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A consistent theory of superconductive tunneling in single-mode junctions within a scattering
formulation of Bogolyubov.de Gennes quantum mechanics is presented. The dc

Josephson effect and the dc quasiparticle transport in the voltage-biased junctions are considered.
Elastic quasiparticle scattering by the junction determines the equilibrium Josephson

current. The origin of Andreev bound states in tunnel junctions and their role in equilibrium
Josephson transport are discussed. In contrast, quasiparticle tunneling in voltage-biased junctions is
determined by inelastic scattering. A general expression for inelastic scattering amplitudes is
derived and the quasiparticle current is calculated at all voltages with emphasis on a discussion of
the properties of subgap tunnel current and the nature of subharmonic gap structure.

© 1997 American Institute of Physics. [S1063-777X(97)00203-X]

1. INTRODUCTION

The tunnel Hamiltonian model' has for many years been
a main theoretcal tool for investigation of tunneling phe-
nomena in superconductors.” However, interpretation of re-
cent experiments on transmissive tunnel junctions® > and
comptlex superconductor-semiconductor structures®’ requires
more detailed knowledge of the mechanisms of the super-
conductive tunneling than the tunnel model is able to pro-
vide. Particularly informative are experiments on supercon-
ducting quantum point contacts with controlled number of
transport modes and transparency, such as controllable su-
perconducting  break  junctions® and  gate-controlled
superconductor-semiconductor devices.® Since only a few
transport modes with controlled transparency are involved in
the tunnel transport; the experiments provide precise and de-
tatled informastion which can be directly compared with
theory.

The first attempts to develop a theory of superconductive
wnneling beyond the wanel Hamilonian model" " were
made m generzhzation of  methads  applied to SNS
SO Based on
the Green's funcuon methods. In these theones, the junction

14.4% . .
junctions 7 and superconducting constriction:

Green's functions are directly found from the Green's func-
ton cquations winch are supplemented by special boundary
condhtions representing the tunnel barrier or by matching the
superconductor - and ansuiator Green's  functions  at the
superconductor-imsulator boundaries.

In the first sdies of the Josephson effect in SNS
juncuions ™' another method of calculation, based on expan-
sion aver crgenstates of the Bogolyubov-de Gennes (BdG)
equation, has been used.®? A similar method has been also
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applied to SIS tunnel junctions“ and superconductor-
semiconductor junctions.”” In the absence of inelastic scat-
tering the method of using the BAG equation gives the same
results as the Green's function method.?’ One might then
expect that the Josephson effects in superconducting junc-
tions can be explained on a rather simple quantum-
mechanical level. Following this idea, the quantum-
mechanical approach has been successfully applied 10
calculation of the direct Josephson current in different kinds
of mesoscopic weak links?*~%® -3
This method was applied for the first time to voitage-biased
junctions by Blonder, Tinkham, and Klapwijk, who consid-
ered quasiparticle tnneling in /N junctions as a scattering
problem n BdG quantum mechanics.?? Later, the quantum-
mechanical approach has been found helpful in investiga-
tions of more complex phenomena of quasiparticle transport
and ac Josephson effect in voltage-biased SNS juncuom;,‘2
mesoscopic SIS tunnel junclions” and  mesoscopic

and tunnel junctions.

constrictions. ™

The guantum-mechanical approach based on the BdG
equation 15 adequate for describing the physical snuation in
mesoscopic junctions, where the inctasuc scattering effects
are weak und most impaortant is the coherent electron dynam-
ies. Because of the quantization of transverse celectron modes
I MCSONCOPIC _jnnclmn};,z“ﬁ 1 models for the current
transport through the junction may be appropriate.

In this paper we  present  a consistent  quantum-
mechanical theory of superconductive wnnehing i a one-
made quantum constriction {Fig. 1). We consider the de Jo-
sephson cffect and also dc quasiparticle tunneling in the
voltage -biased junctions. In the latter case we focus attentton
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FIG. 1. SIS wnnel constriction.

on a detailed calculaton of the subharmonic gap structure
{SGS) of the wnnel curmrent.>?

Following the Landauer approzu:.h.jh we consider super-
conducting clectrodes as equilibrium reservoirs which emit
quasiparticles into the constriction, Scattering by the junction
goes into two channels; (i) the normal channel in which the
outgoing quasiparticles remain in the same branch of the
quasiparticle spectrum, and (i) the Andrecv channel in
which quasiparticles change branch due to electron-hole con-
versions. The current in such a picture results from the im-
balance of currents carried by scaltering states originating
from the left and the right reservoirs. Here the magnitude of
the current is proportional to the transmission coefficient D
of the tunnel barvier.

The imbalance of currents in superconducting junctions
can be created in two ways: by establishing a difference in
the phases of the order parameters in the left and right elec-
trodes or by applying a voltage bias. The basic fact concern-
ing the ow of equilibrium current in the presence of a phase
difference, which was established by Furusaki and
Tsukada,” is thal a bulk supercurrent 1s, upon approaching
the tunne! interface, transformed into a current that flows
through the superconducting bound states which appear at
the tunne! inierface tn the presence of the phase difference”’
and which provide transmussion of the Cooper pairs through
the wnnel barmier. The balance among currents of differcnl
scattering states 15 not violated, although the scatiering am-
plitudes depend strongly on the phase difference.

Application of a voltage bias pives rise to more far-
reaching consequences than just the imbalance of the elastic
scattering modes: the seattening states themselves are modi-
lied 10 o nontrvial way. This follows from the fact that the
scattering amplitudes. which are phase: dependent at ‘eyutlib-
fum, become tme-dependent in accordance with the Joseph-
won relation. ™ dgrde - 2eV, when voltage s apphed. Thus,
m the presence of @ constant voltage the superconducting

pclion behaves as an effective nonstationary  scatterer.
whose transiussivity oscillates. This property of the super
conducting junctions gives rise 1o ac Josephson effect; how-
ever, 1 is also significant tor de guasiparticle transport, be-
cause the quasiparticle ransmission through such ascattere
I~ ineleestn

The physical mechanism of welastic quasiparticle trans-
mussion through voltage-biased superconducting Junctions
has been trst considered in SNS junciionx,“2 where at has
been explumed o terms of nmultiple Andreev reflections
(MAR): the normal guasiparticles, which are confincd be-
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tween superconducting waills, are permanently accelerated by
the static electric field due to sequential electron-hole con-
versions at the NS interfaces, similarty to acceleration of the
electrons in an ordinary potential well by & time-dependent
electric field. Similar arguments can be extended to the tun-
nel junctions.m However, in tunnel junctions the scatiering
theory approach is more appropriate because ol the quantum
nature of quasiparticle transmission through the atomic-size
wnnel barrier. This introduces a side band spectrum of scat-
tered waves where the side band energies are shifted with
respect to the energy of the incident wave by integer numbey
of quanta of the scatterer frequency.“ Such an approach s
familiar in the theory of quantum scattering by oscillating
potential barriers in normal tunnel junctions (see, e.g., Refs.
40 and 41 and the references cited there).

The woneling through all the inelastic channels {normal
and Andreev channels) constitutes a complete picture of su-
perconductive tunneling in biased Josephson junctions—the
incoherent part of the side band currents, which correspond
to the direct quasiparticle current, and the side band interfer-
ence curents, which correspond to the altemating Josephson
current. An important aspect of this picture is that the An-
dreev bound states are involved in the current transport to-
gether with the extended side band states, which give a mul-
tiparticle character to the superconductive tenneling in the
subgap voltage region. This multiparticle origin of the sub-
gap tunnel current was first poinicd out by Schrieffer and
Wilkins.*?

The structure of the paper is as follows. After formula-
tion of the problem and discussion of the quasiclassical ap-
proximation in Sec. 2, we consider the problem of elastic
scattering in Sec. 3 as a starting point for construction of
inelastic scattering states in biased junctions. The solution of
the elastic scaitering problem allows us to calculate the de
Josephson current, which is done for completeness in Scc. 4.
In Sec. S we construct inelastic scattering states and derive u
continued-fraction representation for the scaltering amplh
tudes. In Sec. 6 we derive the nonequilibrium current. fn Scc.
7 we discuss the origin of the excess tunnel current in the
farge bias limit. In Sec. ¥ we present a general analysis of the
subgap tunnel current. Finally, the SGS s analyzed m
Sec. 9.

2. FORMULATION OF THE MODEL

We consader a superconducting quantum constniction
with adsabatic gcumcu_\”. the cross sechion varnes smoothi
with the coordmate 5 on the scale of the fFermi clectian
wavelength oy oand the size of the cross section s com
parable with the Fernn electron waveleneth (g, ). the
length £ of the consirvion s assumed 1a he soaller thim the

soperconducting coherence length &
Up sl gy, (n

The Thamiltonan of the constriction is assunmed 10 bave
the form
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+[V(x) teg(ra) o, +A(r.0), (2.2)

where U(r) is the potential which confines the electrons
within the constriction; V(x) is the potential of the wnne!
barrier; A(r.r) and @(r,1) are electro-magnetic potentials;
A{r.t) 15 the off-diagonal superconducting order parameter
given by the matrix

. {0 Ae'x'?

Az(Ae""IO (2.3)
We assume that the junction is symmetric. The choice of the
units comresponds to c=h =1,

It is convenient to ¢liminate the phase of the supercon-
ducting order parameter x(r,r} in Eg. (2.3) by means of a

gauge transformation:

exp(ia':)(lZ)};' cxp(—iazx/2)—’f;‘. (2.4)

which allows us to introduce a gauge-invariant superfluid
momentum, p,=Vyx/2—eA, and an electric potential ¢
=xl2+ep.

There are different scales of change of potentials in Eq.
(2.2): one is an atomic scale over which the confining poten-
tial U(r,) and the potential of the tunmnel barrier V(x)
change. Other scales are related to the changes in the super-
conducting order parameter, the electromagnetic ficld pen-
etration lengths and the length of the contact: all these
lengths are large in comparison with the atomic length. 1t is
convenient to separate these two scales by introducing qua-
siclassical wave functions,* which vary slowly on an atomic
scale, and by including rapidly varying potentials in a bound-
ary condition for quasiclassical wave functions. To this end,
we assume that the solution ¥(r 1) of the Bogolyubov-de
Gennes equation’®

iW()=HW¥ (1), (2.5)

with the Hamiltonsan of Eq. (2.2), has a quasiclassical form

!
Yir=2 ¢ (r x) ———exp(r’ﬁfpdx)t/f”(x,r).
A Ju ’
(2.6)

where ¢ is the normalized wave function of the quantized
transverse electron motion with the energy £, .
[ b,
o b Ve = ()
2 '

o (e o =0,

and p s e longitudinal momentum of the guasiclassical
clectron,piay = | Zm(u — F£, (x))]”}; £ - tandhcatesthe di-
rection ol the electron motion. We assume that the constric-
tion his only one ransport mode; an extension to the case of
several unmixed modes consists of additional summation
over all wansport modes in the equation for the current. The
coelficients 7 LEg. (2.6) describe the wave funcuons
which vary slowly n the x direction and which satisty the
reduced BdG equation
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i‘j’f_R: (Bupu +®, go +up gt AU.-)',"f,R (2.7)

in the deft (L) and the right (R) electrodes; v =p/m. The
potentials p, and ® describe the distributions of the electro-
magnetic field and supercurrent in the electrodes. In the point
contact geomelry these quantities are small due to the effect
of spreading out of the current.'®* We will therefore omit
them, p, = =0. For the same reason, deviation of the Spi-
tial distribution of the module of the order parameter A from
constant value s small in the point contacts; we will there-
fore ignore it, A = consl.

The functions d/f.R are matched at the constriction by the
' (see also Appendix A}:

boundary condition’
AN
( L)—V( I‘) at x=0,

el ™ N @8
with a matching matrix V
. r deirr:wlz
V= de—i(r:pIZ r ) (2.9)

The quantities d and r are the normal electron transmission
and reflection amplitudes due to the barrier. Here and further
% is a gauge-invariant difference in the superconducting
phases of the right and left electrodes: = ygx(0)— y,(0).
The matching matrix in Eq. (2.9) satisfies the unitarity con-
dition

vVi=i. (2.10)

The boundary condition in Egs. {(2.8) and (2.9) is analo-
gous to the boundary condition used in the guasiclassical
Green's function methods (see, e.g., Refs. 11 and 46). This is
a very simple equation for coupling of superconducting elec-
trodes, while retaining the main features of the Josephson
effect, except for effects of the resonant tunneling,*%4748

3. ELASTIC SCATTERING

In the absence of time dependence in the phase differ-
ence at the junction, ¢ =0, Egs. (2.7) and (2.8) describe elas-
tic scattering of quasi-particles. The scattering states can be
constructed by using stationary solutions of Eq. (2.7}, which
cortespond to elementary propagating waves with energy
|Ed=> A

(/;f":cxp( ~iEr +iB(r(§/u),r)u,‘,f-, (3.1
) LByl
uf_ =(2 cosh v) Hz(uc Jw")_)\ (3.1b)
where
o e
Foo I AT, ef e
a sign B 0 and S oo (3.2)
The veeton tunction gop 18 normadized, () = 15 the brack

ets mean that the sealar product is in the clectron-hole space.
[n Eq. (3.1} there are four clementary waves, which corre-
spond to the same enerpy, as illustrated m Fig. 2, and which
are labeled by quantum numbers 8 (direcuion of the Fernu
electron momentum) and e = sign(|p| — p g3 (the electron or
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FIG. 2. Quasiparicie spectrum and position of the incoming stales: 143} —
hole (electron)-itke quasiparticle incident from lcfi; 2(4)—hole {electron)-
like yuasiparticle incident from right.

hole-like branch of the quasiparticle spectrum). The direction
of propagation of each elementary wave is determined by the
sign of the probability current. The probability current den-
sity j,, which is defined by the conservation law (the conti-
nuity equation) 8| y|*/dt+dj,/dx=0 for the BAG equation
[Eq. (2.7}, has the form jp={t,0.4). For the elementary
waves in Eq. (3.1), we obtain the explicit result
jp=B6 tanh y. According to this formula, the relation
8= f3 is satsfied for the waves propagating from left to right,
and the relation 8= — B is satisfied for the waves propagating
from right to left. Therefore, the incoming waves from the
left {L) and the right (R} have the form

L:explio( §Iu)x}ug . Riexp(—iof{ §lu)x)u£g . (3.3)
while the outgoing waves have the form
Liexp{ —io( élu)x)ug’g, R:cxp(icr(&lu)x)u'g. (3.4)

Cormespondingly, the incoming quasiparticle can be scattered
into four outgoing states: 1wo forward-scattering states and
two backscattering states. One of the reflected waves belongs
to the same (clectron-like or hole-like} branch of the quasi-
particle spectrum as the incoming wave and constitutes the
normal scattering channel, while the other reflected wave
changes the spectrum branch and constitutes the Andreeyv
channel. In a stmilar way, transmitied waves constitule nor-
mal and Andreev channels. The structure of the scattenng

stiates then becomes

v 5 a

( = S}. L‘lulf-u!\u’_ 1 j e il:({!uh”;: . (3.5a)
iy | N 7 | , :

[ ) 2] ¢
v LR ’ -

( !.- } ( \I- ‘}C“r({‘u“fl; f ( ) ¢ lrrl(h‘:\“F . ("}i))
(/‘H; \‘jj‘-"ﬂ ’ j ’

;

(for Lrevity we have omitted the time-dependent fuctors
exp{—iEn). In Ligs. (3.5) the index j=1(2} corresponds 10 4
hole-like quasiparticle that comes from the left{right). wlile
the index j=3(4) corresponds 1o an electron-like quasipar-
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licle that comes from the left {right). According to the struc-
wure of the matching matrix [Eq. (2.9)}, the symmetry be-
iween the scattering states j=1 and 2 is

(o) o=(2) o (5] eo=Lc]
b 2(40)? a |(—(P)' s 2(qo}r— c l(—qo). (3.6

Analogous symmetry exists also for the scattering states
j=3,4. Using the unitarity of the matching matrix [Eq.
(2.9)), we can find the following relation between the scat-
tering states j=3 and I:

o) (5 o
b 3')",1". f | Y s .

g rfg o
f , ')’J'. b I Y, N .

These symmetry relations allow us to find al} the scattering
amplitudes if one of the scattering states is known.

Let us find the explicit scattering amplitudes for the scat-
tering state j=1. After substituting Egs. (3.5) into Eq. (2.8),
it is convenient to split the resulting equation, using the or-
thogonality condition, (u*,au7)=10, into two independent
equations for the normal scattering amplitudes ¢, f and for
the Andreev scattering amplitudes a,b:

_ _Jt P -
{u ,ou )(0) ={u ,o,Vu )(f} s
1

(u*,Uzu+)(a) =(u+,az‘}uﬁ)(c) .
b fl

Calculating the scalar products in Egs. (3.8), we find the
explicit expression for the Andreev amplitudes in terms of
the normal amplitudes,

(a) _id sin(<p/2)( f)
| I

(3.7

(3.8a)

(3.3b)
1

39

b sinh ¥ -c

The solution of the first equation in Eq. (3.8) is given by

r sinh® ¥ d sinh y sinh{y+i@/2)
P == '
1 A fl Z
(3.1
where
d g . .
7= - Y3 (R sinh® y+ 0 sinh{ y+i¢/2)
{
x sinh({ ¥ —i@/2)} (3.1
D o= dl2 is the normal electron transmission coelficient of the

wnnel junction, and R = |r|2= 1 -1 s the nornd elecuor
reflection cocfticient. It foliows from Egs. (3.9) and (310
that if there is no phasc difference across the jqunction
=0, the Andreev scattering channe! is closed: a=0:-0. 1t
is worth mentioning that the Andreev refiection is also abscn
f the normal transparency of the junction is equal to zero
/) =0. If, on the other hand, the junction is completely trin-
parent for normal clectrons. D =1, there is no Andreev tos
ward scatiering, #=c=0.

{n the presence ol a phase difference at the junction the
quasiparticle scattering is accompanied by the appearance o

Shumeiko e! al. 18
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superconducting bound states.”” One can establish the exis-
tence of bound states by investigating the poles of the scal-
tering amplitudes, Eq. (3.10}, at imaginary y corresponding
to energies lying inside the gap |E|<A. Assuming y-+iy in
Eq. (3.11), we have the dispersion equation Z(i y)=0 or

{3.12)

The bound states comespond (0 a positive value of
sin ¥: A sin y=Im £ > 0. This condition has two roots:

sin’ y=D sin® /2.

¥= Y= arccos( JB sin @/2}),  y=m—1y, (3.13)
or
E(p)=*AJI1-D sin’ @l2. (3.14)

The wave functions of the bound states can be constructed
from elementary solutions of Eq. (2.7) with [E[<A, which
decay at x= *eo;

qof,:e:exz)(—iEr—(va)uE. (3.15a)
of  =exp(—iEt+ [xiv)ug”, (3.15b)
where
] eivﬂ?
H:::E(Uc-avyIZ)-
o B+ _
¢fm———_  {=JA‘—-E, v=8f0o. {3.16)

A

The bound state ansatz has a form similar to the outgo-
g part of the scattering states [Eq. (3.5)) with the coeffi-
cients satisfying the homogeneous equations in (2.8). These
coefficients are

d sin{ y+ @/2)

f= rsny <, (3.17a)
(a)_ds:n(:,o/?)( f)
b f“‘m— el (3.170)

where y is given by Eq. (3.12). We note that the bound state
spectrum is nondegenerate. The coefficient ¢ in Eqs. (3.17) is
oblained from the normalization condition for the bound
state wave funclion,

. |
[ ar | aereg et e e -1

which yields

S D sinf(y+i2))
le]?= A sin y!l*** LAY .

R sin® y (3.18)

What is the ongin of the bound states in a wnnel junc-
ton? According 1o Eq. (3.8), one can regard these states as
esulting from hybridization of the bound states in the short
ballistic constriction® due 1o the normal electron reflection
by the cffect of impurities in the 3NS
Juniction b Let us constder a smooth constriction with the

barrier (¢l
25.26
length exceeding the coherence length, L® £, In such a
constriction the supercurrent density and the superfluid mo-
mentum  are  related by the local  equation, J(x)
=lelm)N p (x), and they are both enhanced in the neck of
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FIG. 3. Spatial configuration of the edges of the superconducting energy
bands in a long constriction: Epiy. Egae = *4A + p,(x)u. A potential well
appears in upper (lower) band for electrons moving in a direction opposite
to (along) the supercurrent.

the constriction due to current concentration (for simplicity
we disregard the effect of suppression of the superfluid elec-
tron density N, by the supercurrent). The local quasiparticle
spectrum in the presence of supercurrent has an additional
contribution * v zp,(x).2® which gives rise to a shift of the
local energy gap (Fig. 3). The spatial bending of the gap
edges forms the potential wells at E<<0(E>0) for quasipar-
ticles with electron velocities directed along (opposite) the
current. The bound states in these potential wells are similar
to the Andreev bound states i the SNS junctions.”® The
difference 1s that here the bound states are caused by the
spatial inhomogeneity of the phase of the order parameter,
while the onginal Andreev states are caused by the spatial
inhomogeneity of the modulus of the order paramcter. With
decreasing length of the constriction, the number of the
bound states 1n the well decreases. The short Josephson con-
striction  corresponds 1o an infinitely narrow  and  deep
&potential well which comtains only one Andreev level 2

4. DIRECT JOSEPHSON CURRENT

A convenmient expression for the twnnel current results
from statistical averaging of the current operator written in

the Nambu representation’:
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(x :)=il(ﬁ“ﬁ')jdlr
' 2m 1

X[:S(rmr')Tr(‘i’(r,:)‘if+(r'.t))] . (4

r=r'

where W is a two-component field operator

: _ gy (1)
\y(r")_(é’lf'(r.r))' “.2

and Tr is a trace in electron-hole space. The angular brackets
in Eq. (4.1) denote a thermal average of the one-particle
density matrix of the supt’.rc-:mo:iuclcor.5 L At equilibrium this
matrix has the form

(\P(r)ir*(r)):g) W, (e~ EN¥r), (4.3)

where W,(r) are the eigenstates of the steady-statc BdG
equation [Eq. (2.5)] with the quantum numbers h. We note
that the definition of Fermi distribution function ng here cor-
responds to the distribution of holes in the normal metal: in
the ground state all energy levels above the Fermi level (E
> Q) are occupied, while energy levels below the Fermi level
(E < 0) are empty (see also the discussion in the next sec-
tion). In the quasiclassical approximation [Eq. (2.6)] the av-
erage tunnel current calculated at the middle of the junction
has the form '

I= “32 nF(—E,‘)g Bl (0)|2. (4.4)

The current in Eq. (4.4) can be calculated either at the left or
the right side of the junction, because the equality

L2 — o 1=l = e |, (4.5)

duc to the unitarity of the matching matrix V in Eq. (2.10),
hotds for each eigenstate. The current in Eq. {4.4) consists of
contributions from the scattering states and the bound states:

dE|E]
:#—J’! nF(—E)El; 1,-(5)—%A ne

El>a 2mE

X (= EMpound( E). 1(E}

=c§ﬁ: BleBEN. (4.6)

When calculating the contribution from the scattering states,
i is convenient to consider the transmitted cufrent ol cach

scattering mode:

1(EY - ello Pl =1, (4.7)

AEYS e(le|? la 1) j=24. '

The symmetry relations {Eqs. {3.6) and {3.7)] yicld
FEY= 1 EY, L(E) = 1(E). 1p(E) =~ 1{£). (48)

The currents of all the scaltering states with a given energy
therefore cancel each other at t:quili.brium.52 Substituting
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Egs. (3.17) and (3.18)} into Eq. (4.6), for, e.g., the right elec-
trode, we obtain the following expression for the current of
the bound state:

2

el
"bouud(E)'—'f-’(le“”mz}:“?E_D sin . (4.9

A useful formula for the current of the single bound state,
which allows direct evaluation of the current from the bound

state spectrum, is given by equation
dE(¢)
de '

where E() is the bound state energy band [Egq. (3.14)]. This
formula is derived in Appendix B. Taking into account Eqs.
(4.9) and (4.6), we write the total current in the form 01233

I(E)=12e (4.10)

A1 —D sin®(p/2)
I= anh .
2J1—D sin*{¢/2) 2T

eAD sin @

{4.11)

Thus, the Josephson direct current in tunnel junctions is
carried only by the bound states, which is similar to the
siwation found in the other kinds of short weak
links.24-262830 [t follows from Eqs. (4.6) and (4.9) that the
nonvanishing total current results from the imbalance of the
bound state currents due to a difference in the equilibrium
population numbers. Creation of a nonequilibrium pepula-
tion makes it possible to control the Josephson
transpon.m'”"s

5. INELASTIC SCATTERING

Let us now discuss inelastic scattering in voltage-biased
junctions. According to our assumption ¢ = 0, which is ex-
plained in Sec. 2, the applied voltage drop V is confined to
the constriction; in order not (0 complicate the problem, we
have also disregarded a small time-dependent voltage n-
duced across the junction by the ac Josephson current (self-
coupling effect®®). This implies the following dependence on
time of the phase difference:

=1yt 2eVL (5.1

The appearance of factors with periodic time dependence in
the boundary condition [Egs. (2.8) and (2.9}] gives rise (0 a
more complex structure of the scattering states than 1n Eq.
(3.5). in order to satisfy the boundary condition, the outpoing
part of the scattering states in Eq. (3.5) is to be constructed
from the cigenstates of Eq. {2.7) with different energies £,
— [ - neV shifted with respect to the energy £ of the incom-
ing wave with an integer — % < n < oo {side band structure)

: 5
(""")(0):(5;:‘)@_5'5%2 (z) upe e (5.2a)

e 2

NG
W, ( ;i ‘) + - E ¢ -
. = - ety — i
(q’/,; (0) 514 Uy € + E,,“ f j‘"I‘E"L . {5.2b)
For brevity we use the notation u, = g . While the incoming

state is itinerant, the outgoing states can be ecither itinerant
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(Eq. (3.1)if|E,| > Alor bound [Eq. (3.16) if |E,| < A) Ttis
convenient to combine the two equations for the functions
u, in a single analytical form:

. 1 {:i v, /2
u, =m (U_”c-o y",'Z)‘ (53)
Eﬂ' + L
e = I—L—é-. ",=Re v,,
VE,-A%, |E,|>4,
"= 5.4
"o BTEL |E<a (5.4

To find the scattering amplitudes in Eq. (5.2} we consider the
boundary condition Eq. (2.8). It is important to mention that
this boundary condition was derived without regard for the
energy dispersion of the normal electron scattering ampli-
tudes ¢ and r, which means that now this assumption should
be valid for the entire interval of relevant energies £, . Let us
first discuss j= 1 {hole-like quasi-particle coming from the
left):

(I) 4 +(a) :
Uy Of u,
0 b/,

N

_(c) B d(1+az 0 )f) )
=r f un+§* 0 l—a’z (C I'nilu"vl

L.n

d{l-o, 0 f
+5 ( Upy)-
2 0 t+e,fc In+l

[t is convenient to separate the equations for normal and
Andreev scattering amplitudes in Eq. (5.5) using a procedure
similar to Eq. (3.8). The equation for the normal scatering
amphtudes then becomes

rC|.ﬂ+(d/2)(vn_n+ ]fl.rr-i' 1 +v:u-1fl.nfi): 5"[‘_).

(5.5)

rf|."+(d{2)(v:n+lci,n+l +V,:nﬁ|C|,n~ 1)=0, {5.6)
where the coefficients
. (u o)
V- = — — 7
iy (M" * LU, (5 )
have the explicit form
. expl — (¥, + ¥,)i2) [ cosh I, } ' B
n sinh v, ‘COSh !,m 1383)
expliy, +v,)/2) {cosh [,
Vmu A F g, - . !igb)
sinh y,, cosh ',/

The cquation for the Andreev scattering ampinudes 15

ay - ((’Hz)( Uun! I_fl.rll 1 + (’jl:ll i'j-;.u I)‘

v A ey UL ) (5.9)
where the cocllicients are defined as
(w, * o 2 ) i
o, —(—;’—*: “—: . (3.10)
and have the explicit forms
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FIG. 4. Scattering diagram of voltage-biased superconducting tuancl junc-
tions. Solid {dotted) ammows indicate scattering in the normal {Andreev)
channei. Filled triangles indicate superconducting bound states. Transmis-
sion (reflection) occurs into side bands with odd {even) indices.

u

_ 112
+ _exp((Ya— Ym)/2) (“’Sh F") . (5.11a)

e sinh ¥, cosh I",,

; X~ (¥a~ Ym)/2) (cosh F,.) .
T T T0m sinh ¥y, cosh ",

(5.11tb)
As can be seen from Egs. (5.6} and {5.9), the inelastic scat-
tering possesses a specific asymmetry: the forward scattered
waves have odd side band indices and backward scattered
waves have even side band indices, as illustrated in Fig. 4.
Correspondingly, bound states with odd or even side band
indices are induced either in the right or in the left electrode.
We note that the scattering to any side band consists of nor-
mal and Andreev components.

It is instructive to compare the superconducting scatter-
ing diagram in Fig. 4 with the scattering diagram of normal
Junctions. In the normal limit A =0, all the Andreev ampli-
tudes in Eq. (5.9) vamish [/ 7 =0 in Eq. (5.11)] and Eq. {5.6)
split because V'=0 i Eq. (58), which yields
fa=c,— =0 for all n # |. Thus, the side band diagram in
Fig. 4 reduces to the clementary fragment shown in Fig. 5a.
This fragment corresponds to the scattering of a true hole,
neaming a particle with spectrum E,= - (p%2m - p¢), ac-
cording to the BAG equations (2.2) and (2.5). In the ground
state. 17 = 0, these holes fill all positive energy states &~ (),
while the negative energy states are empty. For the clectrons.
the corresponding diagram s sketched in Fig. 5b. In this
diagram the chemical potentials in both electrodes are equal
while the energies of the incident and transmitted states are
shifted by eV, This difference from the conventional dia
gram of normal electron wnreling in Fig. Sc (where the
chermical potentials in the electrades are shifted relative to
cach other, while the scatiering is elastic) appears after sepa-
rating out the superconducting phase in Eq. (2.4); the con-
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FIG. 5. Scatlering diagrams of voltage-biased normal wnnel junctions; scat-
tering of normal holes with spectum £, = g — (pir2m); represents an el
ementary fragment of the diagram in Fig. 4 for j = 1 (a); scattering of the
normal electrons with spectram E, = piram (c). conventional diagram of
elastic elcctron scattering in biased wnnel junctions; the local chemical po-
tentials in the electrodes are then shifted by eV {c}).

ventional picture with shifted chemical potential can be re-
stored by means of the gauge transformation of the normal
electron wave function g—exp{ — ieVr)i.

When superconductivity is switched on, A#0, the in-
coming quasi-particle consists of both clectron and hole
components, and therefore the scattering diagram is a com-
bination of the diagrams in Figs. 5,a and 5,b. The electron-
hole conversion, which leads to the appearance of electron
and hole components in the upper and lower transmitted
states, must also be taken into account. Continuation of this
process creates the whole superconducting scattering dia-
gram in Fig. 4.

From a mathematical point of view, Eqgs. (5.6) and (5.9)
for the scattering amplitudes are second-order difference
equations which cannot be solved exactly, except in special
cases, e.g., a fully transparent constriction (r=0), where Eq.
(5.6) reduces to a binary relation.’® In general, it is possible
1o find asymptotic solutions using a small parameter. In the
present case of a tunnel junction, there is a natural small
parameter-—the transparency of the tunnel bamier: D < |
However, a straightforward perturbation expansion with re-
spect to this parameter gives rise to divergences, which are
similar to the difficuities encountered in of the multiparticle
tuaneling theory (MP’I‘).Q'”"SB In order to formulate an im-
proved perturbation procedure, it is convenient to rewrnte
Eqs. (5.6) and {5.9) in terms of the parameter h=D/4R, the
true small parameter of the theory, as will be seen later.
Accordingly, we introduce new scattering amplitudes

Ak aa*
Cl,:u:‘:‘-’:u- fn.:(uu): 2R_ famen

s Aed
R R N S TN bl.:(2k+|):'2r_bt(2k+l]- (5.12)

which satisfy equations

Cn+)\vr:nl+ Ifn+l+v:rrf lfn—]:o'

Fam AV insCas 1 Vano1€a-1 =0, (5.13a)

- +
a,,=AU"n+[fn+l+Unn-—lfﬂ"1 .
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bnz)\u:n+lcn+l+U;u—lclr—l (5]3‘))

for n>0. For n<0 it is necessary to make the change
Vr:m'_’V:n~m ’ U;,"—’U:",m An, m>0) in the above
equations. The equation for n = 0 can then be written as

corMVaf 1+ Vo f-0=1. (5.13¢)

Let us now turn to the second scattering case in Eq.
(5.2), j=2 (hole-like quasi-particle incoming from the right).
According to the symmetry relations of Eq. (3.6), the scat-
tering amplitudes j=2 differ from the scattering amplitudes
j=1 by ¢— — ¢, which in our time-dependent case means
that n + 1—n & 1. Taking into account this symmelry and
also the property of the scattering amplitudes in Eq. (3.6), we
introduce new scattering amplitudes

NG
fz.:zk:'r_ Cx2ks
Ada* _
Cox(2641)” g FRSCTSIIE bz.:ui?\kﬂ:u , (5.14)

which satisfy the following equations (forn > O):
Eﬂ+AV:n+|fn+l+V;n— lfu—l=0-
fn_)\v;n+lé_n+l—V:n—lgn—l=0- {5.15a)

a_,,=}\U:,,+|fn+l+U;n—l—ﬂ—l‘

by =AU 1Cnst ¥ Upno1€n-1s (5.15b)

Gt MVEfi+Ve_ f-0=1. (5.15¢)
Equations (5.15) differ from Egs. (5.13) by

VEaVvIUToU". (5.16)

In the case of electron-like quasi-particles incoming
from the left, j= 3, the symmetry of Eq. (3.7) involves trans-
formation y— — 7, which means transformation of the coef-
ficients V== — 0,0,V U — — oa0,U" in Egs. (5.6)
and (5.9). This transformation allows us to relate the scatter-
ing amplitudes of this case to the solutions of Egs. (5.5):

AK _
LRI ] Sy T i€ x 2k

Ad _
by vy T 3R ez S £2p4 1)

~nk .
Cy+ =M Oxp@e2ks (5.47)
Md* _
frsueen™ T G T2k SLFTT TSR

In a similar way the scattering amplitudes of electron-lLike
quasi-particles incoming from the right, j= 4, are related o
the solutions of Egs. {5.13):
NG
baz™ % Cxulek
Aid
Qax@2k+1)™ 7 3p Teee 11 £(244 1)
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fas ™Mo pqudea,
d*
Casiah+ ™~ Ir E Tagpenb e (5.18)

According to the symmetry of the coefficients in Egs.
(5.13) and (5.15),
V> (—E)= v

an —H— H'J(E)‘ Ul:;lll'( _E): E)

{5.19)

. "l(

all scattering amplitudes with positive and negative incoming
energies are related by the relation

a{—E)=a_,E), (5.20)

and similarly for the other amplitudes.
Let us now formally solve Eq. (5.13) for n > O in the

form™
2k+ 1
f':zku:(_')kl—[o Sico. (5.21)
i=
where the quantities S; are defined as
Cak faer
Syu=-—7——, § = . (5.22)
uT T 1=
and satisfy the recurrence relations
5. = Vikak—1
RS VP
v2-k+ 1.2k
S = - . {5.23)
A N R FIo
The quantity ¢4 in Eq. (5.27) 15 given by
|
o= . (5.24)

L +M (Vg S +Vs_,S )

It is convenient to express the functions §, in Eq. (5.23) in
terms of the relation §,=V_ -1/ Z,, where the denomina-

tors Z,(n # Q) satisfy the recurrence relation
a.a,,, e’ T
Z,= 1 b\ =2 ar=
Zn+1

sinh ¥, ’ (5.25)

(% corresponds o even/odd nh and 10 define Z4 as the de-
nominator of ¢, Eq. {5.24):

LR -
a, aga

- 5.26
7 7 (5.26)

Za

Lising the above notation. we can express the coefl

clents of the normal forward scattering, 1,17, in the form

@ cosh | ”I l

e¥o

t
1.

o st 1-
cash | 7y [7, smh y,]

(3.20

The cquation for the coefficients of the normal backward
scattering, |¢ differs from Eq. (5.27) by exp(l’,) -cxp
{1,y The relation between the amplitudes of the Andreey
and normal forward scattering in g, (5.13) taking into ac-
count Ligs. (5.22), {5.23), and (5.25), has the form

ol
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T Tar
by=—¢ | | =\ —————|f,.

sinh 71|+|er+| (523)

In a simitar way, one can express the solution of Eq. (5.15)
for n > 0 in the form

— ”w
Yo |

[Erlzrw eir“COSh [‘ul—.[ 5 - 3

cosh ¥l Zol? i=1 |Z; sinh y|?
- ( 2eTai )_
b,=—em I+ N —————|f,. {(5.29)

sinh Yn+IZrl+|
where
_ ara;
Z,=1+X .._'.':.......tl‘
Zn+|
aga, aga’

Zo=l+r —L 45 —L, (5.30)

Z| Z_I

We note that Egs. (5.29) and (5.30) differ from Egs. (5.27)
and (5.28) by ¥, — v, everywhere.

Equations for the scaitering amplitudes with negative
side band indices, n << 0, can be derived in a similar way, and
the result differs from the above equations for positive side
band indices {Eqs. (5.25)-(5.30)] by the substitution

n#0, (5.31)

Yo T Ylal»

which is introduced everywhere except in Z, and Z,,.

6. QUASIPARTICLE CURRENT

In the nomstationary problem under consideration, the
density matrix determining the current [Eqg. (4.1)] is time
dependent, and its dynamic evolution can be described by an
equation similar to Eq. (4.3),

(‘if(r,I)‘i’+(r,t))=§A: WL ()L ¥ (), (6.1)

W, are now solutions of the time-dependent problem, Eq.
(2.5), whose initial conditions cormespond to the eigenstates
of the initial Hamiltonian with the eigenvatues A, and occu-
pation numbers f, of these initial siates. We consider the
inelastic scattenng states, [Eqs. (2.6) and (5.2)] as the propa-
pators ¥, (1} in Eq. (6.1) with A corresponding to the com-
plete set of the incoming states A =(E,j); according to the
assumption about local equilibrium within the eiectrodes, the
incoming slates possess the Fermi distnbution of occupaton
numbers, fp;=np{ — FE). Thus the current [Eq. (4 1)} 1akes
the form

(IElEf 1 .
!(f) : '(’J —_— e F ,.INc\r‘l
(£lwa 208 HE) 2

N=- x

x 2 2 BUPE ) YPEN )Y (6.2
= os o8

"=
The current in Ly, (6.2) consists of a ume-independent part,
N = (), which 1s formed by incoherent contributions trom ali
the side bands {the guasiparticle current) and from a tume-
dependent part, N # 0, which results from interference among
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the different side bands (Josephson alternating current). The
difference between the side band indices N is an even num-
ber since the side band index is either even or odd, depend-
ing on the electrode; therefore, the time-dependent current
oscillates with the Josephson frequency w=12eV.

In this paper we concentrate on an analysis of the time-
dependent quasiparticle current. By analogy with Eq. (4.7},
we calculate the current using the transmitted states,

1 e |E -
== dE —/ -E
2w Jig=a 3 nrl )ngz

X E (lfjulz-!bju[z)-'-AE (lajn|2_|cjn|2) 4
j=13 i=24

{6.3)

Using the scattering amplitudes introduced in the previous
section through Egs. (5.12), (5.14}, (5.17), and (5.18), we
express the current in Eq. {6.3) in the form

e |E|

== m)ﬁda = n;(—E)Z,d (K,—K.,), (6.4)
where

Ko=\"R 7 flP 10400,

Ko=N R =1B) =K a( — ). (6.5)

The factor of 2 appears in Eq. (6.4) because of equality of the
currents /, and [, and the currents /, and /3 in Eq. {4.8),
which hold also in the nonsiationary case. However, there is
no balance between the currents of these two pairs any more.
The symmetry of Eq. (5.20) aliows us to reduce the interval
of integration in Eq. (6.4) to the semiaxis £ > 0,

;efdeE b S (K,-K 6.6
_1,_ a gtan 2Todd(" ﬂ)' (')
The side band currents K, in Eq. (6.5) are proportional to the
powers of the small parameter A, K, ~ x1%l. Therefore, Egs.
(6.6) and (6.5) present a perturbative expansion of the cur-
rent, which is convenient for analysis in the fimit of low
barrier transparency. In the following scctions we carry out

such an analysis of the structure of the current in Eq. {6.6).

7. EXCESS CURRENT AT LARGE BIAS

To make some useful observations for analysis of the
subgap current, it is instructive first to discuss the simpler
case of large bias eV » A, which has been stucied exten-
sively in literature. 11728 We derive at the same time the
explicit analytical expression for the current in this limt,
which is valid in the whole range of the junction transpa-
ency, O < D < I. The asymptotic expansion of the current
with respect 1o the small parameter A/¢V has the form'’

DV

AL
[ e ] (D) 4 0(—). (7.1)
m eV

where the first term is the tunne! curent of the normal junc-
tion and the second term is a voliage-independent excess
current which represents the leading superconducting correc-
tion.
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FIG. 6. Three kinds of processes that contribute to the tunnel current at large
bias eV ® A: crealion of a real excilation across the gap by forward scatier-
ing {a); excitation of the Andrecy bound state due 1o creation of a real
excitation via backwand scattering (dashed arrow) {b); imbalance of ground
state modes due o creation of a real excitation via backward scatiering (c).
Excess currenl is caused by processes b) and ¢}

A main simplification in this case is that the side band
currents K, and K., |a| > | diminish when the bias voltage
increases. This follows from an estimate of the transmission
amplitudes in Egs. (5.27)-(5.29), which contain products of
factors |sinh'y,,£|'2 which are small at large voltages,
|sinhy;| =2 ~ (A/eV)?, because of the large interval of involved
energies, E — eV. Furthermore, inspection of the amplitudes
f- and £, shows that they are also small due to the factors
exp( — ¥p — 71); therefore, the nonvanishing part of the current
[Eqg. (6.6)} in the limit eV > A becomes

—e[deE hE K.—K 7.2
I—; s £lan 2T( 1 b (1.2}

The essential fragments of the scattering diagram in the large
bias limit are shown in Fig. 6.
The structure of the curmrent in Eq. (7.2} is essentially

determined by the presence of a gap in the spectrum of the
side band n= | : this causes different analytical forms of the

current K | in the regions |E] < A and [E| > A. We note that
the spectrum of the side band n= -1 possesses no gap.
E_, > A for E > A. Accordingly, we divide the integral in
Eq. (7.2) into three parts:

I=l_+ls+1,.

The first part corresponds 10 the current of the states in the
cide band n = |, which lic below the gap, £, << — A, The
second part corresponds 10 the current of the states of the
same side band which lie in the gap, — A < £ < A, The third
part combines contributions from the rematning states of the
sidebandn = 1, A < £, and from all the states of the side
band 7 = - |. Making use of the approximations

|70 =170l =] 1 + 200+ )18,
|Z--|12:‘21|2:122|)":12--2|?“"lv {7.3)
IZIIZ:IZ’ llzzlz--ztz:ﬁz'z“’ UR?,

it is possible to express the integrat /.. in the form {we re-
strict the analysis (o the limit T=0):
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2e M { ‘(E-’{J( . !:'] ;
-";:E _\dﬁﬁ?é?]_‘l )\R‘EI, (7.4}

where the Tunit of ntegration i the fast term is extended to
mfinity since the main conteibution to this integral comes
from the energies £~ A <€ ¢V, Separating out the normal
Junchion current, we can express Eq. (7.4) in the form

= dE £A?
—— | 4AR
23t £

I cIDV Beh?
N ™ m &

E(E~-&) £ ¢

R

. (7.5)

We note that this current s abways smaller than the normal
current. It is convenient (o express the integral 4 as

e J‘«wa! EK I()e)\zfd Al
{y=— dE — = dE ——5,
o VoA £ : T i f'.fzt)‘z

whicti is found from the relations between the functions Z,
[which result from their definition in Eq. (5.25)]

(7.6)

ZAE+eV)=Z,. (E).

ZoE+eVIZ(E+eV)=ZHE)Z (E). (7.7
Inspecuion of the equation for 1., |
e (= E e [~ E _
[o=- dE—K,-—de—K_]‘ (7.8)
7 Jovea € L R 3

shows that the two integrals diverge at the upper limit £

£, which means that the states lying lar trom the Fermi
level formally contribute to the current, while the quasiclis-
siwal approximation of Eq, (2.6) assumes that all relevant
states hie close to the Fernn level To ehiminate this formai
divergence, the vanable 15 commonly shified by ¢V in the
firstanegral o Eq. (7.8} Using again the relations (7.7) we
cxpiess thas mtegral in the form

4en fr’ E 8eN J E(E - &)
e f f'_‘ e + — l.'[['; N

T:’R A {;Z”/‘ t m A (E?/;)

where ahe fost term bhas the same analytiwal form but the

pposie sign compared o the divergent term i the second

mtepral an by (7.8,
de A I ; 3 ek th
2 I 7 I N s

—_

Mirer clmpmatton o the divergent terne the el i g,

TR takes the torm
RSN ' IS !
] dED s IR R
T L Y 25 {

Phe posiive carments in b (790 and g 0760 v creompen

(7

st e s part ol the careent i g 0 S0 Collectng
g 78T 020Y, and (7.9 we e alier somne dlachra the

Pollowing exphoic equation Tor the exeess curent m I
RN
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which is vahd in the whole interval of junction transparency
0 <D = 1. Asymptotics of s expression coincide with the
results presented in hiterawre,' ** both in the limit of (uily
transparent (L3 =1) constrictions. /... = 8¢A/37, and in the
limit ol low-transparency (D < 1) tunnel junctions, few
=eAD .

The above calculation reveals an important difference
between the structure of the current in normal and supercon-
ducting junctions. In normal junctions, the current, e.g., in
the right electrode (sce Fig. 5c) results from scattering states
that tie above the local chemical potential, £ > s~ eV, while
contribution from the energy interval £ < g — eV is equal to
zero due o mutual cancellation of currents of the scattering
states incident from the left and from the right {in Fig. 5a the
current-carrying cnergy region corresponds (o negative cner-
aies, £, < ). Thus, the total current coincides with the cur
rent of real excitations emitted from the contact, which s
consistent with the nonequilibrium origin of the current in
the voltage-biased junctions. [n superconducting junctions,
only “‘across-the-gap’ current /. 1s clearly related to the
real excitations emitted at the right side of the junction where
the current is calculated (Fig. 6a): the dissipative character of
the currents, /4 and .., is not obvious. However, the cre-
ation of real excitations at the lefi side of the junction via
backscattering into the side band n=2 should be taken into
account (Figs. 6b and 6¢). Although the current of this side
band exists only at the left side of the scattering diagram, it
should have an effect at the right side due to continuity of the
current at the interface [Eq. (4.5)) and therefore it should be
distribuied among the states of the side band n=1. As our
calculanons  show, this “‘kick™ current partially flows
through the Andreev bound states. which involve the current
fy (Fig. 6b) and wluch convert this current into a supercur-
reni outstde the junction. 1t s also partiably distributed
among the scattering states with positive energies (corrent
{ Mg, 6¢) inthe Torm of imbalanced ground state cuarrents

(7.0}

8. SUBGAP CURRENT

In 1las section we descuss the wnnel current i the suh
vapregon, eV <7 ZA 0 A baxic property of the subgap curient
s the presence of femperatuie - mdependent structures on the
IV chanacenistics
The SGS mownel junciions was discovered inexpermmente

the subharnmionie gap structure (SGS)

by Tavior and Barstein ™ and the hist theoretcal cxplanation
was viven by Schrieffer and Wilkms ™ s terms of multipa

ncle tinneling (MPTY Recentdy | the SGS has been obsernved
Ny expertments oniransanssoe tumnel junctions RN

though SGS e planar junctions can be attribuoted o noomed
shorts, the observation of SGS i sapercondacting connal

Table hieak juietions™ provided consmeing conlirmation ol
the evrstenee of SGS mthe tue tannel regime,

The exastence of SGS e twnne! current can be estab
Lished within the MITT theany By means of rather snnple
pertirbative arguments. T Asuning 4 small perturba
tve coupling between elecirodes. we can caleulare, on the
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basis of the tunnel Hamiltonian model, the probability of
wnneling in nth order of perturbation theory. Such 2 prob-
ability is proportional to a product of filling factors of the
initiat and the final states: n(E)[ | — np(E — neV)]. Atzero
temperature this factor is equal to zero outside the interval
A < E < neV — A, which selects the quasiparticle transitions
across the gap, i.e., the processes of creation of real excita-
tions relevant for the tunnel current. Such a restriction places
the threshold of the nth order current at ¢V =24/n, and a
sequence of current onsets of ~ D" at the voltages eV
= 2A/n forms the SGS of the tunnel current.’®*?

In our approach, the filling factors of final states do not
enter the equation for the current Eq. (6.6), and the existence
of SGS is therefore not obvious, although the side band cur-
rents [Eq. (6.5)] gradually decrease with increasing side band
index. However, attribution of the nonequilibrium unnel
current in biased junctions to the current of real excitations is
a general physical argument which should be automatically
met in any comrect theory. In fact, the true tunnel current, as
we can see from the discussion of the previous section, 15
hidden in Eq. (6.6): it results from partial cancellation of
farge contribution of different scaltering modes. The cancel-
lation is nontrivial because of mixture of currents of different
side bands, the odd side bands containing information about
the currents of the even side bands and vice versa. This
means that a finite perturbation expansion of Eq. (6.6) is not
satisfactory and will not adequately correspond to the pertur-
bative structure of the true tunnel current. To reveal such a
structure one must rearrange lhe series in Eq. (6.6).

To this end, we consider a general term K, n > 0 in Eq.
(6.6). It follows immediately from the explicit form of the
normal and Andreev transmission coefficients [Eqs. (5.27)
and (5.28)] that the leading term with respect to A in K, is
proportional to a factor {(1 — exp(2l7,)], which is equal o
zero if |E,l < &. Having made this observation, we express
the quantity K, in the form

2 3 TR P
K":E R"G(E"_A )C Yo sinh Ynlfnl

o
+an" e Ml Foit. (8.1a)
we
, e ?’uolzr‘i) c_Yn*l
Foo =170 Rl = e N
=12 “enh v sinh Y, 4010
(5.10)

In By (8.1a) the first term represents the mam contribution
of the nth side band to the curtent: it is proportional to the
probubility of normal seattering 1o the nth side band and 1t
does not contain the contribution of the side band states lying
mside the gap [£,] << A Using the recunrence refation (3,25}
and recalling that A = 274K after some algebra the function
i, Lig. {8.1b) becomes

"

2

L, et )
Com e EL- A SN St s
Fo R L., ) tanh y, sinh v, Z, 4 furd
(¥.2a)
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gYnii \2

Yar 17 ¥
¢ Iln+|)

sinh Y.+ 4

G,,4|:|Z,.+l|2-RC( sinh y, 01|
a4+l

(8.2b)

Substituting Eq. (8.2) into Eq. {8.1a), we find that the
second term in the equation for K, , which is proportional 1o
A"*' has analytical structure similar to the first term in the
same equation, proportional to A", namely, it consists of the
probability of normal scattering 1o the (n + [)th side band
[cf. Eq. (5.22)] and it does not include the contribution of the
cide band states that lic inside the gap, |E,. ] < &. This
allows us to associate this term with the effective conltribu-
tion of the nearest even side band.

A similar transformation of the function G, in Eq.
(8.2) yields the recurrence relation

2 2
) tanh Yat1

]
Grr+I=—E 0('E.u+|4A

2

CXP{ ~Yn l)
“— Foiz (8.3)

A
sinh 7u+lzn+2

Combining of Egs. (8.12)-(8.3) shows that the next term of
the current K, which is proportional to A"*2, has the same
analytical structure as the leading term in the cumrent K, , ; of
the next odd side band, and therefore it can be regarded as a
renormalization of that current.

Continuing this procedure by systematic use of the re-
currence relations (8.2) and (8.3), we obtain the following
expansion for the current K, in Eq. (6.5):

n+1

2"
B(EX- A0, + B(EL, — A%

R

K.= R

4)\n+2
xe Fncosh [,Que1t —5— O(EL, ,—AY

4\" +13

xexp( - l‘n+2ru+l)COSh [‘n(.2n+l+ T

x B(EZ, ,~ Aexpl — 17, +2F, (=21, y)cosh

nt}

X pQnest - (R.4)

where we have introduced the quantity Q,, defined Tor all o
as
n

) 1
sinh v, cosh E‘..[‘[
1=

|7, sih vyl
(39

e’

Za

L —
cosh Yol Zol

Similar expansions can be derived for the currents K,
and for the currents of the side bands with negatve - 0
xpanding each term of the series in B (6.6) with use of
[:y. (8.4) and collecting the terms with the same factor N7
we can finally express the senies in the form

S K K= 2 (K, KL (%.0)
odd nte

The last summation 1s donc over all odd and cven integer
n. and the renomalized coeflicients have the  form
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K,=N"O(E2= (40, IR)[(1/2)+cosh U,
Xexp(—,_+21, 2} tcosh I, _,
xexp(— U, +20, =20, ,+20, _ )
+.oteosh Uy exp(~ 1+ 200, — 217+ ...
+20,-4)] (8.72)

for odd # > 0 and the fonm
K, =N"6(EX~AT)(4Q, IR} cosh T, e o i
teosh Iy yexp( =17, 20, 20, ,)+...
teosh Iy exp(— 1" + 21 -2+ .. =20, _ )]
{8.7b)

for even n>0.

The representation of Egs. (8.6) and (8.7) is exact, A
general term of the series can be regarded as an effective
renormalized current of the nth side band. In fact, this effec-
tive current consists of the contributions of all side bands
with odd indices smalier than n. An important feature of this
representation is the presence of the &function in the general
term, which allows us to separate out in Eq. (6.6) that part of
the current which is obviously responsible for the SGS,

lsgs= 2

n=|

e neV—A E FE — -

; N dEEm"hﬁ(K"_K")' (8.3)
One might expect (cf. Ref. 55) that Eq. (8.8) represents the
subgap tunnel current at zero temperature and that the re-
maining part of the current in Eq. (6.6),

= £ E . -
dF — tanh — (K, - K,)

= e
L=l lgos= & ~
r 5GS Fa [ eVt A § 2T n

n=1

~ E E .
+J dE = tanh — (K ,—K,)|, (8.9)

s £
corresponds to the current of thermal excitations. However.
this separation is not exact. An analysis shows that the cur-
rent in Eq. (8.9) does not vamish completely at T=0, but
contributes a small residual part. An important property of
this residual current is that it does not contain any structure-
less component but demonsirates behavior similar to the cur-
rent Jyqin tig. (8.8), thus resulung in a small correction to
By (RR) '

9. SUBHARMONIC GAP STRUCTURE

The explictt analytcal expressions (3.8) and (8.9) pro-
vide a basis for numerical caleulanon of the subgap current
for smalt X {low transparency) with any desirable accuracy.
However, they are also convenient fo yualitative discussion
ol the SGS. [n this section we wilt analyze the SGS at zero
lCmperature on the basis of Ly, (8.8).

The current-voltage charactensiic /¢;¢(V) in lg. (8.8)
has 4 complex form consisting of a sum of renormalized side
band currents [,V .\
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F1G. 7. Scattering processes that contribule 1o the subgap current: single-
panticle scallering into the side band # = 1 gives the main contribution a1
eV > 1A {a); excilation of the Andreey bound state (nn = 1) duec 1o backward
scaticring into the side band # = 2 gives the main contribution at ¢V > A (b},
single-particle scattering into the side band # = 3 and simulianeous cxcita-
tion of the Andreev bound state in the side band #r = | gives the main
contribution at ¢V > 2A/3 (¢).

IS(}S(V-)\):ZI 1(V.X),

e neV -4 E -
I,,(V,A):;L\ dE = (K,~K,). (9.1)

£
The partial current-voltage characteristics /,{V,\) are simi-
lar to each other, and it is convenient to analyze them inde-
pendently.
According to Eq. (9.1) the partial current /,, starts with
an onset at the threshold voltage V,=2A/en. In the limit
A—{ the onset is infinitely sharp and its magnitude is

nln

(n1}™

The jumps of the current at the thresholds result from the
singular denominators in Eqgs. (5.27) and (5.29), which are
related to the singular density of states at the side band en-
ergy gap edges, sinh ¥, = 0. Accumulation of these singular-
ties in the high-order scattering amplitudes leads to a huge
increase of the partial currents well above the corresponding
thresholds—this causes the failure of multiparticle tunneling
theory.*" =% In our theory, the singularities are regularized by
the factors

2n
I,,(V,,,?\—;O)=6AD"?"—_r (9.2)

n

Pu = H |Zf([2

£=0

{9.3}

in the denominators of the scatiening amplitudes, Eq. (5.27)
These factors are expressed in terms of the continued frac-
vons 7, [Eq. (3.25)], which therefore should be calculated
with sufficient accuracy to preserve the singular parts of 7,
which provide regularization of the integrals.

The first-order current /| in Eq. (9.1) corresponds 10 di
rect one-particle scattering (o the side band s 1 (Fig, 7a)
The exphcit form of the current 7, is

2eh fev-a [ jeEve E-¢
H o — df: — { e .
wR Ja £E, 7 Py

In the linnt A+ 0 thes current coincides with the quasipart
cle current of the wnnel Hanulwonian model > At finie A
the threshold onset of the current at V= V| is washed out. To
cvaluate the width of the onset we truncate the continucd
1, which yilelds

(9-1]

fractuon an P assuming 7 = 7,
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P‘%!(l+)\aaa:,)(l+)\a,—az—)+.\aga|+]2. (9.5)

The function P, has a similar form. The regularization effect
of the threshold singularity is provided by the most singular
term Aagal in Eq. (9.5). Keeping this term, we obtain in the
vicinity of the threshold, e(¥ — V) <€ A, the result

2eAN [eV—eV
hv)= R Ax I

_ ("4 sin? ¢
D= ] s er i

(9.6)

According to this formuia the onset width is e(V — V)
~NA.

The second-order current {, comesponds to the creation
of a real excitation during quasiparticle backscattering into
the side band n=2 (Fig. 7b) and appears as the current of
wransmitted states of the side band n=" (cf. the excess cur-
rent in Sec. 7). In the vicinity of the threshold, V, < V
< V,. this current exists only in the form of currents through
the bound states and therefore it is completely converted into
a supercurrent far away from the junction. At larger voltages,
v > V,, the side band n=1 extends outside the energy gap
(see Fig. 8a), which also makes the current /, partially con-
sist of contributions from extended states. The explicit ex-
pression for the second-order current is

4eA’\? rcvﬂad |E,|

123 —_—
7R 4 ‘fleft‘z
e~ 7l en Ty
xeosh M| =———+ —= (9.7
P, P,

Omitting the A-dependence of P, in Eq. (9.7), we obtain the
two-particle tunnel current of Schrieffer and Wilkins.***’ To
keep the singular terms in P, one has to truncate the contin-
ued fractions in Eq. (5.25) assuming Z_, =Zy=1, which
yields

po=~|(1+Na_,a5 M1 +ha ay)
+ragar(l+rasay)l’ (9.8)

‘The threshold singularity results from the smalt product
££, in the denominator of Eq. (9.7). However, in Eq. (9.8)
there are no singular terms proportional to aed;y among the
terms linear in A. Such terms are quadratic in A and they
provide. along with the terms Aag and Aa,, the width of the
onset: ¢(V — V) — A 1A, This onset is sharper than the onsct
of the current /.

The threshold singularsty in the current {5 is typical of
all higher-order currents n > 1. The appearance of the first
ade band outside the energy gap at V=V, is manifested
through a spike in the current I, indeed, if V=V, the
nodes of &, overlap the nodes of £ and &, at the lower (&
= A) and the upper (£ = 34) lunits of integration n g
(9.7}, respectively (see IFig. 8a). This singularity yiclds an
increase of the current [, when the voltage approaches Vi,

12
_— ]
& ‘?m‘(e(vm—w) |
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FIG. 8. a) Density of states v(E) =| E,1£,] of the side bands and Eg. E|.
and E, at applied voltage V > v, (right), position of singularitics of the
side-band densily of statcs ploued as function of the applied voliage for the
current £, (lef), 1%:E, = £8.2 :E; = — A. b) Density of states of the side
bandsEq, E,. £, and £y al applied vollage V,; < V < V4 {right), position ol

singularities of the side-band density of states plotted as a function of the
= *A,

applicd voliage for the current 1y (lef), 12:E, = *A, 15:E;
3‘:EJ=_A.

Regularization of the integral, which is provided by the sin-
gular terms Aa,ag and ha,a; in Eq. (9.8) at the lower and
the upper integration limits, respectively, yields

LV) 1
(V) I

Further analysis shows that the current reaches a maximum
value slightly above V=V, after which it rapidly decreases
(see Fig. 9). At voltages V >V, the singular point § =0
remains within the integration region, which increases the
current by a logarithmic factor in comparison with the value
of the curment near the threshold V,,

AN In A

LV>V)~— 9.9)

At large voltage V = V| the current [, forms the cxcess cur
rent [Eq. (7. 1)) Tt mteresting o note that in tis lunit the
logarithmic factor 18 compensated for by the current /, (1.
(8.9}]. which yickds the A Z-dependence of the excess currens.

The third-order current {4 at voltages closc to the thresh
old V5 results from the combination of one-particle lunneling
‘nto the side band =13 and excitation of the transmitted
Andreev bound states of the side band n=1 {big. T¢). The
probabilities of these (wo processes are related as 112 at
threshold [Eq. {8.7)]. A gradual emergence of the bound
states of the side bands n=1 and 2 outside the energy gap al
v=V, and V=V, (Fig. 8b) gives rise to the current peaks.
The current /5 has the explicit form:
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£
with the reguiarization factor
Pi=[(1+Xal|ag)(1 +Xa a; )| +Xaja])
+Au(;al+(l+)\az+a;)]2. (9.11)

The current peak at V=V, results from the overlap of nodes
of £ and £ at E=A and nodes of £ and ¢, a1 E=2A4,
stmmlarly to the peak of the current 7,. These singularities
yield again an increase in the current inversely proportional
to the square root of the departure from the voltage Vool
— A1 e(V, - V)]V However, since the factor P+ [Eq.
(9.11)] contains neither the term Aaga, nor the lerm
ha,ay, regularization of the singularity is provided, e.g., at
E = A, by the terms Aag or ha,, which gives rise o a more
pronounced peak with magnitude
L{Vy !

13(Vy) N

(9.12)

We note that the magnitude of this peak is comparable to the
magnitude of the onset of the current /,. The second peak at
V=V, results from the overlap of the nodes of ¢, and £, at
£=34A, which increases the current /, near the voltage V
=V, which is mversely proportional to the first power of the
distance to this voltage: /1 ~ A 'A%(V, — V). The divergence
i1s regularized by the term Aajay in Eq. (9.11), which results
in a peak of magnitude
F{vyy 1

. .13
f:{V3) A G139

Thus the heights of the two peaks of the current /4 are of the
same order in X, although the peak at V = V| is sharper.

In a simitar way, all of the high-order currents in the
vicimty of their thresholds are attributable either to the An-
dreev bound state currents {even #) or to a combination of
Andreev bound state currents and the current of a single real
excitation (odd a). The number of excited Andreev states is
correspondingly n/2 or (1 Y2 Smgulinnes siailar 1o the
singularity of the current £ xt the voliage V = V,oexistin all
high-order currents, where they cause even more pronounced
current peaks because of the absence of 1erms Aeagea; ,, n
the corresponding smcanng tunctions 2, Becawse of this
property, the heights of such peaks excecd the threshobd
value of he  corresponding curnient by two  orders of
Moty cANT R

e above discussion reveals the curnent peaks to be

[1ENYY

essential features of the SGS of winnel current in additon to
the current onsets (Fig. 9% (these peaks are seen also i the
numerical results of Refs. 34 and 39). It allows us to estab-
hish o generat classification of sigularitics that cause peaks
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FIG. 9. Schemalic diagram of the partial 1, — V characteristics,

in partial currents /,, . They result from the overlap of singu-
larities of the side band density of states. It is easy to see that
the singularities of only two side bands can overlap. The
condition of the overlap for mth and kth side bands have the
form

E—keV=A, E-—meV=-24. (9.14)

This condition is met at voltages eV=2A/(m — k) for all
integer 0 < k < m < n, The magnitude of the current peaks
depends on whether the overlapping side bands are neigh-
bors or not, and whether the side band index is inside or at
the edge of the interval (0, n).

Lmt — k=1,m=n ork=0: edge-type singularity, neigh-
bor side bands. This type of singularity forms the peak of the
current /, at the main threshold V. The magnitude of the
current peak is (/5) 0 ~ €A VAR

ILm — k> 1, m=nork=0: edge-type singularity, non-
neighbor side bands. This type of singularity forms the first
peak of the current 7, , n > 2 at voliage V,, . The magni-
tude of the current peak is (/,),,. ~ ¢AN"" /R,

Hlm-—-k=1m<n k>0 internal singularity, neighbor
side bands. This type of singulaniiy forms the last peak of
cach curtent /,, n > 2 at voltage V,. The magnitude of the
current peak is (/) a0 — €AL" R,

IV.om — k> t,m < n k>0 imernal singularity, non-
neighbor-side bands. This type of singularity forms all inter-
mediate peaks of each current /. n > 3. The magnitude of
the current peaks are (/). ~ AN YR

CONCLUSION

In this paper we have considered superconductive tun
neling as a scattering problem within the framewaork of
Bogolyubov-de Gennes (BAG) quamum mechanics. An es-
sential aspect of this pralden s that the scatterer consisis not
onty of the potential of the wnnel barrier but alse of the
discontenuity of the phase of the order parameter. At eguihb
reny (zero bias, Josephson direct cumrent) the seatterimg
problemos efasric. The pectubiar feature of the clastic seaier
g problem in shon unctions, which 1s considered here, 1s
that the bakince of currents of the scatiering modes i no
violated: the supercurrent flows onlv through the supercon
ducting bound states (for a more general discussion, see Ref.
48). In the presence of voltage bias the scattering 1y inelastic.
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because the time dependence of the component of the scat-
terer is refated 1o the superconducting phase difference. In
general, the currents of all inelastic channels, taken collec-
tively, constitute the components of the tnnel current that
flows through the biased junction. The quasiparticle current
corresponds to the incoherent part of the inelastic side band
contributions, and the Josephson alternating current corfre-
sponds 1o the interference of the side band contributions.

There are three distinct components of the quasiparicle
wnnel current at zero temperature: (i) the current of quasi-
particles excited above the ground state, (i) the current
trough Andreev bound states converied to a supercurrent out-
side the junction, and (iii} the imbalance current of the
ground state modes. At large bias voltage, eV 2 24, the first
component corresponds to a single particle current of the
normal junction, while the other components cause cxcess
current. When voltage is decreased, redistribution of current
among the components gives rise to subharmonic gap struc-
ture (SGS) in the form of current onsets and current peaks.
Within the voltage intervals 24/n < eV < 2A/(n — 1) with
even n, the wnnel current consists entirely of currents
through the Andreev bound states [component (ii); e.g., Fig.
7b]; the states of all side bands with odd indices smalier than
n contribute to the current. If # is odd, a real excitation
current of the side band a [component (i); e.g., Figs. 7a, and
7c] is also present in the tunnel cumrent. Opening of new
channels of tunneling of real excitations gives rise (o current
structures. Thus, SGS reveals the discrete nature of the side
band spectrum. The structure becomes more pronounced
with decreasing transparency of the junction.

Since each Andreev state provides transfer of one
Cooper pair through the junction for every incident quasi-
particle, n particles will wanel in the interval 2470 < ¢V
<2A/(in— ).

The participation of a large number of bound Andrecv
states in the current transport at low voltages is surprising: it
appears to contradict the fact that subgap current dimnishes
al zero bias. After all, the probability of the scattenng mnto
side bands does not depend on the bias and 1s proportional to
powers of D. This paradox can be solved by increasing the
compensation of currents between the normal and Andrecv
channels in each side band wath decreasing voltage, which
grves the required voltage dependence ol the total current.
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APPENDIX A: BOUNDARY CONDITIONS

The guasiclassicat boundany condman m Bgs 287 and
(290 has beent derved i Refl 3 by wane the method of Rel
21 Here we present sumple arguments which lead o thes
boundary condition. We consider the more general case of
asymuetisc unction, using an asvimmetnie version of the
Hamlonean of Eq. (2.2) with the same restriction smpaosed

on the length of the nonsuperconductng reglon, I+ L, We

196 Low Temp. Phys 23 (3), March 1997

include a contact potential difference in the potential &/(x).
which implies that this potential may have nonvanishing
asymplotic values at infinity: U( - %) # U{ex) # 0. lf the
junction has more than one transverse transport mode, we
assume that these modes are not mixed.

A one-dimenstonal quasiclassical wave function of a
given transverse channel in the right electrode has the form

[Eq. (2.6)}.

t
Wax.1)= 2, \/U_cxp(fﬁjpﬂdx)
R

a
Xexplio. xx/2) ¥Rl x.t), (A1)

with a similar expression for the left electrode. The quanti-
ties wﬁ are slowly varying two-component wave functions
on the scale of lipy. where pe(x)=[2mp(pn — Uy
— E, g(x)}]""%. This equation is valid over the distance
# 1/pg from the junction, and in the spatial region 1/pg <% x
< &, the functions & are almost constant.

From another point of view, al large distance from the
junction, | x| » Hpg ., the function ¥ can be expressed in the
form of a linear combination of the scattering states at the
Fermi level,

Y=Cx:tCuxz (A2)
(1o MePt +re iPet], x<0,
(1/\ug)der*, x>0,
(WJog)[e Pt e PRt x>0,
X7 (1o pde e, x<0.

Comparing Eqs. {A2) and (A3) with Eq. (A1} in the region
lipp<€}x| <€ £y. wehave

Xy = {A3a)

(Alb)

Cizcm:xLil‘J’;—' , C_::t‘“'-"”!z‘f/;; .
rC,+ (?Cz =gty
dC +rC,=eV Xl (Ad)
which yields the boundary condition
WAl ,
(q’/* =V Wl (AS)

with the matching mariy

- r de!
Vo ) LAD)

o et , !
where @ = xp{0) -y (0. The matrix Vosatishes the unit
ity condinon ¥V - [ provided by the relateons amaong the
notmeal electron scattering amplitudes o By (A

T dridyt dl d o P e R =D

APPENDIX B: BOUND STATE CURRENT

Equation 4. 10) for the cerrent of o simgle bound st

Yo the Bogolyubov-de Gennes

can be denved directly’
cquations (2.5) and (2,21, The dervation s vahd for june
Hons with an arbitrary nonsuperconducting region between

the superconducting electrodes. We assume lor sumphety
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that the phase of the order parameter [Eq. (2.3)] in the elec-
trodes 1s constant and equal to = /2 in the right and left
electrodes, respectively. Let W(r £) be a normalized wave

function of the Andreev bound state with energy £,
HW —EW=0, W(i=+x)=0. (81)

The energy and the wave function of the bound state depend
on the phase difference . Using the derivative with respect
to @ in Eq. (B1) and a scalar product of the resulting equa-
ton with the function ¥, we obtain

;.
f d‘r(‘l’,d%’;(ﬁ—E)‘l! -0, (B2)

where the brackets denote a scalar product in the electron-
hole space, similar to Eq. (3.8). In this equation the deriva-
tive of the Hamiliontan has the form

dH  dA isign x .
I‘; = Ef 5 o A, (B3)

in accordance with Eqs. (2.2) and (2.3). Substituting relation
(B3) into Eq. (B2) and taking into account that the function
¥ is normalized, we obtain

dE Idl (w d&\p)
E— r ,E . (B4)

The continuity equation for the charge current,

e
HE)= 3 (=) [ (V)W (D),

(B5)
in accordance with Eq. (B1), has the form
o )
{ e I(.T,E}:ej dzﬁ(‘l’(.r),[ o, AIW(x)). (B6)

Substituting retation (B3) into Eq. (B6) and integrating this
equation over the enlire x axis, we obtain

dA
). (B7)

HOE) = 2ef (/-‘,-(\Jr, — W
deo

In Eq. (B7) the current at infinity drops out because of decay

of the bound state wave function, /{ + =) = (. The current

H0) 15 formaliy taken i the middle of the Junction, how-

ever, the current has the same value i the whole nonsuper-

conducting aegion, according 1o the conservation equation -

(BO), Comparison af Egs, (B4) and (B7) finadly vietds

d b
Y e — {138)
dy
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dc-current transport and ac Josephson effect in quantum junctions at low voltage
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Multiple Andrees seatiering in single-mode superconducting junctions with arbrirary normal electzon trans.

parency Q<0< 1 s studied in the Timit of low applied voltage e V= A A quusiclassical approach is developed

For investization ol the dense Tattece of inctastic sidebands associated with muluple Andrees scatiering, which

gives a global deseription of melastic-scattening amplitudes and spectral distrthution of the curreat. Fhe cross-

over from the contact 1 the tnned regime s mvestgated for the de current and e Josephson cenent o

function of junction transparency and appiied voltage. A mesoscopic interference effect in punctions with

mtermediate wansparency 15 discussed. This effect shows up in oscillating features of the carrent of thermal

excitations. {SO63-1829(97)1004 18-7]

L INTRODUCTION

Duning the last 15 vears significam effort has been di-
rected towards understanding the physical processes in bi-
ased superconducting junctions at applied voltages smaller
than the gap value, e V<225 (Refs. 1-7). The interest in the
problem is due to the tact that single-particle current trans-
port at zero temperature 1x entirely blocked at subgap
voltage.* and shat the current has muitiparticle origin® Con-
siderable subgap current is systematically observed i ex-
periment. especially i transparemt junciions, manifesting a
pronounced subharmonic gap structure.' ™ The multipar-
ticle mechanism of subgap transport has been found to be
closely related to Andreev processes of electron-hole conver-
sions in the junction'” and to the formation of Andreev
bound states within the superconducting energy g:.ip.'5

The progress during the last few years has been due 1o
careful investigations of quantum pomnt contacts. Such struc-
tures are available in real experiments on break-junction
devices'®'” and on gated superconductor-semiconductor
devices.'?

In quantum point conlacts the problem of subgap current
is presented in a refined form. The small size of the junction
on the scale of the phase-breaking length, and the separation
of transverse electron modes. makes it possible to treat the
current through each separate mode in the spirit of the scat-
tering theory approach.'™" The total curreni through the
junction then resules from imbalanced currents of quasiparti-
cle scattering states onginatimg from the feft and right super-
conducting elecirodes. Quasiparticle scattering in biased su-
perconducting junctions is inelustc because of nonstationary
behavior of the superconducting phase difference at the junc-
von. It therefore involves an intinite set of sidebands in the
spectrum of <cattered waves with enereies shifted by an in-
teger number of quanta ¢V (Ref. 15). Furthermore, some of
the sideband states are created within the superconducting
gap in the form ol Andreey hound states. These states carm
current winch ix converted o supercurrent outside the

QIO IR2GMTAA PN 0000 ] 2S00

1
o

D

-1

muncton, providing transoussion of Cooper pairs through the

single-particte current of real excitations.

Cancetlation of the curmrents of different inelastic chan-
nels. including normal and Andreev current components, is
extremely nontrivial. Perturbanve analysis of the current in
junctions with low normal clectron transparency -1 has
shown'™! that the nommai and Andreev components of the
pair current are balanced in a such way that the pair current
experiences rapid changes (onseis and spikes) near volltages
eV=2A/n. Together with the onsets of the single-particle
current this yields the steplike subharmaonic gap structure, as
shown in Fig. 1. The theoretical results perfectly fit break-
junction experimental data without fitting paramctera.22 The
subharmonic gap structure in guantwn junctions with arbi-
trary transparency has been numerically calculated using dif-
ferent methods in Refs. 4,23.24.

At tow applied voltages, e V<€A, the number of inelastic
sidebands increases without limit. However, in junctions
with small transmissivity, 2 <€ 1, the dc current decays expo-
nentially with decreasing the applied voltage.”® Fig. 1. Very
different properties of the de current have been revealed in
the opposite limit of fully transparent junctions, D=1. In
this limit, the de current appears as the average of the time-
dependent current associated with adiabatic oscillations of
the Andreev bound states. which approaches constant mag-
nitude at low apphed vollage.” eiving nise to a zero-bias
peak of the junction conductance

In this paper we anaiyze the current through supercon-
ducting junctions at low applied voltage ¢ V-2 A in the whole
runge of junction transparency <2/2=7 1. Taking advantage
of the high spectral density of the sideband lattice, we de-
velop a quasiclassical description of the spectzal distribution
of the nelastic-scattering amphtudes. This alfows us o 11-
vestigate the global structure of the inclastic scattering dnm-
plitndes and the distribution of current among different -
clastie chuannely,

The structure of the paper 15 the following: o Sec. 11 w¢
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FIG. 1. The subharmonic gap structure of a biased single-maode
quantum point contact at zero temperature and @t different junction
transparencies: D = (101, 0.2, 0.5. 0.8, The sohd lines represent the
result of a numerical calculation based on the exact recurrences in
Eqgs. (3.2a), (3.2b); dashed lines are the analytical result of quasi-
classical theory. BEgs. ( 3.4}, { 4.5), ( 4.9).

derive equations for inelastic-scatiering amplitudes, while
Sec. III is devoted to construction of quasiclassical solutions
of these equations. The dc current is calculated in Sec. 1V
and the ac current is finally discussed in Sec. V.

II. EQUATIONS FOR SCATTERING AMPLITUDES

We consider a superconducting quantum constriction with
a local scatterer in the neck (Fig. 2). We assume here that the
junction is symmetric. that the constriction is smooth on the
scale of the Fermi wavelength, and that there is only a single
transport mode. We consider quasiparticle scattering by the
junction using the Bogoliubov—de Gennes (BdG) equation27

N (n=H8V() (2.1)

with the Hamiltonian

FIG. 2.
The dark region represents the scatterer with normal electron trans-
Parency 0- <20,

One-channel adiabalic superconducting  constriction.

12 667
s i(r 2
A= LEM.;.V(;)_# o,
2m
+[U(x)+e@(r.)]o, + A(r,1). (2.2)

In Eq. (2.2), V(F) is the potential defining the constriction,
U{x) is the potenual of the scalterer, A(r.r) and (p(F,r) are

electromagnetic potentials, and A(r.1) is the superconduct-
ing order parameter given by the matrix

& (2.3)

{0 Ae'X?
= . Ae —ayfl 0 N
- is the Pauli mauix, and the choice of units corresponds to
c=h=1.
. - - . . kit
Due to the adiabatic geometry of the junction.™ we may
use the quasiclassical wave functions far from the scatterer,

. - I
Vrir,1}= A, L)
(r.1} %(jf"(l! l}\/-

v

{)rﬁfpd'l lffﬂ(,l'.f),

(2.4)

where o, (x).*(x) are slowly varying functions, ¢, is the
normalized wave function of the transverse mode,
p=\2m{u—£E,) s the longitudinal momentum of the qua-
stclassical electron. v=p/m, and = * indicates the direc-
tion of clectron motion. We will also explicitly separate out
the phase y{r.r) of the superconducting order parameter A
in Eq. (2.3) by means of a gauge (ransformation

dlﬁ_‘eur:xﬂw,@, (25)
and introduce a superfluid momentum ;;j.:V,\’IZ*eA and a
gauge-invariant electric potenttal ® = x/2+ ep. The coeffi-
cients ¥ in Eq. (2.4) then obey the reduced BdG equation:

i o= (Bopo +D, qu +opg g+ AU\-W’E_R (2.6)

in the left (L) and the right (R) electrodes. Within such an
approximation, the local scatterer in the neck of the constric-
tion imposes a boundary condition to Eq. (2.6), which is
determined by the normal electron-scattering amplitudes o
and r (|d]*+|r|?=D+R=1, rid=—r*/d*). If the scatter-
ing amplitudes are energy-independent near the Fermi level,
the boundary condition has the form?'**

ty - de' 9 [t

L/f,; = de'w.r:dﬁﬂ r l,[l_ »
! R 0
V=

(2.7

where @ is the gauge-invariant difference of the supercon-
ducung phases of the right and left  electrodes:
DY =yl Lt) = x, (0.1,

In the point-contact geometry, the effect of spreading out
of the current gives rise to a negligibly small spatial devia-
tion of the order parameter A from constant magnilur.lc.z(j
A = const. For the same reason. practically the whole applied
voltage drop V occurs at the junclion.m @~ wr= V. Ne-
glecting cffects of penetration of the electromagnetic fictd
into the superconductor. we omit the patentials p, and @

-20-
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from Eq. {2.6), p,=®=0. The relation =0 yields the Jo-
sephson relation between the phase difference and the ap-
plied voltage, ¢=72eV,

In view of the time dependence of the boundary condition
in Eq. (2.7), the scattering states are 1o be constructed from
the eigenstates of Eq. (2.6) for different energies
E,=E+neV, shifted with respect o the energy E of the
incoming wave by an imeger multiple of eV, —x<p<>,
The wave functions of the scattering states, calculated at the
midpoint of the junction (x=0), have the form

t/J',_ ) ( 5}_ l~| iy ( “)
7 = ' - il 1 [T ;
+ - Id 1 2 u, e o (2?‘;)
( dlf\' I (S}.E) \F{i_‘_‘ W bl

,w
{'w,f')___(@_i)ff_:(, +Z()
ik VI

where ;= | —4 labels scatlering stades h:wing the same m-
coming energy £. In Egs. (2.8) «,, is solution of the homo-
geneous BAG equation,

ﬂ (e¥—(2/1)sinhy, )
MH = ”-H U-H -1

and where

DetM -

"

The transmission amplitudes of the other scatlering states
F=2~4 satisfy similar equations and are related to the so-
lution of equations (2.10}, (2.11) through the symmetry rela-
tions

B3, 'f.

(fz.;. W’r’d}:(b”‘]( = y.rtd), (2.124)
“an) fa
(asz(w)—(mm,(b”)(— ) {2.12b)

The refation between the amplitudes of the scattering states
J=4% and j=12 is similar to Eq. (2.12a}.

The charge current associated with a single scattering
state is given by the standard quantum-mechanical formula

).‘l’(rf.r))

(2.13)

fivr)= o ([A’*];'}J ra'zrJ (‘lf(;' {

The brackets in Eq. (2.13) denote a scalar product in
electron-hole space. Eq. (2.13) 15 a particular form of 4 ven-
cral equation for the charge current in noneguilibrium super-
conductors dertved, e.g. m Ref. 31 In the quasiclussical ap-
proximation of Eq. (2.4) the current (2.13), calculated at the
junction has form

s T P U Y

(—2r%/D)sinhy,e' ey Y 07

BRATUS", SHUMEIKOQ, BEZUGLYI, AND WENDIN 35

1 e_'y".fz
u;:_\/:(g - (29)
E n
(’T"— | |A é 1 (Tu: Sgn(Eu)v

\m_ lE"J'J’A
é”= -
’ P, JA® *I”, |F| <A

Combination of Fgs. (2.7)-(2.9} yields equations for the
scadtering amplitudes which reduce o a closed set of recur-
rences for the transntission amplitudes. For example, for g
holeiike guasiparticle inconung from the lelt (f= 13, the re-
currences read

3

[ b,y } b, ) 20 \.lnhy“( [OS
_ =M ,,( ) - e . S0,
foi fn [ (}'\1 s } o
(2.10)
where the matrix A7, has the lomm
s (2r/D)sinhy,e Yoy Ya
) [ , w2l - 2.17)
Tot {2/ )stnhvy, )t Yot e b
I —— -
1A= 00) /31.-/,”(*0:” (2.14)

The current in Eq. (2,14} can be calculated as either side of
the juncuon: identity of the both expressions s guarantced
by the unitarity of the matching matrix in Eg. (2.7).

The wave function ¥(r) in Eq. (2.1} describes evolution
in lime of a quasiparticle state which originates from an
eigenstate of the homogencous BdG equatton. According o
the assumption of local equilibrium in the electrodes, a qua-
siparticle distribution among the eigenstates corresponds 10
the Fermi distribution. The total current results from Eq.
(2.14) after summation over all quantum numbers of the in-
coming states, |Ei> A, j=1 —4, with account of the Fermi
filling factors. Expressing partial transmitted currents of in-
dividual scattenng states in Eq. (2.14) through the scattering
amplitudes, and making use of relations (2.12) and the sym-
metry relations

bl~E vordy=a,b® (E,—yr* d*), (2.15)
Jol=Loyordy=a 05 (Eo— yort.d*),
we finally arrive at an equation for the 1otal current,
Coan e (dEE .
firy=- >_, el ’J -——tanh( £/27T) K,vaw-
TN 1 & aoedd o
(2.16]

where

-ai-
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Kom= (1201 + 0,0, (w0, ) f— Uy )b,

—Ly—— 7]} (217
When deriving Eq. (2.17) we have taken into account the
fact that the products of scattering amplitudes X7 and
b¥b, depend on the scattering probabilities D and R rather
than on the scattering amplitudes o and r [see below Egs.
{3.2), (3.33].

The form of the recurrences in Eqg. (2.10), together with
equation Eq. (2,17} {for the current spectral density. allows us
o make an important observaton, The matnx elements in
Eq. (2.11) are related. {or all #, as

Midy)=Munt —yh Mpyr)=My(— yr®)

7

(2.18)

Within the superconducting gap the quantities y, in Eq. i2.9)
are imagimary. and the svmmetry relations tn Eq. (2,18} take
the form

Mo M = (2.19)

This generates a conservidion law
b == const. [E <A, (2.20)
which  mposes o constant distribution of  the  ume-

independent current (N =0} of each scatrering state among
the Andreev hound states.

IH, QUASICLASSICAL SOLUTIONS

Although a formal solution of the homogeneous equation
m Eq. (2.10) is easily obtamed;

(bz,,,.,) :‘ﬁ” Mn(h,)‘

3.1
'f2ﬂ|+]. A=1 .fl ( )

this is not very helpful because in junctions with arbitrary

transparency D # | . the matrices M, do not commute and the
product in Eq. (3.1} cannat be calculated analytically. The
exception is a perfect constriction, R =0, where the matrices

M, are diagonal and explicit calculation of the scattering
amplitude is possible™ In the limit of low voliage,
eV/A <], the matrices M, change slowly with n and nearly
commule if their indices are ¢lose to each other. which al-
lows application of the two-scale expansion technique for
approximate calculaton of the product.

In (his paper we will use another way of approximate
valculation. We split the matrix equation (2.10) into two in-
dependent second-order ditference equations

25inhy,

dVETA

1

Au .fu‘ N i‘"‘!‘u- f’n -2 t An,f‘n: B

Ay b o
e ' 70 ?;’7()

o IR 172
Fger e e, b

320
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2rsinhy,
dVEIA

‘ (Yo=y- 142
ao_ et T-s ),

;:bn+2+A_n_bn-2+A_nbn: (e(h‘)'u)ﬂa'!"

(3.2b)
where the coefficients are given by
sinhy
v Ly, Y, W2 "
A”—“O'”(]'”_'_l(’ Yu Yua2 il ——
sinhy,
sinhy
4 = — ooty a2 "
A, =, oy, e Yool | . 31.3)
sy, o
4 . sinhy sinhy,
‘,1” .:f.\;inh--y”<§r (“" Yud !._*._'.’._ﬂiv(,’ ¥l )’,,.;_.‘_____E__'
f sinhy, o sinhy, _ |

A(yI=Al~ ¥}

Then, taking advantage of the short period of the sideband
luttice and the slow vanation of the coefticients in Egs. (3.3},
we transfori the difference equations (3.2) into differential
equations and apply the famihiar technique of the quasiclas-
sical approximation. Such a method allows us to calculate
current-voltage characteristics in the whole range of junction
transparency O<<0D <. However, in the /-V charactenistics
oblated with this method the subharmonic gap structure 15
lost because the sidebund lattice is washed out (this is Hlus-
trated i Fig. ).

Below we will use dimensionless quantities E/AE, A
— E.E,. Expanding (the homogeneous) equation (3.2a)
from the lattice £,. n=add to the continuous axis.
£, — e and keeping the nonlocality of the coefficients (3.3)
to first order in ¢ V/A. we arrive at the following equation:

:

o
1— 57'(a+c0lhy) ewrh’de

w
+{ 1= ~2—)"(t;r—-(:’:)th'y)}e"““”‘fE

!

=2 e+ awy')f(e)=0, (3.4)

Ute)=1+(UD)(e*—1).

In Eq. (3.4), w=2¢V/A is the dimensionless Josephson fre-
quency, ¥' =dy/de, and the index a= % is introduced in
order to keep trace of both solutions with = v, necessary for
calculation of the current in Egs. (2.16), (2.17). Equation
(3.4 is valid on the whole axis € except of the point €=0
where the coefficients A~ i Eq. (3.3) have a discontinuity in
the imit w—9. This results in discontinuity of the function

S.owhnch can be taken into account by multiplying the con-

tinuous solution f of Eq. (3.47 by a discontinuity factor.

Jrep=e TRy (3.5)

Equation (3.4) i the classical imit w—0 has a simple
physical mierpretation: 1t describes one-dimenstonal motion
of a particle with the dispersion law coser in the potential

-A2-
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e coswr Ute)=0. This monien corresponds 1o adia-

- . . . R TR
batic oscitlations of the Andreer bound states™ 7 in g
voltage-hiased juncuon:

elP)= 2L =Dsinc[ 2], bl =wr, 7= A1

(3.6)

Furthermore. By, (3.6) determines classically alfowed re-
gions i Eqg. (3.4) which coineide with the postlion of the
statie: Andreev bound bands e( ), \'7\’—<|ei< 1. Fig. 3. The
encrgy gap between the Andreev hands. €] < R. logether
with the continuum spectrum. el =1, constitute forhidden
regions. Applicability of the quasiclassical approximation re-
quires that the size of cach regson 1s much larger than the
spacing ot the sideband lauice,

min(D, R ® w. (3.7

The wave cquation (3.4) gives a description of the dynam-
ics of the Andreev bound states in an energy domain which
15 complementary to the time-domain description devetoped
in Ref. 23: it allows us o treat nonadiabatic effects of An-
dreev hound-state dynamics. The guasiclassical solution of
Eqg. (3.4) reads

D |U-l
e—R| ¢

[.(ey. €)=

=5, (e .6

(3.8)

In classicallv allowed regions {regions £/ and 7V in Figs. 3
and 4), the quasiclassical exponent S, has the form

U ¢ I3 t- LA a
S leg.er=1] de'| —arccosUie’) + ——=—==1|.
€n .('J 2\.'6 TR/

(3.9

In the forbidden regions outside the superconducting energv
oap {regions / and V= V7). the guasiclassical exponent S,
reads

. | c wgne’

o . L g

Steq.er= de ( —arccoshifte’ | - ———=—=
) 2 -

¢
=t

jel =1, {3.9h)

wlnde within the Andreey gap Gregion 1)
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a)

fb : ‘
P : :
}_ Zj\
h) / I - [
! T i / £
7]
} i) .' £

FIG. 4 Scatesing state on the energy axis: () effective poten-
tial: (h) solution of Eq. {3.4): the dotted line represents an envelope
of rapidly ascillating wave function: in regions £V - V the incoming
and the reflected waves e shown separately. indicated by arrows:
fct spectral distribution of the de current. which is constant inside
the vap due to compensation of normal € £) and Andreey (/) current

clumnels: this compensation 15 absent i regions Vo VY

- w
S,,(c—'n.é):J de'| —[im— arccosh{U(e")]]
2]

0

le] < R (3.9¢)

[

In Egs. (3.8), (3.9) only the main branch of the funcuon
@i e) in Eq. (3.6} is used. since we are only interested in the
values off( £) on the lattice e=E,, where all branches give
the same magnitude of f.

It is interesting to note the role of small nonadiabatic (pro-
portional to w) corrections to the coefficients of cquation
(3.4). These terms contribute to the pre-exponentiul factors
in the quasiclassical solutions and cannot be neglected. Con-
lzining an imaginary part, they cause violation of the conser-
vation of the probability current in Eq. (3.4) this leads t©
specific interference effects in the spectral distribution of the
inelastic-scattering amplitudes [see below Eq. {4.6) and fol-
lowing discussion]. Also. they cause suppression of refle-
tion at the edges of the superconducting gup fe|= 1. which
are the singular points of the quasiclassical solutions.

Indeed. in the vicinity of the gap edge points e~ 1. 1y
13,41 reduces to

. o L LI D=0
o= — i — o E =)
oS e )
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the exact solution of which,  f=exp[*(4/
32D w?(* e~ 1)¥?], does not contain any reflected wave.
Thus, the matching conditions at the superconducting gap
edges are determined by anatytic continuation of the expo-
nents 5, in Egs. (3.9);

fai— eyl —1.e). (3.10)

e —ae.

In contrast to the superconducting gap edges. the edges of
the Andreev gup. €= * K. are true turning points. To derive
the mutching condinons at these points we first separate out

(- Cfff) {. ( ]/2)()vn.'4

i)
¢

between the coefficients of linear combinations

f(‘)=(‘+f+(€l)~6)+c—f-(f(]-f) (31”1)

in regions /11 and [} {the quasiclassical exponents are here
counted from the boundary e,= — VR). The matching equa-
tion (3.12) tukes into account exponentially smali terms in
the asymptotics of the Airy functions in the under-the-barrier
region, " which is necessary for consistency with the conser-
vation law {2.20). The solutions in regions f1f and IV are
related in a similar way. Combining both matching equations
with the solution inside the Andreev gap. — JR< e< VR, we
find a direct relation between the coefficients C. in Eq.
(3.13) in the atlowed regions f7 and /V.

cih el
(Cq_4dJ

where transfer matrix 7 has elements

(3.14)

Hy=1h=i(e®+e Pty tTEY, (3.15)

lr“=r;‘]:(8¢,e*¢/4)€277f\'.‘?1'w$

Detf= —1,
| (R
@Z*[ de arccosh| U(€)].
w _\F

If the Andreev gap is narrow, R<Dw'”, and the turning

points are not well separated, the transfer matrix 1 is found
directly from equation (3.11),

wRiw - 2wl w

1=t =ie {(3.16)
L= 1= VRl (IRl w) (1 = el Koy o= hite

Xexpl—{({R/w)[1 +In(w/R)|

i vRiw— wild).

vatd e Taith R e
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rapid oscillations of the solutions by introducing
f=e'™“g. Then Eq. (3.4) reduces to a parabolic cylinder
equation in the vicinity of each turning point,

g=0. 3an

2, 4( ) R)+2:aw
w'g" (e -
D VD

If the turning points are well separated, R>Dw'"”, Eq. (3.11)
further reduces 1o the Airy equation. Then the standard
matching procedure carried out, e.g.. at the pomnt e= - VR,
vields the relation

w2ty R -1
(172! i )((.*)
(J::-' .‘ ‘Cff

{3.12)

where [ is the I" function and Detr= — 1.
The off-diagonal matrix element 7, of the transier matrix

{ has the meaning of inverse amplitude of tunneling through
the Andreev gap. The probability of tunneling W=|r,5 2
resulting from Eq. (3.15) is

g l)—n_\kh'\” R,
W=e 2=

PRMVIKDNG ey (3.17)

In the high transparency limit R<61 the result (3.17) coin-
cides with the tunneling probability that follows directly
from Eq. (3.16).

Evaluation of the coefficients €. in all regions i1s com-
pleted by taking into account the boundary condition at in-
finy, f(*£=)=0, and the source term in Eq. (3.2). Assum-
ing in Eq. (3.2a)

Fon (=ANSFBATE o =CYATF 0 (3.18)
for k=01 with A =exp[ arccoshl/(E)], and neglecting the
variauon of the coefficients with n, we find

B= g(\/ﬁm), cYi-A= 5&5—@,540.
(3.19)

The explicit form of the coefficients C. in all regions for

different choices of boundaries €, 15 presented in Table L
Calculation of the scattering amplitudes b in Eq. (3.2b) i

carried out in a simnilar way. This leads to the equations

aEr

aér {1
B=——_ Y'="R¢
(i’ !E"

25 Rl

(3.2

The other coefficients in regions /— V/ have the same ana-
lytical torm as the ones m Tabte. 1. the coefficient & being
given by Eq. (3.20) and the exponent § ., substituting for

)

Dy

<A~
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TABLE |. Reference points €5 and coefficients C ., of linear form in Eq. (3.13) for quasiclassical solutions
of wave equation (3.4) for transmitted amplitude f in different regions 1— V1.

€ C. C-
| ; (
E(, LASRV R I N |
N
1 ‘R 0
VR Et,—\"c\fu:
12
i Y
vk # Y U N IO T B PR AW
?"D fn
: iy LN R
T N B EEH() SR
Ty>
v R Sartho . _
" e Ir KT N i
{2
Vi r 0 {2 A & —
e TAREL 0 D = o)
12 d

The solutions found ahove resemble scattering states of a
quantum particle propagating afong the energy axis through
a potential barrier, related to the gap between Andreev bound
bands asllustrated in Fig. 4. The amphitude of the incoming
wave 15 determined at the injection pamt €= £ by the source
terms 1n Egs. {3.2). Decaying towards the superconducting
cap edge. the incoming wave transtorms without reflection
into a propagating wave within the superconducting cap. Ap-
proaching the Andreev gap. it is partially reflected and par-
tially transmutted through the Andreev gap with probability
W into the other Andreev band. Then. after approaching the
other superconducting gap edge at €= - [. it finally decays
outside the superconducting gap. The condition of wave-
function decay at infinity plays the role of the outgoing con-
dition in conventional scattering problems determimng trans-
mitted and reflected waves. Such a scattering state along the
£ axis gives a complete description of the spectral distribu-
tion of inelastic-scattering amplitudes of the original scatter-

ing problem—it therefore provides a basis for calculation of

the current through the junction.
IV. TIME-INDEPENDENT CURRENT

In this section we evaluate the time-independent compu-
nent of the current. This current consists of the sum of inco-
herent contributions. N =0, of all the sidebands in Eq. (2.161.
Assuming that the current spectral density K, varies slowly
with sideband index n, we approximate the sum over n with
the integral along e,

) *de
tanh{ FA/2T) — KolE e 40}
J )

Iy

-

7

cA (J-(/E I3
'

Kok €)= coshf Reyt e [ |f1E e)i-—|hiE e

Sy T

We will distinguish three components in the averaged cur-
rents single-particle current of the real excitations /. trepion

foes = D) pair carrent of the Andreey hound states {y tre-

gtons [f— 1V, —t<le<C1} and current of the ground-state
modes /. (regions V- VI e> 1),

lo=1 1,41 .. 112

According 1o the conservation law kg, (2.20]), the current
spectrad density Ky does not depend on € within the super-
conducting gup, Ky(e)=const {Fig. 41, K, & casily evalu-

ated at superconducting gap cdge e= - |,
48w
T — . - " L ISULE)
Ky E le|l<ty=KoE.— )= i e T 43y

Thus the current spectral density is exponentially smail ev-
ervwhere within the superconducting gap f K> w, ie. for
sufficiently low voltage [cf. Eq. {3.17)]. Multiplying equa-
uon (4.3) by 2. the size of the gap region. and pertorming
mtegration over energy £, we get

2eAW
fy=— tanh(A727). (4.4)
T

i

This current gives the main contribution 1o the tme-
independent current at zero temperature. We notice. (hat the
vollage dependence enters Eg. (4.4) only through the Lunmnels
ing probability W, while the large pre-exponeniial feror
w i Eq. (4.0} related 1o the targe number of Andrest
bound stites is compensated for by a small phase volume o
relevant scatering states. £ — 1 Do) T accondanee
with the voltage dependence of Woin Fa. (31750 the capren!
i g () undergoes crossaver from the contact o the /i
ned regime at e Vo wRA (ef, Refs. 23251 as shown in 1712
3.

The current spectral denstty Ky rapidlv decavs wath W
partire from the enerey cup mto regren £ and s conee i

-a5H -
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LiteA' n)

05 10 ts 20
elTA

FIG. 5. Current 1, vs applied voltage at difterent junction trins-
parencies.
in a narrow interval €+ I~ (Dw’)". This yields a small
magniude of the current of real excitanions /. in compurison
with the pair current T, |

e AW v
- a(Dw) anh(AR2T). i4.5)

[.=

a=1(2)/6"=0.742.

Let us now discuss the currents in regions V—V/:

5

Ve et g . )
Ko (E e}= Be KIS | o2, 25 Lery
\

(4.6u)

: 4¢
KyE €)= — =

VD

0725{I.el((jl.ﬁ'(I.E)+4Q|2(,—2S:1‘EI

~2JRReQ). (4.6b)
The quantity
Iy 2 (L
(0= —exp W—J’ arccosVAE |, 4.7)
Iz w J.R J

in Egs. (4.6) has the meaning of the amplitude of reflecuon
from the superconducting gap. The ratio

_ i W
[22/112: ﬂI*We w2+ (iwlent - (R l-lS)

is the reflection amplitude caused by the Andreev gap. and
the oscillating factor in Egq. (4.7) contains the additional
phase gained during propagation through the region IV, Thus
the first terms in the brackets tn Eqgs. (4.6) correspond 1o the
currents of incoming and reflected waves while the third
term in Eq. (4.6b) 1s the imerference current.

In contrast to regions f— 7V, the current spectral densities
Ky and K(‘,!’ are not exponentially small (Fig. 4). However. wt
Zero temperature one should expect very precise cancellaton
of these currents since the imbalance effect s only produced
by the creation of a tiny amount of read excitations. Indeed.

D=08T=0eWa=00t 1

[y (EY. Ty (E)

05 -
I
Ter D ]
15 4
20 [ i i PR | P E  | PR Y Loed 1
1.00 105 1.10 1.5 120

FIG. 6. Currents in regions V— VI caleulated from the exat
recurrences {2, 10} currents £ F) and /0 £) represent current des-
sitivs A, and K,)' from Eq. (4.6} respectively, integrated over €.
The currem 1 reveals pronounced oscillutions vs £ reflecting the
interference term in Eq. (4.6b). while the interference effectin 7y 1y
much smaller. The asympiotics at large £ correspond 1o the curreni
spectral density in the normal junctions.

-

the dissipative current [, determines the rate & of energy
transier from the external source to the electron system:
£=VI,. This energy is expended for creation of real excita-
tions: it consists of the product of energy 2A lost o single
excitation, the tunneling probability W, and the frequency of
auempts e¢V: £~2AWeV. This rough estimate vields
Iy~ 1. Direct calculation of noninterference currents in
Eqs. (4.6) supports the above conclusion: the currents of re-
gions V—V/ compensate each other with exponential accu-
racy after integration over energy . giving the resull

1. = alDw™)'"™, (1.9
v

This coincides with the current of real excitations /. . Eq.
{4.5). At the same time, the interference current is not can-
celed but yields a residual oscillating current which 1 not
exponentially small. This result apparently contradicts the
above arguments (exponentially small 7,) and also the resuft
of exact nuinerical caleulation of the subharmonic gap struc-
ure in Fig. 1. which does not show any hackaround current
in the linit of low voltage.

The correct hehavior is revealed by detailed numenical
investigation of the currents in regions V— V/f carried out on
the basis of the exact recurrences in Eqg. (2.10). In Fig. 6. the
currents (£ and £y, E) show the integral contribution of
the regions Voand VI fthe current densites i Lgs. 14.0]

_ab-
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integrated over €]. The current in region V/ shows pro-
nounced interference oscillations similar to our analytical re-
sult in Eq. {4.6b). The current in region V also possesses an
oscillating component but with much smaller amplitude.
This oscillating component is not present in Eq. (4.6a) be-
cause of its small magnitude (~ @), which exceeds the ac-
curacy of the quasiclassical approximation. The full-scale
rapid oscillations of current in region V/ are reduced after
integration over energy and they are perfectly compensated
{or by the current from region V.

At hintte temperature the curreni compensation is lifted
due to the energy-dependent Fermi factor in Eq. (4.1). which
yields 4 current of thermal excitations that is not exponen-
tally small (with respect to e V). The smooth part of this
current. resulting from nomnterfering terms in Egs (4.6), has
the form

207V [gAD
15(7‘]——(;"\/ ,)T'a' MTiAED, {1.10)

In the opposite limit the current of thermal excitations is

D<TIA ]
4.11)

,_ c’zDV_\.(w ) LA
(= . F.?_;“] cosh f

!

The result of numencal evatustion of the smooth current
component is plotted i Fig. 7 with dashed lines. The solid
ftnes show the exact current of thermal excitations which
manifests pronounced osciliating festures. Although the ac-
curacy of the quasiclassical approximation 1s not sufficient
for analytical evaluauon of the amplitude of current oscilla-
uons &, . as previousiv explained. the osciltution period
I 81, LCAfe v+ 1) = 81 L Ae V). can easily be evatu-
ated from Egs. (4.7). (4.8). Since integration over energy
selects the energy £= 1. the oscillation period is

T

H = e T T T
fota— ) E(D)

{4.12)

where £(¢) is the static Andreev bound-state spectrum, Eq.
(3.6). For low transparency. Eq. {(4.12) reads

fn Fig. 8. the junction conductance G=1/V is plotted as a
function of"inverse voltage. The oscitlations are clearly peri-
odic and the period does not depend on temperature. The
aumerical cvaluation of the period 1s in nice agreement with
Eq. (4.12).

VO TIME-DEPENDENT CURRENT

Procecding e caleulation of the time-dependent (N # ()
part of the current iy Eg. (2.16), we note tha the guasiclas-
stcal approxamgtion only allows us 0 investizare low.
frequency current harmonics. Nor<6{ . With such an ap-
proximation one can acelect the difference hetween mdices
of coeflicients of bilinear form iy Fq. {2,170

tenD )

107
1072
=
)
<
=
o
103 ¢
0.01

FIG. 7. £-V characterisues of junctions with transparencics 1)
0.2 tuppert and 73 = 0.8 lower) at different temperatures [ normial
ized v AT ] Bold lines represent exact numerical resuls Tor the
current of thermal excitations {regions V - V/): dashed lines are the
results of quasiclassical theory without inclusion of the interfeiency
e ihin ines show the total de current, coinciding with the ther
mal excitition current at low voltage.
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FIG. 8 Oscillatons of the normialized juncion conductance
GiT) = 1TV vs inverse voltage at different temperatures in junc-
tons with transparencies 2 = 0.2 {upperi and 12 = 0.8 owerh:
€, = e P/ is the conductance of the normal junction. The period
ol osciflations s given by T (3124

12 675
eA o (*dEE
[o=— 2, J tanh( EA/2T}
TN=I JI
= de Nesr
xf — IRe[ MK E €)]. (5.1)

K (E.ey=coshf Revle) {{/*(e+Nw)fle)
— b erNwible)]-(y— — 1}
Furthermore. when calculating products of scattermg ampli-
tudes in Ey. (5.1). we will assume cotnciding wrginments in
the pre-exponentul factors tn LEqg. (3.8) and expand quasi-
classicat exponents: S{e+ Nw}pe=5(€)+ S Nw. The main
contribution o the ac currerd af all temperatures results from
regions £ uand FV—-classically ailowed regions for Andreev
bound-state osciblations. The cuerent spectrad densite A4 dif-
fers from the sttic Eq. (4.3 contunming the addiional expo-
nentizl factor exp(S' Nw)=-expliNdgi{ €)]:
187W

Al g - IS0 Cir <
KN(E €}s ——p~ ALV (5.2)
WD

where ¢ e} is given by Eg. (3 6} The curremt spectral den-
sity in region £V only consists of scoherent contributions of
meoming waves and waves reflected from the Andreey gap.

- - i - - A LENASY
K\,([;.E)ﬁ — _SIJ.I_!({, '\(J((‘_‘Q p! uun)

{3.3)

{the interference current vanishes in the quasiclassical ap-
proximation}. Combination of Egs. {5.2). (5.3). and (5.1)
yields the ac current.

. eAD A SINWT
eit= 1anhv[(]-W) —_——— (5.4)
2 ZT[ Vi Dsin{wr/2)
. 4(1- [R}
|sinaw 7| \f
W —— | sgnV{,

1= Dsin*(ww2)

1

which consists both of sine and cosine components (odd and
even with respect to time reversal) and undergoes crossover
from cosine-like behavior in the contact limit D=1
(W=1) 1o sine-like behavior in the tunnel limit D<€]
(W<=€1). A stmilar crossover occurs with decreasing voltage
when R<€1: from cosine-like behavior at comparatively
large voltage. ¢V RA, to sine-like behavior at low volrage
eV<<RA. We note that the nstant current in Eq. (5.4} in the
limit V—{ does not approach the static Josephson current,
having different temperature dependence. The dc Josephson
current possesses a temperature dependence
tanhtE(a A2y with Eddp) eiven by Eq. (3.61. which re-
flects the equilibrium population of the static Andreev bound
states. In contrast, the temperature Tactor in 2q. (5.4 reflects
the nonequilibrium population of oscitlating Andreey states
throush the Fernn illing facter at the gap edge £=1. Such a
difference persists unless the perrod of Josephson oscillations
exceeds the imelastic relaxation time. ™

The Lust. time-independent. term n Eq. (54) 15 equal
the seroth harmonic of the current of regrons /1 V. and

-5 -

e =
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FIG 9 Speciral distribation of the cosine harmwonics of ihe
Josephnem current. The solid fine s the fully wansparent junchion
(R O dotred hae s the unction waidh Bante retectivaty (R - wi
contribution of Andreey bound states: dashed fme s the juncton
with finite retlectivity €R 2w b 101l cosme current wiih gccount of
contribution of the Andreey gup.

therefore represents the ime-averaged magnitude of the ol
ac carrent of the oscillating quasttatic Andreey states, 10 was
potnted out 1n Ref. 23 that in fully transpagent junctons,
R =0, the de current is entirely produced by oscillating An-
dreev states. In qunctons with finite reflectivity, K0, ac
cording o Eqg. (5.4} only part of de pair current, By, 1440,
resuits from oscillatng Andreey states—ihe renudning pait
is contributed by nonadiabatic sates within the Andreey gap
{region fHy.

The conclusion drawn above about the exponentially
small magnitude of the cosine current in the wnnel reeime
concerns. rigorousty speaking. oniy the fow-frequency part
of the ac current. The suppression of the low-frequency cur-
rent is caused by the conservation law in Eq (2208 which i
nearly fulfilled 1 this frequency region and which estab-
lishes approximate balance of the normal and Andreev cur-
rents. On the other hand. one has to expect that high-
frequency harmonics are not suppressed: harmonics in the
region Nw3 R should not be sensitive to the presence of a
gap in the static Andreev spectrum and must approximately
bave the same magnitude as the cosine harmonics in fully
transparent junctions, R=0. Such argumems lead to the
spectrum of the cosine ac current sketched i Fig. 9: the
amplitudes of the harmonics. being exponentially small ai
small N, rapidly grow with N and after approaching a maxi-
mum at Nw~ VR decay with a power law. similarly to the
spectrum of the transparent junction. The nonadiabatic effect
of exponentral growth of the harmonic amplitudes at low
frequency ts provided by the contribution of the forbidden
region 1.

The contribution of forbidden regions to the ac current is
alwirys restricted to the cosine component.

! Z focostNw 7). (3.5
o

Phe current contribution of tegion 111

g AeAW A R
e T;ll]h;ﬁ( -1 J decosh(V arceosh| Ui el])
— Rl

W

5.0

results from the interference terms f1(e+Nw)f _(e€), and
other similar terms, which combine growing and decaying
elementary solutions. The first harmonics in Eq. (5.6) have
the same order of magnitude as the cosine current of oscil-
lating Andreev states in Eq. (5.4). The harmonic amplitudes
exponentially grow with N,

' o
’f’:ﬂlanh_ﬁ-ﬂ( -1 )N( TR l
* T 2T N

Xexp(N arccosh( ] +2R/D3). N,

untit Nen exceeds the size of wegion THLON - Riw,

Ihe spectral density of the ac carrent in region 7 rapidly
decays with departure from the supercenducting gap cdge,
sidarly (o the de current. Therefore, it contrihation iy
sl with respect o e cosine current of the Andreey
shles,

e AW NN A
foo (Dew) ul\-lanh;}.. (5.7)

T
Gy J' dx cxp(
i '

The currents an regons Voand VI nearly compensate each
othier at zero lemperature, yieldme a total current coinciding
with the contribution of region [, f.. =1y . At nonzero
emperiure the current compensation is hitted. which leads
o an ac current of thermal excitatons, The smooth, nonin-
terference component of thes current,

7 .
R TR INING L

R e

Ny= (D1,

4¢7A L — [ #dy
e MDY S
T o X

217\3u1

I AT)=

Xexpl — 2N DL) TIASD,  N<N,.
(5.8}

decreases with harmonic number N as N 7' At N3Ny the
current harmonics decay exponentially.

We conclude this section with a remark about the sign of
the cosine current {see the discussion in Ref. 35). Although
the signs of all harmonics in Eq. (5.8) are positive. the sign
of the total cosine current may be negative due to competi-
tion with the cosine current of the Andreev bound states in
Egs. {5.4) and (5.6). In particular, the contribution by the
Andreev bound states to the first cosine harmonic 1s nega-
tive.

VL. CONCLUSION

In conclusion, we have calculated the de current and the
ac Josephson current in quantum superconducting junctions
at low applied voltage ¢ V<€ A in the whole range of junciion
transparency (<2 /27 | The glohal structure of multiple An-
dreev scatlering and the distribution of currents amoig
inclastic-scattering channels is described in terms of e
wave function of an effective guasiclaswical partucle propa
vating along the energy axis.

The main physical characteristic, which deternunes 1he
properties of low-biased junctions with ntermediate frans
parency. is the energy gap in the statc Andreey hound-statv
spectrum. Opening of the Andreev gap vields expuncntil
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.uppression of the dec current, and determines the crossover
rom the contact to the tunnel regime of both the dc current
ind the ac Josephson current as functions of junction trans-
wrency and applied voltage. Quasiparuicie reflection from
he edges of the Andreev gap causes mesoscopic phenomena
nanifested in oscillating features on current-voltage charac-
2T1shcs ul linite (emperature.

Al zero temperature, the par current aiways gives the
natin contribution 10 the de current and is homogencously
istrihuted within the superconducting encrgy gap. In the
unnel cVgRA. the suppression of  the
requency cosine harmomes ol the ac current s hifted at
agher frequeney: the ampluuedes of the cosine hirmonics
row exponetiially with the harmome number N, and

regiime low-

chieve at Ne V- L RA 4 magnitude of the order of the non-
uppressed current in g pure consiriction.

The present investigalion has been concerned with junc-
ons whose scattering properties i the normal state do not
cpend on energy. which is true for all Kinds of weak links
«th lengths shorter than the coherence length. However. the
wthod can be extended 1o long superconductor—normtal-

12677

metal-superconductor junctions, junctions with resonance
tunnel barriers, and other structures where electron-hole
dephasing effects are important. It has been shown in Ref. 36
that the electron-hole dephasing gives rise to modification of
the spectral equation (3.6) to the form cos¢=FIr(E).d(E)].
where F is a umversal function of the electron-scattering
amplitudes of the normal part of the junction. Therefore,
although the shape of the effective potential in the energy-
domain wave equation (3.4} 15 specifically modifted for each
particular junction. the whole scenario remains unchanged.
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