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Non-equilibrium Josephson-like effects in mesoscopic $-N-S junctions '

Nathan Argaman
Institute for Theoretical Physics, University of California, Santa Barbara, CA 98106, USA

(July 2, 1997)

Wide mesoscopic superconducting-normal-metal-superconducting {S-N-S) junctions exhibit Andreev
bound states which carry substantial super-currents, even at temperatures for which the equilibrium
Josephson effect is exponentially small — the currents carried by different states can cancel each other.
This cancelation is incomplete whenever the junctions are driven out of equilibrium, e.g., by a dc
voltage. This leads to new effects, similar to the usual dc and ac Josephson effects, but dominated by
the second harmonic of the Josephson frequency, which may explain some striking recent experiments.
A simple description of these, in the spirit of the Resistively-Shunted-Junction model, is suggested.

PACS numbers: 74.50.+4r, 74.40.4-k, 74.80.Fp, 73.23.Ps

Introduction:

A class of mesoscopic systems which has recently at-
tracted much attention is that of “Andreev interfer-
ometers”. These are superconducting-normal-metal-
superconducting {S-N-5) junctions in which the spectrum
of electronic excitations in the normal-metal part — the
Andreev bound states — can be controlled by adjusting
the phase difference ¢ between the two superconductors.
Remarkably, this ¢—dependence does not disappear when
the temperature T is raised so that the “normal metal
coherence length”, éx, becomes much smaller than the
distance L between the two superconducting electrodes
[1]). It is thus necessary to go beyond a simple Ginzburg—
Landau type description of proximity effects in the nor-
mal material, which emphasizes the variation of the “in-
duced superconducting order parameter” on length scales
of order £x. The natural alternative is to concentrate on
the energy-dependence of the spectral properties.

In many of the recent experiments [2], the Ohmic
conductance of the normal-metal part, G(¢), was mea-
sured through additional normal-metal leads, and was
observed to depend periodically on ¢. Recently, Volkov
and Takayanagi [3] have argued that applying a dc volt-
age V = (h/2e)d¢/dt to the superconducting electrodes
would bring about ac currents in such systems, and they
should thus exhibit Shapiro steps in analogy with the
conventional ac Josephson effect. It was later shown that
the presence of the extra normal leads was necessary in
order for such purely dissipative effects to lead to Shapiro
steps [4]. In a separate development, Zhou and Spivak
[5] discussed non-equilibrium effects, and observed that if
the inelastic relaxation rates in the normal-metal part of
the system are small, as often occurs in mesoscopic sys-
tems (and if there are no additional normal leads which
provide rapid relaxation), then an even stronger phase-
dependence of the conductance may occur. Here too
the emphasis was on dissipative effects, which occur near
equilibrium.

The present work considers situations far from equilib-
rium, in S-N-S junctions in which the equilibrium Joseph-
son effect is negligible because L >» €, but mesoscopic
effects are still strong because L < I, (here I, is the de-
phasing length or coherence length for electrons and holes
in the normal material). Thus, it is an extension of the
discussion of Ref. [5], but the theoretical picture is dif-
ferent, based on “adiabatically” following the evolution
of the Andreev bound states [6], rather than viewing the
effect as a Debye mechanism of relaxation. It is shown
that when such junctions are driven out of equilibrium
{by an applied voltage, microwave radiation, or external
noise), they can carry substantial supercurrents, and ex-
hibit effects very similar to the usual dc and ac Josephson
effects, but with some unexpected twists.

The fact that non-equilibrium effects tend to enhance
superconductivity was discussed extensively in the sev-
enties [7], but in most experiments the enhancement was
not large, with the supercurrents and critical temper-
atures growing by only a few percent or tens of per-
cent under microwave irradiation [8]). Furthermore, the
theoretical discussion of S-N-S junctions often used a
Ginzburg-Landau description, in analogy with the dis-
cussion of other types of superconducting weak links,
e.g., constrictions. Here a much simpler approach can
be taken, because there is no need to calculate the effect
of the non-equilibrium populations on the pair amplitude
in the normal material (the pair potential vanishes in any
case). Our approach is limited to low voltages, however
—- we make no attempt to discuss the subgap structure
which occurs when eV is comparable to the supercon-
ducting gap A. The case of a disordered normal metal
will be considered; for a discussion of non-equilibrium
effects in clean, ballistic systems see Ref. [9].

The main results of the present work are that wide
mesocopic 3-N-S junctions are dominated by the non-
equilibrium effects, and that the phase dependence of
the resulting supercurrents are dominated by the second
harmonic of the usual Josephson frequency. This will



be used below in an attempt to explain some recent ex-
periments; in fact, the behavior of the second harmonics
in these experiments served as the major motivation for
embarking on the present project. We recall that in the
early eighties two equilibrium mesoscopic eflects were sug-
gested, in which only even harmonics would appear {pe-
riod —halving). In the first case [10] the weak-localization
effect on the conductance was evaluated. This amounts
to a small correction, of order e2/h, to the conductance,
and should thus be negligible compared to the effects
discussed here (as long as the system is in the metallic
limit). The second was a certain contribution of electron-
electron interactions to the equilibrium Josephson cur-
rents [11]. This could be a larger contribution, but it
was found that it decays with temperature more rapidly
than the basic interaction-less contribution, and would
thus not deminate the junction (unless the normal metal
N is ferromagnetic).

What happens in equilibrium?

Consider then the electronic spectrum for an 5-N-S
junction of simple slab geometry, with the N layer hav-
ing a “width” L (sometimes referred to as the length of
the junction) and a diffusion constant D. The low-lying
electrons and holes — those with excitation energies ¢
much smaller than the superconducting gap A — are
confined to the normal-metal layer: an electron with en-
ergy Ep + ¢ with € < A can enter the superconductor
only by pairing with another electron from the Fermi
sea at energy Er — ¢, and leaving behind a hole, i.e. it
is Andreev-reflected into a hole by the N-S interface (we
ignore electron interactions in the normal metal). The re-
verse process, a hole breaking up a Cooper pair and being
reflected into an electron, can also occur, These processes
are coherent and have associated scattering phase shifts
which depend on the phase of the order parameter in the
S material, and eventually lead to the formation of quan-
tized states which are coherent mixtures of electrons and
holes — generalizations of the Bogolyubov quasiparticles
in the superconductor. In an §-N-§ system the spectrum
of these states depends on the difference ¢ between the
phases of the two S electrodes.

An example of such a spectrum is shown in Fig. 1.
In principle the spectrum should be calculated from the
Bogolyubov — de Gennes equations, but the disorder-
averaged density of states can also be calculated from
the simpler Usadel equations [12], the standard tool for
the description of inhomogeneous disordered supercon-
ductors. In the present case it was calculated from an
equivalent scattering approach [13]. The results in the
figure are for the case with “perfect” S-N boundaries, i.e.
electrons and holes which impinge on the N-S boundary
Andreev scatter with an amplitude of unit magnitude,
and the probability for normal seattering vanishes. Once
the density of states v(¢, ¢), has been found, the average
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FIG. 1: Energies of Andreev bound states E.(¢), as a
function of the phase difference between the two super-
conductors ¢, for a simple diffusive S-N-5 junction. Only
the (disorder-averaged) positions of representative levels
have been drawn, as the density of states is assumed to
be high (the figure also assumes that the superconducting
gap, A, is much larger than the Thouless energy, Ec).
The thick line is a representative curve E..;(¢) used be-
low.

energy E,(¢) of the nth level may be found by integra-

tion: n = fOE" v(e,¢) de. Note that although the cal-
culation actually gives the space-dependent local density
of states, only its spatial integral, v(¢, ¢), appears in our
considerations.

At the Fermi surface Ep, and for ¢ = 0, a gap is
induced in the normal material by the proximity effect
[14]. Further away, the electrons and holes have different
wavefunctions or different scattering properties, because
of the difference in wavenumbers between the energies
Ep 4+ ¢ and Er — ¢. This difference is significant if it
is larger than the Thouless energy E¢, which is defined
as h over the typical time it takes a particle to cross
the normal metal, Ec = AD/L? When ¢ 3> E¢, the
density of states is not strongly affected by the proximity
effect, and approaches its normal-state value, 1/6, where
6 is the mean level spacing. We assume that & here is
negligibly small and the spectrum is continuous, but it
is still convenient to speak in terms of contributions of
individual levels E,,.

The proximity-induced mini-gap extends in the
present case up to an energy E, ~ 3.1E¢ for ¢ = 0 [for
a particular realization of the disorder, the energy of the
first level deviates from the averaged E,(¢) only by an
amount of order §]. When ¢ is non-zero, the two super-
conductors are “not aligned” and a smaller mini-gap is
induced; when ¢ = 7 one finds E; = 0. The details of the
spectrum are different for other cases — for example E,
is smaller if the N-S surfaces are not perfect — but for the



purposes of the present work all we need to know is that
the spectrum depends on ¢, and the details of the E,(¢)
curves will only affect the details of the results. Thus,
ballistic systems with an elastic mean free path I,; of the
order of L (and a Fermi velocity vr and a Thouless en-
ergy Ec = hvp /L) are also expected to behave similarly.
On the other hand a perfectly clean system of separable
geometry with perfect N-S boundaries may not, because
in such systems the E,(¢) curves can cross each other,
leading to somewhat different non-equilibrium effects [9).

The fact that E, depends on ¢ directly implies the
existence of currents, I = (2e/h)(dEn/d¢) per electron
in the nth state. This may be understood either as
the expectation value of the current operator, or by
equating the amount of energy IV dt expended by an
external source with the energy stored in the electrons
> dE,, and making use of the Josephson relationship
dd = (2¢/h)Vdt. For each n there is also a state with

energy —FE,, which carries the opposite current. The
total supercurrent through the junction is thus
dE,
Is=— ﬂ(1 21y, (D

where Is denotes the supercurrent, f is the occupation
probability for the state E,,, and I—f is the occupation of
the —E, state [15] (the summation over spin is included
in the sum over n, and for a continuous spectrum the
sumrnation may be replaced by an integration).

In thermal equilibrium, f is given by the Fermi-Dirac
distribution, f.q = 1/ (1+exp(c/T)) where we have set
kg = 1. The expression for the supercurrent then be-
comes

Iq(¢) = ./ooo de j(e, ¢) tanh(e/2T) , (2)

where j(¢) denotes the Josephson current per unit energy,
J(En,¢) x v(En, ¢){(dE,/d¢). We are interested here in
the high temperature case, T » FE¢, which is equiva-
lent to the condition {4 < L mentioned above (here
Env = /AD/T by deﬁmtlon) The fact that I.; decays
exponentially with increasing temperature is not obvious
here, as j(¢) is essentially independent of temperature in
the mesoscopic regime, L < I,, so the integrand does
not decay rapidly with rising T". Instead, the small val-
ves of I.q are a result of a cancelation between positive
and negative values of the integrand — j(¢) oscillates as
a function of ¢, with an envelope which decays rapidly
when ¢ becomes much larger than E¢ (in order to see
the first oscillation on a plot such as Fig. 1, one must go
much higher in ¢, and magnify its scale by an order of
magnitude).

The fact that I, can become exponentially small is
clearer if one extends the integration in Eq. (2) to —oo
(the integrand is even), and uses contour integration in
the complex € plane. A positive imaginary part of ¢ cor-
responds physically to dephasing, i.e. a finite [, and this

implies that j{¢) is analytic in the upper half of the com-
plex plane. The only poles are thus due to the tanh
factor, and one finds that Joq = 27T 31" j(iwn), where
wn = (2n — 1)xT are the Matsubara frequencies. The
precise cancelation of the oscillatory integrand is thus re-
lated to the fact that j{¢) decays exponentially for large
positive imaginary values of ¢, i.e. for [, € L. In fact, for
T » E¢ one may argue that the contribution of the first
Matsubara frequency dominates, and there is no need to
evaluate j(¢) at more than one point. Likewise, the pair
amplitude may be evaluated at ¢ = iw;, and this directly
leads to the picture of its decaying on the length scale
&n. This argument is very general — true for both dirty
and clean systerns, etc. — but it does not hold for all
aspects of the proximity effect (e.g. not for the conduec-
tance, as emphasized in Ref. [3]), and it does not hold in
non-equilibrium situations. This last limitation 1s very
important for junctions of the type considered here, be-
cause of the strong phase-dependence of the spectrum
{Fig. 1), and the slow inelastic relaxation rates (e.g. large
lp) characteristic of the mesoscopic regime. Thus, when-
ever a voltage is applied to the junction, the spectrum
becomes time dependent and the system is driven out of
thermal equilibrium, at least to some extent.

Non-equilibrium medel

The simplest possible model for a (semi)quantitative
description of non-equilibrium effects is the relaxation
time approximation,

===t ®)

where the derivative is taken at constant n, foq is time-
dependent through the ¢-dependence of E, (Ref. {16)),
and g is taken as a constant. Note that this is a very
approximate description of relaxation by electron-phenon
or electron-electron interactions: it not only excludes a
possible dependence of g on ¢, but also ignores the pres-
ence of the phase-dependent gap in the electronic spec-
trum,

Rather than attempting a more sophisticated descrip-
tion of relaxation, we argue that the deviation of f from
feq is small for large energies (because the corresponding
Ep, curves are flat) and that therefore one may use a value
of g representative of relaxation at ¢ ~ Eg. Further-
more, the different E,; curves at these energies are rather
similar to each other — a simple shift in ¢ is insignificant
if T >» E¢ ~— and therefore one may choose one of these
curves as a representative, I.‘,,;,(.;!lv) (it is easy to check
this approximation by comparing to a model which re-
tains the n dependence). We thus write the supercurrent
as

Ig = qu(‘iﬁ) + 22{NdErep (f feq) ' (4)
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FIG. 2: (a) Current (in units of I.q) as a function of
time (in units of the corresponding Josephson period),
and (b) amplitudes |Iz| (with & > 0) of the harmonic
decomposition of the same data at times? » 7g. Results
are shown for five different values of the voltage, labeled
by v = (2e/R)VT&.

where Iq(¢) is the equilibrium supercurrent, and N is
the number of levels represented by Erep, which is of or-
der E./8. Note that the cancelation which affected the
integral expression for Is in equilibrium cannot recur for
the nonequilibrium part, because the decreasing oscilla-
tions of j(e) are here multiplied by a decreasing function
[ — feq, rather than the increasing 1-2fq factor.

(i) ac effects

The model consisting of Eqs. (3) and (4) generates ac
super-currents when a dc voltage is applied to the junc-
tion, d¢/dt = 2eV/h = const., as shown in Fig. 2. We
have chosen Epep = 3.4Ec+/140.7 cos(¢) as the repre-
sentative energy — this simple form fits the thick line
of Fig. 1 within a few percent (the corresponding value
of N is 10E¢/6, including a factor of 2 for spin}. We
have also used the T 3» E¢ condition to take Iy = 0
and feq = %-— Erep/4T. The current is plotted in the
figure in units of In.q, defined below, which is essentially
the maximum amplitude of the —sin{2¢) component of
the current, attained in the V == co limit. The results
with the full set of En(@) curves are very similar to those
shown — the amplitudes of the harmonics in 85% of the
cases shown agree within less than 15%. Thus the ap-
proximation of using a single Er.;(4) rather than a mul-
titude of E,(¢)s should not introduce errors larger than
those associated with the relaxation time approximation,
Eq. (3).

Note that in all cases the second harmonic of the usual
Josephson frequency dominates the ac currents. This oc-
curs because the current of Eq. (4) is a product of two

factors, dE,.p/d¢ and (f — feq), each of which oscillates
with the Josephson frequency. In fact, in the simplest
case Erep o cos(¢), and the current gradually crosses
over from a sin’(¢) behavior to —sin(2¢), as the voltage
is increased, with only the dc¢ component and the sec-
ond harmonic present. This simple case may be used to
describe junctions with L ~ I, or with significant time
reversal symmetry breaking (e.g. scattering by magnetic
impurities), because in such cases one would expect the
E.(¢) curves to be considerably “softened”.

The results sirnplify, of course, in the limits of small or
large voltages. In the first case we return to the results
of Ref. [5] (see also Ref. {7]),

2e_ dfeq

f=fea—T85V a5 +0(V?, (5)
and thus
(2 NtgV (dEep\’ )
= () TEE(f5E) oo, ®

where again the multiplication by N may be replaced by
a summation over (dE,,/d¢)? for a more accurate descrip-
tion. This gives an additive phase-dependent contribu-
tion to the Ohmic conductance of the junction, due to
the dissipative relaxation of the slightly non-equilibrium
distribution present in the junction at each instant.

In the opposite limit of high dc voltages, we may re-
place f by the time-averaged or phase-averaged feq:

2r
=5 | @i B o0y @)
In this limit the response of the junction is purely “reac-
tive”, with the oscillating current flowing sometimes in
the direction of the applied voltage, and sometimesin the
opposite direction. In fact, the time-averaged dissipated
power approaches a constant value Prgr at large V, and
so the dc component of the current decreases as Prg,/V .

The results shown in the figure resemble the “usual”
ac Josephson effect, albeit with a richer harmonic con-
tent. Such ac Josephson oscillations are usvally observed
experimentally by applying an ac drive (i.e. microwave
radiation) in addition to the dc drive, and looking for
so—called Shapiro steps: the I-V curves exhibit phase-
locking when the Josephson frequency matches the fre-
quency of the external drive (the voltage is locked to
the microwave frequency over a range of values of the
current). In the simplest analysis, one assumes ¢(f) =
do+ (2e/h)Vact + (2e Vo /hw) sin{wt), and finds the time-
averaged, dc component of the current, Jg4c.

Given the harmonic content of the oscillations dis-
played in Fig. 2, the results for the T — oo limit are
generally not surprising. Specifically, for the simplest
Erep & cos(¢) case, one finds Shapiro steps when-
ever (de/f)Vyc is equal to an integer multiple of w.



In this case f develops a non-zero time-averaged value
only for the even steps, f o cos(¢g)Jy, (Vac), Where
J denotes the Bessel function, and v4. and wa. de-
note the scaled voltages, e.g. vac = (2e/h)Vye/w. The
current Is has two contributions, one proportional to
fsin(¢) and the other to —sin{2¢), and thus [ o
sin(2¢0) (72, (vac) — Jov,.(2vac)). For the odd Shapiro
steps f = 0 and . & —sin(2¢0)J20, (2vac), which dif-
fers from the usual results for Shapiro steps only by the
doubling of the Josephson frequency and a sign.

For a more general Erep(¢), Shapiro steps exist also
when w (or an integer multiple thereof) is equal to
k(2e/h)Vy. for other harmonics £ # 2, and the mag-
nitudes of these steps are related to those of the different
harmonics seen in Fig. 2. In this case many of the steps
{(including the integer steps) have sin(kéq)} contributions
with several different ks, and the amplitudes for the dif-
ferent & harmonics vanish at different values of V,.. Thus
the total magnitudes of the Shapiro steps oscillate with
Vac, but no longer have zeros.

It is interesting to note that in the limit of small g,
the magnitudes of the Shapiro steps decrease quadrati-
cally, as 73wV, and not linearly {(as 7g V) as do the ac
currents themselves. This is due to the purely dissipa-
tive nature of the non-equilibrium currents in this limit,
Is @ G(¢)V, to first order in 7g. The fact that the dc
current, f I df, can be written as a phase integral with
no time dependence, [ G(¢)d¢, directly implies that no
Shapiro steps will be manifest to first order in rg (see

Ref. [4]).

(it) I-V curves

So far, with the exception of the last paragraph, we
have considerd the voltage V(t) as given. However, in
most experimental set-ups the junction is driven by a ciz-
cuit which is better represented by a current bias. It is
thus desirable to have a more general model of the junc-
tion. An obvious route is to generalize the well-known
resistively-shunted—junction (RSJ) model [17]. The cur-
rent is written as a sum of components, [ = Is+ Iy -+ IF,
where Iy is the normal current and Ir is a fluctuating
noise component (we are considering overdamped junc-
tions, with no capacitive term or displacement current).
The normal current can be written simply as Iy = Gy V
where Gy is the normal conductance. This is of course an
approximation, and is valid only as long as the voltages
are small enough, as discussed in the next paragraph.

Qur assumption that the occupations f follow the
states F,, “adiabatically” ignores some effects which be-
come important at large voltages V. One way to esti-
mate these effects is to say that in a time 7g, a particle
can cross the junction rgE¢/h times, each time gain-
ing or loosing an energy eV randomly due to the time-
dependent phases associated with Andreev reflections off
the N-8 surfaces at the two sides. In order for our adia-
batic considerations to be valid, this must not add up to

an amount of order E¢, which restricts us to small volt-
ages eV € /Ech/7e. Another way of arriving at this
limitation is to think of the dissipative conductance as in-
troducing a diffusive term in the evolution of the occupa-
tions f (Ref. [18]). The magnitude of this Dg(8? f/8€?)
term is Dp(¢, ¢) ~ 6GNV?, because the power absorbed
by the electrons, [ vde(8f/t)e, is ~ GnV?2. The € and
¢ dependence of Dg, which are the topic of study in
Ref. [1}, are always less than a factor of 2 and thus unim-
portant for the purpose of the present estimate. Ignoring
this energy—diffusion term compared to the relaxation
term is justifiable if e Dg < EZ%, which again leads to
the requirement of small voltages eV & /Ech/7g, as
above.

We thus describe the normal current by a simple con-
ductance Iy = GV, where 7 is given by an energy-
averaging of Dg. The conductance can be approximated
by its normal value Gn (i.e. its value in the absence of
superconducting proximity effects), because the width of
the averaging window is given by the temperature, and
the diffusion “constant” Dg attains its normal value at
energies € 3> Ec. Note that including the Dg term in
the equation for 8f/8t allows one to go beyond the low
voltage region (i.e. to include heating effects), at the price
of having to contend with a partial differential equation
— the specifics of Dg(e,¢) is another “spectral prop-
erty” which can be extracted from the detailed space-
dependent Green’s functions obtained in Ref. [13]. On
the other hand, a study of voltages comparable to or
higher than E¢ /e would require much more effort, be-
cause in that case the temporal and spatial dependencies
of the Green's functions would become intertwined.

It is convenient to rewrite the model in a way which
explicitly gives the time derivatives of ¢ and f:

dé 2 dE .

il (I—Ineq2d (E—f)—IF) (8)
df 1 /.

@ = 5 (E=F+0r). ©)

Here E is a linearly rescaled version of Evep(¢) = AE+B,
with A and B chosen such that E decreases from 1 to -1
as ¢ goes from ( to 7. Likewise, f is used instead of f=
$—{Af+B)/AT. The rescaling factors are included in the
coefficient Ieq = {2¢/R)NA%/4T. For the system under
discussion, A ~ 1.3E¢ and the energy scale correspond-
ing to Ineq becomes Epeq = (h/2€)J1eq ~ 4.1EL/6T. Re-
markably, this is only a factor of E¢/3.5T smaller than
the energy scale corresponding to the critical current for
the same junction at T' = 0. The fluctuating component
of the current, Ip, and of the change in occupation, Jp,
are used to describe noise, and will be set to 0 initially,
in order to discuss the noiseless case (T <€ Epeq).

The predictions for the I-V curves in this non-
equilibrinm mode] are shown in Fig. 3. Here a sim-
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FIG. 3: The I-V curves and differential resistances (in-
sets) for the non-equilibrium model. The current is in
units of Ineq, and the voltage in units of Vieq = Ineq/Gn-
Results are given for four different values of the relaxation
time g, increasing upwards in the left part of the main
figure, and indicated in the insets in units of A/2eVjeq.
The results of the RSJ model with I, = I, are drawn
dotted for comparison, as is the diagonal I = GyV.

ple dc current, I{t) = const., was assumed, and the
Erep(#) curve of Fig. 2 was used {as the harmonic con-
tent is not apparent in these curves, they are not sen-
sitive to the specific choice of Erep(¢)). The curves at
large values of Tz remarkably resemble the I-V plots
of the usual RSJ model. The slope of the curve near
the origin — the zero—-bias conductance — is not infinite
though, it is equal to Gn + 7e{2¢/R)Ineq, OF simply 1+ 17
in the units used in the figure. Note that the low volt-
age condition discussed above, when expressed in terms
of the unit used in the figure, Vieq = Ineq/Gn, reads
eV & \/Ech{tg ~ eVaeq(T/Ec)\/ 1/ Ec7e. Thus, for a
particular junction (and a particular temperature, etc.),
the corresponding curve in the figure is relevant only up
to a point determined by the ratio of the two large pa-
rameters I’/ E¢c and «/Ecte/h.

The finite zero-bias conductance exhibited in the fig-
ure prompts us to compare these curves with those ob-
tained in the RSJ model when noise is taken into ac-
count, which share this feature [17]. In contrast to the
cases of thermal or non-thermal noise in the usual RSJ)
model, the different curves of Fig. 3 cross each other.
More precisely, as the curves approach the diagonal when
e — 0, the maximum of the differential resistance shifts
to higher and higher currents relative to I5.q, and occurs
at I ~ Gyh/erg. Thus it is not possible to simply “read
off” the current scale I;.q (or voltage scale Vieq) of the
present model from the position of this maximum, unless
Tg is large.

The predictions for Shapiro steps are also modified
when a current—biased rather than a voltage-biased situ-
ation is considered, see Fig. 4. Two noteworthy changes

FIG. 4: The dc I-V curves in the presence of an ac
current bias, e = 0,0.5]5¢q, Ineqs 27neq, from left to
right. The displayed results are for w = 2eVheq/h and
T = 25h/2eV;eq (the curve at the extreme left is the
“unirradiated” result of Fig. 3).

relative to the voltage biased case are: (a) the general
tendency of the I-V plot to approach the diagonal when
Vac becomes substantial; and (b) the “squeezing”, or de-
creasing size, of the Shapiro steps under low frequency
conditions, where a naive use of the voltage-biased re-
sults would give overlapping current ranges for successive

steps. These changes are similar to the corresponding
ones in the standard RSJ model [17].

(i) notse

We now turn to the consideration of thermal and ex-
ternal noise in such junctions, i.e. introduce the fluc-
tuating parts Ir and Jr in Egs. (8) and (9). These
two equations can be derived from a free energy func-
tion F (8, f) = Eneq(E - f)? — (8/2e)1¢, which gener-
alizes the well-known tilted washboard potential. The
“potential landscape” function F(¢, f) may be visual-
ized as a winding valley, with a parabolic cross—section
in the f direction. The bottom of the valley is described
by the periodic E(¢) curve, and for I = 0 it has zero
overall slope. At a finite temperature T', points up to a
height of order T up the walls of the valley will be oc-
cupied. Such thermal fluctuations are described mathe-
matically by the correlators {Ig(¢}I#(0)) = 2T°G é(f} and
(Jr(t)Jp(0)) = (TET/ Eneq) 6(t), in accordance with the
fluctuation—dissipation theorem.

This description of thermodynamic equilibrium holds
regardless of whether f is a “fast” variable, with a small
value of 7g, or a “slow” variable with large rg. In the
first case (and also in cases where ¢ is kept fixed by an
external superconducting circuit}) we can integrate out
f. As it fluctuates in a parabolic potential with a mini-
mum at F = 0 regardless of ¢, the resulting free energy
will be constant as a function of ¢ and uninteresting —
the fact that the minimum of the parabola is at a ¢
dependent point, f = E, becomes immaterial. It is still
interesting to note the size of the fluctuations § f and
their effects on the supercurrent: §f2 ~ T/Eneq and
8ls = QIneq(dE'/dé)éf. The first implies 6f* ~ 1/N,
as should be expected of a group of NV levels with f near



3. The second implies 612 ~ Ineq(2¢/R)T(dE/d$)?, with
a correlation time of 7g. This differs from the fluctua-
tions in Jp by a factor of 7e(2e/h)Vjieq, which is the same
as the factor appearing in the zero-bias conductance dis-
played in Fig. 3. As pointed out in Ref. [19] for clean
junctions, these supercurrent contributions to noise and
conductance are related by the fluctuation—dissipation
theorem, and indeed one finds the same phase depen-
dence, (rL-E‘/qu)2 in both cases. _ 7

In the opposite case of large rr we can think of ¢ as
the fast variable, and integrate it out. The resulting free
energy, F( f) will not be featureless, but will also not
be very steep. In fact, it is easy to find the probabil-
ity density, o exp(—ﬁ‘( £)/T), by projecting this picture
of a “water—filled winding river” on to the f axis. It
is a convolution of a simple Gaussian [because F(¢, f)
is parabolic in f)], and a distribution proportiona.l to
Ia’E/del =1 which is sharply peaked at f = +1. For the
E = cos(¢ ) case, this distribution is (1-f2)~/2, whereas
for other cases it is asymmetrical, with the ma.ximum at
f = 1 being more prominent. At low temperatures we
may use the width of the Gaussian, ~ \/T/Eneq to cut
off the inverse—square—root divergence This gives a ra-
tio of the maxima to the local minimum (around f = 0)
probability densities ~ (Fneq/T)'/*, and the variation of
F(f)/T is logarithmic in this ratio.

As long as the noise is purely thermal, the situation
does not become very interesting: when one “tilts the
valley” by imposing a finite current I, one finds that the
voltage, or rate of phase—slip, is always enhanced relative
to the zero-temperature case. However, whereas the noise
in f is driven by the thermalization of the electrons at
their temperature T, the noise in the phase ¢ may be
larger than thermal. This occurs if the dominant source
of current noise in the circuit is not the thermal noise in
the 5-N-S junction itself. One may describe such high-
frequency noise by introducing a “phase temperature”
T4, such that Ty > T (low-frequency noise would affect
the dynamics of f as well, and not only the dynamics of
#). If g is long, we may integrate out the ¢ variable as
above, resulting in a F‘( f) curve with variations on the
scale of Ty. When we now solve for the dynamics of the
f variable, we find it strongly attracted to the minima of
the F curve, because the thermal energy T is relatively
small 20]. Thus, the variable f tends to get trapped near
the extremal values of E, and phase-slip occurs only in
discrete events and is strong]y suppressed.

This suppression of phase-slip oceurs also when a small
current I is present. Thus, the zero-bias conductance of
the junction grows with external noise, at first, see the
inset in Fig. 5. Although the zero-bias conductance can
grow substantially for large 7g, this affects only the very
low—current portion of the I-V curve, and at higher cur-
rents the effect of noise is as expected (the main figure).
Note that a modest amount of thermal noise can wash

FIG. 5: The I-V curves in the presence of external noise
Ty = 0,0.25F g, 0.5 Epeq, Eneq, from top to bottorn. The
waviness of the curves reflects the accuracy due to the
finite numerical integration time (again, we have chosen
7g = 26h/2eVyeq and reproduced the Ty = 0 of Fig. 3).
Inset: the same curves on a much expanded scale, such
that the Ty = 0 curve appears diagonal and the dotted
I = GNV line is near the horizontal axis. Note that
the Ty = 0.25F,q curve crosses the Ty = 0 one, and
appears to have a “critical current” of 0.1Ipeq (of course,
it also reveals a finite zero-bias conductance upon further
magnification). The dashed lines show that thermal noise
counteracts this effect: here T = 0.05 (top) and 0.25
(bottom), with T kept at 0.25 (for all other curves T = 0,
see text).

away this effect (see dashed lines in inset). A detailed
survey of the results for different values of Ty, T, 7g and
I is beyond the scope of the present work.

Ezperiments

We now finally turn to the experimental motivation for
this work. Observations of Josephson-like effects, with
a “strange” tendency for dominance of the second har-
monic, were recently made in a one-dimensional array
of long wide S-N-S junctions, where the normal material
was an In-As quantum well, and the superconductor was
Niobium [21,22]. Direct motivation was given by the ac
measurements [22], which showed Shapiro steps of var-
ious (sub)harmonics. Surprisingly, one of the Shapiro
steps was observable even at relatively high tempera-
tures, 8K in one case (the T, of the sputtered Niobium
used was about 8.5K). This was not the fundamental
Shapiro step, but the one with w corresponding to the
second harmonic of the Josephson frequency. At such
high temperatures one can perhaps argue that the non-
equilibrium effect is strong compared to the equilibrium
Josephson coupling. Indeed, in the same experiments the
superconducting effects gradually disappeared when the
frequency was increased beyond ~ 3 x 10''Hz, which if
interpreted as the inverse of the time the electrons spend
en route from one S electrode to the other, corresponds
to a value of E¢ of the order of 10K.

A detailed comparison between the present theory and
the existing experiments is complicated, because the con-

ditions T » E¢, L < 1,, and eV € /Ech/7g are only
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marginally met in the experiments, at best. Further-
more, the experiments used a rather clean quantum well
(l.; ~ 6pm before processing, compared to L ~ 0.4pm),
and so the detailed results obtained here are not directly
applicable. However, the simplicity of the present model
allows for modifications which could perhaps alleviate
these concerns, provided that the several new parameters
which would be introduced by such modifications were
independently determined. Further experiments, aimed
at clarifying the situation, are currently underway. An
interesting possibility is to measure the inelastic relax-
atton rate of the Andreev bound states directly, using a
time-resolved pump-probe experiment [23].

The dc measurements {21] of zero-bias conductances
in this systemn showed a periodicity in magnetic field cor-
responding to a flux of 7/ /2e, or half a flux quantum, per
junction. These measurements were made at lower tem-
peratures, ~ 4K, and were originally interpreted in terms
of a superlattice of Josephson vortices, with the number
of vortices in the combined area of two neighboring junc-
tions increasing by one unit per period. However, it is
arguably more natural to interpret the results in terms of
Josephson half-voriices, which would arise if the present
non-equilibrium model were generalized to the case of
long junctions. Here “long” refers to the direction per-
pendicular to the current flow, which in the experiment
was about 100 microns. Clearly, the populations f of the
Andreev bound states may equilibrate in the lateral di-
rection, and one would need to identify the length-scale
over which such equilibration is effective.

There are two distinct possibilities for Josephson half-
vortices to evolve in such a junction: firstly, if one looks
at distances much larger than the equilibration distance,
the different segments of the junction become indepen-
dent of each other. If then the system is driven by some
noise, as in the Ty > T situation described above, one
should find different segments trapped in different min-
ima, with f near 1 or near —1, and in the region between
such segments an amount of magnetic flux equal to half
a flux quantum (or an odd multiple thereof} would be
trapped. The opposite case of fast lateral equilibration
is more difficult to analyze, because it is no longer clear
that the occupations of different levels can be represented
by a single Erep curve. However, it 1s interesting to note
that if for any reason one finds that f ~ 0, then the ¢
variable would see a “washboard potential” with minima
whenever K is near zero, i.e. near all odd multiples of
7 /2, again resulting in “Josephson half-vortices”. This
situation is similar to the one involving a ferromagnetic
N material, considered in Ref. [11], and indeed a detailed
comparison with the experiment would require a care-
ful evaluation of the effects of interactions (a straight-
forward application of the formulae of Ref. {11] indicates
that this particular interaction contribution should be
negligible for the experimental geometry, even at zero

temperature). The study of these intriguing possibilities,
and their possible relation with the experiments, is left
for future work.

Conclusion

In summary, we have found that a wide mesoscopic
S-N-S junction which carries an exponentially small
Josephson current under thermodynamic equilibrium
conditions, i.e. one with L > £, may still exhibit ef-
fects very similar to both the dc (Fig. 3) and the ac
(Fig. 2) Josephson effects. The non-equilibrium condi-
tions may be brought about by irradiating the junction
with microwaves, connecting it to a noisy circuit, or sim-
ply applying a voltage. The magnitude of the new effects
decays only as I.q x Ec/T, and not exponentially with
temperature as does the equilibrium critical current I,
(they also require relatively slow relaxation rates, 1/7g,
but such slow rates are natural in the mesoscopic regime}.
The new effects have the signature of being dominated
by the second harmonic of the Josephson frequency, and
may have already been observed.
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