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Ahstract. In this set of tectures } present a brief review of the general issue of
pattern formation in reaction-diffusion systeins emphasizing the point of view of
the concept of the nonequitibcinm potential. Throngh some simple examples | dis-
cuss the possibilitien of exploiting 1his concepl in order lo derctibe the decay of
metastable states and inlrodnce au analysis of the stechastic resonance phenomenon
in extended syslems .

1 Introduction

The subject of pattern formation far from equilibrium has capl.ured,tllm allen-
tion of reseacliers for more thav a decade, and is by now one of the most active
fickds in the physics of complex systems. (Nicolis and 'rigogine, 1977, laken,
1978, Prigogine, 1980, Fife, 1984, Kuramoto, 1984, Malchow and Schitansky-
Geier, 1985, Nicolis, 1986, Langer, 1987, Cross, 1988, Walgraef, 1988, Mur-
ray, 1989, Nicolis, 1989, Mikhaiiov, 1990, Meinhardt, 1092, Kirkady, 1992,
MikLailov and Loskutov, 1992, Cross and Holhenberg, 1993, Wio, 1994, Nico-
lis, 1995) The extremely rich varicty of nonequilibrivm systems thal one can
cousider calls lor different descriptions. Among them, the reaction-diffusion
(RD) approach has shown to be a very fetlile source of nodels lor interesting
phenomena in the natural and social sciences, where struclures can arise and
lasl. for longer or shorter periods of time according to their degree ol stabitily.
(Nicolis and Prigogine, 1977, Haken, 1978, ’rigogine, 1980, Fife, 1984, Ko-
ramacto, 1984, Malchow and Schimausky-Geicr, 1985, Walgraef, 1988, Murray,
1988, Mikhailov, 1990, Cross and Uohenberg, 1903, Wio, 1994)

From the equilibrium phenomena point of view, both classical mechan-
ics and reversible equilibrium thermodynarics (the Lwo most prominent
branches of macroscopic’ physics) are characterized by extrennun princi-
ples. In classical mechanics it is the principle of stationary action that de-
termines the classical trajectory, while equifibrium thermodynaniics is clhiar-
acterized by the maximum entropy principle in closed systems, Both ex-
tremum principles originale as the macroscopic limit of more fuadamental
theories (quantum mechanics and stalistical mechanics respeclively) where
those principles are violaled through the ocenrrence of fiuctuations: gquan-
tum fluctualions on one hand (that assign finike probability amplitud=s 1o
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2 Horacio 5. Wio

nonclassical Lrajectories) and thermal fluctuations (assigning nonzero prob-
abilitites to states with less than the maximum entropy) on the other. It is
this deep connection between fluctuation phenomena and extremum princi-
ples that allows the system to explore a neighbourhood of the extremizing
state and thereby identify the extremum.

The evolution equations governing the nonequilibriun: phenomena belong
neither to the realm of equilibrium thermodynamics (therefore thermody-
namic extremum principles are not applicable) nor to the realm of clagsical
mechanics (implying that the principle of least action is also not applicable).
Hence, an extremum principle allowing to characterize time-dependent or
time-independent solutions of such evolution equations is not readily avail-
able. However, classical fluctuations are also present in nonequilibrium sys-
tems, just from thermal origin or due to some stochastic perturbations of
general nature. Just as in equilibrium thermodynamics, these fluctuations
allow to explore not only the deterministic nonequilibrium trajectory, but
also ils neighbourhood. Hence, it is expected that some extremum principle
must also hold when one is able to identify the minimized potential func-
tion, gnabling us to characterize stable steady states (or attractors) of the
macroscopic evolution equations (as well as the unstable ones or separatrices)
by some extremum condition. This is what one seeks in order to understand
pattern selection in sell-organizing systems and other related phenomena.

The main goal of these lectures is offering an introductory view to the
application of the nonequilibrium potential picture into reaction-diffusion
systems. We can summarize the main idea behind the nonequilibrium po-
tential approach by saying that the selection of a pattern is strongly in-
fluenced by fluctuations. It is only chance that could decide through the
ellect of fluctuations. The fluctuations will enable us to explore the land-
scape of the system, and after making some initial unsuccessful attempts
finally a particular fluctuation will take over. It is within this framework that
the interplay between chance and constraint, or fluctuations and irreversibil-
ity, underlying all instability phenomena, is clearly seen. (Nicolis and Pri-
gogine, 1977, Haken, 1978, Prigogine, 1980, Malchow and Schimansky-Geier,
1985, Nicolis, 1989, Mikhailov, 1990, Wio, 1994, Nicolis, 1995)

In the next sections we will review a few concepts on dynamical sys-
tems, on stochastic processes and on reaclion-diffusion systems as well. Af-
terwards, we will show a few simiple cases where the nonequilibrium potential
in reaction-diffusion systems can be evaluated. In the final sections we will
show applications of these nonequilibrium potenlials in order to analyze Lhe
probability of decay of extended metastable states as well as the phenomenon
of stochastic resonance in exiended systems.
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Nonequilibrium Potential in Reaction-Diffusion Systems 3

2 Dynamical Systems: Stability

Physics courses have taught us that the evolution of the state variables of
a system (for instance, obeying the laws of classical physics) is given by
a set of differential equations of first order in time. These may be ordinary
differential equations (ode) -like Hamilton's equations or the chemical kinetic
equations in a well stirred reactor-; or partial differential equations (pde} -like
the fluid dynamics equations or the nonlinear reaction-diffusion equations-.
In the latter case, i.e. pde, which are typical in macroscopic descriptions, one
deals with an infinite number of degrees of frecdom, corresponding to the
values of the state variables or “fields” (for instance, reactant concentrations,
order parameters, etc) at each space point as functions of time.

Although in many problems this aspect may constitute the essential char-
acteristic of the phenomenon under study, it is not unusual that the descrip-
tion can be reduced to a finite number of variables. The study of systems
with a finite number of variables, that is of ode’s, will give us the chance to
learn & few more or less standard techniques to analyze not only systems of
ode’s but that are also adequate to deal with some problems describable by
pde’s.

Hence we will start considering a set of ode’s assuming that the constraints
acting on the system do not depend explicitly on time (i.e. an eulonomous
system}, that will have Lhe general form (Nicolis and Prigogine, 1977, Nicolis,
1086, Cross, 1988, Nicolis, 1989, Cross and Hohenberg, 1993, Wio, 1994,
Nicolis, 1995)

dx
X =F(x.0) (1

with x = (23,23, ..., za) and F(x,{) = (F1(x,¢), Fa(x,(), ..., Fa(x,()). Here
x; correspond to the state variables while  are some parameters (that we will
denote hereafter as control parameters) corresponding to the systeins’ internal
structure (diffusion coefficients, viscosities, etc) or to the form of relating with
external world (thermal or shear constraints, densities of chemicals pumped
in or out of a reactor). The Fj(x,() are in general nonlinear functions of the
z;, this nonlinearity being the characteristic that does not allow us to derive
explicit solutions for these systems using standard methods.

The evolution of the system described by (1) is embeded in a n-dimensional
space spanned by the [ull set of variables x = (z1, 22, ..., &) which we call the
phase space I'. The instantaneous stale of the sysiem is given by a particular
set of values {z\,z2,..., 2, ) or a unique peoint P in phase space. That means a
one-to-one correspondence between the system physical states and the phase
points. ’

A succession of states (x,...,x,...), attained along the course of time {,
will determine a succession of points (P, ..., Py, ...) in phase space joined by
a curve C, corresponding to a phase trajectory. Repeating the process for
all possible sets (x’,...,x'¢,...) one generates a conlinuous family of phase
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space trajectories indicating that the evolution of the system corresponds to
a mapping of I" into itself.
The set of points x, where

Fl(xlr()=F2(xhC): "‘=Fﬂ(x8;C)=0| (2)
(correspondingly #, = & = ... = £, = 0) are called singular or fized points

(in autonomous systems singular points remain fixed in phase space). Fixed
points correspond to stationary stales that can eventually be reached after
the evolution of the system. The objects embedded in the phase space that
are bounded and are mapped into themselves during the evolution generated
by (1) are called invariant manifelds. For instance, fixed points are invariant
manifolds of dimension d = 0. The imnportance of these invariant manifolds
arises from the fact that they olfer a geometrical view of the dynamical sys-
tem.

At this point it is worth refering to the conservative or dissipative char-
acter of the system under study. Let us consider the probability density
f(z1,z2,...,xn, t) (Reichl, 1980, Kreuzer, 1984, Keizer, 1987, Wio, 1994) that,
after multiplying by dz,dz;...dz,, gives the probability of finding the system
in the neighbourhood of the phase space point (21, 23, ..., z,). The Liouville
or evolution equation for this density is (Reichl, 1980, Kreuzer, 1984, Keizer,
1987, Wio, 1994)

8 = 9 ..
'§;+Za—m(fﬂ)—0 (3)
that can be rewritten as dlnf op 0
dt ‘
We will hence define that a system is conservative if
VF =0

as for a harmonic oscillator; while we define a dissipative system according
to
TF <0

(where we used the average VF = 71! fOT VFdt'), as for instance, in a
damped harmonic oscillator. It is clear that a conservative system will con-
serve (but perhaps deform) the initial volume AT} in phase space. On the
other hand, a dissipative system will be such that Al — AL} for t — oo,
where Al'y is a subset with a lower dimension than the phase space (and
with zero velume). Hence, it is in this last case that the system can evolve
towards a fixed point that, in this case, is called an atiractor. (Nicolis and
Prigogine, 1977, Haken, 1978, van Kampen, 1982, Nicolis, 1989, Mikhailov,
1990, Wio, 1994)

The relevant question here concerns the stability of the indicated solu-
tions (or invariant manifolds} of the system of nonlinear differential equations
(NLDE), that is what happens when such a solution is perturbed: does the
system return to the fixed point or move away from it?.
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Nonequilibrium Poteniial in Reaclion-Diffusion Systems 5

2.1 Linear Stability: Two Variable Systems

In order te introduce some basic notions of linear stability theory, we will
restrict ourselves to a set of two first order NLDE, corresponding to a general
second order autonomous system, i.e. :

dl’l

-—c—it— = Fl(lfl‘-’b‘z)
dz;
Tti = Fa(x(, 22) (5)

If, for certain values of the coordinates, say (23, z3), the functions Fy and
Fy satisfy very general (Lipschitz) conditions (Nicolis, 1995), equations (5)
have a unique solution in the neighborhood of the point (2%, 22). In what
follows, we shall assume that these condilions are satisfied.

Through any point (z{,z3) there is a unique phase curve, with the ex-
ception of the singular or fized poinis (z{,z3), where &, = &3 = 0. A fixed
point, corresponding to a steady state solution of (5), can always be moved
to the origin by the change of variables #; -+ z; —z{ and 22 — 23 — z3.
Therefore, we shall assume that the singular point is located at the origin.
We then consider a system described by (5} which is in a steady state al
(=1,28) = (0,0).

If the system is in the steady state, it is important to know how it will
behave under the influence of a small perturbation. Here we face several
possibilities. The system can leave this steady state and move to another one;
it can remain in the neighborhood of the original steady state; or it can decay
back to the original state. In order to analyze the different possibilities we
use a linear stability analysis. (Nicolis and Prigogine, 1977, Haken, 1978, Fife,
1978, Cross, 1988, Wio, 1994, Nicolis, 1995) By this procedure we can say
something regarding the stability of the system in the neighborhood of the
steady state, but nothing about the global stability of the system. To discuss
stability in the neighborhood of the steady state we write the solution in
terms of the departure from the steady state, ie. :

2, = o} + bdry; x2 = xy + bx2 (6)
inserting this into (5}, using z} = 3 = 0, and expanding up to first order
in the departures (6z1,dxz3) we obtain:

. . ar ar
£, = bz, = F1(0,0) + (a—m-)oéa:l + (E‘é)oémg + O(6x3, 623)

. “ _ an an 2 2
2 dxy = Fa(0,0) 4+ (3_331)0 bz + (-5;—2—)0 fzq + O(bz7, 8625) (7)

Keeping in mind that Fi(0,0) = F3(0,0) = 0, calling

() Lo () oo () —e (%) -
oz, /o4 dzy /g ary J o O0xy /g
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and considering very small values of the éx;, so that we can neglect higher
order terms, we reduce the problem to the analysis of the following linear

system .
(o) =[e ] () =m (G21) o

The solutions of (8) give the parametric forms of the phase curves in the
neighborhood of the steady stale (at the origin), with time as the parameter.
'The general form of the solution of (8) (except when A = A;) is

5122

(61’-’1) - a&le—klt +ﬁéze—,\g! (9)

where o and # are arbitrary constanis, é; and é, are the cigenvectors (the
normal modes) of the matrix IM, associated to the eigenvalues A; and A,
respectively. These eigenvalues are determined from the relation

det(IM — AD) = 0

yielding
Mz = %(H d) + [(a + d)? — 4(ad — bc)|/?

It is thus clear that the Lemporal behaviour of the system, originally in the
steady state (z,z3) = (0,0), after applying a small perturbation, will de-
pend on the characteristics of the eigenvalues A;. We have the following pos-
sibilities:

(i) Both eigenvalues, A, and A;, are real and negative (A, < Ay < 0);

(it) both eigenvalues are real and positive (0 < A; < Ag);

(i) both eigenvalues are real, but A1 < 0 < Ay

(iv) both eigenvalues are pure iniaginary;

(v) both eigenvalues are complex conjugates with Re(A;) = Re(}z) < O

(vi) both eigenvalues are complex conjugates with Re(A;) = Re(Az) > 0.

Some of the situations that could arise, according to the kind of eigen-
values we find, correspond to the phase trajectories depicted in Fig. 1. Case
(i) corresponds to a solution that decays for increasing time, and is called a
stable node. Case (ii) is the opposite situalion, and corresponds to an unsta-
ble node. Case (iii) is intermediate between the two previous situations: it is
stable in one direction and unstable in Lthe other, Lhis corresponds to a saddle
poinl. Not shown are the cases corresponding to periodic behaviour: with a
constant amplitude or center, with a decaying amplitude, or stable focus, and
its opposite or unstable focus.

Within this general scheme, even when we extend the results to a larger
number of variables, il is possible to identify three basic situations: (a)
Re(A;) < 0 for all f; (b) at least one Re(}; ) > 0; (c) at least one Re(};) = 0.
The above analysis yields the [ollowing results (remember that all this cor-
responds to small periurbations!) :
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Nonequilibrium Potential in Reaction-Diffusion Systems 7

(i} (i)
Fig. 1., The phase portrait for Lhe different types of fixed points,

(a) All Re(};) < 0 : the steady state is called asympiotically stable. Whatever
the form of the nonlinear terms in Eq.(3), after a small perturbation the
normal modes decay to it. These types of solution are called attractors, and
the region of phase space including 2!l the points such that any initial state
finally tends to the attractor form ils basin of atfraction.

(b) At least one Re(A;) > 0: the steady state is unsiable, that is, the normal
mode associated with this eigenvalue will grow with time,

In either case (a) or (b), the behavior of the indivual modes will be oscillatory
if Zm(A;) # 0, and monotonic otherwise.

(c) At least one Re(};) = 0, all other Re(Ag} < 0: the steady state is
marginally stable with respect to the mode having Re(};) = 0. As a so-
lution of the linearized equation this mode will neither grow nor decay, but
could oscillate if in addition it has Zm(A;) # 0. Here, the explicit form of the
nonlinear terms will determine whether this marginally stable steady state is
stable or unstable.

For the case when several fixed points coexist, the basin of attraction of
each attractor is separated from the others by curves of neutral points, known
ag separatrices.

Besides the cases we have just analyzed, for nonconservative nonlinear
equations it is also possible to find another, very inportant, kind of steady
solution, called limif cycle, corresponding to stable (and also unstable) pe-
riodic solutions. If such a periodic solution is stable, all the solutions in its
neighborhood will decay to it for long times. We show a typical phase portrait
in Fig. 2. -

To exemplify this behaviour consider the system

= y+a[l—plp~!/?

j=—z+yll— g™’
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Fig. 2. The phase portrait for a limit éycle.

with p = 2% + y%. It is left to the reader to prove that this system has a limit
cycle atractor (hint: use polar coordinates).

2.2 Bifurcations

According to the above classification one might be tempted to conclude that
a given system can only be described by a particular kind of fixed point or
attractor. But this is nol the case. Tle most interesting aspects of nonequilib-
rium phenomena arise from the fact that the same system can show a variety
of behaviours, each one corresponding to a different atiractor. The change
from a given state Lo another is produced by the variation of some of the
external constraints (or external parameters) acting on the system, so that
the original (or reference) state becomes unstable, and subsequently a bifur-
cation to new branches of states occurs. (Nicolis and Prigogine, 1977, Haken,
1978, Wio, 1994, Nicolis, 1995)

We will analyze two kinds of instabilitics which may lead to a stable limit
cycle from a fixed point. For our discussion we will refer to Fig. 3. In part
(i) of the figure we depict the variation of the eigenvalue A associated with
the unstable original mode. This is usually called the thermodynamic branch
as it is the direct extrapolation of the equilibrium states, sharing with them
the property of asymptotic stability, since in this range the system js able to
damp internal fluctuations or external disturbances, and we can still describe
the behaviour of the system, essentially, within a thermodynamic approach.
The horizontal axis indicates the real part of the eigenvalue and the vertical
axis the imaginary part. The real part of A crosses the imaginary axis, from
the negative to the positive values (left to right), as the control parameter ¢
takes a critical value { = (.. In part (ii) and (iii) of the figure, the horizontal
axis represents the variation of Lhe conlro} parameter ¢, and the vertical axis
schematically indicates a steady state solution of the NLDE describing the
system and mmay represenl several different physical or chemical properties
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{e.g. a concentration of some reactive for a chemical system, an amplitude of
oscillation for a mode in a fluid, ete).
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Fig. 3. Schemaltic picture of the bifurcation proceas.

As the parameter ¢ is varied from left to right (in parts (ii) and (iii) of the
figure), a pair of complex eigenvalues X crosses the imaginary axis (part (i)).
Consider the case where, before crossing, the steady state solution (z},z3) is
a sieble focus. As soon as Re()) goes through zero and becomes positive for
¢ = ., the solution may :

{a) Bifurcate into an unstable focus and a stable limil cycle. Beyond the
bifurcation point (., the limit cycle is the only stable solution. This kind of
transition, where the limit cycle arises continuously for { > (., is called a
soft self-excilation. A bifurcation to the right is called a supercritical one.

(b) 'The bifurcation to a limit cycle may also be subcritical, thal is, it may
occur to the feft of { = . as indicated in part (iii). The limit cycle towards
which the system bifurcates al {. is unstable, and a stable limit cycle may
be reached for ¢4 < ¢ < ¢, but only in response to a finile perturbation that
exceeds a certain threshold. For a smaller perturbation, the system will relurn
to the stable steady stale. Bul if the perturbation exceeds the threshold (as
indicated in the figure) then it will conlinue to grow until the system reaches a
stable limit cycle. Due to the existence of a threshold this is called a hard self-
ezcitation. For small perturbations the system will remain in the stable steady
state until ¢ > (., where the steady state becomes unstable and the system
jumps ebruptly to the limit cycle, in contrast o the continuous transition
of the previous case. Mathematically bolh types of instabilitics are classified
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as Hop[’s bifurcations. (Nicolis and Prigogine, 1977, Murray, 1989, Nicolis,
1995)

When discussing the kind of transitions associated with nonequilibrium
instabilities, it is usual to adopt the langnage of equilibrium thermodynamic
phase transitions and critical phenomena. For instance, the supercritical bi-
furcation is analogous to a second-order phase transition, while the subcritical
resermbles a first-order one.

2.3 Kinetic Potential, Symmetry Breaking

Now, and in order to introduce some notions related to the concept of sym-
melry breaking as well as with glebal stability, we will work out a useful
mechanical analogy. Let us analyze the example of a damped anharmonic os-
ctllator. (Haken, 1978, Prigogine, 1980) The classical equation of mation of
such a system is

m Eld—: = —yv + F(z), (10)

where z is the position and v is the velocity of a particle of mass m, v is the
friction coefficient and ["(z) an external force. Considering that v = d=z/dt,
{(10) can be rewritten as

mi + ¢ = F(z). (11)

We will concentrate on the particular case in which the particle is light (its
mass m is very small) while the friction coefficient (y) is very large, This
corresponds to overdamped meolion, in which the first term on the left hand
side, when compared to the second, can be neglected ({that is: we assume
z ~ 0), in what is a prototype of adiebatic elimination procedures. (Haken,
1978, van Kampen, 1982, Gardiner, 1985) Now we can make a change of time
scale according to ¢ — +¢, and in this way eliminale the constant v from
the equation, which finally reads

i = P(). (12)

1t has the same form as the equation we have analyzed before (i.e. Eq.(1)).
Now, for a one dimensional problem, we have that the force F(z) can always
be derived from a potential ¥V (x), according to

F(z) = - % V(x) (13)

For instance, in the harmonic case, V(z) = % kox?. However, we are inter-

ested in the general nonhannonic case. We assume a force that, besides a
harmonic linear term has a cubic dependence on Lhe coordinate:

F(z) = —kox — kyz? (14)

-~ -
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Nonequilibrium Potential in Reaction-Diffusion Sysiems 11

that derives from a quartic potential

V(g) = > koa? + L kyat, (15)
2 4

The form of the potential is depicted in Fig.4. In part (i) we show the case

kg > 0, while the case kg < 0 is shown in part (ii). The equilibrium points

will be determined from F(z) = 0. From Lke figure it is clear that in each

of these two cases we have a completely different situation.

vix) vix)

. .

\VAYAS

Fig. 4. Schematic quartic potential.

=1

In the first case, for kg > 0 and k; > 0, the unique solutionis ¢ = 0, and is
stable; whereas in the second, for kg < 0 and k; > 0, we have three solutions,
namely, z = 0 which is unstable, and two stable symmetric solutions = +x,
(where z. = [| ko | /k1]'/2). Here we meet again the bifurcation phenomenon
discussed above.

It is casy to prove, within linear stability analysis, that both solutions & =
+z., are stable. Also, it is simply proven that (12) with F(z) given by (14} is
invariant under the transformation = — —x, that is, (12} is symmetric with
respect to this transformation. Also the potential in {15) remains invariant
undet such a transformation. Although the problem, as described by (12} and
(14) is completely symmetric under inversion, the symmetry is now broken
as the system will adopt one of the two possible solutions. We then have
that, when we slowly change kg from positive to negative values, we reach
ko = 0 where the stable equilibrium solution z = 0 becomes unstable. This
phenomenon is usually described as a symmetry breaking instability. (Nicolis
and Prigogine, 1977, Haken, 1978, Prigogine, 1980, Nicolis, 1995)

2.4 Lyapunov Functional, Global Stability

We can extend the previous results to higher dimensional situations to con-
clude that, when there is a potential function V{zy, .., ,) from which we can

-1~
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derive the forces

Fi(ry,.,zn) = -*-%V(xl,..,zn), (16)
we can discuss the stability of the steady state solutions just by locking at
the form of the potential. In other words, we have a global stabilily criterion.
However, there are a large majority of systems which do not have such a
potential. There is a theorem due to Lyapunov stating that, if cerlain condi-
tions are fulfilled, there exists a function which has the desirable properties
making it possible to discuss global stability. Such function is no: based on
the requirement that the forces be derived from a potenttial, i.e. the system
could be non-variational (that means: (16) is not fulfilled).

To fix ideas, in the two variable case indicated in (5), Lyapunov’s theorem
states that: if there exists a function V(z,, ;) such that it has a minimum
at the fixed point (£;,43), in the neighbourhood of this fixed point and
both V(z1,z3) > 0 and dV(z;,3)/dt < 0, then such a fixed point will be
asymptotically stable. (Reichl, 1980, Kreuzer, 1984, Nicolis, 1995)

At this point, and with the idea of the Lyapunov function in mind, it is
worth to make a brief classification of the different possibilities for the flow
in the phase space. (Hohenberg and Halperin, 1977, Graham, 1978, Graham,
1987, Cross and Hohenberg, 1993, Montagne et al., 1996) !

(1) Relazational Gradient Flow: 1f there is a potential function V(z;, .., Zn)
such that Fj(zy,..,z,) fulfitls (16) (i.e., it is a variational system), implying

. a

£ = _S‘Z]V(’:‘""m“)’ (17)
where the fixed points will correspond Lo the extrema of V{zy,..,zn), the
phase space flow will correspond to what is called a relazational gradient
flow, and the system will evolve Lowards the minimum of V{zi,..,za) fol-
lowing trajectories that correspond lo the line of steepest descent. Clearly
V(z1,..,zn) is 2 Lyapunov functional as it also fulfills

WV Vs v,
P e e (1#)

This behaviour is depicled in part {a) of Fig.5.
(ii) Relazational non-Gradient Flow: Consider a system governed by the
equakion

- av
L 2 T, . 19
Tj ( )Jraxt ( )
where T is a real, symmetric, postlive definite matrix. The fixed points of the

system will still correspond to the extrema of V. However, the trajectories

' T am indebted to Raul Toral for this presentation of Lhe classification of flows in
phase space.

-2~



- e — — _— —

AR AAS adma xS as . an & A Bk adoma s o om- -

AAd AAAPsidma i A Aas .

A58 AREA BB L (A BA

AR RAERGEA LiA AR

Nonequilibrium Potential in Reaction-Diffusion Systems 13

in phase space that will evolve towards the minima of V', will not follow the
steepest descent lines. This means Lhat the transient dynamics will not be
governed just by V. A, by now, classical example of this situation is the Cahn-
Hilliard equation for spinodal decomposition, (Langer, 1987, Hohenberg and
Halperin, 1977, Gunton and Droz, 1983, San Miguel, 1985, Kirkady, 1892,

Cross and Hohenberg, 1993) where (T);; = — VZ
It is clear that V is still 2 Lyapunov lunctional as
av &6v
Z( )Jfaz 61.'1 - [} (20)

This behaviour is depicted in part (b) of Fig.5.

(iii) Non-Relazational Polential Flow: Here we can consider two situa-
tions:
(a) In the first case we assume

. §v
Fj = "'Z(]K)jrgz—[, (21)
Where IK is an arbiirary, positive definile matrix. We can separale it into a
symmetric (§) and an antisymmetric (IF) part
= § + I
§ = %(IK + KT) S =
F = é(n{ - KO I = - ¥, (22)

The fixed points are again given by the extrema of V. On the other hand we
have that V also fulfills

14 av av av ov
:-Z(S)“éz_jaﬂ Z(W)Jiax 6:: <0 (23)

as, clearly, the first term on the rhs is < 0, while the second one is = 0.
Hence V is again a Lyapunov [unction. The later result implies that the
antisymmetric part of K induces a flow in the system that keeps the Lyapunov
functional constant (that is without cost). A typical situation is depicted in
part (¢) of Fig.5.

(b) In the second case we consider

1%
z; = f; = —Z(T)jl% + wj, , (24)

with (T)jr as in (ii) and w; an 1 arbitrary function. In the present case,
V(zy,xg, ...} will be a Lyapunov funclional if the second term on the rhs

of
dv Z av av Z av .
dt — (T)ﬂ dz; dz; + “i Oz; (25)

13 -
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is zero. For this to be true, the {ollowing orthogonality condition must be

fulfilled
v | av
+ Tiz=— 1t =— = 0,
; fi ,Z( 155 | B (26)
or
(F + TVV) .9V = 0, (27)
t}:,at is analogous to a Hamilton-Jacobi equation. In such a case we have that
d

S < 0, and Vis a Lyapunov functional.

Fig.5. (a) Case i); (b) case ii) and (c} case iii).

A more general discussion on such a classification of dynamical flows for
complex fields can be found in Montagne et al., 1996.

At this point it is worth asking about the effect of noise or fluctuations
on the dynamical equalion (12) as well as on the stability of the fixed points.
Before analyzing this problem, we will proceed to make a briel review on
some aspecis of stochastic processes.

3 Stochastic Processes: A Brief Overview

We start this section by rewriting equation (1} for the one dimensional case:

dz

— = F(z, 28

= F(z,0) (28)
where z corresponds to the state variable while { is a control parameter.
For inslance, such a parameter could be the temperature, an external feld,
a reactant’s controlled [lux, etc, indicating the form in which the system is

-l -
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Nonequilibrium Potential in Reaction-Diflusion Systems 15

coupled to its sorroundings. Experience tells us that it is usually impossible to
keep fixed the value of such parameters, and consequently that its fluctuations
become rtelevant. Hence, the original delerministic equation will acquire a
random or stochastic character.

Among the many reasons to juslify the increasing interest in the study of
fluctuations we can quote that they present a serious impediment to;accurate
measurements in very sensitive experiments, demanding some very specific
techniques in order o reduce theit effects. Besides, the fluctuations might be
used as an additional source of information about the system. But the most
iimportant aspect is that fluctuations can produce macroscopic effects con-
tributing to the appearance of spatio-temporal pailerns or dissipative struc-
tures. (Horsthemke and Lefever, 1984, Nicolis, 1986, Nicolis, 1989, Doering,
1991, Wio, 1994)

The general character of equations (1) makes it clear why stochastic meth-
ods have become so important in different branches of physics, chemistry,
biology, technology, population dynamics, economy, and sociclogy. In spite
of the large number of different problems that arise in all these fields, there
are some common principles and methods that are included in a common
framework: the theory of stochastic processes. Here we will only briefly re-
view the few aspects relevant for our present needs. For deeper study we
refer to (van Kampen, 1982, Risken, 1983, Gardiner, 1985, Horsthemke and
Lefever, 1984, Doering, 1991, Wio, 1994).

In order to introduce the presence of fluctuations into our description, we
write { = {o + £(t), where (o is a constant value and £(1) ia the random or
fluctuating contribution Lo the parameter {. The simplest (or lowest order)
form that equation (28) can adopt is

%;- =5 = F(J‘.,Cg) + y(I.Co)f(t). (29)

The original deterministic dilferential equation has been transformed into a
stochastic differential equation (SDE), where £(t) is called a noise term or
stochastic process.

Any stochastic process z(t) is completely specified if we have have the
information of the complete hierarchy of probability densities. We write

P,,(zhtl; ro,ty; .. En,t,,) dry dzg ...dz,, (30)
for the probability that x(t;) is within the interval (zy,z; + dz1), (t2) in
(z2,z2+ dz3), and so on. These P, inay be defined forn=1,2,...., and only
for different times. This hierarchy fulfills some properiies
i) P2 0

ii) P, is invariant under permutations of pairs (z;,¢;) and (z;,1;)
iii) [ Podzp = Paoy, and, f Pydz; =1

Another important quantity is the conditional probabilily densily Pnym
that corresponds to the probability of having the value z; al time {1, z2 at

-5 -
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t3,...,2n at tn; given that we have £(fn41) = Zny1, 2{thta) = Toyn, 2{tngs) =
Tnid; ooy Z(Engm) = Lnpm. Its definition is

Pn/m(zh t 5% dn 1 1"n+htu+1§ TH $n+m1tn+m) =
= n+m(zl % ST Tn,ln; Tngt, tu+1; vy Ty tn+m)
-1
(Pm(37n+l i P a:n+l'ﬂlt'ﬂ+"l'l)) (31)

Among the many possible classes of stochastic processes, there is one
that plays a central role: Markovian Processes. (van Kampen, 1982, Risken,
1983, Gardiner, 1985, Horsthemke and Lefever, 1984, Doering, 1991, Wio,
1994) For a stochastic process z(t), P(z2,13 | z1,11) is the conditional or
transition probability that z(2) takes the value z, knowing that z(t;) has
taken the value z,. From this definition and (31) results the following identity
for the joint probability Py(x,{1;z2,{2) (Bayes' rule) :

Pz(-"?l;tl;ﬂfz»tz) = P(letﬂ I I.'l,t}) P’-(zlitl)' (32)

A process z(t) is called Markovian if {or every set of successive times t; <
i3 < .. < i, the following condition holds

Po(zi, th o2, tn) = Pz, 0 Pa_i(za,te, . 20, tn | 21, 1)
= Pl(tlatl) P(xﬂ;fn |Iﬂ-11tn—1)'”10(12|t2 1 xl!tl)l (33)

From this definition, it results that a Markovian process is completely de-
termined if we know Pi(z;,11) and P{za, tz | 21,t;). It is easy to find a
relevant condition to be fulfilled for Markovian processes: specifying the pre-
vious equation for the case n = 3 and integrating over 3, we obtain

/ dey Pa( 21,1, 22,85, £3,t3) = Pa(zy, by, z3,ta)
Pi(zy,t1) P(za, tz] z1,11)
=1 f dzy Pl(.rj,tl) P(.133,t3 l.’l.'z,fz) P(.‘L’z,tz | a:;,tl). (34)

For t; < t2 < t3 we find the identity
Pz, talzi ty) = / dzy P(za,ta | z2,ts) Pxq,t2 | 21,61, (35)

which is the Chapman-Kolmogorav Equation for Markovian processes. Every
pair of non-negative functions P(z1,{) and P(zy,t; | #1,¢1}, adequately
normalized and satisfying not only (35) but also

Pl(.’ﬂz,ig) = /d:r:l Pl(ml,tl) P(:l:z,tzl:ﬂ;,ti), (36)

_[6 -
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Nonequilibrinum Potential in Reaction-Diffusion Systems 17

defines a Markovian process. Some typical (useful) examples of Markov pro-
cesses are: the Wiener-Levy, the Ornstein-Uklenbeck and the Poisson pro-
cesses. (van Kampen, 1982, Risken, 1983, Gardiner, 1985, Horsthemke and
Lefever, 1984, Doering, 1991, Wio, 1994)

The Chapman-Kelmogorov equation (that is only a property of the so-
lution for Markovian processes) can be recast into a useful form. Relurning
to (35), we take t3 = t3 -+ 6t and consider the limit 8§ — 0. It is clear that
we have P(z3,13 | 22,12) = §(23 — x3), and it is intuitive to assume that, if

. t3 — ta = 6t (very small), the probability that a transition happens must be

proportional to §1. According to this we adopt

P(zs, 1468t | ‘.‘72,!3) = 6(33—32) [1 — Alzz) 61] + 8§t W(z3 l -":2) +O(6l‘.2),

(37
where W (x3 | z2) is the transition probabilily per unit time from z3 to 3
{(which in general could also be a function of £3). The probability normaliza-
tion tells us that

A(:Bz) = / W(x;; I mz) dr3
Substitution of the form for P(z3,t; + 8t | z2,12) into (35) gives

P (z3t24+8]z,) = / P(za, ty + 8t | 23,13) P(za,tz | z1,¢1) d2a
= [1 - A(z3) 6t] P(zs, t2 | i, 1) -+ 6t j W(za|z2) P(za,tz2 | x1, 1) dza
= P(za,t3| 21, t1) — 6t/W(a:z | z3) P(za,t2 | x1,t)) dx2
+ 6t/W(r.3 | z2) P(za,tz | 21,41 dea. (38)
This can be reatranged as

[P(za,tz + 6t 1 3:1,[1) — P(z3,12 | z1,t1))/6t = /[W(:L‘;; | z2)P(23,12 | 2y, i)
— W{z, I.‘E;;)P(:Ea,tg l zl,tl)] das, (39)

and in the limit 6 — 0, we find

k2 P(z,t| zo,t0) = f (W(z|z') P(2',t' | zo,t0)

bt
— W(z'{z) P(z,t]| zo,t0)]dz’, (40)

which corresponds to the Master Equation. (van Kampen, 1982, Risken, 1983,
Gardiner, 1985, Horsthemke and Lefever, 1984, Doering, 1991, Wio, 1994)
The master equation is a differential lorm of the Chapman-Kelmogorov
equation. It is an equation for the transition probability P(z,! | zo,te),
and is more adequate for mathematical manipulations than the Chapman-
Kolmogorov equation, and has a direct physical inlerpretation as a balance

1% -
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equation. At the same time, W(z | 2')8t is the transition probability during
a very short time (6t). It could be evaluated by approximate methods, for
instance by time dependent perturbation theory (i.e. : the Fermi golden rule).
{(van Kampen, 1982, Gardiner, 1985, Wio, 1994)

3.1 Langevin Equations

Brownian motion is the oldest and best known physical example of a Markov
process. This phenomenon cotresponds to the motion of a heavy test parti-
cle, immersed in a fluid composed of light particles in random motion. Due
to the (random) collisions of the light particles against the test particle,
the velocity of the latter varies in a (large} sequence of small, uncorrelated
Jumps. However, similar ideas can (and have) been aplied to a large variety
of systems. {Weidenmiiller, 1980, Brink, 1980, van Kampen, 1982, Kreuzer,
1684, Gardiner, 1985, Wio, 1994) To simplily the presentation we restrict the
description to a one dimensional system.

We will give a simple quantitative picture of Brownian motion. We start
by writing the Newton equation as :

me = F(t) + f(1), (41)

where m is the mass of the Brownian particle, v its velocily, #(t) the force
due to some external field (i.c. gravilational, electrical for charged particles,
etc), and f(t) is the force produced by the collisions of fluid particies against
the test particle. Due to the above indicated rapid fluctuations in v, we have
two effects. On one hand a systematic one, i.e., a kind of friction Lhat tends
to slow down the particle, and on the other hand, a randem contribution
originated in the random hits of the fluid particle. If the mass of the test
particle is much larger than the mass of the fluid particles (implying that the
fluid relaxes faster than the test particle, allowing us to assume that it is in
equilibrium), we can wrile

S0 = - vv + €. (42)

In the r.has., ¥ is the friction coeflicient, and the minus sign in the first term
indicates that this contribution (as a good [riction term) opposes the motion.
The second term corresponds to the stochastic or random contribution, since
we have separated the systematic contribution in the first term, and this
random contribution averages to zero : (£(f)) = 0 {where the average is over
an ensemble of noninteracting Brownian particles). In order to define the so
called Langevin force (or while noise) it is required that

(EE)) = D §(t ~1'). (43)

We will not consider higher order moments, but it is clear that to fully char-
acterize the fluctuating force, we need the whole hierarchy of moments. (van
Kampen, 1982, Gardiner, 1985, Wio, 1994)

~{%-
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Nonequilibrium Potential in Reaction-Diffusion Systems 19

With the above indicated arguments, and without an external field, (41)

adopts the form
v = —vv + &), (44)

which is known as the Langevin equalion. (van Kampen, 1982, Risken, 1983,
Gardiner, 1985, Horsthemke and Lefever, 1984, Doering, 1891, Wio, 1994).
This is the simplest example of a SDE (that is, a differential equation whose
coefficients are random functions with known stochastic properties). Hence
v(1) is a stochaslic process, with a given initial condition. For details we refer
the reader to (van Kampen, 1982, Risken, 1983, Gardiner, 1985, Horsthemke
and Lefever, 1984, Doering, 1981, Wio, 1994).

When an external field is present, we have the pair of equations

; = v
N ‘ 1
v o= HF(?:) — yvu + &(t). (45)
After differentiating the first one and replacing the second, it adopts the form
.. 1 .
F = ;F(:r) — v & + £(1). (46)

In the case of large friction (¥ very large), through an ediabatic elimination
{§ ~ 0, as in Sect.2.3 ), (Haken, 1978, van Kampen, 1982, Gardiner, 1985,
Doering, 1991, Wio, 1994) we can rcwrile Lthe last equation as

b=~ V(@) + €0, (47)

where £ V(z) = —F(z), and m and y have been absorbed into the different
terms. The lasl result corresponds to the problem of diffusion in a field
(van Kampen, 1982, Risken, 1983, Gardiner, 1985, Horsthemke and Lefever,
1984, Doering, 1991, Wio, 1994)

The most general form of the SDE that we will consider here is the one
indicated by equation (29).

3.2 Fokker-Planck Equations

Let us return to the Master Equation (40). We assume that z is a continuous
variable, and that its changes correspond to small jumps (or variations).
In this case il is possible to derive, starling {rom the Master Equation, a
differential equation. The transilion probability W(z | 2) will decay very
fast as a function of |z — 2’ |. We could then write W(x | 2} = W(z',§),
where £ = z — z' corresponds to the size of the jump. The Master Equation
will take the form ‘

& Ptlaot) = [WE-€OPE—¢t ot

- Pat xo,tg)/W(x,—E)dé;’. (48)

-19-
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Following our the assumption of small jumps, and the additional arguinent
that P varies slowly with z, we make a Taylor expansion in £ that gives

*0% P(x,t } $0,t0) = / [W(:ﬂ,f) P(:L',t | .'I.‘o_.tg) "f-g;W(J},f) P(Jb',t | Z'Q,fo)

2
+ &2 (;fv"’ Wia,€) P(x,t}2g,t0) —-...| dE
— P(x,t | zq,t0) fW(x,-e)dg. (49)

As the first and the last ters are equal (in the lalter changing —£ by €, as
well as Lhe integration limits), we get

aP(t t—w(“l)vav P(z,t t 0
5 Plotlzote) = .,2-1 i ggr @@ P(z,t]z0,t0),  (59)
with o, (z) = [ & W(xz, £)df. This resull corresponds to the Kramers-Moyal
ezpansion of the Master Equation. {van Kampen, 1982, Risken, 1983, Gar-
diner, 1985, Horsthemke and Lefever, 1984, Doering, 1991, Wio, 1994) Up to
this point we have gained nothing. However, there could be situaticns where,
for v > 2, the o, are either zero or very small (even though there are no
a priori criteria about the relative size of the terms). If this is the case, we
have

g 0
ap(x,t | :Bo,tg) = - B—;cx[(.‘{:) P(:l:,i | .Eu,io)
2
=+ %- Ag7 ag(x) Pz, t] zg,t0), (51)

which corresponds to the Fokker- Planck equation. (van Kampen, 1982, Risken,
1983, Gardiner, 1985, Horsthemke and Lefever, 1084, Doering, 1991, Wio,
1994)

Let us see a couple of examples. For the Wiener-Levy process we find that
a, = 0{v> 2}, and then

d At -
0_'t. ID(I,tI:Bn,fD) = m P(T,t |J—'0,to),
while for the case of the Ornstein-Ullenbeck process we get
0 a g?
é; P(.’L‘,t E T.U,f.o) = - 5{ kS P(J‘,t , .‘l’,‘u,ig) -+ 5? P(Z‘,i | xg,to).

Equation (51) corresponds Lo a nonlinear Fokker-Planck equation {due
to the dependence of «{z) and we(z) on z), which is the result of poorly
grounded assumptions (i.e., the criteria to decide where to cut the expan-
sion, etc). BEvenr worse, it is not a systematic approximation to the Master
Equalion. However, there 1s a procedure due to van Kampen thal does make

-20 -
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Nonequilibrium Potential in Reaction-Diffusion Systems 21

it possible to build up such a systemalic procedure, but we will not discuss it
here and instead refer the reader to (van Kampen, 1982, Gardiner, 1985, Wio,
1994).
Consider the long time limit, where we expect that the system will reach
a stationary behaviour (that is: § P(z,t [ 20,0} = 0). In such a case we
will have that
d D d?
0 = - a;ﬂl(”) Py(z) + 5 da2 Pye(=), (52)
where in order to simplify we have taken ay(z) =
distribution turns out to be

ct.= D. The stationary

Pu(z) =~ Ne~ Jds'a" D, (63)

The exponent in the last equation allows us to define the (nonequilibrium)
polential U(z} through

U(z) = -—fds:'m(z'). (54)

3.3 Connection Between LE and FPE.

Here we give a briel and more or less formal (bu{ not completely rigorous from
a mathematical point of view) presentation of the relation between stochastic
differential equations {(SDE) of the Langevin type (LE), and Fokker-Planck
equations (FPE). We start considering a general form for the one-dimensional
SDE as indicated in (29): )

i) = B o 0,1 + o, 60 (55)

where £(1) is a while noise with

(66) =0 and (£0)EE)) = 8(~1t)

as in (42) and (43), with D = 1. We made the usual assumption that the
process is Gaussian, However, £(1) is nol a well defined stochastic process.
In a loose way, it could be considered as the derivative of the well defined
Wiencr process, but such a derivative does not exist at all. (van Kampen,
1082, Gardiner, 1985, Doering, 1991, Wio, 1994) We now integrate (55) over

a short time interval 8¢

z{t + 6t) — z(t) = flz(¥),t] 6t + gl=z(t), ] E) 6t  (56)

As z(t) is & Markov process, it is well defined if we are able to determine its
probability distribution Pj(z,t) as well as its conditional probability distri-
bution P(z,t ] «’,1")(t > t'). In order to obtain an equation for the latter
quantity, we define now a conditional averaege, corresponding to the average

-] -
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of a function of the stochastic variable z (say F(z)), given that = has the
value yat ¢/ < ¢:

(FEO) =)= =< Fe0)>= [w&FE) P . ()

Due to the property P(z,t|z',t) = §(z — z'), we have
(F(z(t)) | z(t) =y) = F(y). - (58)

We use now this definition in order to obtain the first few conditional momenis
of z(t).
€Az(t)» = (z(t+ ) |z(t) = 2} =
=& flz(t), ] 8t > + L glz(t), t}E(1) 8t > . (59)

The result shown in (58) indicates that < f[z(¢), 1] 6t » = Slz(t), ] &¢t, and
also that < g[z(t), ¢] £(t) 6t >= g[=(t),] < £(t) > 6t = 0, resulting in

< Az(t) > = fz(t).1] bt. (60)
For the second moment we need to resort to properties of the Wiener process;

i.e. using that £(1) 6t = ﬁ“' dig(t’) = AW(t), where W(t) is the Wiener
process, and {{¢(t) §t]%) ~ (AW(£)?) = At to obtain

€ Az(t)? > = glz(t), t]?6t + O(6t2). (61)

Let us now consider an arbitrary function R(z), and evaluate it conditional
average. Using the Chapman- Kolmogorov equation

/dm R(x) P(x,i+6t |y, s) = [dz P(z,t]|y,s)
[dz R(z) P(z,t+6t}z,t), (62)

We can expand f(z) in a Taylor serics around 2, as for §¢ ~ 0 we know that
Pzt 46t 2,t) ~ §(z — z), and that only a neighbourhood of z will be
relevant. If we also remember the normalization condition for Pzt | y,s),
integrate by parts and uze (60) and (61) we obtain an equation that, after
arranging terms and taking the limit 62 — 0, gives

a2 26 (& et 1 0.9 - (- Ulet Plost 39)

2
+3 o1 07 Pt [3,])) = 0 (69

Due to the arbitrariness of the function R(x), we arrive at the condition

5 Pt ) = = A (e, 0 (ot [5,6)
2
5o =07 Plet v,9)  (64)

which is the desired Fokker-Planck equalion for the transition probability
P(z,t]y,s) associated with the stochastic process driven by the SDE (55).
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3.4 Decay Times: Kramers Result

Here we want to discuss how, due to the influence of fluctuations, it is possible
that transitions from metastable states into more stable states can occur and
how to describe this process.

Let us start considering the problem described by the LE (55) or the FPE
(64), but assuming the simple case where g(z,t)2 = D and f(z,t) = f(z) =
—£.U(z), with U(z) = §2*. The FPE adopts the form

2 bt tu) = 2 (1R Pet 190)
2
+ % -C%—? P{z,t |y,0). (65)

For t — 0, we have that lim P(z,¢ | y,0) — é(z — y), and for very long tlimes
(t — oo) we find the stationary distribution

Py(z) = Ce V@D . -1 =/dm'e’u(”‘)m. (66)

When U(z) is not the quadratic potential indicated above but is still monos-
table (with the minimum in £ = @) we can approximately write it as in
(686) "
»n Ur e
P“(m) ~ (%ﬂ(_g)) e~ _E{Tl(m—a)n‘ (67)
with U"(a) = %:;U(::)],:u. Clearly, it is also an approximation to the form
of P,(z) for a bistable potential, near one of the minima. See, as an example,

the sketch in Fig.(6)
We can describe the probability of being in the left or in the right well as:

) = /n(a) Pz, t)dz (68)
E.(f) = [n(c)P(a:,t)d:c, (69)

where §2(a} and £2(c) indicates the set of points in the attraction basin of
the minimum at z = a and ¢ respectively. Clearly, the probabilities Zi(t)
fulfill the normalization condition Z4(t) + Z:(t) = L. Hence, calling r;; the
inverse of the transition probability per unit time from j to i, we can write
the kinetic equations

d Za, Ze d

==, ) === + = = - Z(t), 70
a0 =" o= a™l (70)
that have the stationary solutions
oat Tae
¢ Tac + Tea
—st Teu
Els —— : (71)
¢ Tac + Tea
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Fig. ©. (i) Bistable potential, (i} stalionary distribution, (iii) decay time.

Exploiting the Gaussian approximation (67) we also have

» 1/2 geia 2 n 12y 2
= () e 2 (5
(72)
from which we can obtain the ratio
E;‘ _ Tac _ (U"(c))li2 OIS (73)
S Tea U”(a)
The exponential factor has the form of an Arrhenius factor that arises in
the evaluation of reaction probabilities or its inverse, the characteristic decay
time, for aclivation processes. (Reichl, 1980, van Kampen, 1982, Kreuzer,
1984, San Miguel, 1985, Keizer, 1987, Hanggi et al., 1990) However, through
this procedure we can only obtain the indicated ratio. More elaborate cal-
culations based on Kramers-like approaches (van Kampen, 1982, Gardiner,
1985, Hanggi et al., 1990) yields for the average decay or transition time from
the state a to the state ¢
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that is kuown as Kramers’ formula (or also Arrkenius law). However this ex-
pression has some constraints that we can sumimarize in the following points:
the large damped limit was used, and the barrier height must be larger than
the fluctuations (U(b) — U{a) 3> D). A typical behaviour of T(x|zo), that is
the escape or decay time from zg to z, is depicted in part (iii) of Fig.(6).

For details of the calculation of decay (or first passage times) we refer the
reader to (van Kampen, 1982, Risken, 1983, Gardiner, 1985, Horsthemke and
Lefever, 1984, Doering, 1991, Hanggi et al., 1990).

3.5 Notions of Stochastic Resonance

One of the most fascinating cooperative eflecis arising out of the interplay
between deterministic and random dynainics in a nonlinear system is the
phenomenon of stochastic resonance (SR). This phenomenon is characterized
by the enhancement of the signal-to-noise ratio (SNR) caused by injection
of noise into a periodically modulated nonlinear system. The increase in the
noise intensity from small initial values induces an increase in the SNR ratio
until it reaches a maximum, beyond which there is a decay of SNR for large
noise values. Some recent reviews and conference proceedings clearly show the
wide interest of this phenomenon and the state of the art. (Moss, 1992, Moss
et al., 1993, Wiesenfeld and Moss, 1895, Bulsara et al., 1995, Bulsara and
Gammaitoni,1996)

The basic picture of SR lhas been illustrated by means of a mechanical
analogy. Consider a particle moving in a double well potential like the one in
Fig.6 and subject to friction. Consider a weak signal that periodically modu-
lates the potential alternatively raising and lowering the wells relative to the
barrier. Here weak implies that the modulation is too small to deterministi-
cally excite the particle over the barrier. Besides modulation, we also consider
the effect of noise, that alone is enough to induce irregular switchings between
the wells. In the high friction limit the dynamics can be modelled by

z{t) = —%)— 4 £(2) + A cos f2ot, (75)
where Up(z) is the bare potential, A cos £t is the signal or modulation and
£(t) is the random contribution. The phenomenon of SR is the nonlinear co-
operative effect whereby the small signal entrains the noise inducing hopping
in such a way that the transitions becomes surprisingly regular. Even more,
the regularity can improve with the addition of more noise, at least up to a
point: it is optimally sensitive al some non-zero level of input noise.

The two essential features of SR in the bistable potential are: that it is a
threshold phenomenon, and that its statistical properties are nonstationary.
Counsider the quartic potential

b
U(z) = Up{z) +ex = —%9,‘2 + Zm4 + cx, (76)
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with a,b > 0 and ¢ = A cos {2;¢. Regarding the threshold feature, the thresh-
old ¢ is Lhe value of ¢ for which the deterministic switching becomes possible,
i.e.: the value of ¢ at which Lhe bistabilily is destroyed (¢ = +[4a%/278]1/2),
Hence, weak modulation requires A < ¢y implying that no deterministic
switching can occur with the signal alone. The nonstationarity becomes evi-
dent wlien noise is added, and the potential becomes

U(J:) = ——ga:2 + —b-:r4 + -’l:[A cos (2ot "’r-f(t)}

4
The LE Lhat drives the motion of the particle is
#(t) = az - bz® + [Acos f2ot + £(1)], (77

and non-stationarity means that the probability density is a {periodic) func-
tion of time. (Jiing, 1993)

Within the indicated picture, the only important dynamical events are
the well-to-well switching transitions that can occur whenever

EA ¢os Q()t + f(t)l 2 Cth, (78)

indicating that SR is, fundamentally a threshold phenomenon.

To further clarify the mechanism, let us simplify the picture even more
and assume that the modulation is such that during the first half period
the left well is kept fixed below the right one, while the situation is reversed
during the second half period. Hence, considering the Kramers formula (74),
it is clear that, during the first half period, the average decay time for jumping
from the right well to the left one will be shorter than the reverse transition.
The situation is reversed during the second half period. If the noise intensity
is such that this decay time is of the order of half the period (while for the
reverse less probable transition it is larger), we will meet a tuning condition
between the random jumps and the modulation that corresponds to the SR
phenomenaon.

In order to make a more quantitative description of the phenomenon it
is necessary to evaluate the power spectrum of the particle motion in the
indicated generic bistable potential (76). To do that, we will follow here Mc-
Namara and Wiesenfeld’s (MNW) calculation (McNamara and Wicsenfeld,
1989). We start defining two discrete variables z4 describing the position of
the particle in either the right (+) or left (=) potential well (for instance,
in the indicated bistable potential xx = +[a/b]'/?), and the corresponding
probabilities Z4 (£){Z4(¢) = 1 — Z_(1)). As in the previous section, we can
write a rale (or masier) equation in terms of Wy, the transition rates out of
the & states

%5+(¢) _ _%Eﬁ(t) = W_Z_(t) - W54 (1), (79)

which is essentially the same as equation (70) discussed before. Clearly, the
only dynamical variables are the parlicle populations (or probabilities) within

-3 -

g,

e i L



—_—— =

U Y W W e R R —-———

asih Bldimidms i ifani: ams Sdbsdma s b as.

i BARkndéma i iisa;

T IYT. "ENYVI Y

Nonequilibriwn Potenttal in Reaction-DifTusion Syslems 27

the wells, as corresponds to a this approximate two-state dynamics, analogous
to the discussion in the previous subseclion.

In order to solve (79) at leasl some approximate form for the Wy is
required. Following MNW we use an expansion in terms of a small parameter
1o cos §2¢, where 1o = A/y (v being the noise intensity)

1
Wy = §(ao:tam0c05.ﬂot+...), (80)

where ap and a;np are treated as paramelers of the system. According to
what was discussed in the previous subsection, «p and o; can be related to
the unperturbed Kramers rate (with rx ~ r5') in an adiabatic-like approx-
imation

A
rK ™~ TrK.0 (1 -+ —l—:-i—l co8 not) . (81)

This allows us to express Wy (within a phase factor) in (79), and to solve
it finding a solution =, (¢). From this solution we can construct the {condi-
tional) autocorrelation function {(z(t)z{{+ 7) | xg, to), that in the asymptotic
limit (¢, — —oo) yields the desired correlation function {z(t)z(¢ + 7}). From
this last quantity we can obtain the power spectrum through the Wiener-
Kintchine theorem {van Kampen, 1982, Gardiner, 1985, Wio, 1994} yielding

- (e1m0)? doo(z?) (=2 (o1 m0)?
S{w) = (1 - 2[0(2]14.093]) ([ago‘l' wz}) + Z[Qg -;‘;g] Slw — £20). (82)

This result makes two notable predictions, both borne out by experiment:
(1) the shape of the power spectrum is a delta contribution arising from the
modulation, riding on a Lorentzian noise background; (ii} the total power
-signal plus noise- is a constant. The latter property (that is strictly true
only for the bistable model} means that the power in the signal part of the
response grows af the expense of the noise power. This result demostrates
that, in such a bistable system, the proper application of noise al the input,
can result in more order at the outpul. This could not be possible with a
linear system. Moreover, the nonlinear system must be out of equilibrium.

A quantity that typically has been used to quantify this phenomenon is
the signal-to-notse ratio (SNR) defined as the ratio between the power from
the signal (second term on the rhs of (82}) to the noise power (first term on
the ths of {82), evaluated at w = ). Using the form of the Kramers rate
rk,0 (inverse of (74)), il is possible to obtain (for the bistable potential) the
approximate result

f AAUN\?
SNR =~ (_-Tffﬂ) e~ AU/, (83)

where AUj is the barrier high: AUy = a?/4b. The qualitative form of the
power spectral density (psd) and the SN as function of the noise intensity
7 is depicted in Fig.7
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frequency (a.u.) Aoise intensity (a.u.)

Fig. 7. (i) psd vs. w and (ii) SNR vs.v.

The maximum of the curve of SNR results for a value of v that makes
the Kramers time (rx) roughly equal to half the period of the modulation.
For more details on the SR phenomenon we refer to (Moss, 1992, Moss et
al., 1993, Wiesenfeld and Moss, 1995, Bulsara et al., 1995, Bulsara and Gam-
maitoni,1996).

4 Spatially Extended Systems

Everywhere around us we find examples of self-organization or cooperative
phenomena in complez systems, namely the appearance of a relatively simple
(albeit nontrivial) behaviour in systems with many strongly-interacting de-
grees of freedom. These phenomena occur in far-from-equilibrium situations
where, due to the intrinsic nonlinear dynamics, and due to the variation
of some control parameter, a spontaneous breakdown of the spatiotainporal
homogeneity leads to either the formation of stationary (space) or rhytmic
(time) patterns or to propagating pulses or fronts.

There are examples of dissipative structures for almost all length scales
and in almost all sciences:

(i) mesoscopic: cellular structures in biology, propagation of nerve signals
along the neural axon,

(ii) macroscopic: propagation of electric signals in cardiac tissue, pacemakers
and spirals in the Belouzov-Zhabotinskii reaction, Bénard convection in flu-
ids, vorlex structures in superconductors, social organization in all biological
species,

(iii) global and astronomical: convective motion in the ocean, eloud patlerns
in planetary atmospheres, nebular structures, etc.

Among the many possible descriptions, the ezcitable media picture is one
of the most useful ones in the description of pattern formation and propaga-
tion. A distributed excitable medium can be viewed as a set of active elements
(each element being a system with two or more possible sleady states) rep-
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resenting small parts of a continuous system interacting among each other.
Typically, such interaction is through some transport mechanism, the most
common one being diffusion. It is the interplay between the internal nonlin-
earities of each element with the coupling among them, together with the
effect of external control parameters, that can originate the space-temporal
structures.

We will focus our discussion on the reaction-diffusion model, studying
one- and two-component cases, in order to present some of the underlying
principles in pattern formation phenomena.

4.1 Reaction-Diffusion Systems

We will consider a distributed excitable medium and assume that the inter-
actions between the different elements ihal. compose the medium are local in
time and also that the variation in space is not too sharp, implying that we
can neglect memory eflects, as well as space derivatives of order higher than
two. Within the formalism discussed in previous sections, the general form
of the system equation, for the case of cnly one relevant macroscopic state
variable ¢, will be '

s
at

For the reaction-diffusion model, this equation reduces to

#(r,t) = F(;V VAR T (84)

S HE0 = F$) + DV 4 (83)

We will not consider a derivation of this equation, but will adopt it as a
phenomenclogical one. (Nicolis and Prigogine, 1977, Fife, 1978, Haken, 1978,
Fife, 1984, Malchow and Schimansky-Geier, 1985, Murray, 1989, Mikhailov,
1990, Wio, 1994) For instance, this kind of approach has been found to be ade-
quate for Lthe description of: propagation of electrical signals in cardiac lissue,
nervous signals along the neuronal axon, and targef or spiral patterns in the
Belousov-Zhabotinskii reaction. (Nicolis and Prigegine, 1977, Fife, 1984, Mal-
chow and Schimansky-Geier, 1985, Murray, 1989, Mikhailov, 1990)

Clearly, the reaction-diffusion equation {or one rmacroscopic variable shown
in (85), can be easily extended to several macroscopic variables {¢y, #2, .., én},
resulting in a system of coupled reaction-diffusion equations.

However, and in order to proceed wilh the analysis we will begin by
focussing on the one state variable case as in (85), and also initially consider
a one dimensional system (i.e. V2 — 8%/8z?%).

The first step is to look for stationary solutions, that is to consider
d¢/8t = 0. Equation (85) reduces to

d42
0= Db+ F(4). (86)

-39 -
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For a one dimensional problem we have seen earlier that the reaction term
or force F(¢) can always be derived from a potential V(4), according to

F$) = 35 V@), 7

Iﬁ order to fix ideas we resort to an example: the Schiogl model, (Haken,
1978, Malchow and Schimansky-Geier, 1985, Mikhailov, 1990, Wio, 1994)
that corresponds to the following reaction scheme

A4+ 2X53X
X558 (88)

having the associated macroscopic reaction term

F($) = Ko ¢® - x16® — k2 6 + &3, (89)

where ¢ ia the density of the reactant X, and the constants xg, 1, k3 and «3
inciude the reaction rates and the concentration of the reactants A and B.
Usually in this model, k5 and/or «3, are used as control parameters.

Let us consider the bounded domain case: z € [-Z, L], 2L being the sys-
tem length. In principle, we can consider two different boundary conditions
(a) Dirichlet boundary conditions: ¢(—L) = ¢(L) = 0, with the physical
meaning of perfect absorption on the borders, ‘
(b) Neumann boundary conditions: f-¢(x = —L) = £4(z = L) = 0, with
the physical meaning of zero flux at the boundary.
Another, more general form of boundary condition, that includes both pre-
vious cases as limiting ones, is the albedo boundary condition. It describes a
situation with partial reflectivity at the houndary. (Schal and Wio, 1992, Wion,
1994, Hassan et al., 1994, Hassan et al., 1994, Hassan and Zanette, 1995, Wio
et al., 1993)

We will focus now on the search of inhomogeneous solutions. We write

(B7) as

¢
ve) = [ e e, (90)
¢
yielding for the Schlogl model the potential (V(0) = 0)
1 1 1 ”
V(#) = 7 o é* - a T A 5 K2 ¢ ka g (1)

The form of equation (86) suggests a mechanical analogy by its interpretation
as a particle of mass D, moving under the influence of the potential V (¢),
assimilating the spatial coordinate = to a tine variable (varying from - L to
L), and ¢ to a spatial coordinate. The first inlegral of motion yields

D{d N _
2(s&e) +vw =5, (92)
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where E, the analogue of the total mechanical encrgy, is conserved. Exploit-
ing this mechanical analogy, the following features of the solutions of (92)
(for the potential given in (91) can be easily seen:

(a)} The stationary homogeneous solutions correspond to the extrema of the
potential V(¢).

(b) If we do not impose the Neumann boundary conditions indicated above,
then every value of I corresponds Lo a solution of (86) in the range of ¢'s,
where E > V(4) (for given values of ¢(—L) and ¢(L)).

(c) When we impose Neumann boundary conditions, we require that #(—L)
and ¢(L) became turning points of the trajecfory, that is E = V(¢(-L)) =
V(#(L)). This imposes a constraint on the acceptable solutions, restricting
them to those confined to the central valley. However, such a valley exists
only if kg > . and k3 € [K3qg, k31|, where K. and x3o,«3; are some ex-
tremum values that can be easily determined. (Haken, 1978, Malchow and
Schimansky-Geier, 1985, Mikhailov, 1990, Wio, 1994) The other case is a
trajectory that starts at the origin (¢ = 0), bounces back at some value ¢*
{with V(¢*) < Vinas ) and returns to the origin.

We can resort to known results from classical mechanics, and see how the
possible trajectories in phase space can be parametrized with E, etc. But,
due to the lack of space we will not do it here but refer the reader to (Haken,
1978, Malchow and Schimansky-Geier, 1985, Mikhailov, 1990, Wio, 1994).

Tn general, it is a difficult (if not impossible) task to find explicit solutions
either for the stalionary problem indicated in (86), or for the (complete) time
dependent one in (85). However, there are situations where one is satisfied
just with a qualitative analysis of the behavior of such solutions. Clearly then,
the study of the stability becomes of primary importance. In this conlext,
the methods developed in previcus sections are of relevance.

4,2 Stability for Spatially Extended Systems

In the present case, we lincarize the problem aboul the stationary solution
(say 8,(z)), considering a small time dependent perturbation, and obtain in
this way linear differential equations that contain Lhe needed information.
Hence, we consider perturbed solutions of the form

d(2,8) = do(z) + p(z) M (93)

Replacing this into (85}, and linearizing in ¢(z), leads to the following eigen-
value equation

2
D a% p(z) + [% F(rzs)] - plz) = — A pla), (04

whose form, for the case of Neumann boundary conditions, suggests solutions

of the type
TITI'SL']

on(z) & cos {W (95)
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provided that
a nmy?
(% F(¢))¢=¢' —a= () (96)

The last equation shows that there is a tight connection between the eigen-
value A and the wave vector & = nw/2L associated to the perturbation.
Hence, it is possible to have cases such that, for a certain range of values
of the wave length of the perturbation the system is stable, while for other
ranges it becomes unstable.

In order to discuss the emergence of an instability, we will consider the
scheme from a more general viewpoint, valid for a wide class of systems, Let
us start from (85) for a general (infinite) problem, with a stationary homo-
geneous solulion ¢, that is stable. The stability of this solution means that
our earlier linear stability analysis will give (for a multicomponent system)
a set of eigenvalues A, all having a negative real part (ie: Re(d) < 0).
We focus on the one with the largest real part, that we denote by A(k), to
make explicit its dependence on the wave vector. Now suppose thaf there is
a control parameter ¢, whose variation could change the stability of the solu-
tion. That is, for ¢ < ¢, we have Re(A(k)) < 0 (for all k); while for € = ¢,,
Re(A(ko)) > 0 for some k = ky. Here ¢, is the critical value of the parameter
€. Usually, for ¢, # 0, a reduced control parameter is used: n = ‘—;‘—**- We
show in Fig.8 the dependence of Re(A(k}) on 7. In part (a), for n < 0,
the reference state ¢, is stable and Re(A} < 0, but it becomes unstable for
n 2 0. For g =0, the instability sets in, Re{A(kg)) = 0, at the wave vector
k= ko. For n > 0, there is a band of wave vectors (k1 < k < k) for
which the uniform state is unstable. For this situation, when n = 0, we can

have {wo kinds of instabilities: stationary if Im(A) = 0, or oscillatory when
Im()) # 0.

If for some reason (usually a conservation law) it happens that Re(M(k =
0)} = 0 for all values of 7, another form of instability oceurs. It is depicted

in part (b) of Fig.8. Here, kg = 0 is the critical wave vector, and for 7 > 0,
the unstable band is 0 = k; < k < kq. 1t is possible to show that in general
kz = n'/2, and this indicates that the arising pattern occurs on a long length
scale near the threshold 5 = 0. Once again we can find steady or oscillatory
cases associated with Zm{A) = Oor # 0.

Finally, in part (c) of the figure, we depict a case where both the instability
and the maximum growlh rate occur at ko = 0. This indicates that there is
no intrinsic length scale. For this reason the paltern will presumably occur
on a scale determined by the systein size or by the dynamics. Once again we
find steady or oscillatory cases associated with Zm(}) = 0 or Im(A) # 0.
(Cross, 1988, Newell, 1989, Cross and Hohenberg, 1993, Wio, 1994)

Another very interesting siluation arises, if we have a system of at least
two components, when there are two real roots and one of them becores
positive at some critical value of the control parameter. This is a situalion
leading to a spatially nonuniform steady state that is called a Turing insia-
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Re) (a) Rel (b} Re) {c})

>0 _ 1=>0

“1ﬂ2 ks \

7 ke\ N K Nk N K

n<0 T=0

Fig.8. Re(A) vs. k.

bility (at variance with the Hopf instability discussed before). (Nicolis and
Prigogine, 1977, Fife, 1978, Fife, 1984, Murray, 1989

To close this section it is worth remarking that the kind of analysis we
have sketched above leads to the determination of the stability regions for
particular systems. For instance, it allows us to define the so called Biisse
or stability balloon, to predict the possible appearance of new instabilities
such as the Eckhaus instability (associated with a longitudinal or compres-
sional instability), the zig-zag instability (corresponding to a long-wavelength
transversal instability), etc. (Cross and Hohenberg, 1993, Newell, 1989, Nico-
lis, 1995)

4.3 Examples of Reaction-Diffusion Systems.

Here we will treat two cases of RD models associated to one- and two-
component systers. A bistable one-component model coiresponding to an
electrothermal instability: the ballast model; and a two-component model of
the activalor-inhibifor type.

One Component Models: Ballast Resistor. The most commonly used
RD model that exemplifies most of the characteristics we have so far dis-
cussed is the Brusselator. (Nicolis and Prigogine, 1977, Haken, 1978, Murray,
1989) This model, introduced by Prigogine and Lefevre, is a simplified ver-
sion of more ellaborate models showing, qualitalively, a behaviour similar
to those observed in experiments related to the Belousov-Zhabolinskii reac-
tion, (Nicolis and Prigogine, 1977, Haken, 1978, Fife, 1984, Malchow and
Schimansky-Geier, 1985, Murray, 1989, Mikhailov, 1990, Wio, 1994) and in
particular the existence of a transition to a limit cycle. However, we will
start here considering a different (one component) model to exemplify the
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formation of spatial patterns, which is assaciated with an electrothermal in-
stability: the ballasi resistor. (Mikhailov, 1990, Schat and Wio, 1992, Wio,
1994)

We will adopt a form of the model related to experiments on supercon-
ducting microbridges, called the hot-spot model. (Skocpol, et al., 1974) We
consider a thin wire of a superconductor metal of length 2L, along which
an electric current [ is flowing. The wire is immersed in a heat bath with
constant temperature Ty Depending on Lhe values of these parameters, the
temperature profile on the wire will be either homogeneous, or inhomoge-
neous (regions with different temperatures coexisting along the wire). The
law of conservation of internal energy per unit length of the wire u(x,t) can
be writing as

g} u(z,t) = — 56;- (J(z,t) + W(z,t) I{z,t)} — Q(z,t) + I{z, t})E(z,1),

(97)
where z is the position along the wite {(—L < x < L), J is the heat current, A
is the enthalpy per unit of charge carrier and unit length, Q is the energy flow
dissipaled into the gas per unit length, E is the electric field along the wire
and [E is the heat generated by the current per unit length. As the Coulomb
forces between the charges are very strong, we assume electro-neutrality of
the wire, yielding & I(z.t) = 0 4 I(z,t) = I(t). However, Lhis as-
sumption will only be valid if one considers a range of time variation that is
short when compared with the inverse of the typical plasma frequency of the
electrons.

Using the fact that the quantities J, E and @ obey some phenomenological
linear laws, as well as Onsager relations between different “transport cocffi-
cients” (Peltier and Thompson coeflicients, etc), together with the relation
between the internal energy of the wire u(z,?) and the local temperature field
T(z,1) (du(z,t) = ¢ dT(x, ), with ¢ the heat capacily per unit length) we
obtain the systern’s equation for the temperature profile on the wire (Schat

and Wio, 1992, Wio, 1994)

cg—t-T(:c,t)z %A(%T—q(.’l‘—fl‘g)+RI’. (98)
Here J is the heat conductivity of the wire, R the isothermal resistivity per
unit length, and q is related to the energy dissipated into the gas due to the
diference in lemperature between Lhe wire and the gas. All these coeflicients
may, in principle, depend on the local temperature of the wire, while ¢ may
also depend on Tg. In order to {urther simmplily the equalion for the temper-
ature profile, we assume that the specific heat ¢, the heat conductiviiy X and
the heat transfer coefficient ¢ are all constant along the wire.
As discussed earlier, we are interested in stationary solulions for the lem-
perature field distribution. Hence, our equation has the form
d2
O:,\WT—q(T—Tu)+M. (99)
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For the resistivity R we will adopt a piecewise-linear approximation of a re-
alistic one (see the Lh.s. of Fig.9), according te R(T) = R, [T (z,t) — T,
(with 6(z) the step function: #(z) = 1 for z > 0,0(z) = 0 for z < 0)). The
assumption behind of such a form is that for T < T, the wire is supercon-
ducting while it has a finite (constant) resistivity for T > T,. Without loss
of generality we take the zero of the temperature scale at the heat bath tem-
perature Ty (Tg = 0). We also make a scaling of the paramelers in order
to have nondimensional coordinates (y = (¢/A)%z, and yr = (g/A)*L, with
~yr < y < yr). In our discusion we will assume that the current [ is fixed
(the voltage difference depending on I), and we define the following “effective
temperature”

Th =17 2Ro/ q
With all these assumptions, equation (99) for T adopts the final form
LW T + T 0T ) — T = S T) + S viT) = 0 (100)
dy? dy? dT
where the potential V(T') is defined according to (91) as
v(T) = LTdT(ﬂﬂﬂ“—n]—TU. (101)

The shape of the function F(T) = %:V(T), as weil as the approximation
adopted for the resistivity, are shown in Fig.9.

FT

Fig. 9. Approximate forms of {T) and F(T) for Lhe ballast model.

When we compare the present [orm of the nonlinear function F(T") with
the corresponding term in the Schlogl model of equation (91), we see that
the ballast model mimics the Schlogl model.

To complete the model, we need to specify the boundary conditions at
both borders: £ = +L (or y = ). As commenied above, we will only
consider Dirichlet or Neumann boundary conditions.
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To find the form of the stationary solulions one may distinguish two
different regions
(i) Cold regions, where T(y) < T, and (100) reduces to

42
g T =T =0, (102)

with solutions that have the general form T(y) = A.e¥ + Bee™v;
(ii) Hot regions, where T'(y) > 1%, and (100) reduces Lo

d2

and with general solutions of the form T(y) = Ane¥ + Bre~V + T}

The parameters A., B,, Ay and By are determined after imposing the bound-
ary conditions. Furthermore, if we have a cold region on the left and a hot
region on the right of a certain position coordinate y. (or vice versa), both
solutions should be joined together in such a way that (100) is satisfied at
the transition point. This is the case if bolth 7° and d7/dy are continuous at
¥ = y.. Using these conditions, it is clear that

Ty} = T,

allowing us to fix the value of y,.

Let us now analyze the stationary states. We first consider the homoge-
neous case. For Neumann B.C. the potential V(T') must have a maximum.
This leads to T(y) = 0 for all values of 7}, (and therefore of the current I).
However, if Ty, > T, there is an additional homogenecous solution T(y) = Tk.
Clearly both satisfy the Newmann boundary conditions. For Dirichilet B.C.,
there is only one possible homogeneous solution T(y) = 0.

We now turn to inhomogenecus stationary temperature profiles. Using
the mechanical analogy, it is possible to find inhomogeneous solutions corre-
sponding to several rebounds between the turning points of Lhe potential. But
here we will consider spatial lemperature distributions having only one max-
imum, with two c¢old regions for —y;, < y < —y.andy, < y < yz, and
one hot region for —y. < y < y. (with two transition points at y = + y,.
due to symnmetry). Through a linear stability analysis one may prove that
sclutions with several maxima are always unstable.

Imposing the boundary conditions (Neumann or Dirichlet) on the solu-
tions of the form indicated above, the different constants are deterimined
yielding the typical shapes indicated in Fig.10; part {a) for Dirichlet and (b)
for Neumann b.c. _

According to linear stability analysis we can conclude that, for Dirichlet
b.c., from the pair of simmultaneous solutions, the one with the larger dissipa-
tion (i.e. the larger hot region) is stable while the other is unstable. Similarly,
for the case of Neumann b.c., indicates that the homogeneous stationary so-
lutions are stable, while inhomogenecus structires are always unstable.
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Fig.10. Patterns in the ballst model: (a) Dirichlet b.c., (b) Neumann b.c.

Now, we will briefly discuss how to describe the propagation of structures
in one component systems, consideting (86) once more in its complete form.

We assume & one dimensional, infinite, system. 'To complete the descrip-
tion, we need to include some boundary conditions at infinity. Clearly, for a
very general form of F(#) il is not easy to find an arbitrary solution of (86)
fulfilling the choosen b.c. However, there is a particular kind of solutions of
great interest called solitary waves on which we will now focus our attention.
These waves are functions of the spatial (z) and temporal () coordinates,
not independently, but through the combination £ = z — ¢t. In terms of the
new variable £, (86) adopts the form

82 a
Da—g'ﬁ-i-(!a?d)-}‘r(gﬁ)—e. (104)
w_here% = —cb%—a.ndg;; = 3‘%.

Here we can resorl once more to the mechanical analogy used earlier
(see Sect.4.1). We again inlerpret ¢ as the spatial coordinate of a particle
of mass D moving in the force field F(¢) (derived from the potential V(¢),
ie F(¢) = %), but now in the presence of a friclion force proportional
to the velocity of the particle, i.e. %% Hence, ¢ plays Lhe role of {the friction
coefficient.

Let us concentrate on the situation-where the potential V(¢) has a bistable
form, and ask for solutions of (104) with the boundary conditions

¢ — ¢ for €& — -0
¢ = ¢ for § — 00
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with ¢; and ¢, the stationary solutions. The resulting wave, or moving pat-
tern, is called a trigger or front wave, because its propagation triggers the
transition from one stationary state of Lhe system to the other (both min-
ima of V}. This kind of waves has been observed, for instance, in chemically
reacting media or as electrical activity that propagates without attenuation
along the axonal membrane.

In order to analyze qualitatively the behaviour of a bistable system, for
instance the dependence of the (unique) front velocity on the potential pa-
rameters, we can exploit again the form of the ballast resistor model in-
troduced before. However, and always due to the lack of space, we reler to
(Murray, 1989, Mikhailov, 1990, Schat, and Wio, 1992, Wio, 1994, Hassan et
al., 1994, Hassan et al., 1994, Hagsan and Zanette, 1995, Castelpoggi, Wio
and Zanetie, £996).

We now turn to discuss the propagation phenomenon in systems with two
components.

Many Component Models: Activator-Inhibitor In order to make a
realistic description, for the theoretical representation of travelling waves of
chemical, physical or biological activity commonly observed in spatially dis-
tributed excitable media, we need to resort to models with more than one
component. All excitable media share cortain characteristic features. They
have a stable rest state, and stnall perturbations are rapidly damped out.
However, perturbations larger than a certain threshoid trigger an abrupt and
substantial response. After this fast response, the media is typically refrac-
tory to further stimulation for some characteristic time before it recovers its
full excitability. It is clear that such a sequence of events cannot be repre-
sented by a simple one component model of Lthe kind we have discussed so
far. On the other hand, the analysis of a model with a large number of com-
ponenls quickly becomes too cumbersome. Notwithstanding, experience has
shown that it is enough to resort to two component rmodels in order to be
able to qualitatively (and sometimes quantitatively) reproduce several char-
acteristics of real systems. (Fife, 1978, File, 1984, Murray, 1989, Mikhailov,
1990, Wio, 1994)

The set of equations corresponding to a model describing a two component
system, with densities u(z,t) and v(z,t), according to (85), (Fife, 1978, Fife,
1984, Murray, 1989, Mikhailov, 1990, Wio, 1994) has the general form

0 u(z,t)=D o u + f(u,v)
ot TR gt ’
8 -8t
— ) = Dv ——
ot vlz.1) Gr?
Depending on the actual form of the nonlinear terms f(u,v) and g{u,v),
even such an innocent looking pair of equations, can have an extremely com-
plicated behaviour. However, the experience has also shown that a typical

v + glu,v) (105)

-3%-

R T

e

..4.\..
s e

=

LoenhE

s rae gy
L Ay

[



——

And ARk o bma s A m -

u_‘klulml-i‘ui sl ABEaidma s :han;: sad Abdbkadas s b ass

128 ARARREE LiAAN:

Nonequilibrium Polential in Reaction-Dilfusion Systems 39

and very fruitful form is the one shown in Fig.11. There, we show in the
phase plane (u,v), the form of the nullclines (that is the curves f(u,v} = 0
and g(u,v) = 0), and the sign of the derivatives of the nonlinear reactive

functions in each plane region.

v ' glu,v)=0

- -t

Ugt Uk u

Fig.11. Nullclines of the activator-inhibitor systems.

We will now qualitatively discuss how it is thal such a simple system can
model the sequence of evenis we have indicaled at the begining of this seclion.
We recall that an excitable medium is a spatially distributed system com-
posed of excitable elements. The interaction between neighboring elements
through a diffusive coupling makes it possible to produce excitation waves. If
a local region of space is disturbed beyond a certain threshold value, then the
autocatalytic production of substance u within the excited region causes u to
diffuse into the neighboring regions, driving those regions across the thresh-
old and thus making the excitation spread spatially. This corresponds to a
front propagation. In order to make a pictorial representation of this process,
we refer to Fig.11. There is a unique homogeneous steady stale indicated by
the point (u,:, vse), that satisfies f(u,q, ty¢) = 0and g(us,v,e) = 0,and is
locally stable but excitable: while the subthreshold disturbances are rapidly
damped (perturbations in the region indicated by 1 in Fig.11), larger distur-
bances (those driving the system beyond the point u¢n) provoke an excitation
cycle that is governed by the local reaction kinetics before the system returns
to the steady statc. This cycle is indicated in the figure through the sequence
of numbers {rom 2 to 7, corresponding to differents states of the system. In
region 2, u increases by an autocatalytic process, until the phase trajectory
reaches the curve f(u,v) = 0, where the density ol v starts to increase, and
the process evolves following the nullcline as indicated by 3. After that the
process reaches a maximum value of the density for » in 4, and follows curve
5, where the density of u decreases and aftor crossing the nullcline ¢ = 0,
region 6, the other brauch of the nullcline f = 0 is reached and the system
moves along this trajectory (indicated by 7) and reaches the steady state
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(tye, vye) again.

Fig.12. Activator and inhibitor profiles.

We have seen that the abrupt overthreshold autocatalytic production of
u gives rise to the excitability of the system and the interaction between
u and v causes the recovery from the excitation state. For this reason the
variable u is sometimes called the trigger variable and v the recovery variable
{or propagaier and inhibitor, respectively). For instance, some examples in
real systems are: membrane potential as propagafor and ionic conductance as
inhibitior in neuromuscular lissue; bromous acid as propagator and ferroin as
inhibitorin the Belousov-Zhabotinskii reaction; infectious agent as prepagator
and level inmunity as inhibiter in epidemics.

A typical form of the profile in a one dimensional media for the kind of
waves that behave according to the previous description is shown in Fig.12.
The transition zone from the resting to the excited siate is called the frond,
while the transition zone fromn the excited to Lhe resting state is the backfront.

The process we have so far discussed is clearly not restricted to a one
dimenstonal geometry. In fact, in two dimensional media the same line of
argument leads to describing the so called larget struclures, that is pertur-
bations that spread radially originaling a sequence of growing rings, such as
has been observed in the Belousov-Zhabotinskii reaction. When we lock at
such structures far from the point where they originated, the curvature has
decreased and the structure acquires a one dimensional characteristic, i.e. in
the direction of propagation it has the same profile as shown in Fig.12, while
it extends “infinitely” in the normal direction.

Let us now qualitatively discuss the origin of a very important lype of
structure that arises in (two dimensional) propagator-inkibitor systems: the
spirals.

Spirals in propagator-inhibitor systems A common form of pattern in
the reaction-diffusion description of two-dimensional excitable media is the

Y, g

B e UL

it



o dh A RAL L

and AL e lsma o ih omm .

aad Abkandms s 1has: Asd Alindmm s ihmsa

[ TTERIISY. "ENINT N

¥

Nonequilibriurmn Potential in Reaction-Diffusion Systems 41

rotating spiral. The interest in this kind of pattern is due to its occurrence
in chemical {i.e. the Belouzov-Zhabotinskii) reactions as well as in biologi-
cal systems (waves of electrical and neuromuscular activity in cardiac tissue,
formation of some bacterial colonies). A complete mathematical description
of such structures is extremely difficult. However, within the propagator-
inhibilor scheme, it is possible to understand intuitively the initial stage
in the formation of an spiral wave. (Fife, 1984, Murray, 1989, Mikhailov,
1990, Wio, 1994) We start considering a thought experiment in a two dimen-
sional medium with a one dimensional solitary wave of the type discussed
earlier. That means a propagating straight band, a two-dimensional wave
with a profile in the direction of motion like the one shown in Fig.12, and
extending indefinitely in the norinal direction. Assume that such a band is
perturbed in some way (for instance by a light beam incident on a photosen-
sitive reactant). Hence, the pulse-like structure is disturbed in that region,
taking the form indicated on the r.h.s. of Fig.13. It is clear that in both
branches of the perturbed structure we will see that the points in the front
ot in the backfront will continue their motion. The only exception will be
the point indicated by v* (that will correspond to the tip of the spiral core).
This point is the boundary between the front and the backfront and, if we
consider that the front velocity has to change continuously, it must have zero
velocity.

The evolution will develop according to the following steps. We refer our
argumentation to Fig.13. On the left, we depicte the upper branch of the per-
turbed band. The points on the [ront, far from v*, move at the same original
velocity, but when we come closer to ¢*, their velocily reduces continuously.
The same happens with points on the backfront. This initial situation is in-
dicated by the curve labeled a . After a short time has elapsed, the point v*
remains immobile, but all other points have moved into their new positions
indicated by the curve labeled b. Clearly, the original form of the perturbed
band is deformed. After another short time elapses, the same process is re-
peated and the curve changes to the one labeled c; after another short time to
d, and so on. Carried to its logical extreme, this type of analysis would pre-
dict that the front would acquire a growing angular velocity and curvature,
a process that finally produces a spiral.

The experimental observation of spirals in chemically reactive media, par-
ticulatly in the Belouzov-Zhabotinskii reaction, shows that this kind of pat-
tern appears as pairs of symmetric, counter-rotating spirals. To understand
this aspect within the same qualitative piclure we must remember that origi-
nally there were two branches. However, each one is the specular image of the
other, implying that, if the motion in the neighborhood of the upper one is a
rotation in the indicated direction, the motion around the one on the bottom
will be a rotation in the opposite ditection. Hence, the same pictire offers
a description on the possible origin of spirals as well as their appearance in
counter-rotating pairs.

~H]-



42 Horacio S. Wio

a
R

S

Fig. 13. The genesis of spirals.

5 Nonequilibrium Potential

Let us now go back to the dynamical system (1) and discuss the effect of
noise. (Graham, 1978, Graham, 1987, Graham, 1990) We start writing

dz;,

5= Fix) + ; g6i(1), (106)

where £;(¢) are white noise terms of zero mean and correlations (€;()&(t")) =
27 81 6 (t — t'). The associated FPE for P((x),t) = P(zi,...,za,t), will
be a generalization of (64) given by

ad a a
5 Px,t) = Z 5 (—m(x) PO+ 7 2 5 Gt Pl t)]) (107)

with G = gg7. If we can wrile that Fy(x) = 3 ,($)j15% V(x), we find
again the situation studied in Sect.2.4 where, from a deterministic point of
view, we have a relazational flow. Hence, if G = §, it is possible o derive
the expression

Po(x) e VXV, (108)

Clearly, if g;; = $;;, the result is trivial.

Let us now consider the case where F;(x) = — Z,(S)ﬂ(‘;’—:fI + 1wy, that
in analogy with Sect.2.4 corresponds to a nenrelazationa!l flow. We assume
that § = g.g”. Hence we will have that the Hamilton-Jacobi like equation
(26) that now reads

av } av
Fi ip— —— 1
E 1+ Ej (S)]r@zj g 0, (109)
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yields, in the deterministic case, a function V(x) that is a Lyapunov func-
tional of the problem. However, it has been proved by Graham &nd collabo-
rators (Graham, 1978, Graham, 1987, Graham, 1990} that in such a case and
in the weak noise limit (y — 0), the stationary solution of the multivariate
FPE (107) associated to the set of SDE (106) is given by

Pyi(x) ~ o~V O/ 1+00), (110)

with V(x) the solution of (109). This functional corresponds to the nonequi-
libriumor Greham's potential. (Graham, 1978, Graham, 1987, Graham, 1990)

As discussed in the introduction, we can interpret the effect of noise saying
that it induces fluctuations in the system around one of the minima of V(x},
fluctuations that allow the system to explore the neighbourhood of such a
point and in this way identify it as a minimum.

The knowledge of Lhe potential V{(x) offers us, at least in principle, the
possibility of getting information about

1. fixed points (extrema of V(x)),

2. locsl stability of the fixed points,

3. global stability of the minima (atiractors),
4. barrier heights between different minima,
5. decay times of metastable states.

It is the last point, decay of metasiable states, one of the aspects that will
be discussed in the following subsections.

5.1 Some Examples of Nonequilibrium Potentials in RD Systems

In relation with pattern formation, boundary conditions (b.c.) have been re-
cently shown to play a relevant role in the appearance and stability as well as
on the propagation of spatial structures, for one and two—component systems.
(Schat and Wio, 1992, Wio et al., 1993, Hassan et al., 1994, Hassan et al.,
1994) More recently, the role of b.c. in pattern selection, and more particu-
larly the global stability of the resulling structures have been analyzed. (Izus
et al, 1995, Izus et al, 1996, Izus et al., 1996) Such analysis was zarried out
by exploiting the notion of roneguilibrimin potential or Lyapunov functional
(LF) of the system. This kind of approach has not been used in the realm of
RD systems because it is usually not possible, insofar as some polential con-
ditions are not [ulfilled, Lo obtain a Lyapunov funclion for a general problem.
However, the results of Graham and cotlaborators (Graham, 1978, Graham,
1987, Graham, 1990) point to the possibility of getting information about
such functionals as well as about global stabilily even though the system
does not fulfill the above indicated potential conditions.

When the LF exists, such an approach offers an alternative way of con-
fronting a problem that has recently attracted considerably attention, both
experimentally and theoretically. Namely, the relalive stability of the different

-H3-
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attractors, corresponding to spatially extended states, and the possibility of
transitions among them due to the effect of (thermal) luctuations. (Kerszberg
et al., 1983, de la Torre and Rehberg, 1990, Viiials et al., 1991, Hernandez-
Garcia et al., 1993, Montagne et al., 1996)

In this section we will show the results on Jocal and global stability, ob-
tained by means of the nonequilibrium potential, through a couple of simple
examples.

Ballast Resistor. The specific model we shall focus on in this section, with
a known fortn of the LF or nonequilibrium potential, corresponds to the
same simple one-dimensional, one-component model of an elecirothermal
instabilily discussed in Sect.4.3. However, it can be considered as mimicking
a broader class of bistable reaction—-diffusion models. The particular, nondi-
mensional form that we shall work with is

T =8, T - T+ Tho(T - T.). (111)

In (Izus et al, 1995), both the global stability of the patlerns and the relative
change in stability for this model were analyzed, as some b.c. parameter
was changed. Here we analyze how those results depend on the threshold
parameter.

For the sake of concreteness, we consider here a class of stationary struc-
tures T(y) in the bounded domain y € (—w,yr) wilh Dirichlet boundary
conditions at both ends, T(y = £y} = 0. These are the spatially symmet-
ric solutions to (111) already discussed in Sect.4.3. Such structures can also
be seen as a symmetrization of a set of stationary solutions to the Ballast
reaction-diffusion model in the interval {0,y.) witlh a Neumann boundary
condition at y = 0, namely, dT/dy|;=o = 0.

The explicit forms of Lthe slationary structures are

sinh{y. ) sinh(ye + v)/ cosh(n), YL LY L —Y.,
T(y) = Tn x § 1 — cosh{y)eosh(yr — y.)/ cosh(yr), ~v. < ¥y < ¥, {112)
sinh(y.} sinh(yz, — v)/ cosh(yz), ye Sy <L,

The double-valued coordinate y., al which T' = T, is given by

4

yh = %y[‘ - -é— in [z cosh(yr) & /2% cosh(yg )? — IJ , (113)
with z = 1 ~ 2T, /T, (—1 < z < 1).

When yff exists and yf < yr, the solution (112) represents a structure
with a central hot zone (7" > T¢) and Lwo lateral cold regions (T < 7). For
each parameter set there are two stationary solutions, given by the two values
of y.. In (Schat and Wio, 1992), il has been shown that the structure with
the smallest hot region 1s unslable, whereas the other one is linearly stable.
The trivial homogeneous solution T =  exists for any parameter set and is

~hb -
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always linearly stable. These two linearly stable solutions are the only sta-
ble stationary structures under the chosen boundaty conditions. Therefore,
under suitable conditions, we have a bistable situation in which two sta-
ble solutions coexist, one of them corresponding to a cold-hot—cold (CHC)
structure and the other one to the homogeneous trivial state. The unstable
solution is always a CHC structure, with a relatively small hot region.

For the symmetric solution we are considering here, the nonequilibrium
potential or LF reads (Izus et al, 1995)

L T
FIT) = 2]0" {_ (/o =T + TWb{T" — T:)] dT’) + -;-(a,:r)*} dy. (114)

Replacing (112), we obtain the explicit expression

cosh(yr, — yg:)
cosh(yr) (115)

For the homogenenous trivial solution T'(y) = 0, instead, we have F = 0.

In Fig.14 we have plotied the LF F[T] as a function of ¢, = Tc /Ty for
a fixed system size. The curves correspond to the inhomogeneous structures,
F% whereas the horizontal line stands for the LF of the trivial solution. The
upper branch of each curve is the LF of the unstable structure, where F
attains a maximum. At the lower branch and for T = 0, the LF has a local
minimum. The curve exists up to a certain critical value of ¢, at which both
branches collapse. The critical behaviour, around this point (which we will
not discuss here) was analyzed in (Zanetle et al, 1995, Castelpoggi, Wio and

Zanette, 1996).

Ft = - ,fyfz+T,?si11h(yf)

T T -
L Dzl/
' oo %
C ~ e
. ]
= a0s 1
[y -
!
210 R
a4s :
0.05 a1 218 0.9
b

Fig-14. Nonequilibrium potential F, for the slationary patierns of the ballast
resistor, as a function of ¢, for L = I. The boltom curve corresponds lo ¢,{y) and
the top one to ¢u(y). The points ¢5, are indicated.

It is interesting to note that, since the LF for the unstable solution is
always positive and, for the stable CHC structure, F < 0 for ¢, — 0, and
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> 0 otherwise, the LF for this structure vanishes for an intermedijate value of
the parameter: ¢, = ¢7. At that point, the stable inhomogeneous structure
and the trivial homogeneous solution interchange their relative stability. In
fact, T'(y) = 0 switches from being a metastable state, to being more stable
than the inhomogencous structure.

Activator-Inhibitor. The importance of activator-inhibitor sysiems for ap-
plications in physics, chemistry and biology is by now very well stablished.
(Koga and Kuramoto, 1980, Kuramnto, 1984, Ohta, 1989, Ohta et al., 1989,
Ohta et al., 1990, Wio et al., 1993, Petrich and Goldstein, 1994, Goldstein
et al., 1996, Drazer and Wio, 1996) Here we shall (ocus on a specific system
belonging to this family of two-component models. We want to present an
analysis of the global stability of stationary patterns exploiting the concept
of nonequilibrium potential.

We start with a simplified (piecewise linear) version of the activator—
inhibitor model sketched in Sect.4.3, which preserves the essential features,
and fix the parameters so as to allow for nontrivial solutions to exist. After
scaling the fields, we get a dimensionless version of the model as:

Bu(z,t) = D,8%v —u + Ou—a]—v
Ayv(x, ) D32 + Bu — yv (1186)

We confine the system to the interval —L < z < L and impose Dirichlet
boundary conditions on both exirema. According to the values of the param-
eters a, # and v, we can have a monostable or a bistable situation, (Koga and
Kuramoto, 1980, Ohta et al., 1989) In the second case we have two homoge-
neous stationary (stable) solutions. One corresponds, in the (u,v) plane, to
the point (0,0} while the other is given by (ug, vo) with

b g
ug = , tg = e
g+ B+
itnplying that the condition 3_47-7 > u must be fulfilled. Without losing gen-

erality we may assume that 0 < a < 1/2 and up < 2a. (Koga and Kuramoto,
1980)

The inhomogeneous stationary patterns appear due to the nonlinearity
of the system, and ought Lo have activated regions (1 > @) coexisling with
non-activated regions (u < a). This fact, together with the symmetry of the
evolution equations and boundary conditions, implies the existence of sym-
metric inhomogencous stationary solutions. We restrict ourselves Lo the sim-
plest inhomogeneous, symmetric, stationary solutions. That is, a symmetric
pattern consisting of a central region where the aclivator field is above a cer-
tain threshold (u > a) and two lateral regions where it is below it {u < a). As
was already discussed, (Koga and Kucamoto, 1980, Wio et al., 1993, different
analytical forms (which are here linear combinations of hyperbolic functions)

b -
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should be proposed for u and v depending on whether u > a or u < a. These
forms, as well as their first derivatives, need to be matched at the spatial
location of the transition point, which we called z.. Through that matching
procedure and imposing boundary conditions we get the general solution for
the stationary case. In order to identify the matching point z. we have to
solve the equation u{z.) = a, resulting in general in a transcendental equa-
tion for z.. In order to avoid Lhe complications arising from the possible
spatially oscillatory behaviour of the solutions, we will work in a parameter
range where the diffusion coefficient of the activator (Dy) is lower than some
critical value (D3*¢), Koga and Kuramoto, 1980, Ghta et al., 1989, beyond
which the solutions became spatially oscillatory. In particular there are up
to four different solutions for z., and associated with each one we have dif-
ferent slalionary solutions that we will indicate by .y, ttez, Ues and u.,
with increasing values of the transition point z.. A linear stability analysis
of these solutions indicates that u.; and u,3 are unstable while u.2 and u.q
are locally stable. The stable states will correspond to attractors (minima)
of the functional while the unstable ones will be saddle points, defining the
barrier height between attractors.

We now write the equations of our system specifying the time scale asso-
ciated with each field. This allows us to perform an adiabatic approximation
and obtain a particular form of the nonequilibrium potential for this sys-
tem. Measuring the time variable on the characleristic time scale of the slow
variable u (i.e.: 7), (116) adopt the form

du(z,t) = DyO2u(x,t) — ulz, ) + Bfu(x,t) ~ a] — v(z,t)
n Sev(z, 1) = D,02v(x, 1) 4- Bu(z, 1) — yv(z,1) (117)

where 7 = 7,/7,. At this point we assume that the inhibitor is much faster
than the activator (i.e.: 7, & 7). In the limit n — 0, we can rewrite (117) as

dulz, 1) = Dd2u(z,1) — u(z, 1) + Ofu(z, t) — of — v(z,1)
0 = D,82u(z,1) + Bu(z, t) — yv(z, 1) ‘ (118)

In the last pair of equations we can eliminate the inhibitor (now slaved to the
activator) by solving the second equation using the Green function method

{=Dy8% + 7}G(z,2) = §(x — 2)
v(r) = ﬁ]d:r:'(}'(n:,x')u(:c') (119)

This slaving procedure reduces our system o a nonlocal equation for the
activator only, having the form :

deufz,t) = Duaiu(:c,t)—u(x,t)*iAO[u(a:,t)—a]—ﬁ/d:c'G(a:, zu(z') (120)
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From this equation, and taking into accounl the symmetry of the Green
function G(z,z"), we can obtain the Lyapunov functional for this system,
which has the form

agu(:c,t) = -—6—.;.—5{-‘—]—
Flu] = /da: {%“- {(8eu)? + .‘i; —(u—a)@lu—a]  (121)

+§ / dz'G(z, m')u(z')u(z')}

The spatial nonlocal term in the nonequilibrium potential takes into account
the repulsion between activated zones. When two activated zones come near
each other, the exponential tails of the inhibitor concentration overlap, in-
creasing its concentration between both activated zones and creating an ef-
fective repulsion between them, the Green function playing the role of an
exponential screening between the activated zones.

We can now exploit this LF in order to discuss the stability of the sta-
tionary solutions found earlier. According (o the analysis done in (Drazer
and Wio, 1996), we can see that, obtaining the “curvature” of the potential
is equivalent to diagonalizing the operator J3[u,] and finding its eigenvalues.
Such an analysis is completely analogous to the linear stability one.

A very interesting point is to analyze the stability of the stationary solu-
tions just found, as functions of the activator diffusivity. In Fig.15 we show
the dependence of the LF vs. D, for the different patterns. We see that this
dependence of the LF for the different patterns; u,) through wu.q, is compat-
ible with the results of a linear stability analysis. A more complete analysis
of this problem can be found in (Drazer and Wio, 1996).

F [U’.J
03 F e

/ f/
” —/Uﬂ
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Fig.16. Nonequilibrium potential as a function of D, for the activator-inhibitor
system with fast inhibitor. The potential for the different stationary states are
indicated by its label u.., t =1 — 4.
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5.2 Stochastic Analysis

We study here the decay of a metastable rest state under the action of external
noise. The noise strength is assumed to be weak enough, assuring us that
the stability of the patterns withoul noise is qualitatively not altered. We
have previously found that there are locally slable uniform and non-uniform
steady states and an unstable non-uniform state with a critical radius, which
is a saddle point in the functional space. To obtain the transition probability
between metastable and stable states, it is necessary to find the conditional
probability for the random field ¢(r, 1) to be in the stable state @ iqpie(r, t) at
time ¢, given that at the initial time ¢ = 0 the system wasin a metastable state
Pmeta(r, 0). This probability can be represented by a path integral (Schulman,
1981, Langouche et al., 1982, Wio, 1990) over those realizations of the random
field £(r,t) that satisfy the initial and final conditions, that is:

Pldstaste(r, )| dmeea(r, 0)] ~ /Q[E] 8[@(r,t) — Pmetalr,0)] DE(x, 1), (122)
where the statistical weight Q[¢] for a Gaussian while noise is:
Qltl= Mo H fywfar €@, (123)

where M is a normalization constant. In the limit of small noise intensity
(v — 0), the main contribution in (122) coes from those realizations of
the field in the neighborhood of the most probable trajectory. Under this
conditions, (122) can be estinated by the steepest—descent method.

Due to the tight space, we only outline here the approach developed by
Foster & Mikhailov and Fedotov. First, it is convenient in (122) to transform
the integration over the random field £ Lo an inlegration over the realizations
of the field ¢. (Foster and Mikhailov, 1988, Fedotov,1993) In this case, the
Lagrangian of the slatistical weight results:

C[q’:]:/dr {%f+%}2, (124)

s

and we obtain

Sitstavte(r, )| Pmeralr, 0))] } . (125)

P{¢’stabl’e(rst)l¢'meta(’-'| 0)] ~ eXp { - 27

where

¢
S{d] = inf / ds £[4], (126)

0
The action functional S[¢], taken along the most probable field realization,

satisfies the Hamilton-Jacobi equation:

as
5. +H =0, (127)

9~
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where:
1 65 §S8 &F
H= f{2 (53 6¢6¢}d (128)
with the initial condition S[¢meta(z, 0}, $imetal(r, 0)] = 0. For functional deriva-

tion techniques we refer to (Hinggi, 1985). The Lagrangian £[¢] does not
contain Lhe time explicity, so the functional S[#] may be written as:

Si#] = Wig} - ht (129)

where k is a constant and W([¢] salisfies:

H{#, %'g) =h (130)

with the condition W{¢meta(r), #meta(r)] = 0. As is well known, the expected
transition time (7) is the inverse of the transition probability per unil time
p:. To find p; it is necessary to minimize the action functional in (126) with
respect {o t. This gives h = 0, and we get for p;

pi ~ e~ TV Benst (O mara(T)] (131)
The solution of (126,127) {with A = 0) may he written as:

W[¢l¢me!a} = Z{U{Cﬂ - U[éme!ﬂ]} (132)

Hence, (7) results to be

( ) _ TQCVUM""'(!‘)} Ul¢mata ¥} (133)
The factor 75 is determined by the curvature of Uf4] at its extrema and is
negligibly short compared with the average time (r). This resull. is a gener-
alization of Kramers formula (see Sect.3.4) for extended systems. (Ianggi et
al., 1990)

Decay Time for the Ballast System It is of particular interest in RD
systems to study the effect of the fluctualions induced by external noise, be-
cause they can produce frausitions between the different metastable stales.
As discussed earlier, the linearly stable states correspond to altractors (min-
ima) of the LT while the unstable ones are saddle points, defining the barrier
between allractors.

In order to account for the effecl of fluctuations in our model, we need
to include in our time-evolution equation (111) a fluctuation term, modeled
as an additive noise source, yielding a stochastic partial differential equation
for the random field T(y, t):

QT (y,t) = O3, T =T + Thi{(T — 1.) + €(y, 1) (134)
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The simplest assumption aboul the fluctuation term £(y, t) is that it is Gaus-
sian white noise with zero mean value and a correlation function given by:

(Ew )W, ) =27v6(t —t')6(y — o), (135)

where 7 denotes the noise sirength. It is also possible to take into account
noise sources yielding a multiplicative noise term, but we shall not consider
this possibility here.

Now we will exploit the scherne developed in Sect.5.2. The behavior of {r)
as a function of ¢, = T./T} for a fixed system size is shown in Fig.16. There
is a radical change in the behavior when ¢, oversteps a threshold value (¢7),
as indicated before, due to the change in the rclative stability between the
homogeneous and nonhomogeneous states. The conlinuous lines in iht figure
refer to: the decay of the metastable state towards the absolutely stable one
for the line indicated with AF(¢,) up to the point ¢}, while the following
line indicates the extention of the lines depicting the value of {r) from the
original state, and viceversa for AF(¢o).

riop(<t >f1,)

b

Fig.16. yIn{{r}/r0) vs. é. for the ballast model wilh Dirichlet b.c.

The results just obtained will be valid as long as the barrier height be-
tween the metastable and the stable states (given by the value of the LF at
the unstable state) is large enough, assuring that the Kramers’ like formula
Eq.(133) applies.

5.3 Stochastic Resonance

We present here a briel analysis of this phenomenon in a spatially extended
system by exploiting the results obiained using the unotion of the nonequi-
librium potential (Graham, 1978, Graham, 1987, Graham, 1990, Izus et al,
1995, lzus et al, 1996, Izus et al., 1996, Zanctte et al, 1995) in the ballast
resistor rodel, as this model corresponds (to some approximation) to the con-
tinuous limit of the coupled system studied by Linduer ef al.. The study of the
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features of the phenomenon of slochastic resonance in the case of extended
systems is still incomplete, (Jiing and M.-Kress, 1995) with the particularly
interesting recent results of numerical simulations of arrays of coupled nonlin-
ear oscillators (Lindner et al.,1995, Bulsara and Gammaitoni, 1996, Lindner
et al.,1996) showing that the coupling enhances the response.

We repeat here the particular form of the (one dimensional) model that
we work with

a¢—962 ¢ 1
58 =Dzt -4+60(6-4.), (136)

in the bounded domain z € [~L, L] and with Dirichlet b.c. at both ends, i.e.
#(£L,t) = 0. As discussed earlier, we have the trivial solutjon $o(z) = 0,
which is linearly stable and exists lor Lthe whole range of parameters, and only
one stable nonhomogeneous struclure, #,(x), that presents a central excited
zone where ¢,(z) > ¢,.. Besides that, we find another similar unstable struc-
ture, ¢,(z), with a smaller central excited zone. This pattern corresponds
to the saddle separating both attractors #o(z) and @,(z), see, for inslance
Fig.14. There are other unstable nonhomogenous solutions, but playing no
role in this problem. (Schat and Wio, 1992)

'The indicated patterns are extrema of the LF or nonequilibrium potential
of our system that reads (sce Sect.5.1) (Izus et al, 1995, Izus et al, 1996, Izus
et al., 1996, Zanette et al, 1995)

f[qs,qsc}:/_:L{—-/:(—wa[qs—m]) d¢.+—§(g—3)2}ax. (137)

In Fig.14 we show the LF F{¢, ¢.] evaluated at the stationary patterns ¢
(Fl#o] = 0), ds(x) (F* = F[8,]) and ¢u(z) (F* = Fgy]), for a system size
L =1, as a function of ¢, and for two values of D. In the bistable zone, the
upper branch of each curve is the LF for $u(2), where F altains an extremuin
(as a matter of fact it is a saddle of the nonequilibrium potenlial). On the
lower branch, for 4,(z), and also for ¢g(x), the LF has local minima. For
each value of [ the curves exist up to a certain critical value of ¢, at which
both branches collapse. It is interesting to note that, since the LF for dulz)
is always positive and, for ¢,(z}, F* is positive for some values of ¢, and
also F* — —co as ¢, — 0, F* vanishes for an intermediate value of $. = ¢,
where ¢,(z) and do(x) exchange their relative stability.

In order to account for the effect of fluctuations, we include in the time-
evolution equation of our model (111) a fluctuation term £(z,t), as was dis-
cussed in Sect.5.2. We denote the noise strength with 7. According Lo the
scheme discussed in Sect.5.2, we have the Kramers' like result for the first-
passage-time () indicated in (133) tliat we repeat here

Afwﬁd}, (138)

(7) = o oxp { 27100
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where AF[¢, dc] = Flbunst(v), bc] — Fbmera(¥), ¢c]. The prefactor 7g is de-
termined by the curvature of F[¢, ¢ ] at its extrema. In the Fig.16 we have
shown the form of AF[#g, ¢.] (line (b)) and AF[¢,, ¢ (line(a)), as a function
of ¢.. It also corresponds to the behavior of In({r)/r). '

We now assume that, duc Lo an external harmenic variation, the param-
eter ¢, has an oscillatory part ¢.(t) = ¢! + ¢, cos{§2{ + ). For the spatially
extended problem, we nced Lo evaluate the space-time cotrelation function
{(¢(y, 1)é(y',t")). To do this we will use a simplified point of view, based on
the two state approach of MNW, (McNamara and Wiesenfeld, 1989) that
allows us to apply almost directly most of their results. To proceed with
the calculation of the correlation function we need to evaluate the transition
probabilities between our two stales ¢g and ¢,,

Wy = 5 exp (—~AF[$. ¢el/7), (139)
where
SAF(S, ¢
278,95 716,80+ 662708, con(t 1 ).
This yields for the transition probabilities
1 o
Wy = E(QQ:F oy -$—- cos(£2t + go)), (140)
with
o = exp(—AF(6, écl/7)
dAF
[s SR (Xg—a:;:—“;. (141)

With this identification, and using the fact that ¢o = 0, only one term re-
mains. Hence, after averaging over Lhe random phase ¢, we end up with an
expression similar to their correlation function but in which Lhe position of
their minima, ¢, is replaced by ¢? = ¢,(z)%.

To obtain the gencralized susceptibility S{x,w), we need to perform the
Fourier transform of the correlation function in time as well as in space.
Due to the fact that the space and time dependences of the corretation func-
tion factorize, S{k,w) factorizes Loo, and it is enongh to analyze its time
dependence. The Fourier transform of this time dependence yields a [unc-
tion analogous to the usual power spectrumn function S(w). (McNamara and
Wiesenfeld, 1989) Finally, the result for the SNR is

SNR ~ (AAy ") exp (~24(4,42)/7), (142)

where ) is an estimation of the potential curvature at the potential minima
(as given by the linear stability eigenvalue), and

dAF
A .T;"c??&"l"?,‘w“ (143)
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Equation (142) is analogous to what has been obtained in zero dimensional

syslems, but AF[¢, 4] contains all the information regarding the spatiatly
extended character of the system.

In Fig.17 we show the dependence of the present result for the SNR on
v, for typical values of the parameters (same as in Fig.16), and different
values of D). It is seen that the response increases for increasing values of
D). Also in Fig.16 we show the dependence of the maximum of the SNR as
a function of D (that plays here the role of Lhe coupling parameter). These
results are in good qualitative agreement with recent numerical results for
a system of coupled nonlinear oscillators. (Lindner et al.,1995, Bulsara and
Gammaitoni, 1996, Lindner et al., 1996, Wio and Castelpoggi, 1996)

0.05 T T T T T T T T
020‘
0.04 [ = 015 -
E
" 610
2.03 | o 005 4
% ool O T T 17 15 T3
& - D(coupling)
\
e \ |
0.00 |- 4
i i 1 " L 1 L H 1 i 1

0.00 0.02 0.04 0% 0.c3 910 0.12 014 .16

y (noise intensity)

Fig.17. SNR as a function of the noise intensity v (Eq.(17)), for (a) 2 = 0.9, {b)
= 1.0, {c} = 1.1. We fixed ¢. = ¢!, L = 1, 8. = 0.01 and 2 = 0.01. The insert
shows the maximum of SNR as a function of .

It is worth remarking here that the present calculation breaks down for
large values of D). This is due to the fact that, for increasing I3, the curves
in I'ig.14 shift to the left while the barrier separating the attractors tends to
zero. Il is also worth noting that, except for the approximation involved in the
Kramers' like expression in (138) and the two level approximalion uszd for
the evalnation of the correlation funclion, all the previous results (form of the
patterns, nenequilibrium potential} are analytically exact. However, in 4 more
careful analysis of the problem, as indicated by the present rough calculation,
it seems reasonable to expect different strengths for the SR phenomeua for
different wave lengths, as the dependence of the generalized susceptibility

5(k,w) on k and w —that will not necessarily factorize- also imply that SNR
~ SNR{x,w).
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8 Conclusions

In this set of lectures we have presented some elements of dynamical sys-
tems, stochastic processes and reaction-diffusion models, in order to build
the necessary background to face the problem of exploiting the notion of
the nonequilibrium potential in extended systems. Through the knowledge of
such nonequilibrium potential we have studied some simple (piecewise linear)
reaction~diffusion models representing bistable systems.

Such nonequilibrium potentials have enabled us to analyze the global sta-
bility of the system and the change in the relative stability between atractors
as some parameter (threshold paraineler, albedo o partial reflectivity at the
borders, and/or the system length) is varied. Through this Lyapunov func-
tional, we have also computed the mean lifetime or mean first-passage time
for the decay of the metastable stationary state. In this way, we have shown
how some parameters or b.c. not only rule the relative stability between at-
tractors, but also the response of the system under the effect of fluctuations.

As a novel aspect we have discussed how o exploit the previous results in
order to be able Lo study the phenoinenon of stochastic resonance in extended
systems. Such studies are scarce due to the almost unsurmountable difficulties
they present. (Jing and M.-Kress, 1995, Wio, 1896, Marchesoni et al.,1996,
Wie and Castelpoggi, 1996)

We are fairly certain that the present form of analysis could be extended
to the general activator-inhibitor system and other multicomponent systems.
There is strong evidence of the possibilities of obtaining the nonequilib-
rium potential for more general situations as shown in some recent papers.
(Descalzi and Graham, 1992, Descalzi and Graham, 1994, Izus ot al, 1996)
The possible applications in chemical and biological systems, (Moss, 1992,
Bezrukov and Vodyanoy, 1995, Collins et al., 1995, Wiesenfeld and Moss,1995)
and their relation with spatio-temporal synchronization problems, (Kuramoto,
1984} are very well known.
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