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Winding Number Instability in the Phase-Turbulence Regime
of the Complex Ginzburg-Landau Equation

R. Montagne,* E. Herndndez-Garcia, and M. San Miguel
Departament de Fisica, Universitat de les Hies Balears and Instituto Mediterraneo de Estudios Avanzados, IMEDEA ( CSiC-UIB),

E-07071 Palma de Mallorca, Spain
(Received 29 March 1996)

We give a statistical characterization of states with
(PT) regime of the one-dimensional complex Ginzb

nonzero winding number in the phase turbulence
urg-Landau equation. We find that states with

winding numbers larger than critical ones are unstable in the sense that they decay to states with

smaller winding numbers. The transition from pha
breaking transition which occurs when the range o

se 1o defect turbulence is interpreted as an ergodicily
f stable winding numbers vanishes. Asymptotically

stable states which are not spatiotemporally chaotic are described within the PT regime of a nonzero

winding number.  [S0031-9007(96)00561 -3]

PACS numbers: 05.45.+b, 05.70.Ln, 82.40.Bj

Spatiotemporal complex dynamics [1,2} is one of the
present focuses of research in nonlinear phenomena. Much
effort has been devoted to the characterization of different
dynamical phases and transitions between them for model
equations such as the complex Ginzburg-Landau equa-
tion (CGLE) [1,3~11]. One of the main questions driving
these studies is whether concepts brought from statistical
mechanics can be useful for describing complex nonequi-
librium systems [3,12]. In this paper we give a characteri-
zation of the spatiotemporal configurations that occur in the
phase turbulence (PT) regime of the CGLE (described be-
1ow), for a finite system, in terms of a global wave number.
This quantity plays the role of an order parameter classi-
fying different phases. We show that in the PT regime
there is an instability such that a conservation law for the
global wave number occurs only for wave numbers within
a finite range that depends on the point in parameter space.
Qur study is statistical in the sense that averages over en-
sembles of initial conditions are used. Our results allow a
characterization of the transition from PT to defect or am-
plitude turbulence (DT) (another known dynamical regime
of the CGLE) in terms of the range of conserved global
wave numbers: As one moves in parameter space, within
the PT regime and towards the DT regime, this range be-
comes smaller. The transition is identified with the point
in parameter space at which such a stable range disappears.

The CGLE is an amplitude equation for a complex field
A(x, 1) describing universal features of the dynamics of
extended systems near a Hopf bifurcation [1,7]

JA=A+ (1 +ic)VPA — (1 + icy) [APA. ()

Binary fluid convection [13], transversally extended lasers
[14], chemical turbulence [15], and bluff body wakes [16],
among other systems, can be described by the CGLE
in the appropriate parameter range. We will restrict
ourselves in this paper to the one-dimensional case, that
is A = A(x,1), with x € [0,L]. For this situation a
major step towards the analysis of phases and phase

0031-9007/96,/77(2)/267(4)$10.00

transitions in (1) was the identification [3-5] of different
chaotic regimes in different regions of the parameter
space [e1.c2] (see Fig. ). Equation (1) has plane-wave
solutions Ap = 1 — kZe** with k € [-1,1]. When
¢ic; > —1 there is a range of wave numbers [ kg, kel
such that the plane-wave solutions with wave numbers
in this range are linearly stable. They become unstable
outside this range (the Eckhaus instability [6]). The limit
of this range kg approaches zero as the product ¢ic2
approaches —1, so that the range of stable plane waves
vanishes by approaching from below the line cy¢z = —1
(the Benjamin-Feir or Newell line, labeled BF in Fig. 1).
Above that line no plane wave is stable and different
turbulent states exist. The authors of [3-3] identified
three different regimes in different regions above the
BF line (Fig. 1): PT, DT, and bichaos. Among these
regimes, the transition between PT and DT has received
special attention [3,10,17]. In spite of the fact that
there are some indications that this transition can be ill
defined in the L -— o= limit [5,9,10], the PT regime is

3.5
PHASE

L, TURBULENCE

DEFECT TURBULENCE

NO CHAOS

HICHAOS

il I ———— _ _7|

-1.5 —71‘2 -0.9 —0.6 -0.3 0.0
FIG. 1. Regions of the parameter [\, 1] space for the CGLE

displaying different kinds of regular and chaotic behavior.
Lines L,, L were determined in [3-5].
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robustly observed for any finite size system and for finite
observation times, with the transition to DT appearing
at a quite well-defined line (L, in Fig. 1) [9]. In the
DT region the modulus JA| of A = |Ale'® becomes zero
at some instants and places (called defects), so that the
phase ¢ becomes undefined and the winding number
v= fl-,; ff)‘ 9. ¢dx changes value during evolution. In
contrast, dynamics maintains the modulus of A far from
zero in the PT region, so that » is thought to be a
constant of motion there. A global wave number of the
configuration can be defined as k = 2mw/L. In the
bichaos regime one may observe either DT, PT, or a
coexistence of them depending on the initial conditions
[5]. These different regimes were originally identified
from the analysis of the space-time density of defects. If
this picture is correct, one can speculate that the transition
between DT and PT would be a kind of ergodicity
breaking transition [18] as in other systems described
by statistical mechanics. DT would correspond to a
“disordered” phase and v classifies different “ordered”
phases in PT. However, we note that most studies of the
PT regime have considered in detail only the case of ¥ =
0. In fact the phase diagram in Fig. 1 was constructed for
this case. In order to provide a betler understanding of the
PT-DT transition we undertake in this Letter a systemalic
study of PT configurations with v # 0.

Typical configurations of the PT state of zero winding
number consist of pulses in |Af, corresponding to phase
sinks, that travel and collide rather irregularly on top of a
k = 0 unstable background wave (that is, a uniform oscil-
lation) [3.5]. The phase of these configurations strongly
resembles solutions of the Kuramoto-Shivashinsky (KS)
equation. Quantitative agreement has been found between
the » = 0 PT states of the CGLE and solutions of the
KS equation near the BF line {10]. The more obvious
effect of a nonzero v is the appearance of a uniform
drift added to the irregular motion of the pulses. In ad-
dition, Chaté [4,5] reported an earlier breakdown of the
PT regime when ¢ # 0. Our results below show that not
all the winding numbers are in fact allowed in the PT re-
gion at long times. PT states with too large |v| are only
transients and decay to states within a band of allowed
winding numbers. The width of this band shrinks to zero
when approaching the line L;. In addition we find that the
allowed nonzero winding number states are not of a single
type. We have identified three basic types of asymprotic
states for ¥ # 0, which we describe below,

In order to study the dynamics of states with v # 0 we
have performed simulations extensively covering the PT
region of parameters of Fig. 1. Only a small part of the
simulations is shown here, and the rest will be reported
elsewhere. We use a pseudospectral code with periodic
boundary conditions and second-order accuracy in time.
Spatial resolution was typically 512 modes, with runs of
up to 4096 modes to confirm the results. We work at

fixed system size L = 512, The initial condition in our
simulation is a plane wave of the desired winding number,
slightly perturbed by a white Gaussian random field. The
initial evolution of the spatial power spectrum is well
described by the linear stability analysis around the initial
plane wave: Typically the perturbation grows mosily
around the most unstable wave numbers identified from
such linear analysis. After some time the system reaches
a state similar to the » = 0 PT, except for a nonzero
average velocity of the chaotically traveling pulses. We
call this state riding PT. Iis spatial power spectrum is
broad and unsteady, with the more active wave numbers
located around the one determined by the initial winding
number, We observe that when this winding number is
small, it remains constant in time, and the system either
remains in the riding PT state or approaches one of
the more regular asymptotic states that will be described
below. If bz| is initially too high, the competition between
wave numbers leads to phase slips that reduce |} until a
value inside an allowed range is reached. Then the system
evolves as before.

We present in Fig. 2 the temporal evolution of 7(t},
the average of v{r) over 50 independent realizations of
the random perturbation added to the initial plane wave
for a fixed point in parameter space. The variance among
the sample of 50 realizations is also shown. Three initial
values v; of the winding number are shown. 7(s) typically
presents a decay from »; to the final winding number »;.
The decay is found to take place in a characteristic time
7 that we quantify as the time for which half of the jump
in » has been attained. Figure 3 shows 1/7 for different
values of »,. The different curves correspond to ditferent
values of ¢ with fixed ¢,. Similar results were obtained
for ¢1 fixed and varying ¢;. 7 increases with an apparent
divergence as v, approaches a particular value ». which
is a function of ¢ and ¢;. We estimate this v, by fitting
linearly the data for 1/7. Other fits involving nontrivial

20
15F &

= 10F

T

5
0
3E
2E E
s 1F [ —
"y )
0 500 1000 1500 2000
t
FIG. 2. (a) Temporal evolution of 7(r) for three different ini-

tial winding numbers »; = 19 (solid), 15 (dotted), 10 (dashed).
¢ = 2.1,¢; = =075 (b) Winding number standard devi-
atton er.
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FIG. 3. Inverse of the characteristic time for winding number
relaxation as a function of the initial winding number. The

value of ¢, is fixed {¢; = 2.1) and ¢, varies from near the
BF line (¢; = —1/2.1) to the L, line {2 = ~0.9). Dilferent
symbols correspond to ¢3 = —0.6 (+), ¢z = —0.7 (%), c2 =

—0.75 (O), €3 = —08 (A), and ¢; = —~0.83 (L), The inset
shows the critical winding number (».) as a function of c3.

critical exponents have been tried, but they do not improve
the simpler linear one in a significant manner. A very
similar value of v, is obtained by simply determining the
value of »; below which v({r) does not change in any of the
realizations. Values of v. from some of the simulations
are in the inset of Fig. 3. v, vanishes as cy approaches
the transition line L, (or Ly when passing through the
bichaos region). For example, the linear fitting of the
data in the inset of Fig. 3 and extrapolation towards zero
v reproduces the value for Ly of [3,5] (c2 = —0.9 for
¢; = 2.1) within the fitting error in ¢ of +0.02.

The winding number instability found here in the PT
region is strikingly similar to the Eckhaus instability
of traveling waves below the BF line of Fig. 1 [6]:
There is a range of allowed winding numbers such that
configurations outside this range undergo phase slips
until an allowed v is reached. The difference is that
below the BF line, the attractor for each stable » is a
traveling plane wave of wave number k, whereas each
v, or an equivalent global wave number, characterizes
phase turbulent attractors above the BF line. The allowed
range of traveling waves shrinks to zero when (c1,c2)
approaches the BF from below, whereas above BF, the
allowed » range shrinks to zero when approaching the
L, line from the right. In this picture, the transition PT-
DT appears as the BF line associated with an Eckhaus-
like instability for phase turbulent waves. Such winding
number instability gives rise to a transition between states
of different global wave numbers, bul none of these states
is a perfect traveling wave (TW) state with a well-defined
uniform wave number. The transition is thus reminiscent
of the one observed for an Eckhaus instability in the
presence of stochastic noise [19]. In the latter case a
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local wave number independent of position cannot be
defined because of noise, while for phase turbulent waves
the disorder is generated by the system dynamics. The
comparison is also instructive because it can be shown
that, for the one-dimensional stochastic case, there is
no true long range order, and therefore no true phase
transition in the infinite size limit [20]. But for finite
sizes and finite observation times, well-defined effective
transitions and even critical exponents can be introduced
[19). The PT-DT transition in the CGLE can be an
effective transition of this kind. In order to further
characterize the robustness of the effective transition an
analysis of system size effects should be performed.
Preliminary results indicate that the v, obtained for each
(1, ¢z} point grows linearly with system size L, as it
should happen for a well-defined extensive quantity.

Finally, we consider the nature of the asymptotic states
allowed within the band of “stable” ». We have numeri-
cally found three basic types of states in the PT region of
parameters with nonzero ». Figure 4 shows in gray levels
the value of d,¢{x,t) as a function of x and . The state
shown in the top left is the familiar [5] riding PT, which is
similar to the PT usually seen for v = 0 (wiggling pulses
in the gradient of the phase) except for a systematic drift
in a direction determined by v. The other two states do
not show spatiotemporal chaos. They can be described as
the motion in time of a spatially rigid pattern on the top of
a plane wave (with k # 0) background and with periodic
boundary conditions. The state shown in the top right con-
sists of equidistant pulses traveling uniformly. They are
the quasiperiodic states described in [6]. The state shown
in the bottom left, which we call frozen turbulence, con-
sists of pulses uniformly traveling on a plane wave back-
ground, as in the quasiperiodic case, but now the pulses are
not equidistant from each other. The spatial power spec-
trum is shown for this latter case. It is a broad spectrum
in the sense that the inverse of its width, which gives a
measure of the correlation length, is small compared with
the system size. This is due to the irregular positions of
the pulses. In addition, the spectrum is constant in time,
which makes this frozen state different from riding PT and
reflects that the pattern moves rigidly. The existence of the
two states with no spatiotemporal chaos (quasiperiodic and
frozen turbulence) described above can be understood by
analyzing the phase equation valid near the BF instability.
In the case of a nonzero v il contains terms breaking the
left-right symmetry [6,21], and it is known as a Kawahara
equation [22]. Its uniformly traveling solutions are related
to the rigidly propagating patterns of Figs. 1(b) and 1{c).
These solutions can be analyzed with the tools of Shilnikov
theory [23]. The details will be discussed elsewhere.

In addition to the pure three basic states, there are
configurations in which they coexist at different places of
space, giving rise to a kind of intermittent configuration,
some of them already observed in [4]. The main results
reported here, that is the existence of an Eckhaus-like
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instability for phase-turbulent waves, the identification of
the transition PT-DT with the vanishing of the range of
stable winding numbers, and the coexistence of different
kinds of PT attractors should in principle be observed
in systems for which PT and DT regimes above a Hopf
bifurcation are known to exist [16). We note in addition
that the experimental observation of what seems to be an
Eckhaus instability for nonregular waves has been already
reported in [24].

(c) (d)

FIG. 4. Spatiotemporal ¢volution of d,¢(x,1) with time run-
ning upwards and x in the horizontal direction. The lighter grey
corresponds to the maximum value of 9, ¢ (x,7) and the darker
grey corresponds to the minimum value. Different scales of
grey are used in each case in order 1o see the significant struc-
tures. (a) Last 10° time units of a run 10* time units long for a
riding PT state at ¢, = 2.1 and ¢; = —0.83. The initial condi-
tion was a TW with »; = 20 that decayed to vy = —1 after a
short time. (b} Last 107 time units of a run 10° time units long
for a quasiperiodic state. The initial condition is random noise
with an amplitude of 0.05. ¢, = 2.0 and ¢, = —0.8. (c) Last
10 time units of a run 10* time units long for a frozen turbu-
fence state. The initial condition is a TW of »; = 12 that de-
cayed to ¥, = 6 atter a short time. ¢, = 1.75 and ¢; = —0.8.
(d) Spatial power spectrum S(g) as a function of wave num-
ber for the frozen turbulence configuration shown in {¢). This
specimen i1s constant in time.
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Wound-up phase turbulence in the Complex Ginzburg-Landau Equation

R. Montagne*$| E. Herndndez-Garcia*?, A. Amengual’, and M. San Miguel®s
! Departament de Fisica, Universstat de les Illes Balears, E-07071 Palma de Mallorea, Spuin
% Instituto Mediterrdneo de Estudios Avanzados, IMEDEA! (CSIC-UIB), E-07071 Palma de Mallorca, Spain
(December 16, 1996)

We consider phase turbulent regimes with nonzero winding number in the one-dimensional Cotn-
plex Ginzburg-Landau equation. We find that phase turbulent states with winding number larger
than a critical one are only transients and decay to states within a range of allowed winding numbers.
The analogy with the Eckhaus instability for non-turbulent waves is stressed. The transition from
phase to defect turbulence is interpreted as an ergodicity breaking transition which occurs when the
range of allowed winding numbers vanishes. We explain the states reached at long times in terms
of three basic states, namely guasiperiodic states, frozen turbulence states, and riding turbulence
states. Justification and some insight into them is obtained from an analysis of a phase equation for
nonzere winding number: rigidly moving solutions of this equation, which correspond to quasiperi-
odic and frozen turbulence states, are understood in terms of periodic and chaotic solutions of an
associated system of ordinary differential equations. A short report of some of our results has been
published in [Montagne et al., Phys. Rev. Lett. T7, 267 (1996)].

PACS: 05.45.4b,82.40.B;,05.70.Ln

I. INTRODUCTION
A. The complex Ginzburg-Landau equation and its phase diagram

Spatio-temporal complex dynamics [1, 2, 3] is one of the present focus of research in nonlinear phenomena. This
subject lies at the intersection of two important lines of thought: on the one hand the generalization of the ideas of
clvnamical systems theory to high dimensional situations[4, 5, 6], and on the other the application of some concepts
and tools developed in the field of statistical mechanics, specially in the study of phase transitions, to the analysis of
complex nonequilibrium systems [7, 8, 9].

An important effort has been devoted to the characterization of different dynamical states and transitions among
them for model equations such as the Complex Ginzburg-Landan Equation (CGLE) [1, 4, 7, 10, 11, 12, 13, 14, 15,
1ii. 17}. The CGLE is an equation for a complex field A{x,#}:

QA=A+ (1 +ic))VIA-(L+ica) AP AL (1.1)

A(x, ) represents the slowly varying, in space and time, complex amplitude of the Fourier mode of zero wavenumber
when it has become unstable through a Hopf bifurcation (the signs used in (1.1) assume it to be supercritical).
The CGLE is obtained universally when analyzing the dynamics sufficiently close to the hifurcation point. In one
dimensional geometries, (1.1} or a coupled set of similar equations with additional group velocity terms describe
also the evolution of the amplitudes of Hopf-bifurcated traveling waves [1, 14, 18]. Binary fluid convection [19],
transversally extended lasers [20, 21], chemical turbulence[22, 23], bluff body wakes [24], the motion of bars in the
Led of rivers [25], and many other systems have been described by the CGLE in the appropriate parameter range.
We will restrict ourselves in this paper Lo the one-dimensional case, that is A = A(x, 1}, with x € [0, 1.]. As usual, we
will use pericdic boundary conditions in ..
The one-dimensional Eq. (1.1) has traveling wave {TW) solutions

Ap = ST E2etFamwet) g — ey 4 (o) — ep)k? (1.2)

with & € [=1,1]. When 1 + e1ca > 0 there is a range of wavenumbers [—kg, kg] such that TW solutions with
wavenumber in this range are linearly stable. Waves with k outside this range display a sideband instahility (the

*on leave from Universidad de la Republica (Uruguay).
RL: hitp:/ fwww.imedea.uib.es/Nonlinear

- —— W W W R



Fokhaus instability (1, 13, 26]). The limit of this range, kg, vanishes as the quantity 1+ ¢; ¢y approaches zero, so that
the range of stable traveling waves vanishes by decreasing 1+ ¢jcq. The line 1 + ¢y = 0, is the Benjamin-Feir-Newell
line[27. 28], fabeled BFN in Fig.1. Above that line, where 1 + ¢yc2 < 0, no traveling wave is stable and different
furbulent. states exist. A major step towards the analysis of phases and phase transitions in (1.1) was the numerical
constrnetion in [7, 11, 12] of a phase diagram that shows which type of regular or chaotic behavior occurs in different
regions of the parameter space [¢q, ¢2]. Fig. 1 has been constructed from the data in (7. 11, 12). Above the BFN line,

three types of turbulent behavior are found, namely phase turbulence (PT), defect or amplitude turbulence (I¥T),
and bichaos (BC),

PHASE
TURBULENCE
DEFFCT TURRULENCE

NO CHAOS

. . L
i 1.2 -0.9 -0.8 -a.3 a0

FIG. 1. Regions of the parameter space [cy,¢.] for the CGLE displaying different kinds of regular and chaotic behavior.
Lines L1, La were determined in[7, 11, 12]. See the text in Section I for the explanation of the different symbols.

Phase turbulence is a state in which A(z,t) = |A]e' evolves irregularly but with its modulus always far from
[ 1] = 0. Since the modulus never vanishes, periodic boundary conditions enforce the winding number defined as

|k
v = Efo Orpda ()

to be i constant of motion, fixed by the initial condition. v is always an integer because of periodic boundary
conditions . ‘The quantity & = 27/ L can be thought of as an average or global wavenumber. To the left of line Ly
(region DT), in contrast, the modulus of A becomes zero at some instants and places (called defects or phase slips).
I such places the phase ¢ becomes undefined, so allowing v to change its value during evolution. BC is a region in
which either PT, DT, or spatial coexistence of both can be ohserved depending on initial conditions. It should be
noted that chaotie states exist also below the BEN line; To the left of the line La, a chaotic attractor called Spatio
Timiporal Intermittency (S'T1) coexists with the stable traveling waves [11]. A diagram qualitatively similar to Fig. 1
has also been found for the two-dimensional CGLE-[29, 30]. Despite the relevance of v in the dynamics of the CGLE,
niost studies of the P'I' regime have only considered in detail the case of » = 0. In fact the phase diagram in Fig. 1 was
vonstrieted [7, 11, 12] using initial conditions that enforee v = 0. Apart from some limited obscrvations[12, 13, 30],
systematic consideration of the v # 0 (wound) disordered phases has started only recently (10, 31, 32]. States with
12 # U are precisely the subject of the present paper.

B. The PT-DT transition

Among the regimes described above, the transition between PT and DT has reccived special attention [7, 10, 16,
12,43} The PT regime is robustly observed [or the large but finite sizes and for the long but finite observation
ties allowed by computer simulation, with the transition to DT appearing at a quite well defined line {L;in Fig. 1)
50300 but it is unknown if the PT state would persist in the thermodynamic linmit 1. — 2. Qne possible seenario
s 1 hat i a system large enough, and after waiting enough time, a defect would appear somewhere. making thus the
comservation of »oonly an approximate rule. In this scenario, a PT state is a long lived metastable state. In the
alternative scenario, the one in which PT and the transition to DT persist even in the thermodynamic limit, {his
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fransition would be a kind of ergodicity breaking transition [10, 34] in which the system restricts its dynamics to the
~mall portion of configuration space characterized by a particular ». DT would correspond to a “disordered” phase
and clifferent “ordered” phases in the PT region would be classified by its value of v. The idea of using a gquantity
related to v as an order parameter [10} has also been independently proposed in [31].

The question of which of the scenarios above is the appropriate one is not yet settled. Recenl investigations seein
1o slightly favor the first possibility (12, 15, 16, 30]. The most powerful method in equilibrium statistical mechanics
(o distinguish true phase transitions from sharp crossovers is the careful analysis of finite-size effects [35]. Such type
A analysis bas been carried out in (15, 30] , giving some evidence (although not definitive} that the PT state will not
properly exist in an infinite system or, equivalently, that the Ly line in Fig. 1 approaches the BFN line as [ — ~o.
Here we present another finite-size scaling analysis, preliminarily commented in [18], hased on the quantily v as an
order parameter. Qur result is inconclusive, perhaps slightly favoring the vanishing of PT at large system sizes. In
anyv case, the PT regime is clearly observed in the largest systems considered and its characterization is of relevance
lor experimental systems, that are always finite. In this paper we characterize this PT regime in a finite system as
we now outline.

C. Qutline of the paper

We show that in the PT regime there is an instability such that a conservation law for the winding number occurs
oy for v within a finite range that depends ou the point in parameter space. PT states with too large |v] are only
transients and decay to states within a band of allowed winding numbers. Qur results, presented in Section 11, allow
a characterization of the transition from PT to DT in terms of the range of conserved v: as one moves in parameter
space. within the PT regime and towards the DT regime, this range becomes smaller. The transition is identified
with the line in parameter space at which such stable range vanishes. Analogies with known aspects of the Eckhaus
anel the Benjamin-Feir instabilities are stressed. States with v # 0 found in the PT region of parameters at late times
are of several types, and Section I1I describes them in terms of three [10] elementary wound states. Section IV gives
some insight into the states numerically obtained by explaining them in terms of solutions of a phase equation. In
addition, theoretical predictions are made for such states. The paper is closed with some final remarks. An Appendix
explains our numerical method.

I1. THE WINDING NUMBER INSTABILITY

Ihe dynamics of states with non-zero winding number and periodic boundary conditions has been studied numer-
ically in the PT region of parameters. In order to do so we have performed numerical integrations of Eq. (1.1} in
4 number of points, shown in Fig. 1. Points marked as < correspond to parameter values where intensive statistics
fax been performed. The points overmarked with x correspond to places where finite-size scaling was analyzed.
Finally the symbol + correspond to runs made in order to determine accurately the PT-DT transition line (£,). Our
pseiclospectral integration method is described in the Appendix. Unless otherwise stated, system size 1s L = 512 and
(he spatial resolution is typically 512 modes, with some runs performed with up to 4096 modes to confirm the results.
The initial condition is a traveling wave, with a desired initial winding number #;, slightly perturbed by a random
noise of amplitude ¢. By this amplitude we specifically mean that a set of uncorrelated Gaussian numbers of zero
mean and variance ¢2 was generated, one number for each collocation point in the numerical lattice. Only results for
17, > 1) are shown here. The behavior for 1 < 0 is completely symmetrical.

e initial evolution is well described by the linear stability analysis around the traveling wave [13, 14, 36, 26].
vpicalily, as seen from the evolution of the power spectrum, unstable sidebands initially grow. This growth stops when
it intense competition among modes close to the initial wave and to the broad sidebands 1s established. Configurations
dnring this early nonlinear regime are similar to the ones that would be called riding turbulence and described in
Section ITL. At long times the system approaches one of several possible dynamical states. In general, they can be
inderstood in terms of three of them, which are called basic states. In the next section these final states are discussed.
\Wien the initial winding number is above a critical value v, which depends on ¢; and ¢q, there is a transient period
Letween the early competition and the final state during which the winding number changes.

In Fig. 2a we show in grey levels the phase @lz,t) for a given run with parameters ¢, = 2.1 and ¢y = —0.6. The
space-time defects appear as dislocations in this representation. In Fig. 2b the winding number has been plotted
s a [unetion of time. The winding number changes from the initial valuc v; = 90 to the final value vy = 14. The
Jdiserete jumps in p are doe io the integer nature of this quantity, and they are smeared out when averages over
wevernt realizations are performed, The resemblance with the dynamics of the Eckhaus instability of regular waves
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i striking. In fact, since the changes in v occur on top of a chaotic wave, the analogy is stronger with the Eckhaus
mstabality mthe presence of stochastic fluctuations [37, 38]. In the latter case a local wavenumber independent of
posittion cannot be defined because of noise, while for phase turbulent waves the disorder is gencrated by the systemn
dynamices. Nevertheless in both cases the configurations can be characterized by a global wavenumber such as & or
#. The analogy is also instructive since it can be shown [38, 39] that for the one-dimensional relaxational dynamics
considered in {37, 38, 39] (which is related to Eq.(1.1) with ¢; = e, = ) there is no long range order in the system, so
thiat there is no proper phase transition in the thermodynamic I — oo limit. Despite this, for large but finite sizes and
long but finite times, sharp transitions are observed and critical exponents and scaling functions can be consistently
introduced [37]. This example should make clear that even in the case that the PT-DT transition would not, exist
i the thermodynamic limit, its characterization in large finite systems is justified. The development of phase slips
from P waves of high enough v; can be viewed as a kind of Eckhaus-like instability for tutbulent waves, whereas the
usial Eckhaus instability [13] appears for regular waves. This similarity was one of the main motivations for the kind
of analysis that follows.

25 T Y T
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A 15
10} ]
8 . . A
t 0 2000 4000 6000 8000

t
b)

FTG. 20 a) Spatiotemporal evolution of the phase y(z,t) coded in grey levels with time running upwards and r in the

horizontal direction. The lighter grey correspond y{x,1) = —x and darker te @(x,¢) = n. The time interval shown in the
picture goes from ¢ = 500 to 1000 time units of a total run of 10, ¢, = 2.1, ¢2 = —0.60, and the initial condition was a TW
with 1, = 20 that decayed to vy = 14. The arrow indicates the time at which 1 begins to change. b) The complete time

cvolution of the winding number for this initial condition.

I'or each point in parameter space and initial winding number considered, we have averaged over 50 independent
random reahzations of the white Gaussian perturbation added to the initial wave. Figs. 3a and 3b show the temporal
evolution of this average p(t) and its variance ¢ for ¢; = 2.1 and ¢» = —0.83. Four vaiues of the initial winding
uimber (v = 10, 15, 20, 25) are shown. Typically, the curve 5{t} decays from w; to a final winding nurnber vy
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16, 3. a) Temporal evolution of #(t) for four different initial winding numbers », == 25 (solid), 20(dotted), 15 (dashed) 10
(chashied-dotted). ¢ = 2.1,c2 = —0.83 (PT regime). b) Winding number standard deviation a.

The variance displays the behavior typical of a decay from a unstable state [40], namely a pronounced maximum
at the time of fastest variation of #(t). The final value of o gives the dispersion in the final values of the winding
numbers. Although the behavior shown in Fig. 3 is very similar to the observed in [37] for a stochastic relaxational
case, the scaling laws found there do not apply here. The main qualitative difference is that in a range of v; the sign
of the average final & is here opposite to the initial one. In addition for some of the initial winding numbers (i.e.
v, = 20 in Fig. 3) #{t) is not monotonously decaying, showing a small recovery after the fasi decrease in . These
featnres are also observed for other values of {¢1, ¢z], so that figure 3 is typical for [c1, ca] in the P'T region of Fig. 1.
‘or comparison we show &(t) and its variance in Fig. 4 for the point ¢; = 1.6 and ¢z = —1.0, in the “bichaos” region.
The main difference is the existence of fast fluctuations in # and o. They are related to the characteristic dynamics
of the bichaos regime: The final state depends on the initial conditions and it can correspond to PT. DT or aven
coexistence of both. In the 50 realizations performed all these possibilities were found. When DT appears, there are
big Huctuations of the winding number around » = 0 that produce the wiggling on the averaged value. More than 50
realizations should be performed to smooth out such big fluctuations.
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1610 a) Temporal evolution of 1(t) for an initial winding number of 1, = 4 in the bichaos regime. ¢, = 1.6, = —1.0.
L Winding number standard deviation o.

Returning to the PT parameter regime (Fig. 3) the decay of the initial state is seen to take place during a
chiaractenistic time which depends on 1. We quantify this time 7 as the time for which half of the jump in s
attaed. 7 increases as v decreases. and there is a eritical value of vi, v, such that no decay is ohserved for
t, < 7. Then t diverges (critical slowing down) when v; approaches v, from above. This gives a sensible procedure
o determine ve: Figs. 5a and 5b show 1/7 as a function of v;. In Fig. 5a, ¢ is fixed and the different syrubols
correspond to different values of £z, In Fig. bb, ¢ is fixed and the symbols correspond to different values of ¢;. The
values of 1. have been estimated by extrapolating to 1/7 = 0 a linear fit to the points of smallest #, in each sequence.
Motivated by [37] we have tried to fit the divergence of 7 with nontrivial critical exponents, but we have found no
sighificant improvement over the simpler linear fit. The values of v, so obtained are plotted in the insets of Figs. ba
wnd bl The range of conserved winding numbers [—uv,, 1] is analogous to the Eckhans range of stable wavenumbers
whew working below the BFN lne. v, can also be obtained by directly determining the value of v, below which w{t)
dues ot change in any of the realizations. This method can only give integer values of v, whereas Lhe method basced
on 7 gives a real number which is preferable when looking for continuous dependences of . an svstem parameters.
Fhe two methods however give consistent results within the discretization indeterminacy.
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'Tei. 5. a) lnverse of the characteristic time for winding number relaxation as a function of the initjal winding number. The
vidne of ¢y is fixed {1 = 2.1} and ¢z varies from near the BFN line (¢ >~ —0.48) to the Ly line {7 = —06.9). Different symbals
correspond Lo ez = ~0.6 (+), c2 = =0.7 {*}, ¢z = =075 (O), cz = ~0.8 (A}, c2 = —0.83 (O). The inset shows the critical
whiding number (1) as a function of ¢;. b) Idem but the value of o2 is fixed (c; = —0.83) and o1 varies from near the BFEN
e (e 133) to o = 2.5 . Different symbols correspond to ¢y = 1.6 () e: = 18 {#), 1 =196 (C), 00 = 21 {A), ¢; = 2.3
tH1 oy = 2.5 {x}. The inset shows the critical winding number (1.} as a function of ¢;

Iheinsets of Fig. ba and Fig. 5b indicate a clear decrease in v, as the values of ¢; and ¢, approach the I, line. In
taet we know that v, should be zero to the left of L, since no wave maintains its winding nurnber constant there. ‘This
leach i to asensible method for determining the position of line 7., [10], alternative to the one based in the density
of defects nsed in [7]. [t consists in extrapolating the behavior of v, to v, = 0. A simple linear fit has been used. The
saune method to determine the line L) has been independently introduced in (31, 32]. The coefficients of the linear fit
are nol universal: they depend of the particular path by which the line L; is approached. With this method the line
£, 15 dletermined as the line at which the range of conserved winding numbers [—1,, v.] shrinks to zero. The analogy
with the Fekhaus instability of regular waves is again remarkable: in the same way as the range of Eckhaus-stable
wavenumbers shrinks to zero when approaching the BFN line from below, the allowed v range shrinks to zero when
approaching the £y line from the right. 'The difference is that helow the BFN line the values of the wavenumber
haractenizes plane-wave attractors, whereas above that hine, » characterizes phase-turbulent waves. Tu this picture,
therransition hae P DT appears as the BFN line associated Lo an Fekhaus-like instability for phase turbulent, waves.
For the case of Fig, Ha the PT- DT transition is located at e = 2.1, e4 = —0.80+£0.02, and ¢, = 2.60 +0.02, 69 = —0.8}
o the ense of Fig. 5h. The agreement with the position of the line as determined hy [7, £2], where systen sizes
s to ours are used, 1s good. For example for ¢p = 2.1 their value for Ly is ey = —0.92. The polals marked as
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+ in Fig. I correspond to runs used to determine the position of the transition line L, directly as the line at which
defects appear in a long run even with & = 0. All these ways of determining [, give consistent results. Below the
point 7, v. goes to zero when the parameters approach the line Lg, not L;, thus confirming the known behavior that
below point P in Fig. 1 the line separating phase turbulence from defect turbulence when coming from the PT side
iz actually La. '

The use of a linear fit to locate the line L, is questionable and more complex fits have been tested. However, Lhe
simplest linear fit has been found of enough quality for most of the the situations checked. Clearlv some theoretical
suide is needed to suggest alternative functional forms for vc(er, ca). We notice that the analogous quantity below
the BFN line, the Fckhaus wavenumber limit, behaves as ¢g ~ V¢ for small ¢, being ¢ the difference between either
¢, or ¢+ and its value at the BEN line. From the insets in Figs. 5a or 5b, this functional form is clearly less adequate
than the linear fit used.

Another interesting point to study is the dependence of the final average winding number #; on the initial one
v, Fig. 6 shows an example using ¢; = 2.1 and ¢z = —0.8. The behavior for other values of the parameters is
qualitatively similar. 7; remains equal to the initial value if »; < 5 during the whole simulation time, so that v, & 3,
a4 value consistent with the one obtained from the divergence of  and plotted in the inset of Fig. 5a. For v; > v, the
final winding number is always smaller than the initial one. By increasing v; a minimum on ¥y is always observed,
and then ¥, tends to a constant value. Figure 6 also shows the winding number associated with one of the two Fourier
modes of fastest growth obtained from the linear stability analysis of the initial traveling wave. The one shown is
the lowest, the other one starts at #; = 28 and grows further up. Obviously they do not determine the final state in
a direct way. This is consistent with the observation mentioned above that the winding number instability does not
develop directly from the linear instability of the traveling wave, but from a later nonlinear competition regime.

IYI¢;. 6. The final averaged winding number (&) as a function of the initial one #;. ‘The initial condition is a TW with
winding number u, for ¢y = 2.1 and c2 = —0.8. The dashed line corresponds to the lowest of the two Fourier modes of fastest
growth in the linear regime as a function of v:.

As stated in the introduction, a powerful way of distinguishing true phase transitions from effective ones is the anal-
vsis of finite-size scaling [35]. We have tried to analyze size—effects from the point of view of » as an order parameter.
In the DT state such kind of analysis was performed in [41]. Egolf showed that the distribution of the values taken by
the ever-changing winding number is a Gaussian function of width proportional to /L. This is exactly the expected
Lehavior for order parameters in disordered phases. In the thermodynamic limit the intensive version of the order
parmmeter, v/ L, would tend to zero so that the disordered DT phase in the thermodynamic limit is characterized by
a4 vanishing intensive order parameter. For the PT states to be true distinct phases, the existence of a nonvanishing
v such that » is constant for |¥| < v is not enough. The range of stable winding numbers should also grow at least
linearly with L for this range to have any macroscopic significance. The analysis of the growth of v with system size
has been performed in points ¢p = 2.1,co = —0.8 and ¢; = 1.96, c; = —0.83 of parameter space. ., determined as
explained before, is plotted in Fig. 7 for several system sizes for which the statistical sample of 50 runs was collected
for each w;.
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FIG. 7. The critical winding number (1) as a function of the length L of the system is shown. Different symbols correspond
lo ey = 2,1 and ¢z = —0.8 {A), and ¢; = 1.96, and c; = —0.83 (<©). The straight lines are linear fits to the two sets of data.

There is a clear increasing, close to linear, of v. as a function of L, thus indicating that for this range of system
sizes the range of allowed winding numbers is an extensive quantity and then each v is a good order parameter for
classifying well defined PT phases. It should be noted however that for the larger system size for which extensive
dex was collected (L = 2048) data seem to show a tendency towards saturation. Thus our study should be
consiclered as not conclusive, and larger systems sizes need to be considered.

shat

III. DIFFERENT ASYMPTOTIC STATES IN THE PT REGION

Typical configurations of the PT state of zero winding number consist of pulses in the modulus {A], acting as phase
sinks. that travel and collide rather irregularly on top of the & = 0 unstahle background wave (that is, a uniform
oscillation)[7, 12]. The phase of these configurations strongly resembles solutions of the Kuramoto-Shivashinsky (KS})
cquation. Quantitative agreement has been found between the phase of the v = 0 PT states of the CGLE and solutions
of the NS equation near the BFN line[16],

I'or states with # # 0 a typical state[12] is the one in which an average speed {in a direction determined by the sign
of 17} 1= added to the irregular motion of the pulses. We have found that in addition to these configurations there are
cther attractors i the PT region of parameters. We have identified [10] three basic types of asymptotic states for
1 # (. which we describe below. Other states can be described in terms of these basic ones. Except when explicitly
=tated . all the configurations described in this Section have been obtained by running for long times Eq. (1.1) with
the mitial conditions described before, that is sinall random Gaussian noise added to an unstable traveling wave. The
wineling number of these final states is constant and is reached after a transient period in which the winding number
might have changed. )

Iigs. 8, 9 and 11 show examples of the basic states that we call riding PT (Fig. 8}, quasiperiodic states (Fig. 9)
and frozen turbulence (Fig. 11). For each figure: Panel (a) corresponds to a grey scale space-time plol of d,o(z, ).
Panel (h) shows the value of this quantity and the modulus of the field {} A |) as a function of position at the time
rdicated by an arrow in panels (a) and (d). Panel (¢} shows the spatial power spectrum S{g,/) of A(z,t) for the
same time. Finally, panel {d) shows the quantity W = [ | d,5(q.1) | dg, which is a global measure of the tenporal
change r the spatial power spectrum.

Ricling P'T. This state {see Fig. 8} is the most familiar one [12]: wiggling pulses in the gradient of the phase
with a systematic drift in a direction determined by w. The modulus of the field consists of a disordered spatial
sequence of small pulses and shocks, with A{z, 1) always far from zero. ‘The spatial power spectrun S(g) has a peak
corresponding to the global wave number & (associated 1 this case with v = — 1. so that & = 2w/l = ~0.012) and
a broad background associated with the turbulent motion “riding” an the traveling wave, Fhe tinte evolution of W
liows ndecay towards a fluctuating non-zero value, indicating that the power specirum is continuously changing in
thine as corresponds to the turbulent state reached by the system.
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FIG. 8. a) Spatiotemporal evolution of 8:¢(z,t). The lighter grey correspond to the maximum value of 8; ¢(z, t) and darker
ta the minimum. Last 2000 time units of a run 10* time units long for a riding PT state at c; = 2.1, and c; = —0.83. The
initial condition was a TW with »; = 20 that decayed to vy = —1 after a short time. b) A snapshot of | A(z,¢) | and dzp(x,t)
A a function of x for ¢t = 8900 which is indicated by an arrow in a) and d). c) Spatial power spectrum S5(g) as a function of
wavenumber at the same time ¢ = 8900. d)The time evolution of the quantity W defined in the text. The dashed line indicates
the initial time for picture a).

(Quasiperiodic states. These states (an example is shown in Fig. 9) can be described as the motion of equidistant
pulses in the gradient of the phase that travel at constant speed on top of the background wave. The fact that the
periodicity of the pulses and that of the supporting wave are not the same justify the name of quasiperiodic. We show
later that these states correspond to the ones described in Ref. [13]. In Fig. 9a, the modulus | A | and the gradient
of the phase clearly exhibit uniformly traveling pulses. The spatial power spectrum S(g) (Fig. 9¢) clearly shows the
uasiperiodic nature of this state: a central peak, corresponding to the dominant traveling wave, with equally spaced
peaks surrounding it, showing the periodicity of the pulses. The peaks are not sharp because this configuration has
Leen obtained from a random perturbation. The decrease of W in Fig. 9d indicates that the peaks are narrowing. lts
asviiptotic approach to zero indicates that the amplitudes of the main modes reach a steady value and 5(g) becomes
tiie independent.
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FIG 9. Same as in Fig. 8 but for last 35000 time units of a run 10° time units long for a quasiperiodic stale. The initial
vodition is random noise with an amplitude of 0.05. ¢; = 2.0, and ¢z = —0.8. b} and ¢) correspond to a time t = 8 x 10%.

More perfect quasiperiodic configurations can be obtained from initial configurations that are already quasiperiodic.
Pigure 10 shows the quantity W for a state generated at e; = 2.1 and ¢; = —0.6 from an initial traveling wave with a
stnusoidal perturbation. The initial traveling wave had »; = 18 and the winding number of the sinusoidal perturbation
was 1 = 22. The travelling wave decayed to a state with v; = 10 of the quasiperiodic type, cleaner than before. The
spatial power spectrum (shown in the inset at the time indicated by an arrow in the main picture) shows the typical
cliaracteristics of a quasiperiodic state.
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[F1¢;. 10, a)The time evolution of W for a quasiperiodic state. The initial condition is a TW sinusoidally perturbed for
¢ = 2.1 andt c3 = —0.6 . In the inset the spatial power spectrum 5{g) as a function of wavenumber at the time ¢ = 8900
indicated by an arrow in the main picture.

Frozen turbulence. This state (see Fig. 11) was first described in [10]. It consists of pulses in d;¢ traveling at
coustant speed on a traveling wave background, as in the quasiperiodic case, but now the pulses are not equidistant
from each other (see Fig. 11b). The power spectrum at a given time is quite different from the one of a quasiperiodic
state. Tt is similar, instead, to the power spectrum obtained in the riding PT state: S(¢) is a broad spectrum in the
scnse that the inverse of the width, which gives a measure of the correlation length, is small compared with the system
size. Here however W relaxes to zero, so that the power spectrum finally stops changing (thereby the name frozen).
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PG 11, Same as in Fig. 9 but for last 2500 time units of a run 107 time units long for a frozen turbulence state. The
mtial condition was a TW of &, = 12 that decayed to 15 = 6 after a short time. ¢, = 1.95 and ¢z = —0.8. The time of b) and
e} is £ = 8300, indicated by an arrow as in previous figures.

This behavior 1s an indicator of the fact [10], obvious from Fig. 11, that the pattern approaches a state of rigid
mofion for the modulation in modulus and gradient of the phase of the unstable background plane wave. That is, the
tield A{x.t) is of the form:

A(z,t) = glx — vi)e' ke —wst+alt)) (3.1)

where g is a uniformly translating complex modulation factor. It is easy to see that, configurations of the form (3.1)
hiave a time-independent spatial power spectrum. Torcini [31] noticed in addition that the function a(t) is linear in ¢
s0 that the solutions are in fact of the form

Az, t) = fx — vt)eflkz—wt) (3.2)

where again f{z — vt) is a complex valued function and w can differ from wg. f and ¢ differ only in a constant phase.
The envelopes g(z — vt) or f(z — vt) turn out to be rather irregular functions in the present frozen turbulence case,
whereas they are periodic in the quasiperiodic configurations discussed above.

After presenting the basic states, we continue addressing some interesting mixed states that can be described in
terms of them. Most of the configurations ending up in the frozen turbulence or in the quasiperiodic states have long
time transients of the riding turbulence type. Only at long times a decay to rigid propagation occurs. There are cases
in which a different type of decay happens. For example Fig. 12 shows a case in which the system jumps from a very
strong riding turbulence regime to another state, also of the riding turbulence type, but much more regular. The
cquantity W, shown in Fig. 12b, turns out to be a valuable tool in distinguishing the different regimes: a superficial
look at Fig. 12a could be easily misunderstood as indicating the approach of the system towards a frozen turbulence
state, but the lack of decay towards zero of W identifies the final state as riding turbulence. The arrows indicate the
Jump to the second state. Fig. 13 shows a state characterized by a recurrence between two different riding turbulence
states, showing a kind of temporal intermittency.

Q2000 4000 ROVO BOOO 10000
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iF1¢i. 12, a) Spatiotemporal evolution of J.e(x, b} for a riding turbulence stale that decays onto another one, ¢ = 2.5,
¢ = —0.75. The initial condition was a TW of 14 = 20 that decayed Lo vy = —2 in a short time. b) Time evolution of W.
The dashed lines indicate the time interval shown in a} (from t; = 2500 ta tz = 6500 of a run 12% time units long). The arrow
indicates the transition from one of the riding turbulence regimes to the other one.

I
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a) b)
Fl1G. 13, a) Spatiotemporal evolution of &:p{x,t) showing intermittency between riding turbulence states. ¢y = 2.1,

#y = ~0.83. The initial condition is 2 TW of v; = 1 that did not change. b)Time evolution of W. The dashed lines indicate
the time interval shown in a) (from ¢, = 1000 (o t> = 8500 of a run 10* time units long). The arrows indicate the end of a
viding turbulence regime and the beginning of another one.

Finally Fig. 14 shows a riding turbulence state with zero winding number. This is not however a typical configu-
ration, since usually for ¥ = 0 there is no preferred direction for the pulses to drift, whereas the figure shows that in
fact there is a local drift at some places of the system. It turns out that this state can be understood as composed by
two domains of different local winding number: v = 1 and v = —1, so that globally ¥ = 0. The pulses travel either in
one direction or in the other depending of the region of the system in which they are. In Fig. 14b a snapshot of the
gradient of the phase d;¢(z,t) and the phase itself p(x,t) is shown. Lines showing the average trend in the phase are
plotted over the phase, clearly identifying the two regions in the system. This coexistence of the different basic states
at different places of space, or at different times as in Fig. 13, was already mentioned in [11] where it was argued to
sive rise to a kind of spatio-temporal intermittent behavior.
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FiG. 14, a) Spatiotemporal evolution of &:p(x,t}. The time interval corresponds to 5500 to 7500 time units of a run 10°
time units long for a riding PT state at ¢y = 2.1 and ¢z = —0.83. The initial condition was a TW with 1; = 0 that, did not
change. I} Snapshots of ¢(x,t) and 8:¢(z,t) as a function of x at the time ¢ = 6980 indicated by an arrow in a) and d). The
dashed lines in the graph of [z, t) indicate average slopes, that is “local” wavenumbers, c) $patial power spectrum S{g) as a
fimetion of wavenumber at the same time { = 6980. d)Time evolution of W . Dashed lines indicate the time interval of picture

.

Ciiven the large variety of configurations that are observed, and the very long transients before a jump from one
state 1o another vecurs, it would be difficelt to conclude from numerical evidence alone that the three kinds of states
considered as basic above are true asymptotic states. Some analytical insight would be desirable to be sure that these
three states are attractors of the dynamics. The next Section is devoted to provide such analytical justification.

IV. ASYMPTOTIC STATES IN TERMS OF THE PHASE DYNAMICS

‘The question on whether it is possible or not, to describe the PT regime of the CGLE from a closed equation for
the phase alone has heen posed by several authors{15. 16, 30, 42, 43]. A phase equation is obtained by considering
A long wavelength perturbation of a plane-wave solution in the CGLE (1.1). It is clear that this phase equation will
only describe phase dynamics close to the homogeneous plane-wave (that is the one with v = 0) il the perturbation is
macle around the spatially-homogeneous solution. In erder to get a deseription of PT at & # 0 thie expansion should
Le dlone for a perturbation on a traveling wave solution with wavenumber (k) different {rom zero,

A= (V1= k? 4 ala, ) Frred) (-+.1)

Here & is taken as k& = QT"U. If A satisfies periodic boundary conditions the same conditions apply (o ¢ bacause any
global phase winding 15 included in & (the total phase is ¢ = kz 4 ¢). From general symmetry arguments the gencral
phase equation for & # 0 should read, up to fourth order in gradients:

fjf(fJ = Q[) - vgﬁrd) - D'_)(')fd) + ].)11((3;@3)2 + Dg(‘?ﬁd) + [)13(61‘:))(()5(,?'))
- ch?inb + [)I:}{('j.::(«b]((‘)fﬁﬁ) + Doa (5);2-65)2 + D 13[(?‘1-0‘7)2(5')365] + ... (1.2
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When v, = D3 = Dyg = Dig = Dop = Di12 = 0, BEg. (4.2} reduces to the Kuramoto-Sivashinsky (KS) equation
[14. 15] that is the lowest order nonlinear phase equation for the case k = 0. For k # 0, Eq. (4.2) was systematically
derived up to third order in gradients in [36]. An easy way of obtaining the values of all the coefficients in (4.2) was
discussed in [46]: First, € is related to the frequency of the plane-wave solutions:

Qg = —Wwp — —Cq — (Cl - Cg}k2 (43)

Second. the linear terms can be obtained from the eigenvalue A(k, q) corresponding to the phase-like branch in the
linear stability analysis of the wave of wavenuriber & with respect to perturbations of wavenwlber g[13. 14, 36. 26]

Ak, q) = —ivgq + Dag® — iDsg® — Dag" + O(g°) {4.4)
with

vy = 2k(c) — ¢2) (4.5)
2621 + 2 .

Doy :—(1+C1C2)+%rk2;2) (4.0)

(1 + ) [—c + Deq)k?
py = L) e (o 2 w
(1 — k%)
H : : ‘ 7] ] '
4 m {(‘f(l +(‘ﬁ) — ka(] -+ ('E)((‘T —+ (')(']("_-)

+ k[ 4+ (L4 ed)(ef 4 12e100) + c3(24 + 20e3)] } - (4.8)

Third, the nonlinear terms can be obtained from the following consistency relationship: If (4.1) is an exact solution
of the CGLE, then ¢(x,t) satisfies the phase equation with coefficients depending on k. In addition if (4/1 — k{ +
ay (2, t))e"(“‘“"b‘(”")) is another exact solution of the CGLE, then ¢;(z,t) satisfies a similar phase equation but with
coctficients depending on k; instead of k. But this solution can be written as (/1 — K2+ ay (e, 1))eltkrrkimRztednt)
so that (ky — k)z + é1(z,t) is also solution of the phase equation with coefficients depending on k {with different
Lonndary conditions). By combining the two equations satisfied by ¢; and expanding the coefficients depending on
/sy as a power series around k (assuming ki — k small) the following relationships between linear and nonlinear terms
are obtained:

1(')119 aDg 3D3 132D2
o — e e e - — - —_— 4 .C
Dy 5 Ak Dz Sh Dia 35 Dz 3 Rz (4.9)
So that
Di=ci—a (4.10)
k(1 + c3
Dy, = _4_(_"'_(’22) (4.11)
{1 - k2)
21 + €3 )
Dis = (—l{ﬁ——k—% [—6'1 + 602)’62 + (262 + C;)ké] (412]
(L + e} (3K +1
Diz = —~ ( +Cz}(3, 3+ ) {4.13)
(1—k?)

‘The coefticient Dgo is only obtained following the method to higher order in (k; — k). The coefficients up to third
order in gradients can be found also in [36] and approximate expressions for them are given in [13].

The traveling wave of wavenumber & becomes unstable when the coefficient D2 becomes positive. One expects that
the first terms in the gradient expansion (4.2) give a good description of the phase dynamics in the weakly nonlinear
regime, that is Do positive but small (note that for a given k # 0 this includes part of the region below the BFN line
in I'ig 1). ‘The arguments presented in [46] imply that the relative importance of the different terms in a multiple scale

expansion in which Dy is the small parameter can be established by considering ¢ ~ Oy~ D;”A Then the dominant
forns olose to the instability of wave k are the ones containing Qg and vy, After thern, the terms with coefficients
73, and I, are the most relevant. Up to this order Eq. (4.2 ) is a Korteweg-—de Vries equation (KdV). The terms
with 4. 124 and Dyy appear at the next order. The importance of the terms in D and )4 for a qualitatively correct
deseription of phase dynamics i1s obvious since they control the stability properties of the wave of wavenumber k. The
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nuportance of the term with coefficient 3|2 was stressed in [13, 47]: if it is large enough it can change the character
of the bifurcation from supercritical to suberitical.

The detailed comparison of the reduced dynamics {4.2) with the complete CGLE phase dynamics is beyond the
=cope of the present paper. The aiin of this Section is to use Eq.(4.2) just to get some understanding of the asymptotic
states presented in Section HI. To this end we will use the detailed results available from the work of Chang et al.
[1&]. ‘These resutts are obtained for the so-called Kawahara equation [49, 50, 47, 48, 51] which is Eq.(4.2) with
e = Iy = Dy = Dy = 0. The term Dy, which acrording to Kuramoto cstimations [46] is of the same order
for smalb [y as the terms i Dy and Dy, will thus be neglected. It would be certainly nccessary to consider the
modifications introduced by the term Dvy into the results of [48]. This will be briefly discussed at the end of this
section. At this point it is interesting to note that, to our knowledge, the only quantitative comparison of the phase
dviaes with k # 0 obtained from a phase equation and from CGLE is {31, 32]. But the phase equation used in
tHiese relerences ks the one presented in [42], in which the nonlinear terms considered are only those with coefficients
Ly and Dia. In addition Dy, I3, and the coeflicients of the linear terms are considered only up to first order in k.
Pespile these limitations, in particular the absence of the D, term, the phase equation is found to reproduce well the
phase dynamics of the CGLE, an agreement that degrades when the term in D)3 is suppressed [52]. Clearly further
work s needed to establish firmly the relevance of the different terms in (4.2)[53]. Our study will he restricted to the
situation of [48] (that is Dy = Doy = Dy3 = Dyye = 0} since no study of comparable detail for a more complete
equalion is available in the literature.

The situation of interest here is the one in which the traveling waves are unstable against a finite band of wavenum-
bers. so that Do, Dy > 0. Making the following changes of variables in (4.2) with D5 = Dyy = Dy = Dy10 = 0

{ D
X = T)f(f_vgt),

D%t
===
D,
D, DY?
u(x, 1) = —‘Fa;}g-‘axﬁﬁ(m,i) - (4.14)

-

the Kawahara equation[49, 50, 47, 48, 51] is obtained
dyu = —-(');fu—/luc‘)\,uﬁdf?gu—ﬁiu . {4.15)
with

Dy
VD214

Stnee @ s periodie in 2, u{x, 1} is periodic in y. In addition fo u{x, 7)dy = 0. To have some intuition on the meaning
of the parameter §, its expansion at small & reads :

L . I +¢2
d%QﬁkSngl((:1)1/mT(:—;2—[+O(k3}. (4.17)

5= — (4.16)

1 should he noted that 6 does not diverge at the BN line, as the expansion (4.17) seems to suggest, but helow it.
From Fq. (4 16) it 15 clear that & diverges where 1, vanishes indicating that the corresponding lraveling wave of
wavenumber & has become Eckhaus unstable.

Phe hawabiara equation (4.15) has heen considered in the context of surface waves on Auid films falling down an
inehined or vertical plane [54], and also as a simple generalization of the KS or the KAV equations [19, 500 It has also
been considered 1n the context of growth shapes [55]. W reduces to KS for & = 0 {or equivalently for & = 0) wheun
written i the original variable .

Equation (4.15) has periodic, soliton-like, spatially-irregular, and spatio-temporally chaotic solutions. [49, 50, 51].
tn Tact, all of these solutions have been analytically shown to exist [48]. All of them except the isolated soliton-like
~olution {56] are stable i sorue parameter regiines [48]. These kinds of solutions should manifest themsclves {pravided
the approximate phase descrniption holds) in the tinse evolution of the phase gradient 3,2 (= & + Ay of the solations
ol the CGLS (1.1) mn the PT oregime. The analytical results in [48] thus provide a firm basis [or Lrue existence of e
numerically observed states deseribed in Section 111

Phe detailed bifurcation analysis in [18] 2lso gives detailed predictious for the wound states of (he (¢4 LE, within
therange of validity of the phase descripuon. We will reproduce here sowne of the resnits in (48] and reiuterpret them
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‘o terms of the gradient of the phase of CGLE solutions. Our interest is centered in the rigidly moving train of pulses
{ frozen turbulence and quasiperiodic states) observed in several of the numerical simulations reported in Section I1I.
They are of the form (3.2), and because of (4.14) we have

w(x,7) = H(E) , (4.18)

with £ = v — vr, being v the velocity of the train of pulses we want to describe in units of y and 7. The partial
differential equation (4.15) is reduced to an ordinary differential equation (ODE) for H(£):

HY 4+ §H" + H" + 4HH' —vH' = 0. {4.19)
I'lie primes denote differentiation with respect to £. After an integration:
H" 4+ 6H"+ H —vH +2H? =@Q . (4.20)

¢} is fixed in a nontrivial way by the condition [ Hd¢ = 0 which follows from our periodic boundary conditions. This
(hird order ODE can be rewritten as a three-dimensional dynamical system:

u'l = Uy
UJ = U3
=
wy = cup — Uy — Gz — Ay )? (4.21)
with
v ez Q
W@ =" -7+ Eto

¢ = 8} + vt . {4.22)
Pilferent qualitative behaviors in phase space of the solutions of the dynamical systein {4.21) are related to the shape
of the solutions of (4.19) [57]. This is illustrated in Fig. 15.
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FIee 15, Schematic relationship between trajectories of the dynamical system (4.21) in phasc space (left column) and
~olntions wly, 7) = H(§ = x — vr) of equation (4.15) (right column}. al) Iixed point of (4.21), a2) uniform solution of
(1150 (traveling wave in the CGLE (1.1)). bl) Periodic solution (limit cycle) of (4.21), b2) periodic train solution of {4.15)
rprasiperiodic solution of the CGLE (1.1)). ¢1} Homoclinic trajectory of (4.21), c2) single pulse of (4.15). dt} Chaotic trajectory
ol {121, «d2) spatially irregular solution of (4,15) (frozen turbulence in the CGLE).

We stress that all the solutions of {4.19) represent uniformly translating solutions of (4.15). No information is given
anmore complicated solutions of {4.15). The left column of Fig. 15 shows the possible trajectories of the dynamical
svsfen (1213 while the right column shows the corresponding solution of (4.20}, or equivalently w(y,7) = H{¢ =
v = 7) m equation (4.15). For a fixed point in (4.21) (fig. 15al) we get a homogeneous solution in {4.15) (fig.
ha2) and (via (4.11)) a traveling wave solution in the CGLE (1.1). For a periodic trajectory in (1.21) (fig. 16b1)
we get adrain of periodic pulses in the solution of (4.15) (fig. 15b2) and a guasiperiodic solution in CGLE (1.1).
An homochnie trajectory in (4.21} {fig. 15¢1) corresponds to a single puise solutiou in (4.15) (fig. 15¢2}. Finally for
A+ chaotie trajectory in (4.21) {fig. 15d1) we have an irregular solution H(£) that corresponds to a rigidly traveling
spatially irregular solution of (4.15}) (fig. 15d2). The chaotic solutions of {4.21) are of the Shil’nikov type [48], This
means Lhat the disordered configurations H(£) (and thus u and Jep) consist on acarly identical pulses irregularly
~paced. This corresponds to the state named frozen turbulence for solutions of the CGLE.

The detailed analysis of [48] is done on the one hand by following the sequence of bifurcations of the state in which
1 s a constant and of the state in which H is close to the KdV soliton (with adequate rescaling liq. (4.15) reduces to
the KdV i the limit 6 — oo). On the other hand the powerful global theorems of Shil'nikov and their generalizations
[5%. 59, 60. 61] are used to establish the structure of the solutions of (4.21). The results of [48] relevant to our purposes
vitn be summarized as follows (they can be read-off from figure 3 of Rel. [48] ):

I Periodic solutions of (4.21) exist for all values of 4 provided | ¢ |>]| 6 | They are organized in a variety of
branches. Solutions in the same hranch differ by their periodicity, and each branch euds in a difercnl kind of
solitary-wave solution (infinite spatial period). The shape of the different solitary wave solutions characterizes
Lhe different branches.

2 For [ 4] 2 1.1 only one of the branches of pertodic solutions (the niain branch) remains.

4. Chaotie solutions to (4.21) exist only for | 8 |5 0.84.

In addition Chang et al. [48] obtained results also for the full equation (4.15), without the restriction to ngidly
traveling waves. Their numerical and analytical results can be summarized as

[. Periodic solutions in the main branch with its wavenumber within a given range are linearly stable for all 4. A
more precise determination of the range of stable wavenumbers for large § was performed in {47].

oI addition to the periodic solutions there are alse spatio-temporal chaotic attractors for all 8.

i 1[4 [> 1.1 only two of these sirange attractors remain. For | 4 [> 3 their basin of attraction seems Lo be much
stmaller than the one of the pernodic solutions.

Lxpression (4.16) with {4.5)-(4.13) gives the relation between & and the parameters of the CGLE. | 4 |=
corresponds i Fig. 1 to the line at which the wave of wavenumber k becomes Eckhaus unstable. [t is approximately
parallel and below the BFN line. The ather lines of constant §, for fixed k, are also approximately parallel to the BFN
lime, and decreasing {6 | corresponds to entering into the PT region and going deep into it. All these lines concentrate
onto the BEN line as & approaches zero: for k = 0, § = 0 except on the BFN line | 4 ¢700 = 0 where § is undefined.
We now rephrase the conclusions above i terms of the three basic asymptotic states of the CGLE in the PT regime.
They will be valid as long as the phase description (4.15) remains accurate.

I Fhere are P'1 solutions of the quasiperiodic type for all values of the parameters {as loug as the phase description
remains valid). Bounds on their veloeity can be in prineiple obtained, but this is nontrivial sinee  is only known
inoan plicrt way.

2. Inereasing | 0 | by approaching the Fckhaus instability for a given & (D; = 0). or by increasing the winding
nuniber reduces the variety of quasiperiodic solutions.

4. Frozen turbulence solutions exist only for | 6 [ 0.84, that is far enough from the line Dy = U or for small enough
winding mumber.

1. There are linearly stable solutions in the main quasiperiodic branch for all values ol the parancters.
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5 There are also riding turbulence attractors for all vaiues of parameters.

. For |8 |> 3, that is at high winding number or close enough to the line Iy = 0 the quasiperiodic solutions have
a basin of attraction larger than the nding turbulence ones.

A general feature of these conclusions is that the important quantity is D=, that 1s the distance in parameter space
fvon the line at which the k-wave becante Eckhaus unstable. This line is below the BFN line for & # 0. Thus not
iy Lraveling waves, but also quasiperiodic, frozen turbulence, and riding turbulence attractors should exist below
ilie BFN line for & # 0. In practice it is relatively easy to find quasiperiodic states below but close the BFN line,
bt we have been unable to find the other two states so far. The difficulty in finding riding turbulence states can be
4 consequence of the small range of winding numbers for which they are stable (jv] = Lik|/{2x) < 1;) so that the
ahservability condition | 6 |< 3 immediately brings us above the BFN line. Another possibility is that the instability
sf the v = 0 plane-wave attractor at the BFN line has consequences of a global character beyond the validity of the
phase description.

I'e above predictions imply that the more promising zone for obtaining quasiperiodic solutions starting from
random perturbations on a traveling wave of given winding number is for parameier values close and above D2 =0,
or tor high winding number (| § {> 3). In any case no frozen turbulence should be observed in that zone.

Sante qualitative aspects of the conclusions above have been shown to be correct. In particutar Torcini and col-
laborators [31, 32] have shown that the average maximal Lyapunov exponent, quantifying the proportion of initial
conditions that fall into the spatio-temporal chaotic strange attractors, is a decreasing function of v,

Our numerical solutions also agree with the prediction that quasiperiodic solutions show up more easily for small
1)4. However, their basin of attraction appears to be much smaller than the implied by the conclusions of the phase
cleseription since it is reached with very low probability from our initial conditions. This is specially true above the
I3FN line. The reason for this is probably the effect of the neglected term [)yp, which is known to reduce the range
ol stable periodic solutions [47] and even to eliminate it by making the bifurcation subcritical [13]. Above the BFN
e the attractor that we observe more frequently at high winding number from our initial conditions is the frozen
1urbulent state.

A more detailed checking of the predictions above would be desirable. This is however beyond the scope of the
present paper since a detailed theoretical analysis of the global properties of the phase space for the equation containing
Lie term 1)y would be probably needed beforehand. A promising alternative can be the study of the exact equation
for f(r— vt} in {3.2) obtained in [32].

V. FINAL REMARKS

One-dimensional wound-up phase turbulence has been shown to be much richer than the case v = (). The main
rostilts reported here, that is the existence of winding number instability for phase-turbulent waves, the identification of
(e transition PT-DT with the vanishing of the range of stable winding numbers, and the coexistence of different kinds
ol I"I* attractors should in principle be observed in systems for which PT and DT regimes above a Hopf bifurcation
are known to exist [24]. To our knowledge, there are so far no observations of the ordered P'T states described above.
[iere are however experimental observations of what seems to be an Eckhaus-like instability for non-regular waves
i the printer instability system [62]. This suggests that the concept of a turbulent Eckhaus instability can be of
interest beyond the range of situations described by the CGLE. A point about which our study is inconclusive is the
question on the existence of PT in the thermodynarmic limit. The identification of v as an order parameter identifies
the continuation of Tig. 7 towards larger systent sizes as a way of resolving the question. It should be noted however
that although a linear scaling of the order parameter with system size is usual in common phase transitions, broken
crgadicity phase transitions, as the present one, generate usually a number of ordered phases growing exponentially
with 7. not just linearly [34, 63]. We notice that the results of Section I1I show that the states of a given v are not
pure phases, but different attractors are possible for given v. An order parameter more refined than » should be able
(o istinguish between the different attractors and, since some of them are disordered, the result of an exponentially
Inrge nnmber of phases at large L would be probably recovered. ‘The results presented in Section 1V give a justification
lor The existence of the several wound states observed, an especific predictions have been formuiated on the basis of
previons analitical and sumerical results. Further work is needed Lowever to clarify the importance of the different
ernns in (1.2) and the validity of a phase description.
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APPENDIX A: NUMERICAL INTEGRATION SCHEME

The time evolution of the complex field A(z,t) subjected to periodic boundary conditions is obtained numerically
frean the integration of the CGLE in Fourier space. The method is pseudospectral and second-order accurate in time.
Iach Fourier mode A, evolves according to:

A Ag(t) = —wg A, (L) + by (t) (A1)

where ev,is (14 4e)g” — 1, and @, is the amplitude of mode q of the non-linear term in the CGLIL. At any time, the
sinplitudes &, are caleulated by taking the inverse Fourier transform Alx. t) of A,, computing the non-linear term in
real space and then calculating the direct Fourier transform of this term. A standard FFT subroutine is used for this
purpose [64].

Fa. (Al) is mtegrated numerically in time by using a method similar to the so called two-step method [65]. For
convenience 1n the notation, the time step is defined here so as the time is increased by 251 at each iteration.

When a large number of modes ¢ is used, the linear time scales @, can take a wide range of values. A way of
cirenmventing this stiffness problem is to treat exactly the linear terms by using the formal solution:

t
Ag(t) = et (Aq(to)e“’f“’ +/ fl)q(s)e""sds) . (A2)
ta
Iromn here the following relationship is found:
At +60) A0 —dty [
i(fa,,ét )— qé(:aqét }:e th[ . (I)q(s)t’uq',ds. (1\3)

Fhie Taylor expansion of of ®.(s) around s = ¢ for small 8t gives an expression for the r.li.s, of Eq. {A3):

oMelt _ p—mydt

g (£) ———— + Ot . (Ad)
g
Substituting this result in (A3) we get:
; | — E—’.?o:,.,rir )
Agn+1) = 724 (0 — 1) + b, (n) + QU (AD)
ky,

where expressions of the form f{n) are shorteuts for f(1 = ndt). Expression (AD) is the so called "slaved leap frog”
ol Friseh et al.[66). To use this scheme the values of the field at the first two time steps are reqinred. Nevertheless,
s wcheme alone s unstable for the CGLE. This is not explicitly stated in the literature and probably o corrective
algorithm is also applied. Obtaining such correction is straightforward: Following steps similar 1o the ones hefore one
derives the auxiiary expression

1 — o~ gt

D, (n = 1)+ O{2?) (AB)

g

—ay bt
Agny =7 %" A (n- 1) +
Fhe numerical method we use, which we witl refer to as the two-step method, provides the tine evolution of (e
lield from a given initial condition by using Eqs. (A5) and [A6) as follows:
Coby i = 11 s ealeulated from A, (n— 1) by going to real space,
20l (AG) 15 used to obtain an approximation to A, (n).

AT he nor-linear teenn @ (n) is now caleuiated from this Ay () by going to real space.
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I. The field at step n + 1 is calculated from (A5) by using Ag(n — 1} and &4{n).

At each iteration, we get Ag(n +1) from Ag(n—1), and the time advances by 26t. Note that the total error is A543},
despite the error in the intermediate value obtained with Eq. (A6) is @(d%). The method can be easily made exact
for plane waves {1.2) of wavenumber k {and then more precise for solutions close to this traveling wave) simply by
replacing the nounlincar term &, in {A1) by &, + (1 + ics)(1 — k?) A4, and subtracting the corresponding term from
. We have not implemented this improvement because we were mostly interested in solutions changing its winding
aninber. =0 that they are not close to the same traveling wave all the time.

e number of Fourier modes depends on the space discretization. We have used dz = 1 and usually N = 512.
he time step was usually dt = 26t = 0.01. The accuracy of the numerical method has been estimated by integrating
plase-wave solutions. 'The amplitude and frequency of the field obtained numerically will differ slightly from the exact
;onplitude and frequency, not only due to round-off errors, but also due to the fact that the method is approximate.
e method has been tested by using a stationary unstable traveling wave of wave number k as initial condition.
The numerical errors will eventually move the solution away from the plane-wave unstable state. To be precise, in a
typical run with ¢; = —1.0 and ¢z = 2.4, with di = 0.01 and & = 0.123, the amplitude was kept constant to the fifth
decimal digit during ~ 8000 iterations. In comparison, when a Gaussian noise with an amplitude as small as 197
in acdled to the traveling wave, the modulus is maintained equal to its steady value (up to the fifth decimal) during
1500 iterations. The frequency wq determined numerically by using dt = 0.01 fits the exact value up to the fourth
decimal digit.

The integration method introduced here has also been applied succesfully to the case of two conpled equations, or
cquivakently a Vectorial CGLE {18, 67].
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Phase Instabilities in the Laser Vector Complex Ginzburg-Landau Equation
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The interplay between the polarization state of light and transverse effects in lasers is analyzed
through an amplitude equation description of an atomic transition between spin sublevels. Linearly
polarized traveling waves are found, whose stability is restricted by a phase instability associated with
the direction of polarization. The instability persists for polarization stabilized lasers. Novel states of
laser light such as standing waves with a spatially periodic linear polarization or coexisting traveling
waves with different wave numbers and circular polarizations are also found.

PACS numbers: 42.60.Mi, 42.65.-k, 47.20.Ky

The vector complex Ginzburg-Landau equation (VC-
GLE) [1,2] gives a generic description of spatiotempo-
ral phenomena in systems described by a complex vec-
tor field. Lasers give very appealing opportunities for the
study of such phenomena due to the vector nature of the
complex amplitude of the clectric field. The vector de-
grees of freedom are associated with the polarization of
laser light. Polarization instabilities are currently studied
in a variety of lasers {fiber, microchip Nd:YAG, and verti-
cal cavity surface emitting lasers (VCSELs)] {3]. In par-
ticular, the lack of stability of transverse and polarization
modes in VCSELs is known to produce a rich spatiotem-
poral phenomenology. In spite of the peculiaritics of dif-
ferent lasers, a classification and understanding of possible
states close to threshold is provided by a VCGLE. In this
Letter I use such a framework to discuss pattern forming
instabilities in wide aperture lasers [4,5]. The combination
of spatial transverse dependence and polarization state is
shown to lead to states of laser light so far unexplored. It
is also shown that the stability of these states is determined
by polarization phase instabilities.

The study of phase instabilities is linked to the con-
cept of spontaneous symmetry breaking. Generally speak-
ing, a neutral (zero energy) mode is associated with a
state that breaks a continuous symmetry of the system.
In equilibrium, thermal fluctuations excite nearby low
energy modes and destroy long range order in low di-
mensional systems. On the other hand, the stability of
nonequilibrium states is often restricted by phase insta-
bilities in which the zero energy mode becomes unstable
with respect to long-wavelength fluctuations. For exam-
ple, in pattern forming systems such as Rayleigh-Bénard,
the range of stable spatially pericdic states is limited by
an Eckhaus phase instability [6]. The consequences of ro-
tational invariance for a vectorial order parameter are also
well understood in equilibrium; for example, spin waves
can destroy ferromagnetic order. However, phase insta-
bilities associated with rotational symmetry have not yet
been considered at length in nonequilibrium systems such
as the laser. The complex vector field describing laser
light has two neutral modes: a global phase # and a rota-

0031-9007/95/75(3)/425(4)806.00

tional phase . Spontaneous emission noise causes fluc-
tuations of @ destroying frequency coherence and giving
a finite linewidth. This is the relevant laser phase when

the vector direction is fixed by external symmetry break- -

ing such as Brewster windows (scalar case). Otherwise,
the additional phase i, associated with the state of po-
larization of laser light, needs to be considered. For an
isotropic laser cavity emitting linearly polarized light, ¢
determines the orientation of the linearly polarized emis-
sion on the transverse piane. The selection of ¢ breaks
the rotational symmetry.

Laser transverse pattern formation has been associated
with an instability of the global phase & [71: For a
detuning {1 < O between atomic and cavity frequencies,
the amplitude equation description of the scalar laser
instability features a CGLE [8,9). The stability range
of traveling wave solutions of the CGLE around the
spatially homogeneous state is limited by a # instability
of the Eckhaus type. For Q > 0 [5.9] an amplitude
equation description requires two coupled CGLE’s and
the spatially homogeneous lasing solution is # unstable
[10]. When the polarizarion degree of freedom is not
frozen, i instabilities associated with polarization patterns
occur. Polarization phase instabilities restrict the stability
range of the laser states allowed in the scalar case.

A VCGLE can be written on symmetry grounds, but the
determination of the parameters in the equation requires
a specific physical model. The intrinsic polarization
of laser light is of quantum nature, and it originates
in the spin sublevels of the atomic lasing transition
{11]. Purely temporal polarization instabilities have been
studied using an homogeneously broadened J = 1 —
J = 0 atomic transition as a prototype situation [12]. I
will consider here transverse effects in this same transition
[13]. Specifically, I consider a wide aperture single
longitudinal mode laser with transverse flat end reftectors.
The upper J = 1 level is triply degenerate but, neglecting
smalt longitudinal components of the electric field, dipole
transitions are only allowed from the states J,=*!
to the lower J = O level. The complex slowly varying
amplitude E = (E,, E,) of the vector electric field can
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be decomposed into its right and left circularly polarized
components, :

!

E. = —

V2

The components E£. originate in the transitions from

the states J, = +1, respectively.. The Maxwell-Bloch
equations for the system can be written as

(E, * iE,). n

2
3,Es = i;—p PE. — (k + iv)Ex — ig'P+, (2)
I Psr = (‘)q_ + iwo)P: + i%(Dl * Dz)Et
+ igC+Ex, 3
8.0y = — yy(Dy - 20)
+ 3i(g"E P, — gE_P. —cc), @&

3Dy = —y;Dy + i(g"ETP+ + gE_P~ —cc), (5)
3Ce = —y.Ct + l(g'EZP+ - c.c.), (6)

where P. are the complex dipole polarizations for each
allowed transition, D, is the sum of the population differ-
ences between the upper J, = *1 levels and the lower

= ( level, D; is the population difference between
the two upper levels, C, is the density matrix ccher-
ence between the two J, = *1 levels, and C- = C3.
The » parameter is the cavity frequency, the detuning
) = wg — v, g is the coupling parameter, o the pump
parameter, and k., ¥, ¥|. ¥J, ¥c are relaxation constants.
Possible different relaxation mechanisms lead in general
to different states of polarization [14]. While in general
¥, ¥e > 7| only the case y = y; was considered in
Ref. [12]. The introduction of ¥, {14,15] allows for cir-
cularly or linearly polarized light depending on the ratio
¥i/ve

Close to threshold, the set of equations (2)—(6) can be
reduced, for {1 < 0 [16], to two coupled equations for the
amplitudes A. of the dominant £ = 0 Fourier mode of
E.. In appropriate rescaled units one obtains

A~ = pAs + (1 + ia)d’A.
— (1 +iB) (A= + ylAs1)A: (D)
These equations are equivalent to the following VCGLE
for the vectorial amplitude A:
3,A = pA + (1 + ia)d’A - (1 +iB)
X {(A-AMA + [(y — D/2](A - AA'L.(B)

The parameters 4, a, 8 have exactly the same expression
in terms of the original physical parameters as for a scalar
two level model [9]: 1 measures the distance to threshold,
a originates in the diffraction, and 8 is associated with
detuning. The coupling parameter y between right and
left circularly polarized components can be obtained by
direct adiabatic elimination of material variables in the
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absence of transverse effects,

2y (7; )
¥y —1l=—|= -1}
3y, + y\ e

The novel features associated with a vectorial description
of the laser instability originate in the last term in (8),
which has no counterpart in a scalar description. The
fact that ¥ is a real number, together with 1 + a8 > 0
(9], are the two main peculiarities of the version of the
VCGLE appropriate to describe laser systems.

A family of solutions of Eq. {7) is

Ar = Qeexpl—ikex + iwst + {6y £ o)), (10)

where the real amplitudes Q2% = [u(l — y) +
yki — k2)/(1 — y?), the frequencies w+ =
—ak ¥ —8(Q2 + yQ%), and 6y and Yo are arbi-
trary phases. Solutions with either @, =Qor @_ =0
correspond to circularly polarized light. They are only
stable for ¥ > 1 and will not be considered further in
this paper where I will focus on the case y < 1. The
simplest particular case of (10) occurs for k- = 0. It
corresponds to linearly polarized light with A+ having the
same amplitude and frequency. The global phase &y is
the usual arbitrary field phase found in the scalar case and
iy defines the arbitrary direction of linear polarization:
A; = cos g, Ay * singg. For k+ # 0 and because of
the pure intensity coupling in (7), in general A+ do not
have a common frequency and there is no well defined
polarization (depolarized solutions). However, for wave
numbers k- = *ki, A. have the same amplitudes
Q+ = @ and frequencies w- = w, so that a linearly
polarized state can be defined as explained in cases (a)
and (b) below. A special case occurs in the limit v = 1.
For such marginal coupling, solutions of the family (10)
only exist for k- = *k.. They comespond to elliptically
polarized light with a common frequency for A. and a
third arbitrary phase X = tan(Qi/Q_) associated with
the ellipticity.

The linear stability analysis of the family of solutions
{10) identifies two vanishing eigenvalues at zero wave
number of the perturbation (g = 0). They are associated
with the arbitrary phases #p and . The stability with
respect to long-wavelength fluctuations is characterized
by phase equations for slowly varying 8(x,t) and ¢ (x, ¢).
Long-wavelength instabilities are characterized in the
foilowing for the different solutions mentioned above:

{a} Linearly polarized traveling waves (TW).—These
solutions occur for k= = K. They are linearly polarized
with an arbitrary direction ¢o. They are the natural gener-
alization of the traveling waves previously considered in
the scalar case [5,9]. The phase equations turn out to be
decoupled:

(¢

30 =2K(a — B)d.0 + Dgd’8, (1)

o = 2K(a — B)dp + Dyaly, (12)
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2 2
D,(K)=1+aﬁ—2—(-l—+—‘%K—. (13)
u—K
2 2
Dw(K)=l+aB—2(l+y)(l+‘B)K 14

(1 -9y (e~ K
The equation for the global phase & is the same as the
one obtained for the scalar case: The X =0 solution is
phase stable, and TW solutions are @ stable for wave
qumbers K < K,, where X, is independent of and
determined by the Eckhaus instability: Ds(K,})=0. A
new phase instability associated with the direction of
polarization appears for K > K, where K, is determined
by Dy(Kp) = 0. Given that K, < K, the stability range
of TW solutions is determined by a polarization instability
which shrinks the range of stable wave numbers obtained
for the scalar case in the (u, K) plane (“Busse balloon™).
In the limit y — 0, K, — K, but {9) restricts y (0
take values y > 1/2. The smallest value of y sets
the limit of strongest possible linear polarization and
broadest stability range. In the opposite limit y — 1,
K, — 0, the phase polarization instability merges with an
amplitude instability to circularly polarized light and all
TW solutions of finite wave number K are unstable, with
the K = 0 solution being marginally stable.

(b} Polarized standing waves (SW). —These solutions
occur for k. = —k— = K. They correspond to coun-
terpropagating traveling waves of opposite circular po-
larization with a common amplitude, wave number, and
frequency. Alternatively, they canbe visualized as linearly
polarized solutions in which the direction of polarization
is periodic in space, with each Cartesian component of the
field being a standing wave for the intensity of the electric
field:

A, = cos(Kx + t), Ay x sin{Kx + o). (1%

For these solutions coupled phase equations are obtained,

9,0 = 2K(a — B)a ¢ + D378, (16)

8,y = 2K(a — B)3:0 + Dedl¥, (1m

where Dy and Dy have now exchanged their role. These
equations have a single complex eigenvalue,

A, = *2ila — B)Kq — D;q* + 0(g"),  (18)
where D, = (Dg + Dy)/2. A single phase instability of
the standing waves occurs when Ds(K;) = 0,
- u(t = N1+ ap)

M= +ap) + 20+ B
It is interesting to note that no stable SW are found
when neglecting the polarization degree of freedom, and
that the polarized SW have a broader range of stable
wave numbers than the polarized TW waves. Indeed, the
characteristic wave number K, is such that K, < K, <
K,. In the unattainable limit y — 0, K, — K;, while

in the opposite limit y — 1, K, — 0, and the range of
stable SW also shrinks to zero. It is also important 10

K? (19)

G

realize that the stability properties of the SW solutions
depend critically on the nonvariational character of (7).
The caiculation of (18) is based on a long-wavelength
limit which requires having a finite value of a — 8.
This cannot be fulfilled in the variational limit [2] a =
B = 0. In such a limit the phase equations decouple,
the eigenvalues become real, and the role of & and ¢
are just interchanged with respect to the case of polarized
TW. Note also that the phase equation description breaks
down for ¥y — 1~ since the eigenvalue associated with
the amplitude difference between A, and A becomes
positive at finite ¢, while it is negative at ¢ = 0.

(c) Depolarized solutions.—The solution (10) for ar-
bitrary k4 # k- corresponds to spatiotemporal states of
the laser field without a simple polarization descrip-
tion. These solutions can be parametrized by K = (k+ +
k_)/2 andd = k, — k-. The range of (K, d) values for
which they are stable is limited by coupled phase equa-
tions which in general have two independent complex
cigenvalues. A broad range of stable solutions exist in
general. A very small value of d stabilizes a range of K
values which are  unstable for d = 0 (Fig. 1). ATWor
SW solution could naturally evolve, after becoming un-
stable, into a depolarized solution. More interesting is
that when the laser is switched on a variety of these solu-
tions can locally grow from spontaneous emission noise.
By analogy with the spatiotemporal intermittency regime
found in the Benjamin-Feir stable region of the CGLE
[17] one can envisage rich disordered states of the laser
VCGLE. In such states these local and linearly stable de-
polarized solutions are connected by localized objects.

Phase anisotropies.—It is interesting to consider the
effect of small anisotropies of the laser cavity usually
recognized by a detuning splitting. Such anisotropies can
be modeled replacing  in (8) by a general matrix I'. The
Hermitian part of T’ is associated with amplitude losses

0.1 0.2

FIG. 1. Stability diagram for the family of solutions (10).
Linearly polarized TW's are along the x axis. They are
stable for K < K,. Polarized SW are along the y axis.
They are stable for d < 2K,. Depolarized solutions exist
below the continuous line. They are stable below the dotted
line. w=02a=268=02y~= 0.5(K, = 0.29LK, =
0.198, K, = 0.231).
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and the anti-Hermitian part with phase anisotropies. I
consider here the case of a linear phase anisotropy, which
amounts to add a term i y,A~ to the right-hand side of (7).
The parameter v, is arbitrarily taken such that By, > 0.
Solutions of the modified laser VCGLE with the form
(10) only exist now for k+ = k- = K. The phase g is
no longer arbitrary but fixed by sin{2¢o = O}, giving rise
to states linearly polarized either in the x or y direction.
These states have a common amplitude independent of
yp. Q2 = (u — K)/(1 + v), and different frequencies
wsy = —ak? = B(1 + y)Q@* = y,. The global phase
g is independent of ¥, and obeys the phase equation (11).
The long-wavelength y stability of the x- and y-polarized
solutions is described by a damped phase equation of the
general form,

dp = lg + v,y + Dyoly. (20)

Simple particular cases of (20) illustrate well the effect
of y, on the phase dynamics: When considering the
stability of the X = O solutions, one finds v =0 and
1" is such that the x-polarized solution is always stable
at g = 0, while the y-polarized solution is unstable for
yp < v5 = BQH1 — 7). In addition, Dy” is such that
the x-polarized solution is further stabilized for ay, > 0
by the phase anisotropy at finite g. From the point of
view of polarization discrimination it is then convenient to
take a value of v, <« vy, for which only a stable solution
exists at ¢ = 0. In this limit the diffusion coefficient for
the x-polarized solution of arbitrary X becomes

__6K'8
01 - ,,))- 2

For finite K and g the damped phase equation describes
a competition between the stabilizing effect of the phase
anisotropy and the remanent of the  instability: D} in
(21) vanishes at a modified K,(y,) > Kp(y, = 0}, so
that for K > K. an amplitude-type instability associated
with ¢ appears at finite g. The wave number K,(y,)
sets a lower bound for K,. A similar mechanism of
stabilization of a modulational instability by external
forcing has been invoked to explain pattern formation in
passive optical systems (18]. In summary, small phase
anisotropies fix a polarization direction of the spatially
homogenous lasing solution, but the range of stability of
polarized TW is stili limited by a polarization instability
at finite wave number g.
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Wave-Unlocking Transition in Resonantly Coupled Complex Ginzburg-Landau Equations
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We study the effect of spatial frequency forcing on standing-wave solutions of coupled complex
Ginzburg-Landau equations. The model considered describes several situations of nonlinear counter-
propagating waves and also of the dynamics of polarized light waves. We show that forcing introduces
spatial modulations on standing waves which remain frequency locked with a forcing-independent
frequency. For forcing above a threshold the modulated standing waves unlock, bifurcating into a tem-
porally periodic state. Below the threshold the system presents a kind of excitability.

PACS numbers: 82.20.-w, 42.65.5f, 47.20.Ky

Different physicochemical systems driven out of equi-
librium may undergo Hopf bifurcations leading to rich
spatiotemporal behavior. When these bifurcations occur
with broken spatial symmetries, they induce the forma-
tion of wave patterns described by order parameters of the
form

¥ = Aefhertiod 4 BeThaTION + ce, (D)

where the slow dynamics of the wave amplitudes A and
B obey complex Ginzburg-Landau equations. This is
the case, for example, for Rayleigh-Bénard convection in
binary fluids, Taylor-Couette instabilities between coro-
tating cylinders, electroconvection in nematic liquid crys-
tals [1], or for the transverse field of high Fresnel number
lasers [2]. Symmetry breaking transitions are usually very
sensitive to small perturbations or external fields. For
example, it has been shown that a spatial modulation of
the static electrohydrodynamic instability of nematic lig-
uid crystals modifies the selection and stability of the re-
sulting roll patterns. In particular, the constraint imposed
by a periodic modulation of the instability point may lead
10 a commensurate-incommensurate phase transition [3].
In the case of Hopf bifurcations, external fields inducing
spatial or temporal modulations strongly affect the selec-
tion and stability of the resulting spatiotemporal patterns.
For example, standing waves may be stabilized by purely
temporal modulations at twice the critical frequency [4,5],
or by purely spatial modulations at twice the critical wave
number [6], in regimes where they are otherwise unstable,
including domains where the bifurcation parameter is be-
low the critical one.

External forcings that break space or time translational
invariance, but not the space inversion symmetry of
the wave amplitudes, induce linear resonant couplings
between the complex Ginzburg-Landau equations (CGLE)
which describe the dynamics of the amplitudes of left
and right traveling waves. In the case of forcings
that break the space translation invariance, the coupling
coefficient € is in general complex, and the corresponding
coupled CGLE may be written, in one-dimensional geo-
metries, as

1956 0031-9007/96/76{11)/1956(4)$10.00

A+ v,0,A=pA+ (1 +ia)diA
— (1 + iBNIAR + yIBI))A + €B,
B — vg9.B=pB+ (1 + ia)d’B
- (1 + BB + ylAP)B + €A. (2)

Due to the resonant coupling with coefficient €, pure
traveling waves are not solutions of these equations any
more, and generic arguments of bifurcation theory allow
a characterization of the possible uniform amplitude solu-
tions depending on the various dynamical parameters of
the system [6]. Here also, standing waves may be stabi-
lized as the result of phase locking between the waves A
and B. Predictions based on (2) in the x-independent case
have been successfully tested for azimuthal waves in an an-
nulus laser with imperfect 0(2) symmetry [7]. However,
the combined effect of the complex coupling coefficient €
and the spatial degrees of freedom has not been explored.

In this Letter, we study Eqs. (2) with the following pa-
rameter restrictions: imaginary linear coupling coefficient
(e = iyp), negligible group velocity v, and weak and real
nonlinear cross-coupling term (y < 1). We will, however,
maintain the spatial derivative in the right-hand side of (2),
and this will be crucial for the results below. We will
show that the spatial forcing introduces spatial modula-
tions of the standing wave solutions while A and B remain
frequency locked with a forcing-independent frequency.
By increasing the forcing, these stable modulated waves
merge with unstable ones in saddle-node bifurcations with
nontrivial global structure. This wave-unlocking transition
results in a mixed state with limit cycle temporal behav-
ior. The threshold value of the forcing and the limit cycle
frequency are calculated analytically. Modulated standing
waves can also be induced by strong enough temporal forc-
ing [8].

The parameter regime explored here would be appropn-
ate in physical situations where a spatial forcing modulates
the frequency of the Hopf instability and induces a purely
imaginary resonant forcing (a purely real € would appear
due to a spatial modulation of the distance to the instabil-
ity point). Possible systems should have negligible group

© 1996 The American Physical Society
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velocities, as in some circumstances in binary fluid con-
vection [9] or liquid crystals [10], and weak coupling such
as in viscoelastic convection [11]. Up to now, the parame-
ter range considered here best applies to several situations
in laser physics. The first one corresponds to aking into
account transverse effects in inhomogeneously broadened
(y < 1) bidirectional ring lasers [12]. The purely imag-
inary resonant coupling is a consequence of conservative
(off-phase) backscattering [13], or, alternatively, a spatial
modulation of the refraction index of the laser medium. In
fact, a spatially periodic refractive index is the mechanism
used for single frequency selection in index coupled dis-
tributed feedback lasers (DFB). A second situation is that
of the transverse vector field in a laser near threshold [14].
The parameter yp comresponds to a detuning splitting be-
tween light linearly polarized in different orthogonal direc-
tions, produced, for example, by small cavity anisotropies.
In this case, A and B are not the amplitudes of left or
right traveling waves, but the amplitudes of the two inde-
pendent circularly pelarized components of light, that is,
A = (A, + iA)}/V2and B = (A, — iA,)/V2, where A,
and A, are the linearly polarized complex amplitudes of
the vector electric field with a spatially transverse depen-
dence. Weak coupling (y < 1) favors linear polarization
(IAl = |Bl). We will often use the light-polarization ter-
minology, because it gives a clear physical insight into the
states found for the general set of Eqs. (2) of broad appli-
cability within the parameter restrictions above.

Two families of solutions of the coupled CGLE (2) can
be distinguished. The first family corresponds to traveling
waves for A and B with the same amplitude, frequency,
and wave number

A = Que”kxtiwt+illatgo)

B = Qoe-jkx+iwr+i(ﬂ“_"l'°). (3

Without forcing (v, = 0), the constant global and relative
phases, 6y and ¢, are arbitrary, the amplitude is Qé =
{1 — £2)/(1 + ¥), and the frequency w is wg = —ak® —
B(1 + y)Q3. With forcing, the global phase and the
amplitude remain unchanged, but the relative phase is
fixed by sin 24y = 0; the two allowed values of ¢ give
two solutions with frequencies @ = w¢ £ yp. The phase
instabilities of these solutions were discussed in [14].

The second family of solutions can be searched in the
form of two waves

— it inkx
A= e Za,,e ,
n

—

B = er'mul Z bneinkx’ (4)
r

frequency locked to a frequency wy independent of
forcing. For yp = 0, the exact solutions of (2) in this
form only have two terms, |a;| = |b_i| = Q. The
effect of a small forcing in this solution is to generate
higher harmonics, while keeping wq fixed and the relative
phase between a; and b_; arbitrary. Now, the remaining
coefficients a, and b,, are not zero and can be calculated
perturbatively in yp. Close enough to the threshold for
a mode k (1 — k% = 0), the amplitude of higher order

harmonics is negligible and, to lowest order in u — k2,
an approximate solution takes the form

A= ei(9u+wnr)(Qei(kx+i:[;o) + Re—i(kxw.ﬂ—.ﬁ))
B = er'(gu*'wol')(Qe—i(ka%) + Rei(kxﬂlm“"ﬁ)) (5)

with #y and iy arbitrary, and ¢ fixed by the forcing. Q
and R are real numbers (positive or negative) and, for
small yp, |R| <« |@| (an equivalent solution is found
interchanging  and R).

A visualization of these solutions can be given within
the polarization interpretation of (2). Defining C.e'é: =
Q * €'*R, the change of variables to the amplitudes of
the x and y linearly polarized components gives

Ax = V2C4 coslkx + gg)eitwni+ootin),
Ay = VZC_sin(kx + p)e’ @l totio), (6)

These equations describe at each point x the superposition
of two dephased harmonic motions with different ampli-
tudes and a frequency wo independent of forcing. This
identifies the solution (5) with an elliptically polarized
standing wave pattern in which the orientation of the el-
lipse and its ellipticity vary periodically in the spatial co-
ordinate x. In the limit of no forcing, R = 0, the ellipse
degenerates in a linearly polarized standing wave with an
angle of polarization ¢ = kx + x. In this interpretation,

04}’ )
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FIG. 1. Modulus (left) and phase (right) of A for yp =
0.012 < yp.. The horizontal axis is space (256 units), and the
vertical is time (1000 units). Gray levels range from black
(0) to white (the maximum of the modulus or 27 for the
phase). This numerical solution has been obtained from (2)
with 8 =02, y =05, 0 =02, and « = 2.6. The initial
condition is a standing wave with @ = wg and k = 0.123.
Bottom: polarization representation of the solution at a given
point x. For yp = 0 one has linear polarization (indicated by
the straight line) which becomes elliptical for v, # 0. An
equivalent solution has the major axis of the ellipse along the
second and fourth quadrants.
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the first family of solutions (3) would correspond to lin-
early polarized traveling waves with frequency and an
angle of polarization . In such a case, the forcing fixes
the direction of polarization so that only x or y linearly
polarized waves remain. On the contrary, forcing in (3)
grows an ellipse from a linearly polarized standing wave
keeping the frequency unchanged.

Elliptically polarized standing wave pattems are ob-
tained from a direct numerical integration of the coupled
CGLE as shown in Fig. 1. Increasing the forcing, these
solutions become unstable through a bifurcation in which
Q and R become time dependent. As shown in Fig. 2,
the solution beyond this instability oscillates between the
two equivalent elliptically polarized standing wave pat-
terns found for small yp. In addition, from the numerical
simulations, one finds that the period T of these oscilla-
tions decreases beyond the critical value yp.. One has
T-2 « yp — yp. {see Figs. 3 and 4).

A quantitative description of the instability, including
the determination of the critical forcing <y, and the period
of the oscillations, can be performed by an amplitude
analysis. Close to the threshold for the k modes, the
equations for the slow time evolution of Q@ and R can
be found by substitution of (5) into (2) and neglecting
contributions from higher order harmenics. Defining
Xe'® = O + iR, we find

X=(u—kX -+ X
X3
-1+ ycos2¢)? sin®2® ,

. 2
=+ ycodeJ)X?sinz(l) cos 2

. x? .
+ Bysin2¢ —z-sin2CI) — ypsing,

¢ = Bl + ycos2¢)X cos2® + yX?sin2é
— 2vp cos¢ cot2d . N

The fixed points of (7) represent the polarized standing
waves solutions (5). These points can be determined
exactly in the limiting case of 8 = 0. The interesting
solutions have two allowed values of ¢: ¢ = (2n +
D /2, n = 0, |; and for each value of ¢, there are eight
fixed points: Four are stable (+) and the other four are
saddle points (—). The corresponding values of X and P
arc

p— K
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FIG. 2. Same as Fig. 1 but using yp = 0.0145 > vpe.

Bol+) = E(+) + m=,
Bo(-) = 5 = £(-) + m-, ©
where m = 0,1,2,3, and
£(x) = Soa i arcsin Are (10

(1 = y)Xo(x)*
Heteroclinic orbits connect the saddles and the stable
nodes with the same ¢, When yp grows, saddles and
nodes approach by pairs and at the critical value,
ype = 2 (1 - )
B E G Y

they merge and disappear via inverse saddle-node bifurca-
tions. The interesting point is the global structure of the
bifurcation: The presence of the heteroclinic connections
gives rise to the birth of limit cycles (one for each value
of ¢). This is similar to the Andronov—van der Pol bi-
furcation [15] that appears in several types of excitable
systems [16]. The difference is that, due to symme-
tries, here we have several pairs of fixed points merging,
instead of just one pair. The periodic behavior is illus-
trated in Fig. 2 by the periodic alternation of the trajec-
tory between the “ghosts™ of the disappeared elliptically
polarized states corresponding to the fixed points. Be-
low the bifurcation, small perturbations around the stable
solutions decay, whereas perturbations above a threshold
push the system along the heteroclinic trajectory toward
another stable fixed point. Since the size of the pertur-
bation required for such switches decreases by increasing
¥p, and vanishes at yp., the multistability of this system
can be seen as a kind of excitability {17). A different
consequence of the multiplicity of stable states is their
possible coexistence in space, leading to the formation of
domains with different polarizations along the x axis.
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FIG. 3. Period of the oscillations (T) of Q and R, obtained
from the numerical solution of the coupled CGLE using the
parameters given in Fig. 1. The dashed line is a least squares
fitting from which yp. = 0.0138.

Close to the instability at yp., the time dependent
behavior of the solution can be obtained reducing the
problem to a phase dynamics by elimination of the
variable X. We have (in the limit 8 = 0)

_ (= &N = y)sindd
5+ 3y — (1 — y)cosdd e
which for yp = yp. yields the following time behavior:

(12)

tan(2®) = tan(2'1>c)[l + ‘/2(7,, = Yee)/vpe

X tan((S + 39)/7re /(T{f};g—i‘w:)] (13)

where @, = &g, Eq. (9), for yp = yp,.
An approximative analysis of Egs. (7) for 8 # 0 indi-
cates that this parameter appears squared in the expres-
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0.10f
8:48
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& 0.20

0.10

0.00

0 10 2 40

o ., %
IR R |
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FIG. 4. The amplitudes of @ and R of the solution shown
in Fig. 2 exhibit the periodic oscillations given by Eq. (13).
The time has been scaled using the value of yp, obtained from
Fig. 3. The dotted line corresponds to y, = 0.0155, the dashed
line to y, = 0.0140, and the lines in between to the other
points of Fig. 3.

sions for yp., X, and ®.. Therefore, for small B, the
previous analysis is still meaningful as explicitly seen in
the numerical results of Figs. 3 and 4.

In summary, in the absence of forcing, and for the pa-
rameter regime considered here, there are solutions for
the amplitudes A and B of the coupled CGLE which cor-
respond to linearly polarized standing waves. We have
shown that an imaginary coupling between them trans-
forms these solutions into standing waves with spatially
periodic elliptic polarization. Increasing the forcing, an
instability of these solutions appears, via the unlocking of
the underlying wave ampiitudes, and the solutions acquire
a time-periodic behavior. Locally, this bifurcation is of the
saddle-node type, but the presence of heteroclinic connec-
tions between the fixed points gives rise to the appearance
of a limit cycle when stable and unstable points merge.

Financial support from DGICYT Projects PB94-1167
and PB%4-1172 is acknowledged.

*Also at the Belgian National Fund for Scientific Re-
search, Center for Nonlinear Phenomena and Complex
Systems, Université Libre de Bruxelles, Campus Plaine,
Blv. du Triomphe B.P 231, 1050 Bruxelles, Belgium.

{1] M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 65,
854 (1993).

[2] A.C. Newell and J.V. Moloney, Nonlinear Optics
(Addison-Wesley, Redwood City, 1992).

[3] M. Lowe and J. P. Gollub, Phys. Rev. A 31, 3893 (1985).

(4] D. Walgraef, Europhys. Lett. 7, 485 (1988).

{51 H. Riecke, J.D. Crawford, and E. Knobloch, Phys, Rev.
Lett. 61, 1942 (1988).

[6] G. Dangelmayr and E. Knobloch, Nonlinearity 4, 399
(1991).

[7]1 E.J. D'Angelo, E. lzaguirre, G.B. Mindiin, G. Huoyet,
L. Gil, and J.R. Tredicce, Phys. Rev. Lett. 68, 3702
(1992).

i8] S. Douady, S. Fauve, and O. Thual, Europhys. Lett. 10,
309 (1989).

[91 P. Kolodner, Phys. Rev. A 44, 6448 (1991); Phys. Rev.
Lett. 66, 1165 (1991).

[10] Physics of Pattern Formation in Complex Dissipative
Systems, edited by 5. Kai (World Scientific, Singapore,
1992).

[11] J. Martinez-Mardones, R. Tiemann, W. Zeller, and
C. Pérez-Garcia, Int. J. Bifure, Chaos 4, 5 (1994).

[12] 8. Singh, Phys. Rep. 108, 217 (1984).

[13] C. Etrich, P. Mandel, R. Neelen, R.J.C. Spreeuw, and
I.P. Woerdman, Phys. Rev. A 46, 525 (1992).

[14] M. San Miguel, Phys. Rev. Lett. 75, 425 (1995).

[151 A.A. Andronov, A.A. Vitt, and S.E. Khaikin, Theory of
Oscillators (Pergamon Press, Oxford, 1966).

[16] S.C. Mueller, P. Coullet, and D. Walgraef, Chaos 4, 439
(1994).

[17] E. Meron, Phys. Rep. 218, 1 (1992).

1959



a — & S| &

A 45 = A

A A 4=

R EA s Rk A -4 A8 .

Y AA B

j

VOLUME 78, NUMBER 23

PHYSICAL REVIEW LETTERS

9 JuNE 1997

Synchronization of Spatiotemporal Chaos: The Regime of Coupled
Spatiotemporal Intermittency
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Synchronization of spatiolemporally chaotic extended systems is considered in the context of coupled
one—dimensional complex Ginzburg-Landau equations (CGLE). A regime of coupled spatiotemporal
intermittency (STI) is identified and described in lerms of the space-time synchronized chaotic motion
of localized structures. A quantitalive measure of synchronization as a function of coupling parameter
is given through distribution functions and information measures. The coupled STI regime is shown
to disappear into regular dynamics [or situations of strong coupling when localized structures become
unstable, hence a description in terms of a single CGLE is not appropriate. [$0031-9007(97)03313-9]

PACS numbers: 05.45.+b, 47.20.Ky

Two issues of high current interest in the general ficld
of nonlincar dynamics are the quantitative characterization
of differcnt regimes of spatiotemporal complex dynamics
in extended systems [1] and the synchronizalion of chaotic
oscillators [2]). The characterization of low-dimensional
chaos is now a maturc subject with well established
techniques, including techniques of chaos control. In this
context, the demonstration that the familiar phenome-
non of synchronization of two regular oscillators (31bya
weak coupling can also be displayed by chaolic osciilators
is an important new idea. This concepiual development
has opened a new avenue of research with interesting prac-
tical implications, Chaos in extended sysiems is a much
less mature subject, and many investigations are still at the
level of classifying different types of behavior. Concepls
and methods of stalistical mechanics are cornmonly in-
voked in terms of “phase diagrams” and transitions among
different “phases” of behavior [4-7]. Still, the possibility
of a synchronized behavior of spatiaily exiended systems
in a spatiotemporal disordered phase is an appealing idea
that we address in this Letter. More specifically, we will
consider an extended one-dimensional system in a chaotic
regime known as spatioternporal intermittency (STI) (51,
and we will characterize a coupled STI regime.

By synchronization of two chaotic osciliators 01 and
0, it is meant in a strict sense that plotting the time serics
0:(t;) vs Oy(t;) one obtains a straight line of unit slope.
For many practical applications, synchronization of chaotic
oscillations calls for an expanded framework and the con-
cept of “generalized synchronization™ has been introduced
[8.9] as the appearance of a functional dependence between
the two time series. In this context, we understand here
by synchronization the situation in which ¢ (r;) becomes
a given known function of O4(¢;). Transferring these con-
cepis 1o spatially extended systems, we search for correla-
tions between the space(x;)-time(t;) series of two variables

01(x;, 1) and Oa(x;, ;). The synchronization of O; and
0, occurs when these two space-time series become func-
tionally dependent. This idea is different from the one

0031-9007/97/78(23)/4379(4)510.00

much studied in the context of coupled map models in
which the coupling and emerging correlations are among
spalialty coupled oscillators. Here we search for correla-
tious of two variables at the same space-lime poinl.

Our study has been carried out in the context of com-
plex Ginzburg-Landau Equations (CGLE) which give a
pretotype example of chaotic behavior in extended sys-
tems {10,11]. Our results show that the coupling be-
tween two complex amplitudes Ap and A; (O = |Aq] and
03 = |A3]), in a STI regime described below, establishes
spatiotemporal correlations which preserve spatiotempo-
ral chaos but lead to a synchronized behavior: Starting
fromn the independent STI dynamics of A; and Az, cou-
pling between them leads to a STI regime dominated by
the synchronized chaotic motion of localized structures in
space and time for Ay and Ay, An additional effect ob-
served in our model is that the coupled STI regime is de-
stroyed for coupling larger than a given threshold. At this
1hreshold, maximal mutual information and anticorrelation
of 1A;] and Azl are approached.

The CGLE is the amplitude cquation for a Hopf bifurca-
tion for which the system starts to oscillate with [requency
w, in a spatially homogeneous mode. When, in addition,
the Hop( bifurcation breaks the spatial translation symme-
try il identifics a preferred wave number K, and traveling
waves appear. In one-dimensional systems the amplitudes
Ay and Ay of the two counterpropagating lraveling waves
satisfy coupled CGLE of the form

oAz = pArp + {1+ !'a’)ai/\:l‘g
— (1 +iB) (Al + YA Pa. M)

Equation (1) is written here in the limit of negligible group
velocity. In particular, this limit is of interest to describe
the coupled motion of the two complex components of
a vector CGLE. In this context, (1) is used to describe
veetorial transverse pattemn formation in nonlinear optical
systems, Aqz stand for the 1wo independent circularly
polarized components of 2 vectorial electric field amplitude

© 1997 The American Physical Society 4379
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(12,13], and the coupling parameter vy is taken to be a rcal
number.

Homogeneous solutions of Eq. (1) are of the form

Ara(n, 1) = Quae™?, (2)
with 015 real and wi2 = —B(QF2 + ¥03,). Fory =
0, Qfg = u, and the two amplitudes satisfy the indcpen-
dent CGLE whose phasc diagram has been studied in much
detail in terms of the paramelers @ and 8 [7,14]. For
vy = 0, solutions of type (2) and other plane waves of dif-
ferent periodicities are known to be linearly stable below
the Benjamin-Feir (BF) line (1 + a8 > 0). Above this
line, regimes of phase and defect chaos occur. However,
for a range of parameters below the BF line there is an addi-
tional attractor, coexisting with the one of plane waves, in
which the system displays a form of spatiotemporal chaos
known as STL In this atiractor the solution is intermitient
in space and time. Space-time plots of [A,] or |A;] in the
STI regime for y = 0 are qualitatively similar 10 (he ones
shownin Fig. 1 {top). The question we address here is how
the STI regimes of Ay and A; change when the coupling y
is introduced. We first recall that for a weak coupling situ-
ation (y < 1) the solution (2) with Q%,z =puf(l + vy)is
lincarly stable below the same BF line ! + a8 > 0 [12],
whereas (he solutions with @y = Oor ¢, = Oare unstable.
For large coupling, ¥ > 1, the competition between the
two amplitudes is such that only one of them survives, so

FIG. 1. Space-time plot of the modulus |A,| (ieft) and |A,]
(right). From top to bottom, ¥ = 0.1, 0.5, 0.95, and 1.05. The
horizontal axis represents space and the vertical axis represents
time (2000 time units for ¥ = 0.95, 100 for v = 1.05, and 200
in the other two plots). The grey levels change lincarly from
the minimum (black) to the maximum (white) of the modulus.
The paramcters are . = t, o = 02, and 8 = —2.0.

4380

thal lincarly stable solutions are either Oy = Ji. =0
or O = Ji. 07 = 0. Inaddition 10 these ordered states
we also find a STI attractor for coupled CGLE and values
of e and B which are in the STI region of a single CGLE.
Changes of such STI behavior with varying y are shown
in Fig. 1 [15].

For small coupling (y << 1) we observe that |A;]| and
|A] foliow nearly independent dynamics, with the flat gray
rcgions in the space-time plot being laminar regions sepa-
raled by localized structures that appear, travel, and an-
nihilate. In the laminar regions, configurations close o
(2) with ¢y = (2 occur. Disorder occurs via the con-
taminalion by localized structures, These structures have
a rather irregular behavior and, in a first approach, they
can be classificd as holelike or pulselike [11]. In Fig. 1
these holelike and pulselike structures are associated with
black and white localized structures, respectively. As y
increases we observe two facts: First, both [A;] and |A;|
continue Lo display STI dynamics, although in larger and
slower space-lime scales. Second, and more interesting,
is that the dynamics of [A;] and |A;| become increasingly
correlated. This is easily recognized by (ocusing in the
localized structures: A black traveling structure in the
space-lime plot of |A| has its corresponding white travel-
ing structure in the space-time plot of |A;| and vice versa.
This results in laminar states occurring in the same region
of space-time for [Aq] and |A;|. The coupted STI dynami-
cal regime is dominated by localized structures in which
maxima of |A; | occur, always together with minima of [A;]
and vice versa (bounded pulsc-hole). In the vicinity of the
localized structures, and emerging from them, there appear
traveling wave solutions of (1) but with a different wave
number for |Aq] and |A;[ 50 that [A;] # |A2]. Eventually
{going beyond the marginal coupling ¥ = 1), the STI dy-
namics is destroyed and |A] and |A;| display only laminar
regious, in which either |A;| or |A;| vanish, separated by
domain walls,

In the optical interpretation of (1), the laminar regions
with [A;] = |Az| correspond 1o transverse domains of lin-
early polarized light, although with a random direction
ol lincar polarization. The localized structures are es-
scutially circularly polarized objects since one of the two
amplitudes dominates over the other, Around these struc-
tures the plane wave solutions with |A,| # 1A;| have dif-
feremt [requencices, so that they correspond to depolarized
solutions of (1) [12}. As y > 1, localized traveling struc-
turcs disappear, and one is left with circularly polarized
domains separated by polarization walls.

It is usuwally argucd (hat for y > 1 the dynamics of the
coupled CGLE (1) is well represented by a single CGLE
since only onc ol the fwo waves survives. This is cer-
tsinly not true in the STI domain of parameters considered
hicre since single CGLE would give rise 0 STI dynam-
ics, whereas the coupled set (1) does not for v > 1. in
general, a description in terms of a single CGLE would
noi be reliable for parameter values at which the single
amplitude dynamics produccs amplitude values close to
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zero. We next show that the correlations observed for
increasing ¥ in Fig. 1 are, in fact, a kind of spatiotem-
poral synchronization, in the generalized sense defined in
[8.9). To this end, a characterization of the synchroniz-
ing process can be given by analyzing the joint distribu-
tion of the two variables. This distribution and valucs of
|Ay| vs |Az} are plotied in Fig. 2, The cloud of points
correspond to the different space-time points of Fig. 1.
For ¥ <« 1 we obtain a diffuse cloud of points indicat-
ing essentially independent dynamics. The concentration
of points around |A;[? = |Az{? = u/(1 + ) corresponds
to the laminar regions, but excursions away from that so-
lution are independent. As the coupling is increased with
¥ < 1, the cloud of points approaches the curve given by
{A12 + |A;f* = p. This indicates synchronization of the
dynamics of structures departing from the laminar regions.
The relationship between |A; | and |A2| can be thought of as
a kind of antiphase dynamics [17]. The points with larger
values of |A,] and smaller values of |A;| (and vice versa)
correspond to the localized traveling structures. Intermedi-
ate points among these, and those around |A1] = |21, cor-
respond to the regular solutions of a nonzero wave number
that surround the localized structurcs. The special case
of marginal coupling is discussed below, bul as we en-
ter into the strong coupling situation (y > 1) the cloud
of points concentrates in the regions A2 = i, 1Al =0
and |Az]* = u, lA;] = 0 corresponding to the stable non-
chaotic solutions. Intermediale points correspond to the
domain walls separating (hese ordered regions. It should
be pointed out that we are considering just the modulus of
the complex fields A; ». The coupled phase dynamics does

FIG. 2. Asympiotic states for (from left to right, and from top
10 bottom) ¥ = 0.1, 0.5, 0.95, and 1.05. The joint probability
distribution p{]Aal, |4,]) is shown as a 3D surface. On top of
cach surface, [A(x, )] vs 1A2(x, 1)] are shown in the form of a
dotted plot oblained from the values of |4,] and [A3] at space-
time points during a time intervai of 50 units.

not show any obvious form of synchronization. Therefore
we find a case of partial synchronization of the dynamical
variables. A different type of partial synchronization of
chaotic oscillators has been described in [18].

A quantitative measurc of the synchronizing process
can be given in terms of informalion measures [19].
The entropy H(X) = — X, p(x)Inp(x}, where plx) is
the probability that X takes the value x, measurcs the
randomness of a discrete random variable X. For two
random discrete variables X and ¥, with a joint probabil-
ity distribution p(x, y), the mutual information / X.Y}=
=3, plu.y)in{p(x)p(y)/plx,y)] gives a measure of
the statistical dependence between both variables; the
nutual information being O il and only if X and Y
are independent. Considering the discretized values of
|A;| and |Az| at space-lime points as random variables
X = |Al, ¥ = |A;l, their muwal information is a mea-
surc of their synchronization. In Fig. 3 (left) we have
plotied the mutual information and the entropy of 1Al
and |A;] as a function of y {20]. This graph shows
that the entropy of |A;] and |Az| remains constant for
increasing values of vy, so that increasing ¥ does mnot
reduce the uncertainty associated with the single-point
distributions of A{a. This indicates here that synchro-
nization is not the result of reduced randommness due
o the increase of time and length scales observed in
Fig. 1. However, when v is larger, the mutual informa-
tion becomes larger, approaching its maximum possible
value [I = H(AD) = H(lA21)] as y — 1. An additional
quantitative measurement of synchronization is given
by the lincar correlation coefficient p = «lA; 1Azl -
(AL (A2 1)) [var(jA; Dvar(JA2])] ~!/2 with var(x) being the
variance of x. 'This cocfficient, plotted as a function of ¥
in Fig. 3 (right), is negative, indicating that when [Az] in-
creases, |A;| decreases and vice versa.

Our quantitative indicators of synchronization, [ and g,
approach their maximum absolute values as y = 1. We
also observe that the regime of coupled ST disappears for
y > 1. This can be cxplained by considering the stability
of the localized structures responsible for STI. We have
cxamined the stability of localized structures, isolating an
individual pulsc-hole structure from a STI configuration
at y < 1 and leting it evolve in time. For y <1lit
recreates STI while for ¥ = 1 it is unstable, becoming
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wider and evolving into laminar states, It has been argued
that the domain of parameters (e, 3) in which STI cxists
for y = 0 is given by the stability of localized structures
[21]. In the same way, we find here that coupled STI
disappears in the limnit of stability ¥ = 1 of coupled pulsc-
hole structures. The change in behavior at y = 1 can be
alternatively understood from the emergence of A | +
{A2]2 = u as an attracting manifold, Writing (1) in terms
of R? = |A1? + |A;]? and x = arctan(|A,[/|A;]). onc
can see immediately that homogeneous solutions for vy =
1 are R? = g and y arbitrary. The transient dynamics
starting from random initial conditions at y = I consists
of a very fast evolution of R{x, t) towards /i, with no
regime of STI existing al any time, with y(x, f) covering
aimost completely the range of its possible values. In the
late dynamical stages, y (x, ) reaches an arbitrary value xo
through spatial diffusion. An explanation for this behavior
1s that, while for ¥y # 1 the zero-wave-number components
R(k = 0) and %(k = 0) have a nonzero driving force, at
y = 1, ¥(k = 0) is a marginal variable while 8 {(k = 0} is
strongly driven. Once R becomes space homogenecous, the
homogeneous state is asymptotically approached because
the different wave-number components of Ajz become
decoupled:

A gk, 0 = @2 RO 12 G = o). (3)

Requiring bound solutions for ¢ — o, (3) implies that all
Fourier components of A decay to zero, except the one
with the smallest wave number. Since a homogencous
component is usually present in the initial condition, the
system will evolve into a homogeneous state, as observed
numerically. In some of our simulations the STI regime
has been observed to disappear for a coupling smaller than
v = 1, but this seems to be a consequence of {inite-size
effects: The size of the Yaminar portions of Fig. 1 increases
with the coupling y. When this size becomes similar to
system size, one of the stable plane waves can occupy
the whole system, thus preventing any further appearance
of defects and STI. For a given initial condition, with
paramelers & = (.2 and B = —1.4, and a system size
L = 512, the STI regime was seen to disappear at y =
0.85. As soon as the system size was doubled the STI
regime reappeared again, By reducing the sysltem size
10 L = 256 the STI regime disappeared for smatler .
The conclusion from this and other numerical experiments
is that STI exists for all y <1 in the same range of
paramelers as it exists in the single CGLE, with 1ime and
length scales diverging as < approaches !, where STI
disappears.

In summary we have described a regime of synchro-
nized STI dominated by the space-lime synchronization
of localized structures. Synchronizalion is measured by
mutual information and a correlation parameter that take
their absolute maximum value at the boundary between
weak and strong coupling ¥y = 1. Beyond this boundary
{y > 1), STI disappears, but the strong, coupled system
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dynamics cannol be described in terms of a single domi-
nant amplitude.
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We invesligale a pattern-forming system close to a Hopf bifurcation with broken translational symmetry. In
one-dimensional geometries, its evolution is governed by two coupled complex Ginzburg-Landau equations
which describe the amplitude of the counterpropagating traveling waves that develop beyond the instability.
The convective and absolute instabilities of the possible steady states are analyzed. In the regime of strong
cross coupling, where traveling waves are favored by the dynamics, the resulis of previous analysis are
recovered. In the weak cross-coupling regime, where standing waves are favored by the dynamics, traveling
waves nevertheless appear, in the absence of noise, between the uniform steady state and the standing-wave
patterns. In this regime, standing waves are sustained by spatially distributed external noise for all values of the
bifurcation parameter beyond the Hopf bifurcation. Hence, the noise is not only able to sustain spatictemporal
patterns, but also to modify pattern selection processes in regimes of convective instability. In this weak
coupling regime we also give a quantitative statistical characterization of the transition between deterministic
and noise-sustained standing waves when varying the bifurcation parameter. We show that this transition
occurs at a noise-shifted point and it is identified by an apparent divergence of a correlation time and the
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saturation of a correlation length to a value given by the system size. [S1063-651X(96)10412-8]

PACS number(s): 47.20.Ky, 02.50.Ey, 05.40,+j, 43.50.+y

L INTRODUCTION

A series of physicochemical systems driven out of equi-
librium undergo Hopf bifurcations with broken translational
symmetries, which lead to the development of traveling or
standing wave patterns. This is, for example, the case in
Rayleigh-Bénard convection in binary or viscoelastic fluids
[1], for spiral vortex flow in the Taylor-Couette system with
counterrotating cylinders [2], or in electrohydrodynamic con-
vection in liquid crystals [3]. Traveling rolls may also be
obtained by the application of a through flow on hydrody-
namic instabilities of the Rayleigh-Bénard or Taylor-Couette
type [4—6]. As a result of the generic behavior of these sys-
tems in the vicinity of Hopf bifurcations, they may be de-
scribed by coupled complex Ginzburg-Landau equations
(CCGLE).

Effectively, it is now well known that, close to an insta-
bility, the spatiotemporal behavior of a system far from ther-
mal equilibrium can be described by order-parameter-like
equations [7-9]. The mathematical structure of these equa-
tions is rather universal and independent of the underlying
physical system. The derivation of the order parameter equa-
tion from the basic evolution equations is made possible by
the space-time separation between unstable and stable
modes, and ¢an be performed by different methods, such as
adiabatic elimination of the stable, or **slaved”’ modes [8],
or multiple scale analysis [9], for example.

In one-dimensional systems which undergo a Hopf bifur-
cation with broken spatial inversion symmetry, the order pa-

*JRL: hitp://formentor.uib.es/Nonlinear/
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rameter field o(x,1) can be represented by two slowly vary-
ing envelope functions A (x,r) and B(x,r) for left and right
traveling waves:

alx,t)=A(x,n)e' kst @)+ B(x e 1 kexm el () 1)

The evolution of the amplitude A and B is governed by
CCGLE [7,10-14]. The nonlinear cross coupling between
both amplitudes that determines if the stable patterns corre-
spond to traveling (strong cross coupling) or standing (weak
cross coupling} waves. The effect of the group velocity may
usually not be discarded in the determination of the stability
domain of the wave patterns. One has to distinguish between
convective and absioute instability, and it is now well known
that, sufficiently close to the Hopf bifurcation, the unpat-
terned state is convectively unstable but absolutely stable
[5.13—17]. In this regime, localized perturbations are con-
vected with the mean flow in such a way that they grow only
in a moving reference frame but decay at any fixed location.
On increasing the bifurcation parameter, one reaches a well
defined threshold determined by the group velocity, and
above which the reference state becomes absolutely unstable.
In this regime, perturbations grow locally at fixed locations.
As a result, the behavior of the system is qualitatively very
different in both regimes, In the convectively unstable re-
gime, a deterministic system cannot develop the expected
wave patterns, Xcept in special geometries, while in a sto-
chastic system, noise is spatially amplified and gives rise to
noise-sustained structures [15]. On the contrary, in the abso-
lutely unstable regime, waves are intrinsically sustained by
the deterministic dynamics.

Convectively unstable systems have been widely studied.
both numerically and experimentally, but mostly in the case

6344 © 1996 The American Physical Society
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of single traveling waves. This situation is modeled by a
single CGLE which emerges in the strong cross-coupling
regime. In this case Deissler [15] obtained numericaily noise
sustained structures in the convectively unstable regime.
Babcock et al. [5] and Tsamaret et al. {6] analyzed in detail
the corresponding experimental situation in the case of a
Taylor-Couette system with through flow. Both groups ob-
served the transition from convective to absolute instability
and were able to generate noise-sustained structures. They
also showed that structures sustained by dynamics or by
noise have different statistical properties. This is, in particu-
lar, reflected by the behavior of their power spectram which
is essentially noise-free in the absolutely unstable regime and
presents broadening in the convectively unstable regime.
This broadening results from the phase wandering induced
by noise amplification. The onset of spectral broadening cor-
responds to the absolute instability boundary, which may be
slightly shifted, according to the noise intensity. As shown
by Babcock ef al. [5] the experimental results fit nicely with
the numerical analysis of the corresponding amplitude equa-
tion which is of the complex Ginzburg-Landau type.

The problem of interacting noise-sustained counterpropa-
gating waves was first studied by Deissler and Brand [13].
However, the lack of a detailed stability analysis of indi-
vidual traveling waves did not allow a complete analysis of
the problem. In particular, the distinction these authors make
for positive and negative cross couplings between left and
right traveling waves does not determine the stability of a
traveling wave solution. Nevertheless, they presented quali-
tatively new results consisting in the possibility of obtaining
transitions from convective to absolute instability and vice
versa for a given set of parameters. Such transitions can eas-
ily be interpreted in the framework of the stability analysis of
the uniform and traveling waves states.

It is the aim of this paper to study the effect of spatially
distributed noise on convectively unstable systems, either for
weak and strong cross couplings between counterpropagat-
ing waves, in the presence of group velocity. In Sec. II we
introduce the CCGLE and study the linear stability of the
uniform reference state and homogeneous traveling wave.
We find five different regions with different stability proper-
ties in our parameter space. In particular we find that for
weak cross coupling there is an intermediate regime between
the uniform steady state and the standing wave patterns
where traveling waves are convectively unstable. In Sec. III
we present our stochastic numerical analysis in the five re-
gions previously identified. We show that, in the weak cross-
coupling regime, noise sustained standing waves appear for
all values of the bifurcation parameter beyond the Hopf bi-
furcation. Finally, Sec. IV reports a statistical characteriza-
tion of the transition between deterministic and noise-
sustained standing waves in terms of the behavior of an
average amplitude, correlation time, and correlation length.
An appendix contains details of our numerical procedures.

II. COUPLED COMPLEX GINZBURG-LANDAU
EQUATIONS. STABILITY ANALYSIS
OF HOMOGENEOQUS STATES

We consider the CCGLE which describe the dynamics of
the amplitudes of two counterpropagating Iraveling waves

6345
with spatial variations in one direction:

FA(x, ) —vd Alx,1)
=pA(x0)+(1+ia)dA(x,1)
—(1+iB)A(x,)?A(x,0) = (y+i&)|B(x.0)]*A(x,1)
+Vega(x.0);

8,B{x,t)+vd B(x.t)
=uB(x,0)+ (1 +ia)d B(x,1)
—(1+iB)| B, )2 B(x.t)— (v+iSHA(x.1)|2B(x.t)

+\/E§B(xst)$ (21)

where A(x,?) and B(x,t) are the complex amplitudes of the
right and left traveling waves. The control parameter u mea-
sures the distance to the onset of the instability, v is the
group velocity. The coefficients a, B, v, and & can be
determined from the basic equations of the underlying physi-
cal system. A Gaussian, delta correlated, complex white
noise of strength level denoted by &, £,(x.,1), j=A .8 is as-
sumed to be present in the system. This noise can be spa-
tially distributed or localized (for example, at the inlet of a
Taylor-Couette system with through flow). We will consider
in this paper a spatially distributed noise with vanishing cor-
relation length {white noise in space and time).

Next we analyze, from a determinisiic point of view
(e=0) the linear stability of homogeneous solutions of Eqs.
(2.1).

A. Stability of the uniform reference state

Linearizing the equations (2.1) around the trivial solution
Alx,ty = B(x,t) = 0, the complex dispersion relation @ for
a disturbance of wave number K, that thus behaves as
e %% becomes:

w=p+Kv+(1+ia)K?, K=k+igq, (2.2)
and the growth rate of such a perturbation is given by
Rew(K). Using the method of steepest descent, the long-
time behavior of the system along a ray defined by fixed
x/t, i.e. in a frame moving with a velocily v,=x/{, is gov-
erned by the saddle point defined by:

dw

N (dw
Re T Im E) (2.3)

Y

Since absolute instability occurs when perturbations grow at
fixed locations, one has to consider the growth rate of modes
evolving with zero group velocity, which are defined by:

{5l

4
dK dK (24)

These conditions define the following wave number:

-3
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q=— ok,

5
TR 23

The real part of w, which determines the growth rate A of
these modes is then:

2
)\:Re(w)zu—m—v+a§—). (2.6)

Therefore, the uniform reference state is absolutely un-
stable if A>0. As already shown in [ 5], this condition de-
termines a critical line in the parameter space which can be
expressed for the group velocity v or the control parameter u
as

2
U(-=2\,l',u.(l+a§) or #C:ZE%E' (2.7}

Hence, for 0<< g < .., the uniform reference state is convec-
tively unstable, and wave patterns are convected away in the
absence of noise. For > u., wave patterns may grow and
are sustained by the dynamics, even in the absence of noise

[15].

B. Stability of the uniform traveling wave

The CGLE (2.1) admits two families of solutions corre-
sponding to traveling waves, A= Vu— klexpilkx—(Bu
+ak®)), B(x.0)=0, and B= Ju— kKlexpilkx—(Bu+akh],
A(x,H)=0. For the sake of simplicity, we first consider uni-
form solutions (k=0}. Without loss of generality, one may
study the first family, and, in order to analyze its linear sta-
bility, one has to look for solutions in the form
A=(\/;+a)exp—i,6ut, B(x,5)=h, and compute the eigen-
values of the linearized evolution equations for a, b, and
their complex conjugate. The real parts of the eigenvalues of
the Fourier transform of @ are well known (see, for example,
{71 and [18]} and read:

Rewjy=—2u—(1 —af)g +---

2 1+ z
Rem¢:*(]+aﬂ)q2—i¥%q4+---. (2.8)

The first one, associated with amplitude, is always nega-
tive, but the second one, associated with phase, may become
positive and the system may experience a Benjamin-Feir in-
stability when 1+a8 is negative [19,20]. In the following,
we will consider systems where « and 8 are small and posi-
tive, such that 1+a8>0.

The only remaining instability mechanism may then result
from the growth of B. Effectively, the linearized evolution
equations for & give the following growth rate:

wg=u(l—y)—Kv+{1+ia)K? (2.9)

Hence, in the absence of group velocity, single traveling
waves are always stable for y>1, while they are unstable for
v<1 leading to standing wave solutions with |A|=|B|# 0.
The condition y=1 thus separates the strong cross-coupling

regime (y>>1) from the weak cross-coupling regime (y<1).
Note that the point y=0 does not play any particular role in
the stability of traveling waves.

In the presence of a nonvanishing group velocity, travel-
ing waves remain stable for y>1, while for y<lI, they are
convectively unstable for p<<u!, where u. is determined
similarly to the preceeding case. Effectively, the conditions

d[l)ﬂ)_ dﬁJB>_ 210
Re T =Im d—K =0 (2.10)

define the same wave number
g=—ak,

v
k=—m. (2.11}

However, the real part of wg, which determines the growth
rate of the corresponding modes, is now:

2

v
?\B:Re(wg)z,u(l—y)~m (2.12)
and
UZ
BT el M @.13)

r
¢

The cormresponding critical group velocity is v
=y l—yor

v2

=1- . 2.14

O P @1

As a result, on increasing the bifurcation parameter in deter-

ministic systems at fixed v and with y<{l, traveling waves

should be expected between the trivial uniform state and

standing waves, as shown on the phase diagram displayed in
Fig. 1.

The above deterministic linear stability analysis divides,
for v fixed, the p-y parameter space in five regions of dif-
ferent spatiotemporal behavior which we label as follows (cf.
Fig. 1):

I u<<u, O
y>1,
20 p<pu TW
3 p<u, 0
I‘L(‘
4; <p<——m7 TW
Moo= M [~y y<1.
e
5 @ — SW
l*y<y'

(2.15)

In the strong cross-coupling regime {y>I) we distinguish
two regions. In region | the uniform reference state (0) is
convectively unstable and it becomes absolute unstable in
region 2 where a traveling wave (TW) is absolutely stable. In
the weak cross-coupling regime (y< 1) we find three regions,
In region 3 the uniform reference state {Q) is convectively




unstable, while in region 4 the traveling wave is the convec-
tively unstable solution. This latter solution becomes abso-
lutely unstable in region 5 where the standing wave (SW)
solution is absolutely stable, since we are considering values
of a, B, and & sufficiently small to satisfy the standing waves
phase stability condition 1+ a(8— y8)/(1— %) [10,21].
These results can easily be generalized to traveling waves
solutions with nonzero wave numbers (k+£0). In this case,
a perturbations decay if the Benjamin-Feir-Eckhaus criterion
1+ aB—(2k¥ u—k*)>0 is satisfied, while b perturbations
grow locally when u(1 — )+ yk?—v2/4(1 + a?) is positive.
We finally note that the absolute instability criteria de-
rived in this section are a direct consequence of the criterion
derived in Sec. II A and Ref. [15], where the linear growth
rate of the O state, g, is replaced by its effective linear
growth rate w— ¥{A|?. This replacement was noted in [13]
and it can be interpreted (depending on the sign of ) as a
stabilizing or destabilizing effect of the wave A on the wave
B. However, as shown above, the sign of y does not deter-
mine stability boundaries of the traveling wave solution

A= u— klexpilkx—(Bu+ak*)], B(x.n=0.

IIt. NOISE-SUSTAINED STRUCTURES

In this section we analyze numerically the effect of spa-
tially distributed noise on the homogeneous solutions of the
CCGLE (2.1). We wili explore the parameter space by vary-
ing the cross-coupling parameter - and the reduced distance
to threshold w while keeping the group velocity v set to 1.
We note that this is equivalent to the variation of ¥ and v
with g fixed, thanks to the scaling

A:}.LIHA', B=‘u1f'ZB',

X=p"rop'= {3.1)

Fiie
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L - FIG. 1. Stability diagram for ho-
3 4 o: standing wavc -> ravelling waves 1 mogeneous solutions of Egs. (2.1).
- x: standing waves 1 The numbers 1-5 denote regions of
078 | 7 different spatiotemporal behavior, as
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In addition we will fix the noise level to £=0.0001 and we
assign fixed values to the other parameters of (2.1): a=0.02,
B=0.04, and §=0.05. These values belong to the domain of
parameters in which the CGLE does not show phase insta-
bilities of the homogenous solutions leading to chaotic be-
havior.

Noise is expected to be amplified by the convective
terms leading to noise-sustained structures in regions
where the reference state is deterministically convectively
unstable. Therefore, we anticipate that noise effects will
result in TW states in the strong coupling regime (regions
1 and 2 of Fig. 1), being noise sustained in region 1. Like-
wise we anticipate finding SW states in regions 3, 4, and 5
of Fig, | corresponding to weak cross coupling. This implies
that noise transforms a O state into a noise-sustained SW
in region 3 and a TW state into a noise-sustained SW in
region 4.

In order to check these predictions the stochastic CCGLE
{(2.1) have been solved numerically with a Heun method (cf.
Appendix), random initial conditions around the A=8=0
solution, and the following boundary conditions: at the up-
stream end of each amplitude we use a rigid boundary con-
dition

A(L.t)=0, B(0:)=0. {3.2)

It turned out to be unimportant for the downstream part of
the system whether the inlet is fixed or is fluctuating with the
noise level [5]. We also checked boundary conditions with a
subcritical part (#<<0) in front of the inlet (x<<0, x>>L).
This influenced only a very small portion of the system near
x=0 and x=L. Different boundary conditions on the out-
stream end have also a very small influence on the bulk of
the system [5,22]. We furthermore used a vanishing deriva-
tive at the outstream end of each amplitude:

- -
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FI1G. 2. Space (horizontal axis)-time (verti-
cal axis} plot of the moduli of the amplitudes
A(x,t) (left) and B{x,r) (right), in arbitrary
units, n the region | of Fig. 1 (y=12,
n=0.165, v =1). The upper diagrams show the
spatial dependence of A and B at the end of the

100 2.00 3.00 4.00 =107 space-time plots. In this region the trivial state

[A(x,t)=B(x,t)=0] is convectively unstable.
(a) Deterministic case (£ =0). The disturbances

of the initial random pattern are convected out
] of the system. (b} Same as (a) but for the sto-
chastic case (g=0.0001}). Due to the strong
cross-coupling (y>1), only a traveling wave
structure can survive. The spatially distributed
noise effectively sustains the traveling wave
4 structure.

(@ 100 200 3.00 4.00 z0Z%
zre”! T T T i z107! T |
4.00 . 4.001
3.001 4 3.00}
2.001_ b 200}
1.001 3 .00
: s
zt0 2 g

7508

()] 1.00 200 3.00 400 zx0%

dA0)=0, 4,B(L1)=0. (3.3)

These boundary conditions mimic extended systems with no
reflection of the individual traveling waves at the ends of the
system. As such, they rule out the possibility of standing
waves maintained by end effects, as it occurs for example in
binary fluid convection, even in the absence of noise [23]. In
this case, even in the convectively unstable regime, counter-
propagating waves, emitted at the boundaries are not entirely
convected out of the system since they are partially reflected
at each opposite boundary and may thus build an effective
but artificial standing wave pattern in the bulk. With the
boundary condition used here this effect is absent and no
boundary effect should thus interfere with the stochastic ef-
fects that we analyze.

100 200 3.00 400 =zi0?

A. Strong cross-coupling, ¥>1

Due to the fact that the real part of the cross coupling
parameter {y>1} between the two fields is larger than the
real part of the self coupling (1+i8), traveling waves
should be the selected pattern in this domain. Due to the
symmetry between A and B, a competition between these
two traveling waves may be observed.

In region i, where the group velocity is larger than the
critical one (uw<g, or v,<wv) all structures are convected
out of the system in the deterministic case {¢=0), which
leads to a stable trivial state with no structure [cf. Fig. 2(a)].
Noise-sustained traveling waves can, however, be observed
[cf. Fig. 2(b)]. In the stochastic case one of the traveling
waves reaches its saturation value in the bulk and suppresses
the other one. There exists a layer at the inlet with a width
depending on the distance to the instability s and the noise

- 3-3 -
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FIG. 3. Same as Fig. 2 in region 2 of Fig. |
{y=1.2, u=0.8, v =1). In this region the trivial
state [A(x,#)=B(x,r)=0] is absolutely un-
stable. The disturbances of the initial random

(a) 100 200 800 400 =r0? 100 200 3.00 400 =t0® pattern create a traveling wave pattern. The lo-
cations of the sources and sinks (fronts between
10~ T T ; i =10~ ' ! T right and left traveling waves) depend on the
4.00 4.000 R initial condition as well ag on the noise. There is
no qualitative difference between the determin-
3.00 3.001 ] istic case {a) (e=0) and the stochastic case (b)
(e=0.0001).
2.00 200 1
1.00 .00 B

xto 2 zi0 2
7.50
5.00
2.50

(b) 1.00 200 300 400 =zn0?

level £. The noise-sustained structure is thus created due to
the convectively unstable amplification of the noise as al-
ready discussed in [5,15].

In region 2 {g.<< g or v<<y ) the final states are traveling
waves for both cases (deterministic, stochastic). Depending
on the initial conditions the system exhibits regions where
one of the two traveling waves survives [cf. Figs. 3(a}, 3(b}].
Between the right and left traveling wave regions emerge
sharp fronts which are called sources and sinks. The motion
of these fronts has a very large time scale compared to the
emergence of the patterns and have not been studied in this
work.

B. Weak cross-coupling, y<1

When the cross-coupling (y<1) is small, the selected pat-

terns should correspond to standing waves. Coexistence of

100 200 300 400 zto?

the two traveling waves can be observed. The modulus of the
two amplitudes can reach the same value which is the con-
dition for standing waves.

If the group velocity is smaller than the critical value for
the absolute instability of the traveling wave state {(region 5}
v<v) or u!<pu] there is no qualitative difference between
the final states, which consist in a standing wave structure
[cf. Figs. 4(a), 4(b}].

In the region 4 where the traveling wave state is abso-
lutety stable and the velocity is smaller than the critical
velocity for stability of the trivial state (v, <v<w. or
(o< << ul) one observes different spatiotemporal behavior
in the deterministic and the stochastic case [cf. Figs. S5(a),
5(b)]. In absence of noise (¢=0), the first transition, during
the time evolution, is from a random initial condition o0 a
standing wave structure. Due to front propagation this state

.
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FIG. 4. Same as Fig. 2 in region 5 of Fig. |

0.25 050 0.75 1.00 1.25 zs0 % (y=08, u=1.385, v=1). The disturbances of the

initial random pattern create a stapding wave pat-
tern. There is no qualitative difference between

the deterministic (a) (e=0) and the stochastic
case (b) (=0.0001).

(a) 0.25 0.50 0.75 1.00 1.25 =0 ?
zt0~? T T T T T z10 ! T T

4.00 4.000.

3.00 3.00

2.00 2.00[

1.00 1.008_

i i

P 103

7.50 7.50

5.00 5.00

2.50 2.50

(1)) 0.25 0.56 0.75 1.00 1.25 =107

is replaced by an exactly symmetric traveling wave structure
due to the symmetric boundary conditions [cf. Fig. 5(a)]. If
noise effects are included (£#0) a standing wave structure is
sustained [cf. Fig. 5(b}]. It is important to note that in this
case noise changes the nature of the observed spatial struc-
ture: In region |, noise sustains a pattern where there is no
pattern with no noise [5,15], but here noise transforms a
deterministic TW structure into a noise sustained SW struc-
ture.

When the group velocity overcomes the critical value for
stability of the trivial state [(region 3} u<g. or v.<v] a
complicated noise-sustained structure arises. This structure
has the main features of a standing wave structure sustained
by spatially distributed noise, with a bulk region which fluc-
tuates around the deterministic values for the standing wave
solution. From time to time one observes holes (peaks)

0.25 0,50 0.75 1.00 1.25 z107

which are convected through the structure {(cf. Fig. 6). Note
that the results presented in Fig. 1 of the numerical study
performed by Deissler and Brand [13] also correspond to this
region of the parameter space where both uniform and trav-
cling wave states are convectively unstable but absolutely
stable. Different to us, these authors consider only localized
noise at the boundaries. Such a noise source is able 10 sustain
two traveling waves, each of which only fills the half of the
system which includes the boundary where it originates.
These TWs are convected out of the system when the noise
is suppressed. On the contrary, Fig. 2 of [13] presents a
situation where, according to our stability analysis, the uni-
form state is convectively unstable while the traveling wave
state is absolutely unstable (. <<u <. with e < gk, since
¥<20). In this case, localized noise generates traveling waves
which, as the result of their absolute instability, should be

...3-:;.-
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t

FIG. 5. Same as Fig. 2 in region 4 of Fig. |
{y=0.8, #=0.408, v =1). (a} Deterministic case
(£=0): the disturbances of the initial random

100 200 300 400 =zxtwo?  pattern create initially a standing wave pattern

which is replaced, due to front propagation, by

a symmetric traveling wave pattern. (b} Sto-
chastic case (£=0.0001): the spatially distrib-
uted noise gives rise, in the bulk of the system,
to a noise-sustained standing wave structure
Auctuating around the determimistic valuc.
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transformed into standing waves which persist after noise
removal, in complete agreement with the numerical results of

[13].

1V. CHARACTERIZATION OF THE TRANSITION
FROM SW TO NOISE-SUSTAINED 5W

The boundary between regions 4 and 3 of Fig. 1 identifies
a transition between convective and absolute instability of
the traveling wave state (cf. arrow in Fig. 1}. When noise
is taken into account this transition is transformed into
one between a deterministic SW structure and a noise-
sustained SW. In this section we give a guantitative statisti-
cal characterization of this new type of transition investi-
pating the behavior through the transition of different quan-
tities such as amplitudes, correlation time, and correlation
length. Qur analysis has similarities with the analysis in [5]

1.00 200 3.00 4.00 =z10°¢

of the transition between deterministic TW structures and
noise-sustained TW (boundary between regions 1 and 2 of
Fig. 1).

A. Modulus of the amplitude

The time average value of the amplitude A at a fixed
space point, calculated with no noise (e=0), exhibits the
deterministic transition between traveling and standing
waves at the critical value g In the region of stable stand-
ing waves (x> 4.), the amplitude has its stationary standing
wave value (JA(x.1)|*)= /(1 + y), which bifurcates to the
stationary value of the traveling wave (|A(x.1) Y=y at the
critical value u=u {cf. Fig. 7). However, the same calcu-
lation taking noise into acount shows no trace of the transi-
tion: the amplitude has the same averaged value for a deter-
ministic or a noise-sustained standing wave, In order to
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FIG. 6. Same as Fig. 2 in region 3 of Fig. 1
(y=0.8, p=0.165, v=1). (a) In the determinis-
tic case the structure is convected out of the
system which goes back to the trivial solution.
(b) Stochastic case (e=0.0001): a complicated

(a) 1.00 200 300 400 x0?
zi0~" T T T T z10~! T T
4.001_ 3 4.00[
3.00L E 3.00}_
2.00L h 2000
1.00L ] 1001
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T spatiotemporal structure can be observed. The
bulk fluctuates around the deterministic value of
the standing wave pattern but from time to time
a hole (peak) is convected through the pattern.

-

=10 #

7.50

5.00

2.50

(b} 1.00 2.00 3.00 4.00 =xf0?

characterize the transition between deterministic and noise-
sustained standing waves we need to consider quantities giv-
ing some information on the degree of temporal or spatial
order, as we do next.

B. Correlation time

We can calculate a correlation time by considering the
width of the power spectrum Af{xy,w)} of a time series
A{xg,t) at a fixed location x; in the bulk. Since we deal with
spatially distributed noise and symmetric boundary condi-
tions, A(xg,w) is statistically independent of x,. We then
consider an averaged correlation time o, ! defined in terms
of the spatially averaged second moment of the power spec-
trum:

7.00 200 3.00 400 z167%

J dwl|A(xy,w)|?w

X
B

J- dw\A(xg,0)|?

J dwA(xg, )| o— &)°
2

o= . (4.1)

J,tfiw|A(Jr0,au)|2

where (-++) stands for the spatial average in the interval
O<x<L.

In Fig. 8 we plot the inverse correlation time o, as a
function of . The vertical line marks the critical value u,

T Y T
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FIG. 7. The time averaged value
B of |Al/i at a fixed spatial point

plotted as a function of the bifurca-
tion parameter for the stochastic (x)
J and deterministic cases (0}. The ver-
tical scale is normalized to the value
of |A| for ©=02, and the cross-
i coupling parameter is y=0.85. The
4 vertical line denotes the critical con-
trol parameter g, given by Eq.
(2.10).

for the instability of the traveling wave solution. We see that
no change of behavior is observed in the deterministic case
(e=0): a narrow pOwer spectrum exists either for determin-
istic traveling waves u< g or for deterministic standing
waves p>> g, However, when noise is taken into account &
rather sharp transition is observed between a narrow power
spectrum for deterministic standing waves and a wide power
specteum associated with a noise-sustained standing wave.
The transition is identified by an apparent divergence of the
correlation time o, ' . Such divergence occurs for a value of
w which is shifted with respect to the one identified in a
deterministic analysis as the limit for convective instability
of traveling waves (p= ). Noise induced shifts of insta-
bility boundaries is a rather well known phenomena, and the
numerical and experimental results reported in [5] for a tran-
sition between regions 1 and 2 of Fig. 1 do not seem to be
inconsistent with the possibility of such shift.

C. Correlation length

As an alternative characterization we now consider a cor-
relation length o ! which gives a quantitative characteriza-
tion of the spatial fuctuations. It is defined in terms of the
width o, of the time averaged Fourier spectrum A(k,r) of
the amplitude A(x,!):

Jdkmtk,r)lz(k—f?)?

J dk|A(k,0)}?

where {---} stands now for the time average in a large time
window 1,<r<<ty+T.

Figure 9 shows the correlation length o ! under variation
of the bifurcation parameter w. A transition is clearly identi-

B Il EE e e B . ‘ —r—
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1 FIG. § Width of the power
I 1 spectrum, in arbitrary units, as given
| ] by Eq. (4.1) as a function of the bi-
1ol x — furcation parameter for the stochas-
r X T tic (x) and determinisiic cases (o).
j Vertical hne as m Fig. 7 and
| y J y=0.85.
0.50 y -
>
. .
« )
- Ko X . ]
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] FIG. 9. Correlation length, in ar-
] bitrary units, as given by Eq. (4.2)
00| o 1 as a function of the bifurcation pa-
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o . deterministic cases (0). Vertical line
[ i as in Fig. 7 and y=0.85.
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1.00 2.00 3.00 4.00
10

fied at the same shifted instability point at which the corre-
fation time diverges. At this value of u the correlation length
saturates here to the system size, while for smaller values of
4 we obtain a smaller correlation length indicating absence
of long range order associated with a noise-sustained struc-
ture. On the other hand, the deterministic equation (g =0)
shows a transition exactly at the value u; which is predicted
in the linear stability analysis (Sec. II). For u> ., the cor-
relation length also saturates to the system size, while for
p<< . it goes to a value which is a factor 1/y2 smaller. This
factor is a matter of the definition used for the correlation
Jength of the amplitude A. Tt can be easily understood by
noting that for u> g, the wave with amplitude A fills the
whole system in a standing wave state, while for u<p. it
only fills haif of the system in the traveling wave state [com-
pare Figs. 4(a) and 5(a)].

VY. CONCLUSION

In this paper, we have studied the effect of noise on
coupled complex Ginzburg-Landau equations on varying not
only control parameters such as the distance to threshold
or the group velocity v, but also the cross coupling v be-
tween individual counter-propagating traveling waves. In the
strong coupling regime (y>1), we recover the results ob-
tained by other authors, namely, the development of noise-
sustained traveling waves. In the small coupling regime (y
< 1), we show that there is an intermediate region between
the trivial uniform state and the standing wave domain where
traveling waves are convectively unsiable. Qur determinisitic
numerical analysis confirms this result since one observes,
on increasing the bifurcation parameter (or decreasing the
group velocity), transitions from the trivial state to traveling
waves, and finally to standing waves. In the presence of spa-
tially distributed noise our stochastic numerical analyis
shows that sustained standing waves are obtained in all the
domain beyond the Hopf bifurcation. Therefore, in the inter-
mediate region mentioned above, noise amplification by the
convective terms transforms a traveling wave structure into a

noise-sustained standing wave structure. Hence, we conclude
that noise is not only able to sustain spatiotemporal patterns,
but also to modify pattern selection processes in regimes of
convective instability. In addition, we have given a quantita-
tive statistical characterization of the transition between de-
terministic and noise-sustained standing waves. We have
shown that this transition occurs at a noise-shifted point with
respect to the one at which traveling waves become abso-
lutely unstable. The transition is identified by an apparent
divergence of a correlation time and the saturation of a cor-
relation length to a value given by the system size.
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APPENDIX: NUMERICAL METHOD

The discretized time integration of the CCGLE (2.1) was
performed with a second order Runge-Kutta algorithm (Heun
method in vector form) [24)

3, Alx,1) = F(A(x,0)) + Ve &x,1). (A1)

The Heun recursion relation prescribes

..d‘c,i -
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g, (x, ) =FA(x.n),

' sAr
g(x,)=F| A(x,0)+ Mg (x.0)+ Wuu,r)‘.

A
Alx,s+An=A(x,n+ %[gl(x,r) +gy(x,1)]

| At
-+ Wﬂ(.t,!),

{(A2)

where u,(x,t) are independent random variables with unit
variance and vanishing mean value, and n denotes the di-
mension of the spatial coordinates. The correlation of the
noise variables have the form

(5. Ep)=88, 38, ,8(x~x"1=1"), (A3)

with a,b=Re,Im and «.8=A,B.
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