulator, has not been introduced yet.
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The formation of surface bound stales was originally discussed by Buchholtz and
Zwicknagl %) in p-wave superconductors. Hara and Nagaj20) investigated the ZES at
the surface of p-wave polar states. Furthermote, the existence of Ze10 energy bound
statles at the surface of d,y-wave superconductors was obtained by Hu 2V, The prop-
erties of the Zero-energy bound states and the local density of states of surface of
d-wave superconductors were clarified recently in detail - 21} Qp the other hand,
the existence of zero-bias conductance peaks (ZBCP) at the surface of high-T¢ super-
conduclors was confirmed by several tunneling spectroscopy measurements 25) - 28)
To reveal the line shape of the tunneling conductance, a novel tunneling theory was
presented )3 based on the quasiclassical approximations 337, It was revealed
that the experimental ZBCP are closely related to the ZES2!) 4 the surface of
d-wave superconductors. The theory which explains the various experimental line
shapes of tunneling conductance 29):31).33) jq completely distinct from that for an
s-wave superconductor °®) in the sense ihat the tunneling spectroscopy is essentially
sensitive Lo the phase of the pair potentials 31233 In Ref. 32, the physical origin of

can also be expected in Josephson junctions including d-waye superconductors °°) 35
the boundary effect around the inselator. In such situations, under the influence of
the existence of ZES, the properties of the Josephson current in s/Ifd and d/71/d
Junctions are expected to become anomalous®¥-42) In this paper, we present an
analytical formula for the d.c. Josephson current which fully takes into account the
bound states around the insulator as well as the anisotropy of the pair potential.
Alihough the sel{-consistency of the pair potential is neglected, the formula can be
applicable to arbitrary barrier height and for spin singlet superconductors with any
symmelry including d-wave and s + id-wave (time-reversed symmetry breaking case)
superconductors. The obtained formula has a general form, and several existing the-
ories can be derived from the formula as limiting cases 43)-48), Using the formula,
the Josephson current in d/I/d and s/I/d junctions are analyzed ir detail. The
organization of this ‘paper is as Tollows. In § 2, a model for the Josephson current
Is given and the formula to calculate ii 1s explicitly derived. The physical meaning
of the formula is discussed in detail. In § 3, we clarify basic properties of s/I/d
junctions. In § 4, we address the basic properties of d/1/d junctions. We calculate
the grain angle dependence of the Josephson current. The validity of the theory
by Sigrist anrd Rice (referred to as SR theory)4) is discussed. In § 5, we discuss
d/I{n/I/d junctions. In § 6, we summarize our results.

512, Model and Formulation
The Josephson current formula used in this study is essentially the extension of

the previous formula for s-wave superconductors #5)-46) {5 include the anisotropy of
the pair potential. The formula is subsequently derived along with the original one.



. AR - A R = i

4 - & & & -

The electron field operators ¥o(z,,t) (0 =1 or |) satisfy the equation
ih%%(z“ t) = ho¥y(z,,t) + /dz,A(a,r)!Ff(z,,t), (2-1})

., @ .
1&5;517{(:1:,,0 = ——ho!Ff(:t,,t)+/d:n,A (s, 7)¥1 (1, ). (2-2)

with s = (2, — 2.), 7 = (=, + %,)/2, and hg = —A2 V%, /2m + U(z) — p, where
#, U(z), E, are the chemical polential, the Hartree potential, and the energy of a
quasiparticle measured from the Fermienergy Ep (EF = p). For the simplest model
calculation, we consider a two-dimensional anisoiropic singlet superconductor/ in-
sulator /anisotropic singlet superconductor junction with perfectly flat interfaces in
the clean limit. The system is assumed to be in the equilibrium state. In this model,
the interface is perpendicular to the z-axis and is located at £ = 0 and z = d;, where
d; is the magnitude of the thickness of the insulating region. The Fermi wave number
kr and the effective mass m are assumed to be equal both in the left and in the right
side superconductors. The pair potential and Hartree potential are assumed to be

Ar(v)exp(ipL), z <0 0, <0
Alk,r) = 0_, 0<z<d; U(z)= Us, O<z<d;
Ap(v)exp(ivg), z > d; 0, =z>d;

(2:3)
where A(k, r) is the Fourier transform of A(s,r), withexp(iy) = k./ | k | +iky /| k|
using a wave vector k3%-37) In the weak coupling limit, k is fixed on the Fermi
surface (| k |= kr). The quantities wr and ppg are the macroscopic phases of the
left and right superconductors, respectively. We will introduce a two-component

- Matsubara Green’s function G(z, =/, twn ), which are given as

B8
Gz, z',iw,) = / G(x,z',7,1") expliwg(r — r')]dr, (2-4)
0

T !Ff ‘ot " {W T f, '

G(z, =, T’TI) —_ ( < ,.{W'I'(:l:,r) Tf(z, T')]’ > <T { Tf(z T) l(ml T,)} > )

< TT{!FL(J:,T)!T’I(:c T} > < T {E)(z, )P (!, )}(> )

25
Since the translational invariance is satisfied, the momentum parallel to the
interface k, = kpsiny is conserved. Taking this fact into account, the Green’s
{unction is transformed into a function ky. From the conservation of the Josephson
current for Epy >>| Ar(v) |,| Ar(v) | with Ep, = h?kZ cos? y/2m, I() is reduced

as
ehkgT g @
= l_i [ —_—— ! 1 n =0 . .
I(tp) Zt‘m M x(al" az)wzk TI{G(::':E :kys ) )} II—O (2 6)

In the following, the Green’s function is actually calculated in the junction con-
figuration by extending the previous method*”). In this methed, we assume four
types of quasiparticle injection processes from both sides of the junction as the el-
ementary processes as shown in Fig. 1 of Ref. 30. It is important to note that



the quasiparticles feel different pair potentials depending on the directions of their
motions in anjsolropic superconductors. For a given energy £ >(max{] Ap(vy) |,
[AR(Y-) 1 | Br(re) i1 Ar(y=) ), with 74 = vand y_ = 7 -, the wave functions
Fi(z),({=1--.4) corresponding to the four processes are expressed as

¥ (z) = exp(ik py sin 7¥(z,7), (I=1--. 4) (2-7)
djo,L(rl 7) + al¢§,L(x1 T) + b]wﬂ,L(In 7): (.."'J < O)
iz, v) = ¢ Yau(z,7), (0<z<di) (28)
91%a,R(2,7) + h1s p(z,7), (z>di)
¥3,.(%,7) + a2, (2, 7) + bsts 1 (7, 7), (z <0)
¥2(z,7) = ¢ va.(z,7), (0<z<d)  (2:9)
gZd)ﬁ‘R(xl 7) + h2¢a,ﬂ($l 7): (I > d1)
93%8,0(%,7) + havps (2, v), (z <0)
WJ(J::'Y) = ¢3,I(xr7)l (O <z < d‘) (210)
wﬁ,R(I: 7) + a31|bﬁ,ﬂ(z: 'T) + bS"l}a,R(x, 'T), (Z’ > d.)
94%s,0(2,7) + hatpg (2, 7), (z <0)
Yi(z,7) = { Yus(z,7), (O<z<d) (211)
Ya,r(2,7) + asa,r(z,7) + b R(z,7), (z > d)

where j expresses the indices [ and R, and wave functions Va i (2,7), Ya;(z,7)
’ﬁbﬁ,j(zn 7) wﬁ.j(r)')’) and wl,f(mr7) are given as,

_ - [ ujexp(ig;/2) ; mil; . '
Yoz m) = ( U;exp(mt?%'/?) ) SrPlilkr cosy + hkp cJ:os T)IL (212)
7 - [ viexp(i¢;/2) . L .
Vo(z,7) = ( uj,- exp(—;gﬁj/?) ) xplilk cos 3 h?kr cos 7)3:]’ (213)

- .7 . 2 ) mn"— ‘
Vpi(z,7) = ( ~jff§(('_qfia/j/)z) ) exp(~i(kr cos y + m)z], (2-14)

i _ | Tiexp(ig;/2) . o may : .
I»b,@,j(zs’T) - ( ﬁj exp(_zjéjlz) ) exp[ !(kF cosy h2k}-" COST)I] l (2 15)
and
~ [ cexp(~Az)+ dyexp(Aiz) — 1 ]
71[)1,1('7‘-1 7) = ( e;exp(—)\z) + ﬁexp(Az) ) 1 ([ =1 4): (2 16)
with
17 Dia. . 1, 1, 2
wy= /504 i), uj=\/%(1 oy R IRV CERC DA 21 =),

(2:17)



= = 2mU .
Zje = VB = [ 5,(x) P, 0o = \JE= [ B0 ) ) A= \/-— — ¥ cos? ,

h2
(2-18)
and
exp(,-qs,.):I_gE_:%exp(,—%), exp(féj)='|—§ij§—{%exp(;w,-)- (219)

Here, we have assumed the relation, U,

Er; >>| 82,1 |. The wave {unctions satisfy
the following boundary conditions,

W((I) = ( Ua('-t) ) ' lpl(z) |;|:=Cl_= W;(I) ’:r:=0+: dlpl(z) Eg;fzﬁl l.r=0+

vi(x) dz le=0-=
(2-20)
Spl'(m) I:r:d.'.___—‘“ Epl(z) I:r:d.-_+: i%‘ii) i::d.-__= dg;lim) |z=d.'_+ . (2'21) i

From the conjugate processes of the above four wave functions, we obtain another
set of wave functions ¥i(x) (! = 1---4) which satisfy

]dm,sr'f,‘(z,)f?(z,,x,)= E® ' (z,), a?,(x,)=( ;‘((:)) ) (2:22)

For an enetgy & > (max(| n(v4) |, | Br(v=) |, | Au(vs) |, | (=) ), #u(=)
cotresponds to the four elementary processes shown in Fig. 2 of Ref. 30. They also

satisfy the boundary conditions given by Egs. (2-20) and (2-21). As in the case of
(), ¥i(z) can also be writlen as

¥ (z) = exp(—1krysiny)¥(z, 7). {2-23)

The explicit forms of these functions are not written here for brevity. Using the
eight wave functions, Green’s function is obtained as in Ref. 30. After an analytical
continuation from E to iw,, where w, = 27kgT(n + 1/2) denotes the Matsubara
frequency, Tr{G(z,z', k,, iw,)} is obtained. By assuming Ep, >>| 4;(61) |, (f =
L, ), the Josephson current I(ip) is obtained asV

RylI(p) =
*RykpT ]rf2 ar{8, fw,,p) | @16, iwn, 0) | <
—=— g,) | — 2% 0) _
e {an ool o L Ol e = 1 A5(6-) [ cos 08},

(2-24)
where 2, [ 4 = sgn(wn)y/A2(61) + w2. The quantily Ry denotes the normal resis-

tance and Ry is expressed as

- 2 472 ‘
R =f 6do, = 8 2-25
N T N T i dn) 1Zicon?inay) 2
' 8
A=(1-x%cos? 9)1/2/\0, Zy = kcos

V1 —k2cos?g’ (2:26)



where we have introduced two parameters Ay = v 2mUs/h? and x = krfXo. Here,

oy denotles the tunneling conductance for the injected quasiparticle when the junc-

tion is in the normal state, In the above, a1(f,iw,, @) and 31(8,iwn, ) are given
as

a (8 fw ) =1 F2(8; fwn)lr‘.‘i(gx iwn)(] = UN) + 0NF5(91 iw“' (,0).[‘3(9, iw"’ P)
W iW,, o) = F1(9,iwn)F2(9; iwn)(l —UN)+O'NF3(‘9! iwn:(P)F4(9, an;QO)J
(2-27)
61(6, n, ) =+ OO, 00)(1 = o) 4 0 0, ) 146, 0
Nn,in, ) = F;(B,:'w,,)Fz(9,fwn)(1 -—o-N)+UNfg(Q,iwn.‘P)ri(e;fwn)(P)’

(2-28)

with

. - . A_[, f1

C (8 =14 ML 478~ 1208, fwy) = 1 + TR AR = NL(R),+ = ;_:%9(7(;))_; '
(229)

T3(8, twn, 0) = 1+ gy _np _ exp(—ip), Iy(8, iw,, ) = 1 + NL,+7R,+ exp(ip),

(2:30)

T5(8,iw,) = oy —Tnyp expli(ay — o)), (2-31)
T6(0,iwn, 0) = Ty p 4 — Ia ot expli(e + oy — 4,)), (2-32)
I7(8,1w,) = Lop-— nL+expli(ay — o)), (2:33)
T§(6,3wn,0) = Log o~ Iy 5 expli{-p - a_ 4 4_)], (2:34)

pt = sgn(wn)\/ﬂ%(ei) + w2, (2-36)

exp(iay) = v, exp(~ia_) = vy, exp(=ifly) = 7, exp(if_) = 7,. (2-37)
= Bul0) _1A6)] | Ay __dn(6.)
TGO T Gy P = Ar(64) " " T AR5

After straightforward calculations, we finally obtain the formula for the Josephson
current as

(2-38)

R /2 _
RulI{p) = L]{f."eifﬁ{z / F(0,iwn, p)o cos 646}, (2-39)
wy Y Ff2
=, . _ 4Fﬂ,[;,+ Fn,R,-!—(B] + B?)
O = R ) Ta(0, iwn) + o T5(9, iwrn, ) T4(8, 1y, ) 2"
(2-40)
Br=(1-apn) | In(s, twn ) 15(6, dw, )} | sin(fp + oy — A4 — 7,) (2-41)



- - & s s -

A B - A AR A

Al &4 - A A& -

B2 = on | T3(8,iwn, @) [* sin(e + oy ~ 8,) (2-42)
. _ F](gyfwn)FZ(B: t'(""'71) .
exp(i¥s) = [ T2(8, i) Ta(8, i) | (2-43)

When the time reversal symmetry is not broken, Z‘L(R)(ei) is chosen as real quan-
tities. Consequently, Eq. (2-39) can be simplified as 40141

» =2
RyI(p) = _Iizﬁ’e"iT.{Z/_ . F(8,iwn, ) sin p o cos 8d6}, (2:44)

F(9 iw (p) - 4WL.+T?H,+[(] - aﬁ)rl(es{wn)l-‘?(e: iwn) + oy ! FS(B! iwn:‘f’) |2]
e |(] _UN)FI(G) fwﬂ)rz(gsiwﬂ)'*'UNF3(6viwn1(P)F4(9:iwnJ§E’) I2)
245)
In the following, we will survey the intrinsic properties of the formulation [Eq. (2-39)
and (2-44)). Firstly, Eq. (2-39) can be applied to Josephson junctions whose elec-
trodes have pairing symmetries which break time-reversal symmetry, i.e., 7p)(fa)

becomes complex. In general, I() can be decomposed into the series of sin{ne) and
cos{n)

I{p) = Z[In sin(ng) + J,, cos(ncp)].. (2-46)

n>1

When the time-reversal symmetry is not broken, J, (n > 1) vanishes. Secondly, the
formula includes the Josephson current component carried by the multiple reflec-
tion process at the interface. In the above equation, the current components with
index n correspond to the amplitudes of the n-th reflection processes of quasipar-
ticles. Thirdly, the formula naturally includes the bound states condition in the
denominator of F(Q,iwn,gp) or F'(8,iwn,p), which we will refer to as Fa(8, 1wy, p).
Il we replace iw, with E, the condition F4(8,E,0) = 0 can be regarded as a lin-
ear combination of two types of bound-siate conditions. For 2 high conductance
junction {o¢x — 1), the condition Fa(8, E,p) = I3(6, E, ) I4(8, E,p) = 0 gives the
energy levels of bound states formed between the diagonal pair potentials due to
the Andreev-reflection process. For a low conductance junction (oy — 0}, the con-
dition Fy(8, E, ) =~ I1(8, E)(8, E) = 0 gives the energy levels of bound states
formed around the surfaces of isolated semi-infinite superconductors. Fourthly, in
Eq. (2-44), for a fixed , the direction of the current becomes either positive or neg-
ative depending on the angle. The sign of F(8,iw,, ) is determined by the sign of
numerator, i.e., the sign of 53(0.;)5;,(94,). The total Josephson current is regarded
as the integration of all 4 components. This is one of the important properties of
the Josephson junction in anisotropic superconductors: the sign change of the pair
potential on the Fermi surface.

Finally, Eqs. (2-39) and (2-44) are consistent with the previous formulae for the
Josephson current as limiling cases. When the left and the tight superconductors
are s-wave superconductors with the same magnitude of the pair potential, we can

choose A—L(Qi) = A-R(Gi) = 4¢(T) and s = Ropy = 5 = \/Ag(T)+w§.
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VOHT) + w2, The resulting F(8,iw,, p) is expressed as

4A3(T) |
4(] - JN)ng +oy , (wn + -00) + (.00 — wn) exp(_.{(p) 12' (2 47)

F(8,iwn, ) =

Performing the summation of the Matsubara frequency analytically, RyI(¢p) is ex-
pressed as

Ry (/2 i Bo(Th/1 - opsin?(p/2
RyI(p) = TRN/ AO(T)aNcosﬂsmtptanh( of )\/ v sin®(p/2)

dé.
€ /2 2\/1 — onsin®(p/2) 2kpT )
(2-48)
For oy ~ 0, I(p) is proportional to sin(y) and the results by Ambegaokar and
Baratofi’s [AB) theory 48 is reproduced. While for oy = 1, Eq. (2:48) repro-
duces the previous results by Kulik and Ome’lyanchuk ). When the Jeft and
right superconductors are d-wave superconductors, four pair potentials are chosen
as Ap(01) = 44(T) cosf2(6 F )] and Ap(8y) = Aa(T)cos[2(8 F B)]. If we only take
into account the 8 = g component of F(8,{un, ) in the 4 integral of Eq. (2-44),
we reproduce the Sigrist and Rice’s [SR] theory *) where Ry I{p) is proportional to
cos(2cr) cos(28). When oy is set equal {0 unity, we can obtain the previous results
by Yip ) in pin-hole geometry. In the following sections, the Josephson junction in
the various cases will be investigated in detail.

§3. Josephson effect in s/I1/d junction

In this section, the properties of the Josephson effect beiween s-wave super-
conductor and d-wave superconductor junctions are discussed. We consider a case
when the ab-plane of the d.1_,3-wave superconductor is in the plane as shown in
Fig. 1A. The quantity £ expresses the angle between the normal to the interface
and the crystal axis (a-axis) of the dxw_y;'-wave superconductor, For a quasiparticle

In such a situation, Z\L(Gi) and A-R(EL_;) are given as A,(T") and Ay(T} cos[2(8F B)),
respectively. The quantities 7L+ and n; _ in Eq. (2-29) are substituted with

4,(7) '
=np-=—) g - Vw2 + A2(T). 31
ML+ = ng, ot 2, sgn{wn) /w2 + 2T (3-1)

To understand the current-phase relation /(i) clearly, the condition for the for-
mation of ZES for oy — 0 and the signs of F(8, Whn, ) are summarized in Table 1 {or
0 <8< 7/4. Although the particular choice of T, and 7% is not esseniial, we select
the critical temperatures of the s~wave superconductor and d-wave superconductor
as T,=8.8K ~ 0.7meV/kp and Ty=90 K ~ 7.8meV /kg, respectively. The corre-
sponding A,(0) and A4,4(0) are 1.2meV and 18meV, respectively. Both A(T) and
A4(T) are assumed to obey the BCS relation. In Fig. 2, I(¢) is plotted for various
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B. Since the time reversal symmetry holds, J, = 0 {or (n > 1) and I{p) = —I(-¢)
is satisfied. At zero temperature, the quantity F3(8,0, ) vanishes for ¢ = 0,£x for
trfd—-f <8< +7/4 4+ 5. For non-zero £, ZES are formed at the interface and
the resulting /(¢) is also enhanced around ¢ = 0 and ¢ = 7 (curve a in Figs.
2B and 2C) at zero temperatures. When B is /4 (Fig. 2C), I; vanishes and the
contribution of J; becomes dominant. This is the reason for the period of oscillation
of curves in Figs. 2C not being 2x butl . In this case, the ITee energy minima is
located at ¢ = £7/2 for =1 < ¢ < 7. The hall periodic Josephson effect is also
reported for s/n (normal metal)/d junction 49 50),

Figure 3 shows the temperature dependence of the maximum Josephson current
Ry Ic(T) for several cases. Without the barrier potential (o = 1), the magnitude of
Ic(T) for B = 0 (curve a) is larger than the other cases independent of temperature
(Fig. 3A). However, as oy decreases from One, i.e. as Agd; increases, the magnitude of
Ic(T) for B = x/4 (curve ¢) enhances at low temperatures. For a low conductance
junction (gxy — 0), if 8 deviates {rom ze10, AR(04)AR(9-) becomes negative for
trfd-f< 8 < *r/4 + F, and Fy(0, iwn, @) is reduced at low temperatures. The
extreme case is when f = 7/4, where Az(64)AR(6-) < 0 is satisfied for any 4. This
is due to the formation of ZES at the interface. The reduction of Fy(9, iw,, ) at low
temperatures is much more drastic with the decrease of on, 1.e., with the increase
of Aodi. The resulting Ic(T) is enhanced at low temperatures. Consequently, curves
¢ in Figs. 3B and 3C have upper curvatures and are crucially different from those
of AB theory*®). On the other hand, for 8 = 0 and oy — 0, the temperature
dependence of J¢(T) is similar to those obtained by AB theory.

§4. Josephson effect in d/I/d junction

This section presents the properties of d-wave superconductor / insulator /d-
wave superconductor (d/7/d) Josephson junction. In the df1/d junction, for a quasi-
particle injection from the left superconductor at an angle 4 to the interface normal,
four different effective pair potentials participate (Fig. 1B). The four effective pair
potentials are Ay (8.} = A4(T) cos[2(8F o)) and Ag(f1) = A4(T) cos(2(8F B)]. The
Josephson current is calculated by substituting the effective pair potentials to Eq.
(2-29). The phenomenological theory by SR predicts that the maximum Josephson
current is proportional to [ cos(2a) cos(28) |. To clarify the validity of SR theory we
define Je(a, 8,T) = I(T) and introduce 2 function B(a,8,T) as

B(a, 8,T) = Jo(a, 8,T)]Jc(0,0,T). (4-1)

In SR theory, B(e, 8,T) is proportional to | cos(2e) cos(28) | for any temperatures.
We now discuss the properties of d/1/d junction and examine the validity of AB and
SR theories for three types of geomelry.

The temperature dependence of the maximum Josephson current Je{e,a,T) is
plotted in Fig. 4. Since the quantity F(8,iw,, p) is positive independent of 4, the
maximum Josephson current RyJe(a,a,T) is a monotonically increasing function
with the decrease of temperatures. The enhancement of Jo(a, a,T) with the decrease
of temperature is most significant for o = B = m/4. To understand these features,
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il is instrumental to perform the summation of w, analytically which can be only
possible for the special cases, d = f=0and o = g = /4. Fora = 8 = T/4,
where Appy(0y) = +A4(T,6) = +44(T)sin(260) is satisfied, the resulting Ry J(¢p)
becomes

}éNf(W) _ TRy /”f2 AT, 6)oy cosf?sin(ptanh[ﬂd(T, 8) cos(i/2)\/on

e Joxf2  2/oNcos(ip/2) 2kgT 1d8,
(4-2)
and for \/oy | Ay(T, 6) |<< 2kpT,
_ 'K'RN /2 -
Rudo(s/4,/o,T) = T | o BHT B)ondo (4:3)

Jince the temperature is included in the denominator, the Josephson current is
expected to increase as the temperature is lowered. This anomalous behavior orig-
inates from the existence of ZES at the inierfaces of both the left and the right
superconductors (curves ¢ in Fig. 4 A and B). At sufficiently low temperatures, i.e.,
kpT << /GN | A4(T, 0) l, ByJo(n/4,7/4,T) is given as

Ry o2 .
RyJc(n/4,n/4,T) ~ -’re—”/ 1,1 84(T,6) | /o cos oas. (4-4)

Since the order of the magnitude of Ry is proportional to the inverse of on, atl
low temperatures, RnJe(r/4,7/4,T) is proportional to the inverse of | /Gy 40).51),
Hence we car expect large magnitude of RyJc(n/4, 7/4,T) for a low conduclance
junction with ¢ = B = n/4. Figure 5 shows the calculated results of the B(a,a,T)
as a Tunction of o for various temperatures. Gurves a 1o ¢ show that B(a,a,T) takes
the maximum value at o = 7/4 in low temperature Tegion. As the temperature is

“lowered and as Aqd; is increased, the magnitude of B(r/4,7/4,T) is enhanced. This
anomalous o dependence can not be explained in the framework of SR theory (curve
d). Let us discuss the Josephson current originating from the region C where ZES
are formed for small 5. The quantity I,(p) is given as

Ryl (o) = r—]:ikBT Z H(iwa) sin(p), H(iw,) = [C F(8,iw,, p)oy cos 640,

' (4:5)
For sufficiently low lemperature with small oy, e, Jon | Ay(T, 6) << wy, H(iw,)
becomes '

144 oy cos 8| Ap(8s) 2| AL(6) P 2

T2 e " B T 1B P < (49

with A(81) = Ap(81), and the resulting RyIo(T) is proportional to the inverse
of T. This anomalous w, dependence of H(iw,) is the origin of the deviation from
that of SR theory. '

Secondly, we assume a mirror type junction (o = —§). The quantity F(8, iw,, o)
becomes negative (positive) for +7/4 — o < 6 < trfdtawith0<yp < r (—7 <

-1 -
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v < 0). These conditions happen to coincide with those of the formation of ZES
both at the left and right interfaces. Typical I(y) and RyJc(a,—a,T) are shown in
Figs. 6 and 7, respectively. When Aod; = 0, the magnitude of I{¢) increases with the
decrease in temperatures (Fig.6A and curves z in Fig. 7). But when )od; becomes
non-zero, the magnitudes of J(y) and Jg(a, —a,T) show non-monotonous behavior
with temperature (Fig. 6B and curves b, c, in Fig. TA). As o increases, I() changes
sign with decrease in T for fixed ¢ (Figs. 6C and 6D). The magnitude of Je{a,~,T)
has anomalous temperature dependence as shown in curves b and ¢ in Figs. 7B and

C. In this case, H(iw,) for small magnitude of w, and Von | 84(T,8) << w, is
expressed as

. I oy cos8 | A4(6,) Pl A(e) 2 .,
H(iw,) = —8 : ! 6 & wo?, w
o) =8 e "Rl Zalon) 141 Aoy 720 < S

with A1 (01) = Ar(85). This anomalous wn dependence is similar to the case of
a = f and induces the non-monotonous temperature dependencies of Jo(a, -a,T).
To understand this effect clearly, three parameters Gp(), Gu(w) and @4y are defined.
Since the sign of Ry I() has t-dependence, Ry (i) is decomposed into a negative

component Gn(p) and a positive component Gp(p). When 0 < ¢ < T, they are
expressed as

—-xlita ]+

" a
X {Z/ | F(8,iw,,p)oy cos 048 + F(8,iwn, p)oy cos d6) sin o,
wa Yorld—a xfd—a

(4-8)
and Gp(p) = RyI(p) — Go(w). On the other hand, when ~7 < @ < 0, they are
given by

RyxkpgT
Gplp) = ~—2
—r/i+ta ) - xfdta
X {Z/ , F(8,iw,,¢)on cos 9d9+/ F(8,iw,,p)oy cos 8d@} sin ¢,
wp Y7 fi—a rli—a

(4-9)
and Gn(v) = RyI(p) — Go(9). The quantity ¢,y (-7 < pu < ) is defined as
the phase difference giving the maximum amplitude of I(p). In Fig. 8, | Ga(on) |
and Gy(war) ate plotted using the same parameters as curve b in Fig. 7B. Witk
the increase in a, the jump of v, occurs as shown in Fig. 8 (see inset of Fig. 8).
Near the temperature of the jump, T ~ T}, the shape of I{) changes as shown
in Fig. 9. The non-monotonous temperature dependence and the enhancement of
RyJe(a, ~a,T) below T; originate from the jump of ¢ from positive 1o negative
and from the enhancement of Gp(wm) with negative ppr. With the further increase
of a, pur stays negative independent of temperature. In this case, RyJe(a,—a,T)
becomes a monotenically increasing function with the decrease of temperatures since
Gp(onr) >| Ga(par) | is satisfied for all temperatures. The comparison of our results
with that of SR theory for a fixed temperature is plotted in Fig. 10. There is a

_”..-
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double minima in B(a, =, T). The width of the peak at ¢ = 7/4 increases as the
temperatlure is decreased. The height of the peak enhances with the increase of the

magunitude of Aod;. These features are remarkably different from those expected {rom
SR theory (curve d),

can apply AB theory only when there is no ZES for every & at the interface, ie.,
@ = f = 0 is satisfied. In SR theory, only the current component which flows
perpendicular to the interface is considered. In the case when one of the interfaces
of the superconductor has no ZES for every 8, te, a=0 (B=0)is salisfied, the g
(@) dependence of the maximum Josephson current is expressed by SR theory fairly
well. However, when both superconductors have ZES, e.g. for o = Bora=-—g

large deviation exists from SR theory *), The mid gap slates influence significantly
on the flux quantization in tricrystal rings 39):92),

§5.. Josephson effect in d/I/n/I1/d junction

Following a similar method as in §2, the Josephson current through ¢/I/nfI/d
Junction is formulated from the coeflicient of the Andreev teflection of a quasiparticle
injected from the Jeft superconductor ®. The flat interfaces are simply expressed
as 6-function model with the amplitude of ¥ and are located alz=0and z = [.
We will define the coherence length of the superconductor which are given as ¢ =
hup [A(T), where vr is the magnitude of the Fermj velocity in the normal metal,
For the barrier height parameter, a dimensionless variable Zy which are given as
Sy =2mH[(h? | kp |)is used. The Josephson current is explicitly given as

RnkgT /2 . :
RylI(p) = L@NT.B_{Z/_ B F(8, 1w, ) sin poy cos 8do} (5:1)

F(8,iwn, p) = 2012t ON{(1 = gn)CDL+[| A P —(1 - oy )1? | B low}
)= lon[AsA- —2(1 = 04)B B+ (1 < onIC DT E

(5-2)
. 1 .
Az =1+ ynr4nL 4 exp(ip), By = 1 4 S TRATL+ exp(Zip), (5-3)
C=149p4np-, D=1+ ML+~ (5-4)
Apry,+(8)
== 0 = ,/A2 6 2 55
O s T T =\, (0) + 02 (5:5)

T = eXp{—iT%J_L]’t =(1 ~ 71,6)(1 - Y )1, = (# +1 —tZ)(t, — 1 —iZ)

IFz 677 T (ty + 1+ 1Z)(t, ~1412)
(5:6)

~{2-
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_ xf2
Ry =/ | oy cos 0df (5:7)
-2
4, 2 qFz :
= =——, t, = 22§ = exp(2igp. L 58
N [(14+1¢)2+ 22 z cosf’ krz exp(2igrz L) (5-8)

The quantity ¢ denotes the macroscopic phase difference beiween two supercon-
ductors. In the above, kr. = krcos® and grz is the z component of the Fermi
momentum in the superconductor and the normal metal. The quantity @ denotes
the injection angle of the quasiparticles as in §2 — §4. The spherical Fermi surfaces
in both of the normal metal and the superconductor are assumed. The magnitude of
the Fermi momentum in the superconductor kr is equal to or smaller than that of in
the normal metal gp. The available Fermi surface in the normal metal is restricted

for gr > kp . The effective pair potentials are given as a function of 8. For d-wave
symmetry, they are given as

Arx(8) = A(T) cos[2(0 F o)), AR,+(0) = A(T) cos[2(8 F 5)), (5-9)

where o and f expresses the angle between the crystal axis and the normal to the

interface as in Fig. 1. In the case, both left and 1ight superconductors are replaced

with s-wave superconductors, we reproduce several previous results 43)- 46), 48)
Since we are now interested in the regime where gr. L >> 1is satisfied, it is more

realistic to average out the rapidly oscillating factors. The averaged out Josephson
curtent is obtained as '

_ 1 2r
RyI(p) = -~ /0 RuI(0)d8, 8=2gp.L + Arg(t,) (5-10)

In the following calculation, we will assume kr = gr and Zo = 5. In Fig. 11,
lemperature dependence of the maximum Josephson current is plotted for o = A=0.
The obtained results are drastically different from those based on Ambegaokar and
Baratofl’s theory *8), Here Ty is a critical temperature of d-wave superconductor.
The non-monotonous temperature dependence appears for o = —B as shown in Fig.
12. With the increase of L, the ron-monotonous behavior is rapidly suppressed,
The results show that the current depends on the width of the normal metal, the
magnitude of the insulating barrier, and crystal orientation. Similar to the case
of the d/J/d junction, non-monotonous temperature dependence of the Josephson
current is predicted. The role of the ZES is suppressed for long normal metal 34,

§6. Summary and discussion

An analytical formula for the d.c. Josephson current in spin-singlet anisotropic
superconductors has been presented. We have taken into account the fact that quasi-
particles feel ithe different signs of the pair polentials depending on the directions of
their motions *® 42 Qur novel formula is general in the sense thal several exist-
ing formula for the Josephson current can be derived as limiting cases 15) 43)- 46),48)
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This formula is valid, even when the time reversal symmetry is broken, t.e., the pair
potential of the superconductor becomes a complex number. Since the multiple An-
dreev reflection and the normal reflection at the interface are completely included,
the formula can be applicable for arbitrary barrier height case.

Applying our novel formula, the Josephson current is calculated for various types
of the junction geometry. The calculated results show several anomalous behaviors
which are not expected for Josephson junctions of conventional s-wave supercon-
ductors. Especially, three important features are predicted for Josephson junctions
including d-wave superconductors:

1. For a fixed phase diflerence between two superconductors, the component of the
Josephson current becomes either positive or negative depending on the injection
angle of the quasiparticle.

2. In some situations, the phase difference g, which gives the free energy minima,
is located at neither zero nor ., _

3. When the crystal axis is tilted from the interface normal, zero-energy states
(ZES), i.e., mid gap states are formed near the interface depending on the angle of
the crystal axis and the injection angle of the quasiparticle. The existence of ZES
enhances the Josephson current at low temperatures.

These features will be cor firmed if they will actually be measured in the experiments.
Throughout this paper, the spatial dependence of the pair potentials are assumed
to be constant. Even if the depletion of the pair potentials around the interface is
taken into account, the ZES does not vanish at all*) and the essential results will
not be changed. Recently, Barash, Burkhardt and Rainer calculated the Josephson
current in grain boundary d//d junction 55)-57). Their theory includes the effect of
roughness and the self-onsistency of the spatial dependence of the pair potential,
The qualitative features of Josephson current, i.e., 2 non-monotonous temperature
dependence of the Joseplison current, anomalous phase dependence, are not changed
at all when the effect of the roughness is small. There is a possibility of coexistence
of s-wave pairing %85 near the interface. This effect is important in the under.
doped rtegion, i.e. near the Mott transition, where the effective attractive potential is
strong 5. It s an interesting problem to clarify the role of induced s-wave component
on the d.c. Josephsou current. In this paper, only the Josephson current with
zero voltage is discussed. Very recently, Barash and Svidzinsky 37) investigated the
singular behavior of {ha quasiparticle current and the Josephson current for non-zero
voltage in d/7/d junction in the limit of low transparency coefficient. To clarify the
Josephson current and the quasiparticle current %) {or arbitrary transparency®?) is
also a challenging futnre problem.
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Captions for Figures

Fig. 1. Schematic illustration of reflection and transmission of quasipariicles
at the interface. A: s-wave superconductor / insulator /dzz_yz-wave superconductor
(s/1/d) junction. B: dz2_y2-wave superconductor / insulator /dza_,a-wave super-
conductor (d/J/d) junction,

Fig. 2. Josephson current I() plotted as a function of © for Mpd; = 1 and
k=05withA: =0, B: 8= 7/8, and C: f = r/4. a: T[T, = 0.05, b: T/T, = 0.3,
and ¢: T/T, = 0.6.

Fig. 3. Maximum Josephson current Ic(T) plotied as a function of temperature
for «k = 0.5. A: M\od; = 0, B: Apd; = 0.5, and C: Aodi =1. a: f =0, b: B=r/8, and
c f=n/fd

Fig. 4 Maximum Josephson current Je(e, 8, TY in d/I/d junction with o = i
plotted as a function of temperature Witk x — 0.5. A: Xodi = 1 and B: Xod; = 3. a:
d=0b o=%/8,and ¢c: @ = /4.

Fig. s. B(o,a, T plotted as a function of o for A: Aod; = 1 and B: Apd; = 3
with £ = 0.5, a: T/Ty = 0.05, b: T/Ty = 0.3, T[Ty = 0.6, and d: Sigrist and
Rice’s result (SR theory).

Fig. 6. Josephson current I(®) in d/I/d junction plotted as a function of © for
k=05andoa=—-8. A: o = 0.057, dod; =0, B: o = 0.057, Aod; =2, C: & = 0.1,
Aod; = 2, and D: o = 0.127, dod; = 2. a: T[T; = 0.05, b: T/Ty = 0.3 and -
T/T; =0.5.

Fig. 7. Maximum Josephson current Je{o, 8, T) in d/I/d junction with o = -5
plotted as a function of lemperature with «k = 0.5. A: o = 0.057, B: a = 0.17, and
Cra=0.127. a: A\pd; = 0, b: Apdi = 1, and ¢ Aod; = 3.

Fig. 8. Positive and Negative component of Je(a, —a,T) obtained from curve
b of Fig. 7B as a function of temperature. a: G,(pu), b: | Galoa) |, and c:
Ry Je(e, —a,T). In the inset ©um is plotted as a function of temperature,

-
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Fig. 9. Josephson current J{p) is plotted near T;, where jump of the @ occurs.
a: T =0.125T; and b: T = 0.175T4. The same parameters are used as in Fig. 8.

Fig. 10. B(a, -, T) plotted as a function of & with x = 0.5 for A: Apd; =1
and B: dodi = 3. a: T/Ty =0.05, b: T/T; =03, c: T/Te = 0.6, and d: Sigrist and
Rice’s result (SR theory).

Fig. 11. Maximum Josephson current in d/I/n/I/d junction is plotted as a
function of temperature for o = B8 =0 a L =05and b: [ = éo, with &
hvp /A(0).

Fig. 12. Maximum Josephson current in df/Ifn/I/d junction is plotted as a

function of temperature for ¢ = —§ = 0.17. a: [ = 0.50 and b: L = & with
$o = hvp/4(0). '
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