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Fig. 6.4.3. Dislocations in the columnar phase: (a) and (b) longitudinal edge

dislocations; (c) and (d) transverse edge dislocations; (¢) and (f) screw dis-

locations; (g) a hybrid of screw and edge dislocations. It should be noted that the

Burgers vector b = a for (a), (c), (¢) and (g), and b = a—a’ for (b), (d) and (f).
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One-Dimensional “Spirals”: Novel Asynchronous Chemical Wave Sources

J.-J. Perraud,' A. De Wit,? E. Dulos,' P. De Kepper,' G. Dewel,2 and P. Borckmans?
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We report the experimental observation of an endogeneous antisymmetric wave source in a quasi-
one-dimensional chemical system. Substantiated by numerical simulations, a theoretical interpretation
relying on the interaction between Turing and Hopf modes is proposed.

PACS numbers: 82.20.Mj, 05.70.Ln

The stationary periodic patterns proposed by Turing, in
1952 {1, as a basis for morphogenesis, have only recently
been observed [2] in the monophasic isothermal chlorite-
iodide-malonic acid (CIMA) reaction {3,4). The forma-
tion of a reversible complex of reduced mobility between
activator iodine species and the starch used as a color in-
dicator, creates the difference between the effective dif-
fusivities of the activator and the other unbound species,
t.e., chlorite, on which the Turing structures rely for their
existence [5]. Indeed, when complexation is progressively
relaxed, the experiments show [6,7] that a transition from
standing periodic structures to time dependent phenome-
na in the form of traveling waves may occur. In the tran-
sition region, among a wealth of other spatiotemporal be-
haviors, we report the observation of endogencous 1D
sources emitting waves asynchronously 1o the left and o
the right. We bring proof that these peculiar sources cor-
respond to a localized stationary Turing state embedded
in an oscillating background. They are thus of a nature
different from that of various sources that have recently
been observed in hydrodynamical problems [8,9).

The observation of Turing structures in a nonbiological
relatively simple redox reaction was made possible by the
usc of new continuously fed spatial gel reactors [10] that
are a prerequisite for reaching the asymptotic states and
for testing their stability at a controlled distance from
thermodynamic equilibrium. The original work has
sparked off subsequent experimental {6,7,11-13] and
theoretical [14,15] studies devoted to the determination
of the role played by the gel matrix and the starch, the
uncovering -of the different possible pattern modes, and
the understanding of the role of the feeding concentration
ramps. ,

Our reactor (Fig. 1) consists of a rectangular thin strip
of agarose gel, loaded with starch, and fed along two op-
posite sides from well stirred tanks containing nonreact-
ing subsets of the reagents of the CIMA reaction.
Malonic acid is introduced only in tank A and chlorite
only in tank B. Reagents diffuse into the gel where reac-
tion processes take place. If no spatial symmetry break-
ing instability occurs, concentration profiles establish nat-
urally into isoconcentration planes parailel to the feed
surfaces. High iodide concentrations are typically found
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along tank A and a dark blue band due to the formation
of a starch-iodine-iodide complex is formed. On the op-
posite side, iodide and iodine are rapidly oxidized to
iodate and the gel remains clear. Beyond critical condi-
tions, Turing structures appear that break this symmetry
due to the feeding,

As predicted by the invoked complexation and immo-
bilization mechanism {5], a transition between stationary
periodic {Turing modes) and propagating wavelike (Hopf
modes) patterns is experimentally observed by decreasing
the starch concentration [6]. At very low concentration,
only waves could be observed. The starch content is,
however, not an easily tunable parameter since its
modification requires the manufacturing of a different
strip. Nevertheless, a similar transition occurs for a given
low enough starch concentration, by increasing the con-
centration of malonic acid. The possibility of indepen-
dently tuning two bifurcations by varying two indepen-
dent parameters is suggestive of the neighborhood of a

] outlet
—_—

e
"~

.u_uLIeL
O

——on
e

[

FIG. 1. In the reactor the gel strip is 10 mm long (XX’ direc-
tion), 3 mm wide (YY" direction), and 0.14 mm thick. [t is
prepared by rapidly cooling a hot solution containing 0.9 g of
Thiodéne {a soluble starch from Prolabo) and 1 g of Agarose
(Fluka 05070) in 50 ml of deionized water. It is then
compressed between a white bottom plate and a transparent
glass cover. Two opposite sides are in contact with the feeding
tanks and the others with impermeable boundaries. T=(2
+0.5)°C. The feed concentrations are (i) tank 4 [KI]=2.5
x107°M, [CH;CO;Hl =2.3M, [CH:(CO;H),] is the tunable
parameter; (ii) tank B [KIl=2.5x1077M, [NaClQ;]=2.4
x 107 M. [NaOH] =2.0% 10 "M,

A

P

Flen




VOLUME 71, NUMBER & I S T WY

ANEI. 4

L Y L e D e 4 b ] e s e

T R S R ——_— el

FIG. 2. (a) String of stationary Turing spots: Line of stand-
ing clear spots of oxidized state embedded in a band of the re-
duced darker state organized parallel to the feed boundaries
(see Fig. 1); [CH2(CO;H )21 =0.5%1072M. (b} Antisymmetric
pacemaker in a wave train state: Waves travel parallel 1o the
feed boundaries with arrowhead shape. The clear edge of oxi-
dation propagates into the darker recovery region with a rate of
about 3 mm/min. The clear isolated Turing-like spot, near the
middle of the figure, acts as an antisynchronous wave source.
[CH3(CO;H )1 =1.0%10~2M, () State averaged pattern ob-
tained by averaging the dynamics of the wave train pattern (b)
over several periods,

codimension 2 point.

Thus for a range of feed concentrations low in malonic
acid, a Turing structure restricted to a narrow region can
be obtained [Fig. 2(a)l: It forms a singie line of clear
spots, parallel to the feed boundaries, with a wavelength
A=0.17%£0.01 mm. On comparing A with the thickness
of the ge! strip (0.14 mm), one can infer that the pattern
is effectively one dimensional. If the malonic acid con-
centration is then doubled, the bright spots die out while
oscillatory behavior develops. After some time only wave
trains remain, similar to those observed by Agladze, Du-
los. and DeKepper [6], traveling parallel to the feed
boundaries.

Very often, however, €ven after several hours, a few
single bright spots (one to three) do not disappear and act
as genuine 1D antisynchronous sources of wave trains
[Fig. 2(b)]. The phenomenon is best represented by a
space-time plot of the dynamics along a line parallel to
the feed direction, passing through the source [Fig. 3(2)l.
Clear bands of maximum intensity spread, alternatively
to the right and to the left, with a time delay of 16 s,
from a small region that essentially remains time invari-
ant, The existence of a permanently brighter state at the

wave source is clearly demonstrated in the time average
picture [Fig. 2(c)]. Note that the size and relative inten-
sity of the wave source region is similar to that of the in-
dividual spots making up the Turing pattern [Fig. 2(a)].
The sourcé thus corresponds to a localized elementary
Turing cell. Furthermore, the antiphase property of such
a wave source does not result from a continuous spiraling
wave in any plane since a time invariant region similar to
that of Fig. 3(a) is found in the XX’ direction at any vert-
ical position in the YY" direction. The essence of the phe-
nomenon is thus one dimensional {7].

Moreover, on further increasing malonic acid by 30%,
all such sources disappear and waves propagate along the
whole line. However, on resetting the control parameter
to the lower value, isolated sources reappear after a few
hours but generaily at locations uncorrelated to the previ-
ous ones. They are thus truly endogencous and not linked
to defects or impurities trapped in the gel,

From the theoretical point of view, the existence in oth-
er fields of localized structures under uniform conditions
has been shown in recent studies [16-19] to rety on two
ingredients: multistability between various global states
and dynamics not deriving from a potential function indi-
cating the influence of so-called nonvariational effects
[20,21]. These two elements are present in the vicinity of
a Turing-Hopf codimension 2 bifurcation point where a
pair of complex conjugate roots and a real root (with a
wave number of the linear dispersion relation |q_| =g.#0)
simultaneously cross the imaginary axis on varying the
bifurcation parameter.

If C is the vector of concentrations, f represents the re-
action kinetics, and D is the diagonal matrix of positive
diffusion coefficients, then near the Turing-Hopf point,
the dynamics of a one-dimensional reaction-diffusion sys-
tem

aC _ 3’C
Y f(C)+Q-—-—ax2

may be described by the superposition of Turing TX, 1)
and Hopf H(X,7) fields:

Clx 1) =Cgot+erT(X,1 Ye ' +ey H(X, Ye'®' +ec.

Here, Cg is the uniform reference state and er and ey are
respectively the critical Turing and Hopf eigenvectors of
the linearized evolution operator. Q. is the linear fre-
quency of the Hopf mode, i.e., the imaginary part of the
complex root at the codimension 2 point.

The competition between such modes is then described
by amplitude equations {22,23]. If X and t are the slow
space and time scales then

or .  ~_ 1. 2 rd*T

57 urT—g|TI*T—AHI?T+D axT

dH . 2 : 2
3 =uyH — (B, +i)|H|H — (5, +is)|T|*H

2
+(p+ipth) SH
ax
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(a) (b)

(c) (d)

with a finite differcnce method (L =250, 1 =20 adimensional units). No fAlux boundaries are assumed. The following values of the
parameters are used: A =25, Dy =411, Dy =9.73. Then both global Turing and Hopf modes are separately stable [24). B is used

as bifurcation parameter in this near codimension 2 situation.

plane waves (left) for §=10.0. (c) Droplet of a Turing struct

sides (B =10.0). (d) Endogeneous 1D spiral obtained by incre

(b} Pinned front connecting a Turing pattern (right) to a train of
ure embedded in a Hopf background emitting plane waves on both
asing in one step 8 to 12.5 starting from the front in (b). The waves

are always emitted in phase opposition to the left and to the right. Muitistability between such spirals, fronts, and localized Turing
states is obtained for the same range of parameters. As an example, the localized structures (b) and (c) are still stable at B~=12.5if

8 is increased quasistatically in small steps.

where pr and py are the two unfolding parameters. We
assume in the following that D7 and D¥ are positive and
also g, B, so that both bifurcations are supercritical. The
above equations have in general a nonvariational struc-
ture. This dynamical system possesses three nontrivial
global solutions: (i) a family of Turing structures

T=Uur—D7Q%/g]"V?e0X H=g.
(ii) a one-parameter family of plane waves

T=0 H =[(#H ‘—Dﬂrcz)/ﬁ,} l/zei(n,r—xx)

with the frequency renormalization: Q.=—51H]|?
—D,-sz, where H, is the preexponeritial factor in A: and
(iii) a two-parameter family of mixed modes that we do
not write down explicitly as we concentrate, among the
many possible scenarios, on situations where the mixed
modes are unstable and the system exhibits bistability be-
tween the pure global Turing and Hopf modes.

The ingredients to stabilize localized structures are
therefore present. These may be formed by spatial juxta-
position of the giobal states as is corroborated by numeri-
cal simulations on the Brusselator [24], in the vicinity of

1274

such a codimension 2 point.

The simplest localized structure consists of a front
(Fig. 3(b}] connecting a Turing pattern domain to a train
of plane waves the wave vector and frequency of which
are selected by the nonlinear dispersion relation. Since
the width of the front is narrow, it may interfere with the
underlying Turing structure leading to its pinning. As a
result a stationary front is obtained for a finite range
(locking band) of the bifurcation parameter values
[25,26]. Beyond, but near the depinning transition. one
obscrves', on the simuiations, the characteristic oscillating
velocity of the front. One wavelength to the Turing
structure is added (subtracted) during every emitted
wave period. The nonadiabatic effects responsible for this
pinning escape standard amplitude equations analysis.

Those fronts may then serve as “building blocks™ to
construct droplets of one global state embedded into
another [20,21,27-29]. Simulations have indeed pro-
duced such localized one-dimensional objects the core of
which is formed by a Turing structure, truncated to a few
wavelengths, emitting plane waves to both sides [Fig.
3(c)]. The amplitude of the plane waves poes to zero in
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the core where conversely the Turing mode presents a lo-
cal maximum but is absent elsewhere. We claim that the
stability of such symbiotic Hopf hole and Turing pulse
finds its origin in a combination of the pinning and non-
variational effects.

The number of wavelengths in the core and the phase
relation between the waves emitted to the left and the
right depend strongly on the initial conditions as intricate
hysteresis effects are present. On varying the bifurcation
parameter in the direction where the global Hopf mode
becomes dominant, antisynchronous wave sources, analo-
gous to the experimental ones, can readily be obtained
[Fig. 3(d)}. They can be thought of as 1D spirals.

Simulations also produce the complementary localized
structures where the Hopf mode is embedded in the Tur-
ing background. Such objects and localized Turing struc-
tures restricted to three wavelengths in the core have
been observed transiently in experiments, suggesting a
narrower range of stability or smaller basin of attraction.

These latter experimental observations, for parameters
in the range for which the wave sources occur, comfort us
in the belief that the competition between the Turing and
Hopf modes is indeed important to explain the origin of
all these localized sources.

We thank J. Boissonade, A. Arneodo, and D. Walgraef
for stimulating discussions. P.B. and G.D. are Research
Associates with the FNRS (Belgium)} and A.D. is an IR-
SIA (Belgium) Fellow. This work was supported by the
EC Science Program (Twinning No. SC1-CT91-0706).
Centre de Recherche Paul Pascal is CNRS UP 78476,
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Chaotic Turing-Hopf mixed mode

A. De Wit, G. Dewel, and P. Borckmans

/PJZU , C‘Em té
rCam gl

Service de Chimie Physique and Centre for Nonlinear Phenomena and Complez Systems,
Université Libre de Bruzelles, Case Postale 231, 1050 Brusaels, Belgium
{Received 6 July 1993)

An alternative scenatio for the onset of spatiotemporal chaos in one-dimensional extended systems
arising from a phase instability of a Turing-Hopf mixed mode is presented. This mechanism leads
to weak and defect turbulences. The transition between these two is either continuous or hysteretic,

depending on the values of the parameters.

PACS number(s): 47.20.—k, 05.45.+b

The study of spatiotemporal chaos in driven extended
systems has been the focus of a large activity these last
years [1]. One scenario has been clearly identified where
the Benjamin-Feir instability of a homogeneous limit cy-
cle first drives the system into a regime of weak turbu-
lence (2] followed by 2 more chaotic state characterized
by the proliferation of topological defects (defect turbu-
lence} [3,4). On the other hand, the homogeneous steady
states of reaction-diffusion systems may also be destabi-
lized by another type of diffusion-driven instability lead-
ing to Turing patterns [5]. These steady periodic con-
centration structures have now been obtained experimen-
tally in open gel reactors [6,7]. In the region where Tur-
ing and Hopf bifurcations interact, spatiotemporal com-
plexity may appear in these experimental patterns (8,9].
The scenario presented above can, however, not explain
this “chemical turbulence,” as the Benjamin-Feir and
the Turing instabilities are mutually exclusive for most
reaction-diffusion systems (2,10]. In this Rapid Commu-
nication we report an alternative mechanism based on
the phase instability of mixed Turing-Hopf modes which
may arise in the vicinity of the Turing-Hopf codimension-
2 point [11,12]. We focus here on one dimensional {(1D)
systems.

In the vicinity of this codimension-2 point the con-
centration field ¢, whick appears in the chosen reaction-
diffusion system, may be expressed in terms of two corm-
plex amplitudes T and H:

c(z.t) = co + erTe'" ™ + ey He'™=t 4 c.c. (1)

co is the uniform reference state, er and ey are respec-
tively the critical Turing and Hopf eigenvectors of the
linearized reaction-diffusion operator. w. is the critical
frequency of the limit cycle while q. is the critical Tur-
ing wave vector. c.c. stands for complex conjugate. The
competition between these modes can be described by
amplitude equations that are obtained by the use of stan-
dard techniques of bifurcation analysis [13]. If X and 7
are the slow space and time scales, then [11]

8T , ) - 2T

= - - - 2

3, = 41T —g|T’T - M H| T+p By (2}
1063-651X/93/48(6)/4191(4)/506.00 48

oH
5y = HHH — (B +i8)|H|*H ~ (8, + i6,)|T|2H

ar
8'H
H | .nH
HDE+iDI R ()
where yy and pr = HE+ are the two unfolding parame-
ters. We assume in the following that g, 3., DT, and DH
are positive so that both bifurcations are supercritical.
The dynamical system of Egs. (2) and (3) possesses
three nontrivial global solutions:
(1) a family of Turing structures,

_pTo2y Ve

(ii) a one-parameter family of plane waves,

-

P H 2 1/2 .
T:O, H = {#—.__H D" K } el(ﬁ.‘cf—K.X) (5)

with the frequency renormalization, Qy = -Bi|Hg|? -
DHK?, where Hy is the preexponential factor in H;
(iil) a two-parameter family of mixed modes,

Y

T = {ﬂr(#T — DTQ?) — Mun — DHK?) }l/zeiox
A

A
Xei(ﬂxqr—f(x) (6)

with A = B9 — Ad, and QKQ = _ﬁilHKQ,2 —5{!TKQ!2 -
DEK? where H k@ and Tk are the preexponential fac-
tors of H and T. The relative stability of these three
sets of modes may lead to various bifurcation scenarios,
When A < 0, the mixed mode is always unstable and
bistability between the limit cycle and the Turing mode
occurs. Various localized structures have been charac-
terized in this domain {14]. In the following, we con-
centrate on situations where the mixed modes are stable
toward spatially homogeneous perturbations (A > 0).
This condition can indeed be fulfilled for some range of

R4191 ©1993 The American Physical Society
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parameters in reaction-diffusion systems. On increasing isfled even when (8) is not fulfilled, i.e., when the limit
the bifurcation parameter uy one then typically observes  cycle is stable with respect to the modulational instabil-
the following sequence of states (when v > 0): Turing ity.
structures — mixed mode — homogeneous oscillations. We have numerically integrated Egs. {2} and (3) by
In the absence of spatial modulations, Eqs.' (2) and (3) means of a fourth-order Runge-Kutta scheme (NAG li-
are invariant under the transformations T — Te* and brary) complemented by finite-difference methods. The
H — He'*. As a result, the corresponding linearized  behavior of the system is followed on a system of length
matrix about the mixed state has two zero eigenvalues. L = 512 with periodic boundary conditions. These simu-
When spatially inhomogeneous perturbations are taken lations show that, when D < 0, the mixed mode is indeed
into account these marginal modes may induce diffusive unstable. According to the value of the parameters, the
instabilities of the phases. In particular, the most stable  system enters then either a phase-turbulent regime simi-
mixed mode (@ = 0, KX = 0) undergoes such an instabil- lar to that of the Kuramoto-Sivashinsky equation [15,16]
ity when or a defect chaos regime [2,17] characterized by phase
defects and large-amplitude fluctuations on both T and
_ DF(Big — 26:) + D (B.g — X6

7 H
D—-— 0.

These dynamics can be illustrated by space-time maps
of the concentration c¢(z,t} and of the amplitude and
phase of the Hopf mode (Fig. 1). In the example shown
here, the parameters are chosen such that an initially
stable mixed mode is brought into a defect chaos regime
after one-third of the time run. In the first part of the
D;'f 8; + DHEB, <. (8) time, we see that the lines of constant phases are con-

tinuous [Fig. 1(a)]. The amplitudes of the Turing and

It is important to note that the inequality (7) may be sat- Hopf modes are constant [Fig. 1{b)]. The concentra-

Let us remark that the standard Benjamin-Feir instabil-
ity criterion of a homogeneous limit cycle is recovered
when all the parameters related to the coupling between
the two modes are set equal to zero, i.e.,
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FIG. 1. Space-time plots representing the evolution in a 1D box of length 512 during 700 units of time (rumning
upwards). We bring a stable mixed mode in the region of instability toward defect chacs. The parameters are
pry = 03,ur = 05,9 = 2,4 = 1.5,4, = 8. = Dy = D¥ = 1. We take Dff = 5,3 = 1.6,4; = 3. Highest values are
in white. (a) Lines of constant phase of the Hopf mode. Spatiotemperal defects of phase appear at the points where the
amplitude of the Hopf mode locally reaches zero. (b) Amplitude of the Hopf mode. (¢) Concentration ¢ reconstructed as
Tet?-282 & pret033t | (o We recognize in the first third of time the “polvgonal” space-time pattern characteristic of a mixed
mode.



tion ¢ is periodic both in space and time leading to a
“polygonal” space-time pattern characteristic of a mixed
mode [Fig. 1(c)]. In the second part of the time, the
defect chaos regime exhibits on the contrary space-time
phase dislocations appearing when the amplitude of the
Hopf mode locally reaches zero. On the other hand, in
the phase chaos regime the amplitudes of the Turing and
Hopf modes are fluctuating around their stationary value
because the phase of the Hopf solution is turbulent. This
weak type of chaos cannot be clearly distinguished on
space-time plots from the stable mixed mode, because,
though the phase fluctuates, lines of constant phase re-
main continuous. This phase chaos dynamics is therefore
not represented in the figure.

We have studied the transition between the two forms
of turbulence by plotting the absolute minimum of the
amplitude of the Hopf mode Hyy;, in a given space-time
area versus [3; or 6;. This method clearly distinguishes
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FIG. 2. Minimum of the amplitude of the Hopf mode Huin
vs parameter §;. Following a delay of 3000 units of time
after a quasistatic increase (crosses) or decrease (circles) of
Bi, Hemin is determined in a space-time area of 512 x 500. The
solid line stands for the stability limit of the mixed mode [Eq.
{7} (a) Df = 4. Continuous bifurcation characteristic of a
second-order transition; {(b) D¥ = 0.6. Hysteresis typical of
a first-order transition. Below the stability limit of the mixed
made (3; = 1.83}, defect chaos coexists with the phase chaos
regime. For f; > 1.83, defect chaos coexists with the stable
mixed mode. Note that the measure of Hmin is not a good
means to distinguish a stable mixed mode from phase chaos
of the mixed mode. All other parameters are the same as in
Fig. 1.

between transitions of first and second order. In this lat-
ter case, the transition between phase and defect chaos
is continuous like in the conditions of Fig. 2(a}. On the
contrary, for first-order transitions there is a hysteresis
phenomenon characteristic of bistability between phase
and defect chaos {Fig. 2(b)]. We use these graphs to de-
termine the transition points between both regimes. The
behavior of the system is then considered for different
sets of parameters. In the {d:,8:) plane, the transition
between phase and defect chaos appears to be always
discontinuous, leading to a hysteretic behavior, as sum-
marized in Fig. 3(a). On the contrary, in the (DE, )
plane, both first- and second-order transitions can be ob-
served [Fig. 3(b)]. Moreover, the defect chaos regime
may persist in the stable region of this plane where it

\

61'_(3)
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unstable
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FIG. 3. Phase planes (é;, ;) and (D¥ , 3:) summarizing the
region of stability of the phase and defect chaos. The solid
line corresponds to the limit of stability of the Turing-Hopf
mixed mode [Eq. (7)]. (a) (d;,8:) plane for D¥ = 1. Crosses
stand for the lower limit of stability of the defect chaos regime
when 4; is decreased, while circles represent the upper {imit
of stability of the phase chaos dynamics when §; is increased.
The transition between phase and defect chaos regimes is hys-
teretic {(bichaos). (b) (DF,3) plane for §; = 3. Crosses stand
for the upper limit of stability of the defect chaos regime when
i is increased, while circles represent the lower limit of stabil-
ity of the phase chaos dynamics when 3; is decreased. Tran-
sitions of second order between the two regimes are observed
for higher Df"'s. For lower Df's. the transition is of first
order (bichaos). Moreover, defect chaos may persist in the
region where the mixed mode is stable. All other parameters
are the sare as in Fig. 1.
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thus coexists with the stable mixed mode [Figs. 2(b) and
3(b)].

We have shown that the mixed modes resulting from
the interaction between Turing and Hopf modes may be-
come unstable toward diffusion-induced phase instabili-
ties. This bifurcation gives rise to weak and strong spa-
tiotemporal chaos in the sense that two different regimes
of phase and defect chaos are observed. This behavior is
reminiscent of the dynamics of the one-dimensional com-
plex Ginzburg-Landau equation beyond the Benjamin-
Feir instability {4]. Its origin lies however genuinely in
the coupling between Turing and Hopf modes. Indeed,
for the values of parameters we have chosen, the com-
plex Ginzburg-Landau equation alone {i.e., Eq. (3) with
8, = 8; = 0] does not exhibit a Benjamin-Feir instability.
However, when it is coupled with the amplitude equation
for the Turing pattern, the corresponding mixed mode
may undergo a phase instability as shown here. From a
theoretical point of view, one may test these two phase
instabilities to determine if the characteristics of chaotic
behaviors may be described in terms of similar univer-
sal laws and properties. Moreover, this new mechanism
offers another scenario for the onset of spatiotemporal
chaos in all degenerate systems where two instabilities

LR

e er B e e e s B Taed R e

breaking, respectively, spatial and temporal symmetry
interact. Experimentally, this may be relevant to recent
experimental observations in gas discharge [18] and chem-
ical [9} systems. In the latter case, the Turing patterns
obtained in the chlorite-iodide-malonic acid (CIMA} re-
action arise because the activator species forms a com-
plex of low mobility with starch, the color indicator of
the reaction [19]. This gives rise to the difference be-
tween the effective mobilities of the reactants necessary
to shift a competing Hopf bifurcation so that the Tur-
ing structures may exist. When this complex formation
effect is progressively relaxed, the shift fades away and
both bifurcations start interacting. It is in this transition
region that the complex spatiotemporal behaviors have
been observed. In this regard, the study of spatiotempo-
ral chaos in a chemical reaction-diffusion model has alse
been undertaken.
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The interplay between two instabilities respectively breaking space and time symmetries can give rise to

spaiially subharmonic oscillations generated by a self-

induced parametric instability. In one-dimensional SYs-

tems, the ‘resulting dynamics consists in a pattern with two wave numbers oscillating with one frequency.
Conditions are given for which this solution becomes phase unstable giving rise to spatiotemporal chaos.

PACS number(sh: 05.45.+b, 47.20.Ky

A rich variety of complex spatiotemporal behaviors may
occur in the vicinity of multiple bifurcation points [1]. In
particular. the interaction between 2 steady instability that
breaks spatial symmetry and a bifurcation breaking time
transiation symmetry has been the subject of numerous stud-
ies [2-7]. As an example, we have reported previously that
the interplay between the Turing and Hopf instabilities can
give rise to localized structures in the form of asynchronous
wave sources with structured cores [8]) or to a chaotic
Turing-Hopf mixed mode [9]. Such dynamical behaviors
have now been observed experimentally in a chemical 5YSs-
tem [8.10]. In this Rapid Communication, we show that self-

induced subharmonic bifurcations can also be generated by .

resonances near such degenerate instability points. In some
cases. the resulting subharmonic dynamics can become spa-
tiotemporally chaotic.

We suppose that the reference homogeneous steady state
{HSS) of a one-dimensional (1D) physicochemical system
can undergo both a pattern-forming instability giving rise to
a periodic structure with 2 waveiength Ao=2mig, and a
Hopf bifurcation. The distance between the two thresholds of
instability. the unfolding parameter. is denoted as &. For ex-
ample. in the case of chemical reactions taking place in 1 gel,
the concentration of the color indicator immobilized in the
matrix allows one to control the distance between the Turing
and Hopf bifurcation points [8.10}). If & is sufficiently small,
the eigenvalue of the 1/2 subharmonic of the steadv critical
mode can become complex and near the critical point the
corresponding real part is small. The resonant interaction be-
tween the corresponding pair of Hopf modes with wave
number ¢ /1 and the steady state with wave number g, must
then be taken tnto account [I1]. [n the vicinity of such a
critical situation, the field variable of the problem Clx.r)
may be expressed in terms of the steady mode with ampli-
tude 7 and two traveling waves with amplitudes Az and
A

g( = EH_,_ Te'd 'ir*-"f.t"["'w'/z)' g, 2]2{7
+Agelow i, Lo o ()

where €, is the reterence HSS, e, ¢, . and eg4 the critical
eigenvectors of the linearized marrix corresponding to the
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steady state and the Hopf modes while w(q./2) is the critical
frequency of the Hopf mode with wave number q::2. The
competition between these modes is then described by am-
plitude equations that are derived by the use of standard
techniques [12,13]. If 7 and x are the slow time and space
scales then

-

o T =g TP T AAL 414, T )
= - T- “+ IT+uA L
57 HT g7 (Agl*+]A.]%) UARAL"'D:;?-
> 2
aAR , f 2 ' h ' ¥
o7 THARTE AR AR RAFAR— N T2,
- Ag  3%Ag
+u' T AL—CW*—D &—Xﬂ_— (3
oA P a2 P .
T T A8 AL = RARPAL <N T R o' Ta,
(:'Alr_ D‘(?:AL 4
+ - .
c ix TX_:' i+

The coupling constants appearing in these equations can be
related to the parameters of the system. The primed coeffi-
cients are complex (a' =a, +ia,) while u = u;+ & where
7 measures the distance from the steady bifurcation thresh-
old and ¢ is related to the group velocity of the waves. The
most important feature of the above equations is the presence

of a resonant interaction proportional to v and ¢’ induced by

the coupling between the steady mode and the waves. This
term introduces a phase dependence into the dvnamics. The
simplest nontrivial solution of these equations is a pure
steady staie:

1 M7y

T'—'Tg-, AR:'AL:O' {5)

[t is the first to appear supercritically when §<0 and g>0.
As the bifurcation parameter iy is increased above zero, this
periodic structure undergoes an instability for u, = u; where
My is determined from

R1305 © 1996 The American Physical Society
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FIG. 1. Space-time density plot of C(x,r) showing the stable
subharmonic mixed mode. The amplitudes T, Ag. and A, have
been obtained by integrating the system (2)—{4) without diffusion
and group velocity using an explicit Euler scheme. The parameters
are ur=0.7, g=2, A=4, p=1, §= =005, g'=3+i h'=6+,.
A'=2+1i,0'=02+0.5 The field variable is then reconstructed as
Cix.)= Te*o""+A,_e"°'“‘°l”+ARe“° W0 i e The minima

{maxima)} of C(x,r) are in white (black). Time is running down-
wards. .

/.L,+5—-)\,'(#,/g)+u,'\,u,/g=0 6)
obtained through a linear stability analysis. When the follow-
ing condition is satisfied:

28 k) m=[v, =20 vy /g v, ~ 20\ Ty ig ] >0,
{7
the soiution that bifurcates from the pure steady state mode
al p7=p; corresponds to a mixed mode for which
T=Ty, Ap=Ryelfu=oal 4 _p oil0yi-a
* (8)

By an appropriate choice of the origin of coordinates. we can
consider Ty as real. When v’ >0, the phase dynamics im-
plies that

br=dy. (9)
Substituring into Eqs: {2)~(4), and equating real and imagi-
nary parts, we get

Qu=u/~Rylg/ +h1-NT,+0'T,,.  (10)

3 #;_)\;Tif“-u:rq
TR

{11}

0=[yr—2AR_i,]T,”+uRi,-gTi,. {12)

The spatiotemporal dynamics corresponding to this mixed
mode solution is thus the combination of a steady structure
with wavelength g and a standing wave formed by the su-
perposition of the left- and right-going waves (A, =A, ) with
wave number g2 and frequency w(q. /2). The correspond-

D. LIMA, A. DE WIT. G. DEWEL. AND P. BORCKMANS

F1G. 2. Space-time dchsity plots of the spatiotemporal chaos
obtained when the subharmonic mixed mode is phase unstable. In-
tegration of the amplitude equations (2)-(4) is performed with dif-
fusion and group velocity on a system of length 64 during 120 units
of time using periodic boundary conditions. The spatial differentia-
tion has been made using finite differences. All conditions are the
same as in Fig. 1 except g'=3.0+0.2. AN=2+5i, D=0,
D*=0.5+5i while c=0.01. (a) and {b} amplitude and phase of the
right-going wave shown on scales r and X. () field variable
Cloud)=Te' %M+ 4, gH0N 15004 4 pOL-150 reconstructed
on scales ¢ and x.

ing space-time plot for the reconstructed field Clx.t)[Eq.
(D] is displayed in Fig. 1. The characteristic polygonal
space-time structure of a mixed mode is obtained. At each
location, the system is oscillating with one frequency but.
because of the presence of two wave numbers. we see thal
the minima of the structure are shifted one wavelength every
half period of oscillation. This dvnamical behavior presents
strong analogies with the spatiaily subharmonic oscillations

~22-
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that have been observed on the 1D front in the flow of a fluid
inside a partiaily filled rotating horizontal cylinder [14],
Similar osciflating patterns have also been obtained in nu-
merical integration of a reaction-diffusion model in the vi-

cinity of the codimension-two Turing-Hopf point {15). These -

mixed modes are of a different origin than those introduced
in [4]. Tt is worthwhile to point out that for the values of the
parameters used in Fig. 1, the standing wave of the system
((3} and (4)] with T=0 are unstable versus traveling waves
(h,>g,). Tt is known that such a standing wave can be
stabilized if an extemal time modulation with a frequency
twice the frequency of the traveling waves is applied to the
system [16.17). Here we show that the stabilization of the
standing waves can also be self-induced by an intrinsic cou-
pling with the steady mode which plays the role of an exter-
nal forcing by restoring the left-right symmetry.

The mixed mode [Eq. (8)] is stable versus spatially uni-
form amplitude perturbations as long as the following in-
equalities are satisfied:

A=[gi+h!) 2gT+ =2
—[v] = 2N Ty)v—2AT]>0, {13)

<. (14)

| S
Tr=—12(g, +h IRy +2gTy+ ——
l ' Ty

However, in the experiments on 1D fronts [14], when the
bifurcation parameter is increased beyond g, spatial modu-
lations appear spontaneousiy which disturb the regularity of
this oscillating subharmonic pattern. It is thus necessary to
study also the stability of the mixed mode with respect to
inhomogeneous perturbations. The mixed mode solution {Eq.
(8}] is tnvariant under the transformation

UAT. Ay, Ag)=(T.e'YA, e'%Ay) (15)

which corresponds 1o a shift in time ' — ¢~ /(Y. This
property generates a whole family of solutions and induces a
zero eigenvalue in the homogeneous linearized matrix, In the
presence of slow spatial modulations that preserve the con-
dition (9) on the large scales, ¥(x,¢) depends on space and
time and obeys a phase diffusion equation of the form [12]

G ra3w+ [8:,{;:
e Ml

’ {16)

A phase instability occurs when &7=0. After a little alge-
bra, it is easy to show that this long wavelength instability
takes place when

D j URi,i
= ' _ +h 2
s=D,] 3 | ]I gTy+ T ;
—[v, =28, Tyllv—2AT ] <0. (173
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This condition is the analog for the subharmonic mixed
mode of the Benjamin-Feir stability criterion for the travel-
ing waves [12]. We have numerically integrated the ampli-
tude equations (2)-{4) for values of parameters that satisfy
the condition (17). In the case presented here, the resulting
phase instability spontaneously generates numerous phase
defects [18] and large fluctuations of the three amphtudcs
thus mediating spatiotemporal chaos as shown in Fig. 2
When the amplitude of the waves locally reaches zero [white
regions in Fig. 2(a)], the phase of the waves exhibits space-
time dislocations [Fig. 2(b)], a behavior reminiscent of the
so-called “amplitude chaos” {18.19]. The space-time plot of
the reconstructed field variable C(x.r) confirms that the sys-
tem does not oscillate at the locations where the amplitude of
the waves is minimum thus expressing the steadv state solu-
tion. On the contrary, when the amplitude of the waves is
maximum. the amplitude of the steady state is minimum and
the system is locally in an oscillating mode.

As long as the phase difference is locked on the large
scale, i.e., condition (9} is fulfilled, the resonant interaction
plays a crucial role in the localization of the defects [17).
However, when the group velocity is sufficiently large, the
state with @ = ¢g— ;=0 is destabilized. The phase vari-
able ¢ then obeys a sine-Gordon equation of diffusion type
that is known to admit stable propagating solitons as solu-
tions [20,21]. Such solitary waves have also been observed
in the film draining experiment [22].

In this Rapid Communication, we have shown that the
coupling between a pattern-forming instability and a Hopf
instability can induce a bifurcation from a steady pattern to-
wards a subharmonic structure characterized by two wave
numbers and one frequency. We have next given the condi-
tions under which this subharmonic pattern can become
phase unstable giving rise to a spatiotemporally chaotic dy-
namics. This scenario explains the sequence of bifurcations
recently observed experimentally in a hvdrodynamical sys-
tem [14]. Such a scenario should also exist in chemical sys-
tems where the degeneracy berween the Turing and Hopf
instabilities can be achieved experimenially. The subhar-
monic pattern has indeed been observed in the numerical
integration of the reaction-diffusion Brusselator model near
the codimension-two Turing-Hopf point {15]. Let us further-
more note that subharmonic patterns have also been obtained
in a study of two different immiscible liquids lying in lavers
between horizontal walls and heated from below [23]). Fi-
nally, a parametric insiability of a homogeneous limit cycle
towards a subharmonic mixed mode with two wave numbers
and two frequencies followed by a transition to spatiotempo-
ral chaos has also been documented recently in the Brussela-
tor model [15] and in the Gray-Scott model {241, In the latter
case, the stabilization of the spatiotemporal chaos has al-
lowed one to track an unstable Turing pattern. These results
emphasize the need to understand in detail the mechanisms
of appearance of spatiotemporal chaos near degenerate bifur-
cation points.

D.L. thanks the CNPQ (Brazil) for its financial support.
A.D.. G.D., and P.B. acknowledge financial help from the
F.N.R.S. (Belgium).
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~ Spatiotemporal dynamics near a codimension-two point
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Spatiotemporal dynamics resulting from the interaction of two instabilities breaking, respectively, spatial
and temporal symmetries are studied in the framework of the amplitude equation formalism. The comrespond-
ing bifurcation scenarios feature steady-Hopf bistability with cormresponding localized structures but also dif-
ferent types of mixed states. Some of these mixed modes resuit from seif-induced subharmonic instabilities of
the pure steady and Hopf modes. The bifurcation schemes are then used to organize the results of numerical
simulations of a one-dimensional reaction-diffusion model. These dynamics are relevant to experimental
chemical systems featuring a codimension-two Turing-Hopf point but also to any experimental serup where
homogeneous temporal oscillations and spatial patterns are obtained for nearby values of parameters.

[S1063-651X(96)03707-5]
PACS number(s): 05.45.+b, 47.20 Ky

L INTRODUCTION

In nonequilibrium systems, instabilities breaking either
temporal or spatial symmetry have been studied [1] in fieids
as diverse as hydrodynamics [2], nonlinear optics [3], active
chemical systems [4,5], etc. Recently, dynamics resuiting
from the -interaction of both types of instabilities have been
observed in several experimental systems [6—-13]. Among
these, chernical systems have proved to be a generic example
as they genuinely present both types of instabilities. On the
one hand, oscillating reactions in well mixed reactors have
indeed become the typical examples of systems undergoing a
Hopf bifurcation resulting from a breaking of time symme-
try. On the other hand, the breaking of spatial symmetry in
chemical systems is now well documented [4,5] since its
observation in the chlorite-iodide-malonic acid (CTMA) re-
action in 1990 [14]. The periodic stationary spatial patterns
that emerge in that case result from a Turing instability based
soiely on the coupling between nonlinear chemical reactions
and molecular diffusion [15]. A necessary condition for the
Turing instability to occur is that the diffusion coefficient of
the inhibitor species should be sufficiently larger than that of
the activator. In the experimnents, color indicators are used to
visualize the patterns. They consist of large molecular weight
molecules of very small (in the gel possibly zero) diffusivity.
Such color indicators act to create favorable conditions to the
formation of Turing structures because they bind to the acti-
vator species thereby reducing its effective mobility [16). For
a low indicator concentration, waves characteristic of a Hopf
oscillating regime are observed while Turing patterns take
over for higher concentrations of the indicator. This one
therefore controls the distance between the thresholds of the
Turing and Hopf instabilities that coincide at a codimension-
two Turing-Hopf point (CTHP). Changing the concentration
of malonic acid allows one to scan the bifurcation scenario
near this point. In the vicinity of this degenerate point, a
wealth of complex spatiotemporal dynamics are observed.
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The ideas that will be discussed below in the chemical con-
text are of greater generality as a CTHP can be expected to
occur in any other experimental setup where two instabilities
breaking, respectively, spatial and temporal symmetries in-
teract. The mechanism giving rise to the spatial pattern is
then not necessarily the chemical Turing instability.

Formally, a CTHP point is obtained when the linear sta-
bility analysis of a reference homogeneous steady state fea-
tures a degeneracy between a real root vanishing for a wave
number k. and a pair of complex conjugated roots with fre-
quency w, that both have a zero real part. Then the real root
corresponds to a stationary spatial Turing pattern character-
ized by the wave-number—frequency couple (k.,0) while the
complex roots relates to the Hopf mode (0,w,) correspond-
ing to a temporal oscillation with frequency w, . Let us con-
sider the conditions to obtain a CTHP in the reaction-
diffusion Brusselator model. This model was chosen because
it has already been the subject of extensive analytical
and numerical studies related to both single Turng and
Hopf instabilities [17,18]. The evolution equations of the
Brusselator model read

3X=A—(B+1)X+X*Y+D VX,
6,Y=BX—-X*Y+D VY. (n

The.concentration of species B is chosen as the bifurcation
parameter. The homogeneous steady state
(X;.Y;)=(A,B/A) of system (1) undergoes a Turing insta-
bility when B>B]=(1+AD,/D,)%. A stationary spatial
pattern then emerges characterized by an intrinsic critical
wave vector k3=AND,Dy. The steady state may also go
through 2 Hopf instability if 8>B%=1+A2, evolving then
into a homogeneous limit cycle characterized by a critical
frequency w.=A. The thresholds of these two instabilities
coincide at the CTHP point such that B,=B#=87. This
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condition is achieved when the ratio of the diffusion
coefficients o=D,/D, reaches its critical vaiue
o.=[(VI*AZ-1)/AL%

In this work we study the bifurcation scenarios that can be
obtained in one-dimensional systems near the CTHP. Previ-
ous analyses [19-22] have tackled this problem and ciassi-
fied the bifurcation scenarios, focusing on the interaction be-
tween the steady mode and the Hopf mode without taking
into account spatial effects or subharmonic bifurcations of
the basic modes. However, by numerically integrating the
Brusselator model for values of parameters near a CTHP, we
have discovered several spatiotemporal dynamics that do not
enter the previously obtained classes of bifurcation sce-
narios. We will consider here only a two-variable model ex-
cluding the possibility of oscillating behavior and waves
originating through a Hopf bifurcation with finite wave num-
ber. The aim of this work is to extend the previous studies of
the Turing-Hopf interaction by reviewing the different spa-
tiotemporal dynamics that can be observed near a CTHP. To
do so, we compare the theoretical bifurcation schemes de-
rived in the framework of amplitude equations to the pecu-
liarities obtained by the numerical integration of the Bruss-
elator. The resulting dynamics that can be observed near a
CTHP can be divided into two main groups. The first one
gathers the dynamics due to the interaction between a Turing
mode and a Hopf mode. Their interplay can give rise to
bistability, localized structures, and to a mixed mode as is
discussed in Sec. II. The second group of spatiotemporal
dynamics results from subharmonic instabilities of either the
Turing or the Hopf mode and features more complex mixed
modes. Sections III and IV are, respectively, devoted to the
subharrnonic instability of the Turing and the Hopf modes.
Section V discusses additional spatiotemporal scenarios ob-
served in the reaction-diffusion model before we summarize
and conclude in Sec. VI

H. INTERACTION BETWEEN A TURING MODE
AND A HOPF MODE

The CTHP is characterized by the fact that three roots of
the characteristic equation of the linear stability analysis
have their real part which vanishes simultaneously. As an
example, in the Brusselator model and for a given value of
A, this occurs at the critical point (B, ,0.). In the vicinity of
such a degenerate point, a Turing mode T(k.,0) with wave
number k. interacts with a homogeneous Hopf mode
H(0,w,) with frequency w,. For one-dimensional systems,
the variables C of the system can be described by a super-
position of these two modes:

C(x,1)=Cy+ Tet<wr+ H e *'wy+c.c. @

C, is the uniform reference state whercas wy and wy; are the
critical eigenvectors of the Turing and Hopf linearized evo-
lution operator, while c.c. stands for complex conjugate. T
and H are the amplitudes of the spatial and temporal modu-
lations, respectively. The competition between these two
modes is then described by the coupled amplitude equations
[19,21.22):

va{val)

FIG. 1. Theoretical bifurcation diagrams when a Turing mode
interacts with a Hopf mode. Solid and dashed lines correspond 1o
stable and unstable states, respectively. (a) When A <0, we gy
bistability between the Turing and Hopf modes. If v>>0, we have
the succession Hopf-bistability-Turing ( #-B-T) and the inverse se.
quence T-B-H when v<0. (b) When A>>0, a stable mixed mode is
observed. If ¥>0, we have the succession H-MM-T and the inverse
sequence T-MM-H when v<<0.

éT
< =uT-gITI"T-AH|'T, 3)

dH

= =#uH= (B, +iB)\HPH (8, +iB)|TPH, (@

where x and pp=p+ v are the two unfolding parameters,
v being the distance between the two thresholds of instability
which vanishes at the codimension-two point. In the Bruss-
elator, when o>¢., the Hopf instability occurs before the
Turing one and hence »>0. On the contrary when o<o,,
the first instability to occur is the Turing one and in that case
< 0. We will suppose that » and &, are positive as well as
g and B,, this last condition ensuring that the two bifurca-
tions will be supercritical. Notice that for the Brusselator,
B, is always positive. The slow spatial dependence should be
introduced if secondary instabilities with long wavelength
are to be studied. The system (3) and (4) possesses three
nontrivial global solutions: (1) a Turing structure:
T={u/g}'?, H=0; (2) a homogencous lmit cycle:
T=0, H={py/B,} %™ with the renormalization fre-
quency ()= - B;uy/B,; and (3) a mixed mode (MM). T=
{[B.a=Nunl AV, H={[guy-8,nVA} 2Ot with
A=B,g—\5, and Qy=~B|Hyl|*~ Ty|*, where Hy
and T,  are the preexponential factors of A and T. This
solution corresponds to a Turing pattern with wave number
k. oscillating perodically in. time with the frequency

: (wc+QM)-

Depending on the specific values of the coefficients of
Eqgs. (3) and (4), the relative stability of these three solutions
may vary, leading to different bifurcation scenarios
[9,19,21-23}.

(i) If A<0, the mixed mode is always unstable while the
pure Turing and Hopf modes are both stable in a given do-
main. When v>0, a regular increase of x gives successive
transitions between the Hopf oscillations, the Turing-Hopf
bistability domain, and stationary Turing patterns. This
scheme is abbreviated as H-B-T. The inverse sequence T-
B-H is obtained when v<0 [Fig. 1{a)].

(i) If A>0, the mixed mode is stable in the domain
where the Turing and Hopf modes are both unstable. When
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y>0, we successively observe, by increasing ., the homo-
geneous limit cycle, the Turing-Hopf mixed mode, and sta-
tionary Turing patterns, i.e., the sequence H-MM-T and the
inverse sequence T-MM-H when v<0 [Fig. 1(b)). For some
values of parameters, the mixed mode can appear subcriti-
cally or also undergo a Hopf bifurcation of its amplitudes
T and H [22]. The limit cycle resulting from this instability
can disappear through a heteroclinic orbit around which
complex spatiotemporal behavior is expected to occur even
in small systems.

Near the CTHP, the coupling between the Turing and
Hopf instabilities thus allows one to observe different sce-
narios (Turing-Hopf bistability or a Turing-Hopf mixed
mode) depending on the values of the parameters, We will
now illustrate these with the one-dimensional Brusselator
model numerically integrated by means of an implicit
scheme based on finite difference methods. Unless stated
otherwise in the captions, all space-time maps presented in
this article feature the X varable shown on a gray scale
ranging from its minimum {white) to its maximum (black)
value. Let us remark that in this model, some nonlinear terms
in the equations for the perturbations around the steady state
are proportional to the bifurcation parameter B. This charac-
teristic leads to a renormalization of the coefficients [24] of
the amplitude equations (3} and (4) proportional to the dis-
tance (B - B, ,0— o), making the task of linking the bifur-
cation diagrams of Fig. 1 and those obtained numerically for
the Brusselator more difficult. Qur simulations of the Bruss-
elator will thus focus on checking qualitatively to what ex-
tent the model bifurcation scenarios describe the spatiotem-
poral dynamics of a system near a CTHP. In particular, we
will show effects that have not yet been described in previ-
ous work.

A. Bistability and localized structures

In the Turing-Hopf bistability domain, the system
evolves, for a given set of parameters, either to homogeneous
temporal osciilations of the variables or to a stationary spa-
tial pattern depending on the initial condition. For some val-
ues of parameters near the CTHP, both schemes H-8-T and
T-B-H are observed numerically in the Brusselator in some
subdomains of the parameter space (A,o/o ). In addition, a
stable front between a Turing domain and a train of plane
waves [Fig. 2(a}] exists in the bistability domain. The stabil-
ity of this simplest localized state is related to 2 nonadiabatic
effect due to the interaction of the front with the periodicity
of the spatial organization [18,25-29). This effect which is
not contained in the amplitude equation formalism may oc-
cur for fronts between two states one of which is periodic in
space. It appears, for instance, in the growth of crystals
where the interaction between the interface and the periodic
structure gives rise to a periodic potential. If the difference in
free energy between the two phases is smaller than the en-
ergy required to move the front by one wavelength, the front
remains pinned. The Brusselator being a nonpotential model,
one cannot define a function to minimize near the CTHP.
However, the picture of an interaction between the front and
the Turing structure remains qualitatively correct-and gives
rise to an intrinsic pinning of the Turing-Hopf front for a
large set of values of the control parameter B (Fig.

FIG. 2. Space-time maps of localized strucmures, A one-
dimensional Brusselator model of length L=250 with no-flux
boundary condition (BC) evolves in time running upwards during
20 units of time. The parameters are A=2.5,
D,=4.1%t, D,=973(0/0,=092). (a) Turing-Hopf fromt
(8=10). (b) Turing structure embedded in a Hopf background
(B=10). (c) Hopf mode embedded in a Turing background
(B=10). (d) **Flip-flop'* dynamics shown during 50 units of time
{B=12.5).

3). The nonadiabatic effect also accounts for a stepwise pro-
gression of the Turing-Hopf front outside the pinning do-
main [18,29,30]. In this process, the mode locking phenom-
enon shows up as a tendency of the average velocity to lock
into rational multiples of the Hopf frequency {31]. The sim-

front
3TA
19X

6

I
flip-flop
1 L L L. B
8 10 12 14 16 18

FIG. 3. Stability domain of the different localized structures
shown in Fig. 2. The sign xh denotes localized Turing domains
containing x wavelengths in their core. For the values of parameters
used here, localized Turing domains with down to five wavelengths
have the same pinning domain as that of the front which results
from a2 nonadiabatc effect. Localized Turing domains with fewer
than five wavelengths have a wider stability domain thanks to the
action of a nonvariational effect. The *‘flip-flop’* shown in Fig. 2(d)
is the localized structure stable in the largest domain.
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FIG. 4. Space-time map showing a Turing mode invading a
Hopf background in a system of length 300 during 200 units of
time. No-flux BC are applied. The mean velocity of the front is
slower than one Turing wavelength for one temporal oscillation and
hence the system evolves through intermediate localized oscilla-
tions. The initial condition is a stable front obtained for the same
values of parameters as in Fig. 2 and 8 =9. The front is set unstable
by suddenly decreasing 8 to 8.8 in order to go outside the pinning
domain.

plest mode locking is one wavelength for one frequency but
other ratios are possible as long as there is an integer number
of wavelengths per period of oscillation or vice versa. In
these situations, the front may progress faster or slower and,
in order to satisfy the nonadiabatic constraint, the system
then sometimes creates temporary localized subzones (Fig.
4) [30].

Two Turing-Hopf fronts can be used to build up stable
localized structures corresponding to a droplet of a Turing
(Hopf) state embedded into a Hopf (Turing) domain [Figs.
2(b) and 2(c)). We observe that, if the Turing core contains
several wavelengths, the stability region of such localized
structures is the same as that of the front (Fig. 3) and can
correspondingly be ascribed to pinning effects. Such local-
ized structures are thus also stabilized by nonadiabatic ef-
fects. If the localized Turing domain contains few wave-
lengths, this stabilizing nonadiabatic effect can no longer be
invoked alone. Stable localized Turing patterns with few

wavelengths are nevertheless observed in the Brusselator.

model and the fewer wavelengths they contain, the largest
their stability domain (Fig. 3). Their stability should then
result from nonvariational effects present in the Brusselator
as this model cannot be derived from any potential function.
Nonvariational effects have been shown in other systems to
stabilize localized structures if they provide a repulsive in-
teraction between two fronts that otherwise attract each other
[1,32,33]. They can thus account for the existence of local-
ized droplets of one state embedded into the other state. This
effect is strongest for the so-called *‘flip-flop™" localized pat-
tern having the smallest core [Fig. 2(d)] and therefore the
widest stability domain. This could explain why the *‘flip-
flop™ is the only localized pattern that has been observed
experimentally in the CIMA reaction for values of the con-
centrations near the CTHP [9]. Its two-dimensional exten-

FIG. 5. Space-time map of the mixed mode with one wave
number and one frequency for A=08. D,=10, g/g. =09,
B=168, L=64 during 25 units of time. Periodic BC are applied.

N S I
sion, a Turing spot sitting in the core of a cne-armed spiral,
has aiso been obtained both in numerical simulations [29]
and in the CIMA experiments {34]. Turing-Hopf localized
structures have also been observed experimentally in one.
dimensional arrays of resistively coupled nonlinear LC os-
cillators [10] and in binary-fluid convection [11].

Bistability between the Turing and Hopf modes near a
CTHP had already long been predicted in the amplitude
equation formalism. We have shown that in this bistability
regime, localized structures of one state embedded into the
other can be stabilized by a combination of nonadiabatic and
nonvariational effects. In addition, if long-wavelength insta-
bilities are considered, the Hopf mode could undergo a
Benjamin-Feir instability and the Turing mode an Eckhaus
instability [1]. These types of secondary instabilities have not
been considered here.

B. Mixed mode and spatioternporal chaos

Near the CTHP, the system may also exhibit a stable
mixed mode corresponding to a spatial pattern with the Tur-
ing wave number oscillating in time with the Hopf fre-
quency. This stable state has been obtained by numerical
integration of the Brusselator mode! with periodic boundary
conditions in both H-MM-T and T-MM-H cases. A space-
time map of this dynamics (Fig. 5) shows the polygonal
space-time structure characteristic of a mixed mode. This
solution was previously obtained in numerical simulations of
the Brusselator by Sangalli and Chang {35] in a H-MM.T
scenario. Here we recover several of these scenarios in the
(A,a/0,) parameter space but we also find the complemen-
tary T-MM-H scenario. This invalidates the conclusions of
Rovinsky and Menzinger {36] stating that the MM is always
unstable in the Brusselator.

The amplitude equations we have considered to predict
the MM do not contain any spatiai dependence of the ampli-
tudes on the large scales. If such a dependence is taken into
account, phase stability criteria can be derived giving the
conditions for which the global solutions and the MM in
particular [23] can become unstable towards secondary long:-
wavelength instabilities. In our simulations of the Brussela-
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FIG. 6. Dynamics of the mixed mode in a large system. The
dynamics is shown during 40 units of time with periodic BC. (a)
Phase chaos. All parameters are the same as in Fig. 5 except
£=512. (b) Localized MM embedded in the Turing regime ob-
tained for A= 08 D,= IO 0'10' -—075 3—1780 L=512.
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tor model, such a phase 1nstab111ty has been obtained. Using
the size L of the system as a bifurcation parameter, the
mixed mode of Fig 5. becomes phase unstable when L is
increased and the system enters a regime of spatiotemporal
chaos {Fig. 6(a)]. The fact that this chaos appears when using
the length of the system as a control parameter suggests that

SPATIOTEMPORAL DYNAMICS NEAR A CODIMENSION-TWO POINT

we are here dealing with a long-wavelength instability and

not with a homoclinic type of chaos. More complex spa-
tiotemporal dynamics are obtained like the one displayed in
Fig. 6(b): the stable MM appears as localized structures in a
Turing pattern when the size of the system is increased. This
mixed mode, generic of the CTHP, is characterized by one
wave number k. and one frequency w,. Other types of
mixed modes can also be observed close to the CTHP as we
will see next.

[I1. SUBHARMONIC INSTABILITY OF A TURING MODE

A mixed state different from the (k.,w,) mixed mode
discussed above (Fig. 5) has also been obtained in the Brus-
selator. This mixed state is characterized by one frequency
and two wave numbers, the Turing one k. and its subhar-
monic k./2. At each location, the system is oscillating in
time and therefore the minima of the mixed state are shifted
one wavelength each half period of oscillations. The corre-
sponding space-time map of this dynamics (Fig. 7) concen-

FIG. 7. Space-time map of the ¥ varable of the Brusselator
showan in gray scale ranging from its minimum (white) to its maxi-
mum (black) value. The dynamics features a subharmonic Turing
mode with two wave numbers and one frequcncy shown durning 35

units of time. The parameters are =15 D, =10
glo, —0 75 B=44, L= 64 Penodlc BC are apphed
g el

trates all thls mfonnauon We have drawn in Fig. 8 a sche-
matic dispersion relation of the Brusselator model. Let us
suppose that the primary bifurcation leads to the Turing state
with wave number k.. As we are close to the CTHP, the
linear eigenvaiue of the subharmonic mode with wave num-
ber k./2 may be complex with frequency w(k./2) and its
growth rate small. In the vicinity of such a critical situation
(37], the variables of the system are expanded as

Clx,1)=Cp+ Te*Fwr+ A ellnhier teeitixly
+Agettetkekeielyy, o e

()

where w; and wg are the critical eigenvectors correspond-

Re w
---- T @

FIG. 8. Schematic dispersion relation explaining the resonance
between the Turing mode (k,0) and the subharmonic mode
(/2. w(k/2)]} leading to the existence of the subT mode of Fig. 7.
The solid (dashed) line corresponds to the & dependence of the solid
real (imaginary) part of the eigenvalues of the linear stability analy-
sis.
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ing to the left- and right-going waves of wave number k.2
and frequency w(k./2). The amplitudes obey the following
equations [38.39);

ar

o0 TET8ITPT-MAR*+|A T +vAA,,  (6)

aAR ! r r !

=R AR AR AR— R |A LA~ | T4,
+U'T*AL, (7)

dAL r t r

G TH A8 IAPAL R ARPAL N T,
+UrTAR. (8)

where 4’, g, and A are taken as real while the primed co-
efficients are compiex (o’ =a/+ia/). All bifurcations are
considered here to be supercritical with 4! and A ; taken as
positive. Among others, this system admits the following
global solutions [39,40): (1) a Turing mode: T={u/g}"?,
Ag=A;=0;, (2) a right traveling wave: 7T=0,
Ar={u'lg,} '™ A, =0 or a left traveling wave: T'=0,
Ap=0A,={u'/g/}"?e'™ with the renormalization fre-
quency £l,=-g/u'/g/; and (3) a mixed mode solution
T=Tr, Ag=Rre"Or'*90 4, =R {0+ By an appro-
priate choice of the origin of the coordinates, we can take
Tr as real. The phases obey the equation

M dp— )

ot @)

==2v,Trsin( g~ ¢).

The ¢r—¢,=0 () stationary solution is stable when
v,>0 (<0). Then T7, Ry, and (), are the solutions of the
following set of equations:

A =N T+ v Ty

2
Rr g +h, ’ (10)
0=gT3~(n—2ARYHT,FvRE, (11)
Op=*v/Tr—(g]+h))RE-\]TL. (12)

The upper (lower) sign in front of the v's comresponds to
the case where v,>0 (<0). The most prominent feature of
Eqgs. (6)-(8B) is the presence of the resonant interaction term
between the two modes (k.,0) and [k./2,w(k./2)] propor-
tional to v and v’ which can induce a subharmonic destabi-
lization of the Turing mode giving rise to a new mixed mode
solution. A linear stability analysis of the solutions to (6)—(8)
shows indeed that the Turing solution is the first to appear
supercritically when u’'<u and g>0. This pure Turing
mode becomes unstable towards the traveling wave if

oy
w>N - (13)
8
and unstable towards the mixed mode solution when

M &
Al \/:
wEN T | p

(14)
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As this mixed mode results from a subharmonic instabi.
ity of the Turing pattern, let us coin it the subharmonic Tyr.
ing mixed mode or in short subT. A comparison of (13) and
(14} shows that the first instability of the Turing mode wil{
always be towards the subT rather than towards the traveting
waves. This transition may be subcritical. The subT solution
is the combination of a steady structure with wave number
k. and of a standing wave formed by the superposition of the
left- and right-going waves (Ag=A,) with wave number
k./2 and frequency w(k.2). The resulting spatiotempora|
dynamics thus corresponds to a spatial pattern with two wave
numbers oscillating in time with one frequency as observeq
in the Brusselator model {Fig. 7). The two wave numbers age
here, respectively, the Turing wave number and its subhar.
monic. This mixed state is'thus of a different origin than the
one due to the interaction between a steady pattern and 4
wave as introduced in [7] where the two wave numbers are
not necessarily linked. To find if the subT solution is stable
towards perturbations of its amplitude, we inser
T=Tr+8r. Ag=A[=(Rr+8p)e™™ into (6)(8) and find
the characteristic equation

mz—aw+b=0.

(15)
with

. 2 R% 2t '
a=—2gTTIu?.—-—2Rr(g,+h,). (16)
r
RZ
b=2R%”23T2:uT—T
T

(g,+h)

~(|u:|—2h;Tr)(tv—-2AT7)]. (17)

When the Turing mode (with R;=0, T,p=+ M#lg) be-
comes unstable, a transition towards a stable subT mode oc-
curs if 520, i.e.,

2,u.(g;+h:)—(v—2)\ \/g)(u:—Z)\: \/gg)>0

and if a<0. On the other hand, if >0, the sub7 solution
can undergo a Hopf instability of its amplitude that should
give rise to chaotic behaviors. It is worthwhile to note that
the subT mode can be obtained for values of parameters such
that the standing waves of the system (7) and (8) with
T=0 are unstable versus traveling waves (h>gl). Itis
known that such a standing wave can be stabilized if an
external time modulation with a frequency twice the fre-
quency of the traveling waves is applied to the system
[41,42]. Here the stabilization of the standing wave is self-
induced by an intrinsic coupling with the steady mode which
plays the role of an external forcing by restoring the left-
right symmetry. The subT mode described here analytically
has been observed in the Brusselator for A= 1.5 when
olo.<1. Looking at Fig. 9, we see that for the same A the

(18)
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FIG. 9. Summary of the different spatiotemporal dynamics that
can be observed in the Brusselator model near a codimension-two
Turing-Hopf point in the parameter space A—o/o.. The line
ola.=1 is the codimension-two Turing-Hopf line. If o/g,.<1
(> 1}, the Turing (Hopf) bifurcation is the first to occur at critical-
iry. The filled squares (circles} are points for which we have ob-
tained only Turing (Hopf) states for all the values of B and the
initial conditions we have scanned. The filled triangles represent
points for which we obtain by increasing B successive transitions
between a Turing mode—a mixed mode with one wave number and
one frequency (see Fig. 5)—a Hopf mode. The reverse situation
with the Hopf mode being the first to appear exists for the open
squares, Bistability regimes with the corresponding localized struc-
tures (see Fig. 2) obtained after the Turing (Hopf) mode are ob-
served at points with an open triangle (circle), SubT modes with
two wave numbers and one frequency (see Figs. 7 and 14) are
observed at points where an open diamond is pictured. Filled dia-
monds represent points where the subdT mode with two wave
numbers and two frequencies (see Fig. 11} come to hand. Points
1-3 are the locations for which numerical bifurcation schemes are
discussed in Sec. V.

T-B-H scheme exists near g/, = |, that is, near the CTHP
line. Subharmonic instability of the Turing mode comes into
play further away from this line. The sub7 mode is reminis-
cent of subharmonic cellular patterns observed experimen-
lly in the flow of a viscous fluid inside a partially filled
rotating horizontal cylinder [13). In this experimental setup,
Successive transitions between steady patterns, the subT
mode, and spatiotemporal chaos due to a phase instability of
the subT mode [40] are observed when the control parameter
is increased.

We have shown that near a CTHP, a Turing mode can
give rise to subharmonic cellular patterns oscillating in time
and generated by subharmonic instabilities. The same type of
'nstability can destabilize the other generic solution of the

Re
Im o

FIG. 10. Schematic dispersion relation explaining the resonance
between the Hopf mode (0.w) and the subharmonic mode
[k(w/2), /2] leading to the existence of a subHd mode with one
wave number and two frequencies. If in addition 2k is of the order
of the Turing wave number, the additional resonance with the mode
(2k,0) can lead to the existence of a sSubHT mode with two wave
numbers and two frequencies. The solid (dashed) line corresponds
to the k dependence of the real (imaginary) part of the eigenvalues
of the linear stability analysis.

system, i.e., the Hopf mode, as we will see in the next sec-
tion.

IV. SUBHARMONIC INSTABILITY OF A HOPF MODE

Another subharmonic instability could be observed if the
base state is the Hopf mode with frequency w, generated by
a primary bifurcation. The subharmonic mode w,/2 has an
eigenvalue of the linear stability analysis associated to a
wave number k(w./2) (Fig. 10). If a resonant interaction
[43-45] occurs between the two modes (0,w.) and
[k(w f2),w./2], the variables of the system may be written
as

C(x'r)zCO+Heiwcrwﬂ+ALei[{wc.Q):+k(wr1’2]x]WL

+ARg"[(‘”em’_““‘mx]WR+C-C-- (19)

where the amplitudes obey the following equations:

oH

=5 =HH—BIHPH= y(|Ag]* +|A /D) H +vA Ag,
(20)

aA " [ ' ! :

TJT‘S:#* Ar—B'lARPAg— 7|42 AR~ 5'1H( A,

+u'HAY, (21)
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C?AL " 1 b ’ 2 3 a
TR A8 |ALPA = ¥ |Agl AL — 6" HIA,

+u HAY. (22)

All coefficients are complex (a@=a,+ia;). When pr<ula
pure Hopf mode is the first to appear with
= \,u:,i/ﬁ‘,e'“‘: Ag=A,.=0; 1= - B;ufB,. Here also
the self-induced parametric terms proportional to v’ favor
the onset of modulated waves for which the three amplitudes
are different from zero. Performing the linear stability analy-
sis of the homogeneous oscillations with respect to perturba-
tions 6Rg=6R,=SRe'? we find the instability condition:

H

r #’r r .
p,','-o‘;’; +\/E-[v,c052w+uism2(ﬁ]>0. {23)

where the phase ¢ is determined by

wll [
8~ —u'= \[=Hv]cos2¢+uv sin2¢).  (24)

r

When the Hopf mode is unstable. another mixed state with
now H#0; A =Rue'®; Ag=Rye'® can appear where
H, Ry’ and ®= ¢ + ¢y are found as solutions of the fol-
lowing system of equations:

0=pu'—[Bl+y. R, a;H2+H[u;coscb+u,.'sin¢],(25)

O=u/—[B;+ 7y JRy— 8/ H*+ H[v]cos® —v/sind],
(26)

0=puH- B.H-2y.RLH + Ri[v,cos® — v sin®],
(27)

0=~ B,H -2 y,RLH+ Ri[v,sin® + v ,cos®]. (28)

As this other mixed mode results from a subharmonic insta-
bility of the homogeneous Hopf limit cycle, let us coin it the
subharmonic Hopf mixed mode or in short subH. This sub
H mode is the combination of a homogeneous temporal os-
cillation with frequency w, and of a standing wave with
frequency w./2 and wave number k(w./2). The resulting
dynamics is then a pattern with one wave number oscillating
with two frequencies. This subA is different from the modu-
lated standing waves occurring when homogeneneous and
finite wave number Hopf instabilities interact [46]. We have
not observed the subH dynamics in the Brusselator model
although it should be generic as it is independent of the
proximity of the CTHP contrary to the subT mode. Near the
CTHP., we nevertheless observe a transition from a Hopf
mode towards a mixed state with two wave numbers and two
frequencies. We suggest that near the CTHP, a subH mode
characterized by the wave number k(w./2) could resonate
with the Turing mode of wave number k. if 2k~ (Fig. 10}.
In that case. the variables of the system would be given by

a

FIG. t1. Space-time maps of (a) the subHT mode with tw,
frequencies and two wave numbers in a box of length L =80 wjy,
pertodic BC displayed during 25 units of time. The parameters ap,
A=3 D.=10, alg,=1.l. B=10445. (b} Traveling subfT
mode obtained for the same conditions as in (a) but with anothe;
random initial condition. The dynamics is shown during 100 uniyg
of time.

’.- ! A_. I. - '-'-" rﬁ" n

Clx,1)=Cy+ Hg"wc’wn-i-ALe"[k‘ '"‘m'H(”‘I:"]wL
+ A ge ke~ 0ty L Tolikty oo
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where the amplitudes obey a set of four coupled amplitude
equations. We have not analyzed this set of equations but it
seems reasonable to expect conditions for which a transition
between a Hopf mode and a mixed state with two wave
numbers and two frequencies is possible. As this spatiotem-
poral dynamics results from the resonance near the CTHP
between a subH mode and a Turing mode, let us coin it the
subHT mode. This subHT mode has been obtained in the
Brusselator domain, for -example, when (A,o/c)
=(3,1.1). Starting from a homogeneous limit cycle at
B=10.1 in a system of length 64, a cellular pattern with two
wavelengths appears with increasing amplitude when B is
increased above 10.2. At each location of the system, the
variables oscillate in time with two frequencies. After one
period of oscillation, each maximum of the spatial pattem
has become a minimum and vice versa. The initial structure
is recovered after two periods as can be seen on the related
space-time plot shown in Fig. |1(a). The same dynamics has
been obtained in a reaction-diffusion model of a semicon-
ductor device [47]. In the Brusselator, the subA T may also
coexist with a traveling subHT mode [Fig. 11(b}].

Several mixed modes are stable near the CTHP in the
Brusselator model: the simple MM, the subT mode, and the
subHT. The transitions between those dynamics of the sys-
tem can sometimes become very complex as we will see
next.

V. ADDITIONAL SPATIOTEMPORAL DYNAMICS

To summarize the dynamics described up to now, let us
look at Fig. 9, which displays the -different bifurcation sce-
narios obtained numerically in the Brusselator model in the
parameter space (4,o/c,). When a/o <. the Turing in-
stability is the first one to be observed. For large values of

———
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FIG. 12. Numerical bifurcation diagram obtained for the values
of parameters of Fig. 11 (point 1 in Fig. 9). LS denotes localized
Jructures (see Fig. 2). All other signs are as in Fig. 9.

4. the T-B-H scenario is at hand with its related dynamics
such as Turing-Hopf fronts and localized structures. For
small A's, the T-MM-H bifurcation scheme is obtained. This
MM may give rise to phase chaos or localized structures in
larger systems. The subT mode exists for intermediate 4°s
but smaller o/ o, where the typical dynamics with two wave
numbers and one frequency is observed. Eventually, for
smaller o/o ., the pure Turing mode is the only stable one
we gel.

For o/o,.>1, the Hopf instability is the first one to be
observed. For small A’s, the pure Hopf mode is the only one
existing. For intermediate A’s, we get the A-B-T scenario
and the related localized structures. For higher A’s, the
H-MM-T scheme is obtained near the o/o.=1 line while
the H-subHT transition comes out for higher o/o.. The
sitwation on this side of the degeneracy line can nevertheless
become quite complex as several bifurcation scenarios can
mix at the same point (A,o/0,) when B is increased. To
tustrate this, let us consider in detail three dynamicai sce-
narios.

For (A,0/0.)=(3,1.1) {point | in Fig. 9), the numerical
bifurcation scenario obtained when B is increased is the fol-
lowing (Fig. 12): starting from a homogeneneous Hopf
mode, a subharmonic instability towards the subH T mode of
Fig. 11{a) occurs. This is the scenario expiained in Sec. IV
and which comes into play near criticality for several points
inthe (A,0/c,) plane. In addition this subH4 T mode coexists
with a traveling subH T mode [Fig. 11{b}]. Above a certain
value of B, the subHT mode enters a transient chaotic dy-
namics which eventually settles down on localized struc-
wres. These localized structures are bistable with the pure
Turing and Hopf modes for higher B. In the intermediate
region, a sub7 mode is also obtained. Its existence could be
inderstood in terms of a T-sub7 transition when B is de-
treased. Unexpectedly, the T-sub7 transition can thus also
be observed for o/o.> 1 where the Hopf instability is the
fAirst to occur above criticality. We thus see that in a range of
values of the control parameter 8, there is coexistence of
various types of spatiotemporal dynamics mixing several of
the bifurcation schemes we have presented.

FIG. 13. Space-time map showing (2) the periodic incursion of a
subAT mode into a pure Hopf mode in a system of size L =64 for
A=3, D,=10, o/o.=1.05 B=10.3 with periodic BC (point 2
in Fig. 9} during 25 units of time. (b) The same dynamics becomes
unstable in a larger system of size L=512.

In our second example, let us detail the bifurcation
scheme at (A,0/o.)=(3.1.05) (point 2 in Fig. 9). Near the
threshold of instability 8=8%, the Hopf mode prevails.
When B is increased. this Hopf mode becomes unstable: its
amplitude begins to oscillate periodically and a sub4 7 mode
appears transiently in time [Fig. 13(a)]. Such a periodic in-
cursion in time of the subH T mode can be explained in terms
of a limit cycle instability of the four coupled amplitude
equations that would admit the subH T mode as solution. The
period of appearance of the subHT mode decreases when
8 is increased. This dynamics is unstable with respect to the
phase when the size of the system is sufficiendy large [Fig.
13(b)]. When B=10.4, the system then evolves towards a
stable Turing mode. This Turing mode further bifurcates to-
wards a sub? mode when B is further increased. This sub7
mode [Fig. 14(a)] here also coexists with a drifting subT"
mode [Fig. 14(b)]. Such a drifting mixed state was already
seen by Sangalli and Chang [35] but in a Brusselator with
differential convection. In our case, the dynamics is obtatned
without convection, which shows that the drifting subT
mede is a solution totally intrinsic to the reaction-diffusion
system near a CTHP [39]. It corresponds then to a mixed
mode solution of the set of equations (6)—(8) for which

FIG. 14. Space-time maps of (a} a subT mode with two wave
numbers and one frequency obtained for A =3, D.=10,
glo. =105 B=1045 L=64, periodic BC and shown during 25
units of time running upwards. Remark that o/, > 1. Hence the
Hopf mode is the first to appear above the critical value of 8. This
subT mode exists only for higher values of 8, (b} In a system of
size L=80 with periodic BC. an asymmetric subharmonic Turing
mixed mode is obtained for the same values of parameters as in (a).
The dynamics ts shown during 100 units of time.
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FIG. 15. Space-time map of 2 complex spatiotemporal dynamics
obtained by starting from a random initial condition when
A=25 D,=449. D,=83L, glo.=1.1, B=8 (point 3 in Fig.
10) and no-flux BC are applied. L=512 and 300 units of time are
shown. The same dynamics results when B is increased starting
from a subHT mode stable for B<78.

sin(¢g— @) #0 and R g% Ry . This conclusion is confirmed
by numerical simulations of the Gray-Scott model near the
CTHP by Rasmussen and Mazin (48] who also find bistabil-
ity between the subT and the drifting subT mode. The over-
all bifurcation scheme for point 2 in Fig. 9 thus consists in
the following succession of states: pure Hopf mode-
heteroclinic appearance of the subHT mode—pure Turing
mode-subT state coexisting with a traveling subT mode.

Our last example concems the point (A,0/0¢)
=(2.5,1.1) (point 3 in Fig. 9). In this case, 2 change of the
control parameter scans successive transitions [30] from a
Hopf mode towards a subH T mode followed by spatiotem-
poral chaos (Fig. 15) and eventually localized structures
characteristic of a bistability regime. The same behavior ap-
pears in the Gray-Scott model. In that case, the spatiotlempo-
ral chaos could be controlled to yield a stable Turing pattern
[49).

The classification of the spatioternporal dynamics near a
CTHP in four scenarios: bistability, MM, subT or subHT
thus allows description of most of the dynamics featured by
a reaction-diffusion model.

VL. SUMMARY AND CONCLUSION

In this article, different bifurcation scenarios existing near
a CTHP have been studied in the framework of amplitude
equation formalism and used to understand and classify the
numerical simulations of 3 ceaction-diffusion model for val-
ues of parameters close 10 a CTHP. Two major families of
spatiotemporal dynamics have been presented: those due to0
the interplay between the pure Turing and Hopf modes and

. those related to subharmonic instabilities of these modes.

When a Turing mode T(k..0) interacts with a Hopf mode
H(0,w.) near a CTHP, two types of behaviors can be ob-
rained in addition to the existence of the pure modes.

{1) The Turing-Hopf bistability: in that case, the existence

wh

of nonadiabatic effects accounts for behaviors such as the
stability of a simple Turing-Hopf front and of localized
structures or a stepwise progression of this front depending
on the values of parameters.‘Nonvariational effects contrib-
ute also to the existence of localized structures in the bista-
bility domain of the two pure solutions. The existence of
such a bistability domain and of the related localized struc-
tures has been obtained in the Brusselator model. Such lo-
calized structures have now been observed in several experi-
mental systems {911},

(2) The Turing-Hopf mixed mode: spatial pattern charac-
terized by one wave number and oscillating in time with one
frequency. This mixed mode is generically observed in our
reaction-diffusion model where it may also become phase
unstable in large systems giving rise to spatiotemporal chaos.

The second major behaviors existing close to a CTHP
appear when the pure modes are subjected to subharmonic
instabilities. The resulting dynamics follow.

(1) The subharmonic Turing mixed mode, i.e., a cellular
structure with two wave numbers oscillating in time with one
frequency. This subT mixed mode has been observed in the
Brusselator model where it may nevertheless appear as pan
of a much more complex overall bifurcation scheme. The
ransition bwtween a Turing state and a sub7 mode has also
been seen experimentally in a hydrodynamical system where
the subharmonic oscillating spatial pattern becomes phase
unstable for higher values of the control parameter entering
then a spatiotemporally chaotic regime {13].

(2) The subharmonic Hopf-Turing mixed mode corre-
sponding t0 a biperiodic oscillation in time of a biperiodic
modulation in space. This subHT mode exists in the Bruss-
elator where it is bistable with other dynamics. It has also
been observed in a reaction-diffusion model of a semicon-
ductor device [47).

In addition to these major bifurcation schemes, we have
identified in the (A,o/0.) phase space of the Brusselator
three bifurcation scenarios that mix up the above classifica-
tion.

To conclude, we have shown here that the amplitude
equation formalism is a good basis to predict the spatioiem-
poral dynamics that can be observed near a CTHP. The bi-
furcation schemes predicted are recovered in the numerical
integration of 2 reaction-diffusion model. These simulations
confirm the theoretical predictions but also show some pecu-
liarities of the dynamics that cannot be explained by the
amplitude equations. In addition, the fact that different bifur-
cation schemes sometimes mixup when the control param-
eter is increased in the Brusselator points out the usefulness
of the simulation of a model in parallel with the use of am-
plitude equations. As some of the spatiotemporal regimes
presented here have been observed in experimental systems.

we hope that the additional scenarios we have described will
be observed in some physico-chcmical systems featuring 2
degeneracy point where two instabilities breaking, respec-
tively, space and time symmetries interact.
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