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The broad peaks seen in the power spectra of the mean field in a globally coupled map system indicate a subtle
coherence between the elements, even in the “turbulent” phase. These peaks are investigated in detail with respect to the
number of elements coupled, nonlinearity and global coupling strengths. We find that this roughly periodic behavior also
appears in the probability distribution of the mapping, which is therefore not invariant. We also find that these peaks are
determined by two distinct components: effective renormalization of the nonlinearity parameter in the local mappings, and
the strength of the mean field interaction term. Finally, we demonstrate the influence of background noise on the peaks,
which is quite counterintuitive, as they become sharper with increase in strength of the noise, up to a certain critical noise

strength.

1. Introduction

Globally coupling in dynamical systems yields
a host of very novel features. This class of com-
plex systems is of considerable importance in
modeling phenomena as diverse as Josephson
junction arrays, vortex dynamics in fluids, and
even evolutionary dynamics, biological informa-
tion processing and neurodynamics. The ubiquity
of globally coupled phenomena has thus made it
a focus of much recent research activity [1-4].

In this paper we study the globally coupled
map {(GCM) introduced by Kaneko [2]. It is a
dynamical system of N elements consisting of
local mappings as well as an additive average-
type interaction term, through which the global
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information influences the individual elements. It
is thus analogous to a mean field version of

coupled map lattices. The explicit form of the
GCM we use is

Faar(i) = (1= Of(x, (1))
+ 2 2 flx(), 1)

j=t
where n is a discrete time step and i is the index
of the elements (i=1,2,..., N). The function
f(x) was chosen to be the well known dissipative
chaotic logistic map

flxy=1-ax*. (2)

This choice helps us to make contact with previ-
ous results.

The above GCM model has two conflicting
trends: destruction of coherence -due to the cha-
otic dynamics of the individual elements, and a
kind of synchronization through the global av-
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eraging. For large global coupling, this syn-
chronization may be complete (all elements mov-
ing coherently), and appears even in the fully
chaotic (in time) regime. On the other hand, for
a nonlinearity parameter a such that the local
dynamics is strongly chaotic, and in the presence
of a small coupling, the behavior of the system is
“turbulent’. This means that all elements of the
lattice behave chaotically in time (all Lyapunov
exponents are positive [3]}, and that there is no
clustering (partial “entrainment” or synchroniza-
tion). In fact, the distance between any two
different elements of the lattice that have at
some moment close values grows exponentially
with time. (For € =0.1 and a =1.99 this expo-
nent is =0.4). So, in practice, the elements of
the lattice seem to behave like independent
quasirandom variables.

This has led to the following “simplicity” hy-
pothesis: if in this turbulent regime the different
clements of the lattice behave in fact as in-
dependent quasirandom numbers, then in the
N-—»ce limit the mean field A, defined by

b= 3 A ()

should converge to a fixed value, uncoupling the
system. In fact, a similar idea has been used by
Kuramoto and others [4] in order to analyze the
N— o limit of a globally coupled system of limit
cycle oscillators, and its coherent—incoherent
transition. This “‘simplicity’ hypothesis can also
be cast in the following terms: consider for a
moment a system similar to eq. (1), with some
fixed a and €, but where we substitute the time
dependent mean ficld A, by some constant A;,.
This gives us a lattice of uncoupled logistic maps,
which in the N— « has an invariant probability
distribution. From this distnbution we can
evaluate h_,, defined as the average value of
f(x). Then two questions come immediately to

mind: is there a solution for the self-consistency

equation A, (h;,; a, €)= h,? And if so, is that
solution stable under small fluctuations of 4, in
the fully coupled model?

Coming back to a finite lattice, we would
expect the fluctuations that appear in the system
to behave statistically, if this limiting value for &
does exist. In particular, we should expect a
decay in the mean square deviation (MSD) of
the mean field (=(h’} — (h)?) as 1/N (law of
large numbers), and its distribution to be Gauss-
ian (central limit theorem). These two questions
were explored by Kaneko [3] and the results
found were that the system in eq. (1) violated the
law of large numbers but not the central [imit
theorem (this last affirmation has been
reevaluated in ref. [5], where it was found that
the tails of the distribution diverged from those
of a Gaussian). Even in the fully “turbulent”
phase, where there is absolutely no synchroniza-
tion among the elements, a subtle coherence
emerged. This was reflected in the saturation of
the MSD, that stopped decaying after some eriti-
cal lattice size N_, in the broad peaks that appear
in the power spectrurn of the mean field &, and
in the fact that the mutual information of the
system remained non-zero for all lattice sizes.

It should be noted that these results are not
universal, since there are related systems that
show proper statistical behavior. In particular, it
has been found [5] that a globally coupled lattice
of tent maps (eq. (1) with f(x) =1~ alx|), be-
haves as expected in its turbulent regime. The
MSD of the mean field dies away as 1/ and the
Fourier transform of A, does not develop any
peaks.

In section 2 of this paper we examine, through
numerical experiments, the transition between
the power spectrum of a single x, (i) (which is
only mildly humped) to the spectrum of the
collective quantity A, which displays broad
peaks, indicating collective ‘“beats” In its dy-
namics. Then, in section 3 we examine the be-
havior of another global quantity, namely the
probability distribution of the mapping, for pos-
sible similar behaviour. Here too we find evi-
dence of non-statistical behavior, with the emer-
gence of a kind of collective “‘beating”, and a
saturation in the fluctuations of the probability
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values. This clearly means that the probability
distribution of the mapping is not invariant. In
section 4 we attempt an analysis of this emer-
gence of order in terms of two distinct effects,
one due to an effective renormalization of the
local nonlinear parameter of the map, and
another due to the synchronization induced by
the mean field acting over the individual cle-
ments. Finally we investigate the influence of
noise in the system. The surprising result here is
that the peaks in the power spectrum of the
mean field get sharper as the strength of noise
increases, up to a certain critical noise strength.
This counterintuitive phenomena are demon-
strated through numerical experiments in section
5.

2. Emergence of peaks in the power spectrum

In this section we want to trace the develop-
ment of the peaks in the power spectrum of the
mean field. Clearly, when N =1, i.e., when there
is a single logistic map, we have a very flat
(aperiodic) spectrum. But even as we put in
another element (N = 2) we find a “‘ghost” of the
peaks making its presence felt. So, the appear-
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Fig. 1. Power spectra of the mean field for lattice sizes
N=1,8,64 and 512 (from top to bottom). Here a=1.99,
€ =0.1 and we average over 100 runs of 1024 iterations each.

ance of one broad peak in the spectrum is almost
immediate, as is evident from the power spectra
for very low lattice sizes in fig. 1. It takes larger
lattices to resolve this peak into its various com-
ponents. For these spectra we have evaluated the
autocorrelation function, which is defined by

1 = £, P(j+imod M)P(J)
C=—= - ——
% Lia1 P(j) P())

M & (4)

where P(j) is the value of the power at the jth
frequency index, and M is the number of discrete
points in the spectrum. This provides a good
measure of the “flatness™ of a spectrum, with C
taking the value 1 when the spectrum is com-
pletely flat, and 0 when there are just 5-peaks. A
better indicator of the sharpness of the peaks is
given by

§=log,C, )

where 5 =0 is the signature of a completely flat
spectrum and S$— is the signature of (very
sharp) &8-peaks. We find that § increases very
fast with increasing lattice size N (size fig. 2),
indicating that the peaks emerge rapidly, on
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Fig. 2. Measure of the sharpness of the peaks in the power
spectra, as defined in the text, vs. lattice size N (a=1.99,
e=0.1)},
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addition - of clements, from the flat spectrum
corresponding to a system with a single element.

We also investigate the power spectra of par-
tial sums, given as

L

S.u(my= — 2 flx, (i), (6)
i=1
where the x,(i) evolve under the effect of the
full mean field h,, as given by eq. (1). The
power spectrum for a single element under the
influence of the full mean field (S,(n)) shows
some influence of the roughly periodic behavior
of A, (see fig. 3). It contains, in any case, much
more periodic modulation that the single isolated
logistic map, as can be seen by comparing to the
topmost spectrum in fig. 1. It is interesting to
notice that this behavior remains unchanged for
small partial sums, so much so that the different
spectra look like parallel displacements of each
other, except for the intrusions of the two main
frequencies. This suggests that under the in-
fluence of the full mean field the partial sums
behave as A, plus some amount of white noise,
where the intensity of this noise decays initially
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Fig. 3. Power spectra of partial sums S, as defined in the
text, for m=1,8,64 and the full lattice (from top to
bottom). Here a =199, e =0.1, N = 10000 and we average
over 100 runs of 1024 iterations each.

as 1/N. This behavior is quite different from that
of the mean field for small lattices, shown in fig.
1.

3. Probability distributions

We now investigate the dynamics of the prob-
ability distributions, defined as

P(yim =555 2 65 50—y, (@)

i=1

for small 5 and large N. For a logistic map in the
chaotic regime this quantity is invariant in the
N — o limit. Here the individual local maps are
well inside the chaotic regime (nonlinearity pa-
rameter a = 1,.99). However, the “beating” be-
havior observed in the mean field should be
reflected in the dynamics of the probability dis-
tributions, and there is a good possibility that the
finite lattice fluctuations in this distribution will
not die out with growing N. What numerical
experiments show is that indeed this happens, as
can be seen in fig. 4, where the MSD of P(y) as
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Fig. 4. Mean square deviation of P(y;n), (5=0.01), vs.
lattice size N, at three different values of y; y = 0.0 (W), y =
0.5 (O), and y = 0.9 (A) (a=1.99, e =0.1, N = 10000 and
the number of iterations is 10 000).
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a function of N is plotted for three different
values of y. (It should be noted that we are
considering well populated bins here}. It is clear
from the plot that, after a critical N, the M3SD
does not fall as 1/N but saturates instead. There-
fore, this distribution does not converge to an
invariant distribution as N grows.

Further, we have noticed that the power spec-
trum of P(y; n) shows the same broad peaks as
the mean field h,. This can be seen by taking the
first few moments of the distribution and doing a
spectral analysis. We have done this for the first
four moments, and the resulting spectra are al-
most identical to that of the mean field. On the
other hand, we can also follow the time evolu-
tion of the probability at a given value of y. Fig.
5 shows the power spectrum of a representative
bin, where the peaks are clearly discernible.
(There are, however, other bins where the peaks
are less pronounced or almost non-existing). Al-
though these spectral curves are not equal to that
of the mean field, the peaks on the “beating”
bins match with those of &, which is not surpris-
ing, since these are just different manifestations
of the same underlying collective effect.
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Fig. 5. Power spectrum of P,(y;n) (6 =0.01} at y=0.9.
Here we average over 100 runs of 1024 iterations each
(@a=1.99, e =0.1 and N =10000).

4. Dependence on the giobal coupling
parameter

It is instructive to study the functional depen-
dence of the MSD on the global coupling param-
eter €, since it gives the strength of the global
averaging, and is in this sense the source of the
synchronization effect. Thus, we have checked
the value of the MSD of the mean field as a
function of e. At first viewing this functional
dependence seems very erratic. (see fig. 6a).
Moreover, in the explored range of e (0.0-0.2),
the maximum value of the MSD was found to be
one order of magnitude larger than the value at
€ = 0.1, where most of the work has been con-
centrated up to now [3].

We now attempt an explanation of this non-
systematic behavior, and in particular of the
surprisingly large values of the MSD found in
certain small ranges of e. This can partially be
accounted for if we consider the effects of the
coupling as divided roughly in two components.
One is the renormalization of the nonlinear pa-
rameter a by the introduction of the multiplica-
tive 1 — € term in the individual maps. The other
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Fig. 6. Mean square deviation vs, global coupling parameter
¢ for (a) the full map, as given in eq. (1) in the text, and (b} a
set of uncoupled logistic maps with a.,=a(l—¢€)* (a=
1.99, N =10000).
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is the action of the mean field, whose effective
strength in the dynamics of the individual ele-
ments is determined by €. (Notice, however, that
the nonlinear parameter a used to construct the
mean field remains unaffected by the global cou-
pling €). To check this hypothesis we have ex-
plored, as a function of €, the behavior of a set
of uncoupled logistic maps with the local non-
linear parameter set to the renormalized value,
which is given by

A= a(l =€) . (8)

We have computed the MSD for such a system,
and find that its profile is similar to that of the
fully coupled maps (see fig. 6b). What is striking
here is the appearance of a plateau of large
values for the MSD close to a similar plateau in
the fully coupled problem. This plateau occurs
around a.,~1.75 and corresponds to the 3-
window of the logistic map {6]. The width of the
plateau is rclated to the width of the periodic
window. Furthermore, a second smaller and nar-
rower sharp peak appears at a,,~1.94, which
corresponds to a very narrow 4-window. This
shows that there is an influence of the periodic
windows of the logistic map in the value of the
MSD for the fully coupled problem, through the
e-dependent renormalization of the nonlinearity
parameter in the local mappings. This hypothesis
is further sustained by the fact that the power
spectrum of A, in the fully coupled map, for
values of € corresponding to the largest plateau,
shows a clearly dominant § frequency (see fig. 7),
and the power spectrum for ¢ corresponding to
the smaller peak shows a clear ; frequency (see
fig. 8).

So the skeleton of the functional dependence
of the MSD on coupling comes from the effects .
of renormalizing the nonlinear parameter in the
local maps, which may push them into periodic
windows, leading to some synchronization. This
synchronization is not, corripléte, because the
mean field is still being evaluated at the bare
value of @, where the dynamics is strongly cha-
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Fig. 7. Power spectrum of A, at € =0.075 (a=1.99, N=
10000). Here we average over 100runs of 1024 iterations
each,

otic. It is, however, strong enough to produce
the narrow ranges of € where the deviation is an
order of magnitude larger than elsewhere. But
this is clearly not a full explanation of the almost
periodic fluctuations of A,. The MSD for the
uncoupled case is much too small compared to
that of the fully coupled case, and accounts for
only the gross features of the MSD vs. € curve.

T T F Yy [ YT [ T T rrr[ v orTg

L

10

T
TR T |

Power
-

0.1

T
sl

PR UV EN IV Sl EPETUE SO SRSV IV B arare |

1] 131 0.2 a3 0.4 0.6

Frequency

Fig. 8. Power spectrum of ki, at € =0.0125 (¢ =1.99, N =
10000). Here we average over 100 runs of 1024 iterations
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So, the “flesh” of the MSD comes from the
effects of the mean field which lead to synchroni-
zation by global averaging. For a full characteri-
zation of the broad collective motion of the
system one must then take into account both
effects. As an extra verification, have also com-
puted the MSD for a system analogous to eq.
(1), but where the local maps are not multiplied
by the 1~ € term, and so there is no renormali-
zation of the nonlinearity parameter. For such a
system the effects come solely from the inter-
action with the mean field, and we find that the
MSD, as expected, increases monotonically with
€. We have investigated also a realistic physical
system that displays the same kind of phenom-
ena, with similar results [7].

5. Effects of noise

We now examine the effects of additive noise
in the dynamics of the mean field. For this
simulate the system

X1} = (1= f(x, (1)

+ 5 2 fx (i) + om, ©

where 7! is a random number uniformly distrib-
uted in the interval [—0.5, 0.5]. As described in
ref. [3], adding noise to the system impedes the
saturation of the MSD, but does not restore the
normal 1/N behavior. Instead, the fluctuations
now decay as 1/N° with a <1 for ¢ not too
large. This effect appears only for noise strength
above some threshold o,. We have found that
this anomalous decay of the MSD does not mean
that the mean field h, stops being almost period-
ic. On the contrary, it is found that for values of
the added noise up to a value roughly equal to o,
the sharpness of the power spectrum increases.
This counterintuitive behavior can be clearly
seen in figs. 9a, b and ¢, where we have plotted
the power spectra for three values of ¢, and in

fig. 10, which shows the value of S, the measure
of sharpness defined in eqgs. (4) and (5), vs. o
Clearly the sharpness increases with increasing
noise, up to o = 0.009, and decreases from there
on. We do not have an explanation of this very
surprising phenomenon as yet.
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Fig. 9. Power spectra of the mean field in the presence of
noise of strength o =(a) 0.0, (b) 0.004, (c) 0.009 (a = 1.99,
e =0.1, N=10000). Here we average over 100 runs of 1024
iterations each.
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6. Conclusions and comments

Here we have investigated various aspects of
the dynamics of the mean field in a globally
coupled chaotic system., The mean field shows
evidence of a rough periodicity as is suggested
through the broad, significant peaks in its power
spectrum. We trace the development of these

peaks with respect to the number of elements
coupled, and study their presence in partial aver-
ages. Further, we examine another important
global quantity, namely the probability distribu-
tion, and find that it is not invariant, and like the
mean field, does not obey the law of large num-
bers. Moreover, there is evidence of a similar
“‘beating” pattern in its power spectra, with
frequencies of this roughly-periodic behavior
matching those of the mean field.

Next we find the functional dependence of the
mean square deviation of the mean field on the
global coupling parameter. We then attempt to
decompose the effect we observe as coming from
two distinct sources: one, the renormalization of
the nonlinearity parameter in the local maps,
and second, the contribution from the mean
field, which introduces a degree of synchroniza-
tion. This way of looking at the system helps us
account for the extremely large deviations found
in certain ranges of the coupling parameter. We
can in fact identify the largest plateau in the
MSD wvs. e graph with the period-3 window, into
which the local maps are pushed due to the
effective renormalization of a.

Lastly, we explore the effects of noise on the
rough periodicities observed in the mean field.
We find that the periodicities do in fact persist up
to a reasonably large strength of noise. Further-
more, the peaks actually get sharper with in-
crease of the noise strength, up to a critical
value. This strange effect is another instance of
stabilization of periodic motion through smali
noise, resembling in a way the phenomenon of
stochastic resonance [8]. However, it is not evi-
dent that there exists any direct connection be-
tween our observations and this other problem.

Acknowledgements

We are grateful for the hospitality of the Con-
densed Matter Group at the International Center
of Theoretical Physics. We would also like to
thank A. Erzan for valuable comments.



G. Perez et al. | Order in the turbulent phase of globally coupled maps 349

References

[1] J. Crutchfield and K. Kaneko, in: Directions in Chaos,
ed. B.-L. Hao (World Scientific, Singapore, 1987);
T. Hwa, Ph.D. thesis (MIT);
P. Alstrom and R.K. Ritala, Phys. Rev. A 35 (1987) 300;
P. Hadley and K. Wiesenfeid, Phys. Rev. Lett. 62 (1989}
1335;
R.V. Sole and J. Valls, Phys. Lett. A 153 (1991) 330;
K. Kancko, Physica'D 54 (1991) 5.

[2] K. Kaneko, Phys. Rev. Lett. 63 (1989) 219; Physica D 41
(1990} 137.

[3] K. Kaneko, Phys. Rev. Lett. 65 (1990) 1391.

[4] Y. Kuramoto and 1. Nishikawa, J. Stat. Phys. 49 (1987)
569;
H. Daido, J. Stat. Phys. 60 {1990} 753,
$.H. Strogatz and R.E. Mirollo, J. Stat. Phys. 63 (19%1)
613.

{5] K. Kaneko, University of Tokyo preprint (1991).

[6] P. Collet and J.P. Eckmann, Iterated Maps on the Inter-
val as Dynamical Systems (Birkhauser, Base!, 1980).

[71 G. Perez et al., Phys. Rev. A 45 (1992) 5469.

[8] L. Gammaitoni et al., Phys. Rev. Lett. 62 (1989) 349,
Phys. Lett. A 142 (1989) 59;
for a comprehensive review, see F, Moss, in: Some
Problems in Statistical Physics, ed. G.H. Weiss, Frontiers.”
in Applied Mathematics (SIAM, Philadelphia, 1992).



(R

il

PHYSICAL REVIEW E

VOLUME 47, NUMBER 4

APRIL 1993

Dynamical behavior of the firings in a coupled neuronal system

Wei Wang
The International Center for Theoretical Physics, P.O. Box 586, 34100 Trieste, Italy
and Physics Department, Nanjing University, Nanjing 210008, People’s Republic of China

G. Perez
The International Center for Theoretical Physics, P.O. Box 586, 34100 Trieste, Italy

Hilda A. Cerdeira
The International Center for Theoretical Physics, P.O. Box 586, 34100 Trieste, Italy
and Universidade Estadual de Campinas, Instituio de Fisica, 13081 Campinas, Sio Paulo, Brazil
(Received 27 October 1992)

The time-interval sequences and the spatiotemporal patterns of the firings of a coupled neuronal net-
work are investigated in this paper. For a single neuron stimulated by an external stimulus I, the time-
interval sequences show a low-frequency firing of bursts of spikes and a reversed period-doubling cascade
to a high-frequency repetitive firing state as the stimulus [ is increased. For two neurons coupled to each

-other through the ring of the spikes, the complexity of the time-interval sequences becomes simple as
the coupling strength increases. A network with a large number of neurons shows a complex spatiotem-
poral pattern structure. As the coupling strength increases, the number of phase-locked neurons in-
creases and the time-interval diagram shows temporal chaos and a bifurcation in the space. The dynami-
cal behavior is also verified by the behavior of the Lyapunov exponent.

PACS number(s): 87.10.+¢, 05.45.+b

I. INTRODUCTION

Aspects of the dynamical behavior of a coupled neu-
ronal system, such as the synchronized patterns of neural
activity which result from the cooperative dynamical
properties, have attracted considerable interest over re-
cent years [1-4]. Some experimental results have been
obtained in the olfactory system, the visual cortex, and
other brain areas. Local groups of neurons responding to
a common stimulus display synchronized activity, and
neurons responding to separate stimuli are also phase
locked [5,6]. It has beca suggesied that the selective
synchronization of neural activity serves as a mechanism
for binding spatially distributed features into a coherent
object [5,7]. Tt has also been well known for decades that
a major component of sensory information is transmitted
to the brain using a code based on the time intervals be-
tween firings of neurons, that is, action potentials or
spikes [8-11]. Moreover, statistical analyses of experi-
mentally obtained spike trains have concluded that the
time “intervals contain a significant irregular component
f12]. It is thus important to investigate how the sensory
information is encoded and how this process is affected
by the irregular firings.

Recently an investigation of synchronized chaos in a
network model of bursting neurons responding to an in-
homogeneous stimulus has been made by Hansel and
Sompolinsky [13]. They found that there are three types
of phases for the network: an asynchronous stationary
state, synchronized oscillations, and synchronized chaos.
They concluded that the mechanism for generating the
synchronized chaotic state in their network model is the
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0

long-range positive interactions in a population of neu-
rons with a distribution of local driving currents. .

In this paper, we are interested in the dynamical prop-
erties of the time-interval sequences and the spatiotesn-
poral patterns of firings in a coupled neuropal system
which presents a complex dynamical behavior of -the
neural activity. The outline of this paper is as follows. In
Sec. II we describe the models of the coupled network.
In Sec. Il we present and discuss the results. In Sec. IV
a summary is given.

II. A COUPLED NEURGNAL NETWORK

A network of coupled Hindmarsh-Rose neurons [14] is
represented by the following equations [13]:

dX;
——=f(X,,

— Y, Z)+1,+ 2 J;S,(1)

i~
Jj=1

JHEi

v .
=Y, —aX}+bX}~Z,+L+ T LSy, D

=1
dy. Fiadi :
- =HiX Y Zp=c—dXi~Y,, @)
_=f3(X1'. Y,—,Z,-)=r[s(X,-—Xo)‘—z,] - (3)

dt

The Hindmarsh-Rose neuron of the three-variable
model is a modification of Fitzhugh’s Bonhoeffer—van
der Pol model {15,16], with the property that each action
potential is separated by a long interspike interval typical
of real neurons. That is, each neuron is characterized by

2893 ©1993 The American Physical Society
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three time-dependent variables: the membrane potential
X;, the recovery variable Y, and a slow adaptation
current Z;. The external inputs are given by I;. In the
coupled neuronal network, the effect of the firing activity
of the jth neuron on the ith neuron is modeled in Eg. (1)
by an impulse current to the ith neuron, proportional to
the synaptic strength J;, generated when the jth neuron
is active. The neuron is active whenever its membrane
potential exceeds a threshold value X*,

S;=8(X{nN—-X"*), 4)

where O(x)=1if x 20 and B{x)=01if x <0.
We first consider a network consisting of only two neu-
rons that respond to a common external stimulus I:

dx,

L= AL YL Z)+ T HIS) (5)
dY,

—; —fZ(Xf'Yi)Zf) ] (6)
i XA Y0Z)) M
dt _f] frAjadeid y

where { =1,2 and j =2,1, respectively.

To characterize the dynamical behavior of the time-
interval sequences we record the successive times when
the variable X crosses the X =0 line from above. That is,
we define T, by X(T,)=0 and X (T, )>0. After this,
the time intervals 8, =T, ,,~7T, can be obtained for all
firings. From these 5, values we can know that if the
firing pattern is a train of bursts of onc spike (period-1),
the §, will have an unique value. For a train of bursts of
n spikes (period-n), we get n different values for 6,. Fora
train of bursts of undetermined number of spikes {chaot-
ic), the 8, will show a spread of values. In this paper we
have also studied the spatiotemporal patterns of the
firings for coupled neuronal network, Eqgs. (1}-(3), with
the numbers of neurons N =800. We used a uniform dis-
tribution for the stimulus I;, with 1S =5 (e,
I,=1+4i/N). This distribution is the same as that used
in Ref. [13]. The spatiotemporal patterns of the firings
are obtained by plotting the neural activity, i.e., the firing
time ¢t =T,, as defined before, with a point in the time
axis against the space, i.e., the location of the ith neuron.

All the numerical calculations are done by using a
modified fourth-order Runge-Kutta method. In the
study of the time-interval sequences of the firings for a
single and two coupled neurons, the time steps were
chosen as Ar=0.0125. We first run the program to
¢t =2300 to discard the transient and then followed the
time to ¢ =3800 or longer. To get the spatiotemporal
patterns of a network with a large number of neurons, the
time step was chosen to be A7 =0.1. We have also done
some calculations with smaller steps, finding that the pat-
terns do not change. All parameters are held constant at
a=1.0, $=3.0, c=1.0,d =5.0, s =4.0, r =0.006, and
X,=— 1.6, which are the values used in Ref. [14].

H

II. RESULTS AND DISCUSSION

A. The firing of a single ncuron

o aRagi

First, in this section, we present results for the time-
interval sequences for firing when there is no coupling be-
tween the neurons in the network. In this case, we only
need to study one set of equations, Egs. (5)-(7), witk
J=0. In Fig. 1, we plot the time interval 5, against the
stimulus 7. From Fig. 1, we can see that when F<1.32,
there is no spike since the stimulus [ is too small %o
stimulate the neuron from its stable quiescent state with
X=X,<0. As [ increases there is a train of regularly
spaced spikes, the period-1 state. There is only one §,
value for each I value when 1.32<I<1.57. Wher
1.57 <I <2.13, there are periodic bursts of two spike:
per burst, i.c., 8 period-2 state. For this case, in Fig. |
there are two values of 8,. Then it follows period-3 anc
period-4. At J=2.83, there is an intermittency io1
to chaos. Finally, there follows a reversed perio
doubling cascade to a period-1 state again. This is duc/ te
the fact that for a large stimulus I, the system is in
high-frequency repetitive firing state. The code for th
information process is different for the differing firin
states. Ty

B. The firing of two coupled nearons

When the neurons in a network arc compictely syr
chronized and phase locked, we can use a simplified moc
el of two coupling neurons to study the network ¥inc
from Egs. (1)—(3) all the states of neurons aré equivaler
and all the neurons are fired at the same time.

In Figs. 2(a)-2(c) we show the time irtervals of th
firings 5, against the stimulus I for the couplin
strengths J =0.5, 1.0, and 3.5, repetitive, From thes
plots we can see that as the coupling increases, the con
plexity of the time-interval sequences becomes simple
That is, as the coupling increases, the bifurcation regior
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The1—Tn

60 |
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1 F

7 i L I X i
1 1% 2 2.% L I 3.5

FIG. t. §,=T,+ —7Ta, the time-interval sequcnocs of t
firing for a single ncuron vs the external stimuius I. Resu
from simulations of onc set of cquations, Egs. (5)-(7), wi
J =0, and the time step Ar=0.0125 were used. For each
value, the time is followed to + =5000 and the first 1 =2300 a
eliminated for transient.



:come narrower. When the coupling is low, for exam-
e, in the case of J =0, 5, the firing of the system keeps
ost of the features of the single neuron, the case of
=0. There is a bifurcation to a low-frequency repetitive
ing state consisting of a train of reguiar spaced spikes,
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and a region of chaotic firing, as. well as a reversed
period-doubling cascades to a period-1 state [see Fig,
2(a)). However, when J =\(, the bifurcation region is
small [see (Fig. 2(b)] and there ate almost only period-1
and period-2 firing states. Finally, when J =3.5, the bi-
furcation region disappears and there is only a period-|

repetitive firing state [see Fig. 2(c)). Actually as the cou-
pling increases, the effective stimulus J'=J +JS;(1) is in-
creased, which enables the neuron to be stimulated with a
repetitive firing. If the coupling is larger than a certain
value, there is no more chaotic firing.

C. Spatiotemporal patterns of a coupled network

Now we consider a network consisting of N neurons
with different values of I; coupled globally by excitatory
interactions, Ji;=J/N. Here we are using I; distributed
uniformly between 1 and 5, as before. Simulations of the
network with 0<J <6.0 revealed three phases [13]: an
asynchronous stationary state, synchronized oscillations,
and synchronized chaos. Here in this paper we are in-
terested in the spatiotemporal patterns and the time in-
tervals of the firings of the network as shown in Fig. 3 for
the coupling strengths J =0.5, 3.0, and 6.0, respectively.
From these plots we can see that there are some struc-
tures of the firing state. For the lower stimulated region
(the smaller / region) the firing period is longer, and for
the higher stimulated region the period is shorter and the
points become dense since for the high stimujus I, the
neuron is repetitively fired. In addition, for some small
groups, or clusters, of neurons, the activities have a syn-
chronized behavior as they have the same frequency of
firings, phase locked. Notice, however, that the actual
time of firing within one of these clusters is widely distri-
buted. When the coupling increases, the synchronization
is expanded to 2 larger group of neurons, and finally to
the whole network of neurons.

When J =0.5, we can see from Fig. 3(a) that the pat-
tern of firings can be divided into four regions: (1)
nonfiring region for (i < 60)—there is no firings since the
local effective stimulus I'=71 + 2;J;8;(t) is too small
and is not enough to stimulate the neurons from its quies-
cent state; (2) periodic firing region for (60 <i <370)—
the firing is period-1 to period-4 but the time widths of
these period-n bursts are different; (3) chaotic firing re-
gion for (370 <7 < 500)—the firing is chaotic, the time
interval is irregular and with no structure in the pattern.
The total numbers of chaotic neurons is about 1 =130,
which takes about n /N =~16% for the network; (4) the
repetitive  high-frequency firing region for (500
<i<800)—for this region, the pattern is regular, In
Fig. 3{b), we have constructed a time-interval sequence
versus the local neurons from the spatiotemporal pattern
showed in Fig. 3(a). From this figure we can see that the
time interval property is similar to Fig. 2{a). Thereis a
bifurcation of a train burst consisting of one, two, three,
and four spikes, and an intermittency to chaotic state, as
well as a reversed bifurcation to a period-1 firing state.
The difference is that this bifurcation is in the neuronal
Space and not in J as seen before,

As the coupling strength J increases, the number of n

12
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of neurons being chaotic also increases. For example,
when J =1.5, the number n is about n =700, which takes
about n /N =90% of the neurons in the network. For
J=2.0 this factor is almost 1, which means that all the
neurons are chaotic. In Fig. 3(c) we have shown the case
for J=3.0, an intermediate coupling. We can see that
the nonfiring region has disappeared and there is a spa-
tially correlated oscillation for the neurons. However,
the oscillation is not phase locked in the whole network
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and only in some very small regions there i% a-
locked activity. The synaptic current I,(t) is period
and very noisy. The activity of most of the nearons
to synchronize with this periodic current I,(i); "We
this a quasisynchronization. From the time-im

figure shown in Fig. 3(d), the bifurcation region is exte:
ed to the whole network and many points are distrib

irregularly near the two main values of 5, for each

ron. As our conclusion, such an irregular spatioten
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behavior is definitely chaotic since the time-interval se-

quences against the local neurons can be recognized as an

attractor for the network. 08
In Figs. 3(e) and 3(H we presented the results for

J=6.0. From the spatiotemporal pattern of the activity,

We can see that the spatial structure is more ordered, i.e.,

all the neurons are phase locked together. But for the -

temporal behavior, the activity of the neurons is chaotic., [ ]
It should be noticed that for very small values of J (and 0.2 - B

even for J =0), the synaptic current [ syn 1S NOt given by a [

constant plus noise. In fact, we have found that a period- i i e e

ic component, albeit of very small amplitude, appears for 0 0.05 0.1 0.15 0.2

large values of N. This periodic component simply Frequency

represents the effects of the oscillatory behavior of the in-

dependent neurons for most of the values of 7 included in 0.25

the interval 1<7<5. Anp average over some set of

periodically evolving variables will have in general at 0.2

least quasiperiodic behavior and is only in special cases

that the periodic components balance perfectly and the

average becomes a constant. There is of course a noisy

component, coming from the chaotic neurons, but this

component decays for large N. In addition, the introduc-

tion of the coupling acts as a positive feedback and tend 0.05

to increase the periodic component. In Fig. 4 we plotted

the periodicity of the synaptic current for (a) J =0 and (b) 0

J=0.5, in a network of 10* heurons. It is clearly seen

that the synaptic current is periodic even for J =0. In

Fig. 5 we show the corresponding power spectra of the

:
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FIG. 5. Power spectra of the synaptic current I, for a cou-
pled neuronal network with the number of the neurons
N =2400,4800, 10000 (from the top curve to the bottom one)

0.08 and the coupling strengths (a} J =0; (b) J =0.5.
0.075
S sork synaptic current I, (1). As the number of neurons is in-
~ ' creased, the noisy part decreases, but there still exists a
peak of very low frequency which represents the periodi-
0.065 | city of the synaptic current. However, in the case of
large values of J, the synaptic current 7 syn(2) is impulse-
oo T e like. The neurons are synchronized to this impulselike
3000 3500 4000 4500 5000 current. The fronts of the activity of the nenron encode
Time the information at the same time (except for the high-J
region there are some dilute activities). '
Finally, in order to verify the chaotic behavior, we
0.085 |- ' g ' by have also calculated the local maximum Lyapunov ex-
. \ " ponent A; against the neuron i as shown in Figs. 6(a) and
0.08 & | 6(b), respectively. From these two figures, we can see

‘. ! E A that there are positive value of A; for the chaotic region
0.075 TIATR ] g ¥ and negative ones for periodic behavior. At the transi-

T

._.?" ‘ ol i Ttas ‘ tions between one phase-locking region and another,
0.07 /N i B ' I ! there are some small factors with positive A
I . : |
0.065 i ‘ L 1Tyl
' o ! IV. SUMMARY
0.06 rea o1 R N N
S000 2500 4.006 4000 5000 Neuronal activity is well known to be noisy. This sto-
Time chasticity is observed both during information transmis-
FIG. 4. The synaptic current 1, vs time for a coupled net-  sion and spontancously. One of the most obvious
work with the number of the neurons N = 10000 and the cou-  features of such stochasticity is in the uncertainty arising
pling strengths (a) J =0; {b) S =0.5. in the interspike interval (the time-interval sequences
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studied in this paper), for example, in the interspike inter-
val distribution for a neuron in the spinal chord of a de-
cerebrate cat, where they may be a variance of the order
of 20% of the mean interval [17). In this paper, we start-

ed from a model of coupled neuronal networld Wil
any noise and studied the time-interval sequencésisidig
spatiotemporal patterns of the activities of the n¢fill
We found that (1) for a single neuron, or a network i
zero coupling, the chaotic activities can exist: figt. 35§
range of the external stimulus [16}; (2) for a coupled:t4
neuron model, the chaotic activity is dominated byi#
coupling strength. For large coupling, the bifarcatio!i
gion can disappear totally; (3) for a coupled netwetk with
an uniform distribution of the external stiminlm,"tﬁ@.ii:.
tivity of the neurons can be regular or irregular (chtic)
From the spatiotemporal patterns, the strong:cotifilin
results in a spatio-order phase, or synchronized 'fitha;
state of the neurons, while the temporal' behavior-of:th
neurons is chaotic. The whole chaotic behavior cantic
be accounted for by the finite-size noise. - The thre
phases for this coupled neuronal network are {a)anagyr
chronous stationary state (0 <J <0.8); (b} quasisynchror
ized chaos (0.9<J<3.2); (¢} synchronized: chac
(J>3.2). .However, for more strong coupling, we cz
also expect to have a nonchaotic activity of neurons, t}
fronts of activity appear in a regular time interval; i
(a) the strong coupling increases' the -spatiocorrelatic
which can have a compiete synchronization of the ne
rons and (b) the effect of this very high coupling ‘or t
synaptic current is shifted to the local neurons,and it c:
result in a high-frequency repetitive firing of the neuron

It is worth noting that for modeling more réalistic ne
ronal network, one must consider the structure of t
network. This can be done assuming the local coupli:
and stimulus are a function of the number of neuro
i.e., differently in the space. However, the qualitative 1
sults for the nonlinear behavior are the same as for t

simple model.
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The mean field in a globally coupled system of chaotic logistic maps does not obey the standard
rules of statistics. even for svstems of verv large sizes. This indicates the existence of intrinsic
instabilities in its evoiution. Here these instabilities are related to the very nonsmooth behavior of
mean values in a single logistic map. as a function of its parameter. Problems of this kind do not
affect a similar svstem of coupled tent maps. where good statistical behavior has been found. \We
also explore the transition between these two regimes.

PACS number's;. 05.45.~b. 05.90.—m

I INTRODUCTION

In recent times there has heen a number of efforrs 1o
analyze the interplay between temporal chaos and space
=vnchronization in globally coupled svstems. These are
<verems of considerable importance in modeling phenom-
en1 as diverse as Josephson-junction arravs. multimode
l=ers, vortex uvnamics in fluids. and even evolutionary
namics. biological information proceszing. and neuro-
vaamies 1. There is a great weaith of phenomena in
TiLese svstens, originating in the presence of two conflict-
sz trends i their dynamies. On one side. the presence of
cootnmon dAriving factor, coming from some tvpe of aver-
s 2o ever the system. introduces a partial svachronization
.uthe evolution of its ejements. Un rhe orher. the chaotic
rvergence hetween the evalution of anv two different
comenrs tonds 1o destrov this enherence.  There are.
siwerefore, twa limiting behavinrs. one in which a large
< wipling forces the svnchronization of a set of weakly
Cinaotie slements, and another in which etrongly chaotic
bt weakly coupled svstems displav incoherent hehavior,
1his tast sirnation is characterized as having exponen-
i diverzence of trajertories not onlv 1n time —poxitive
Lvapunov expanents—but alzo in space. in the sense that
Tt anv given time two different elements of the svstem
mve very cose maghitudes, those magnitudes wili di-
terte from each other exponentially fast. Notice thar for
~tpdlr couphiing it is posstble ty have ail the elemenrs of
Phe svatom canverge Into a single cluster. Anad ar the same
sune o have this olester mose chaotiraily 20

i Gace, ar Hrar <ighr rhese weakle roupled svsems do
wo bk oo diderens from o siinpie lattiee Of uncou-
hed Lientieal chaotic viements. with mavhe some shifts
gt thers parameters. A more carefui study reveals, how-
et that thers 1noa detectabie and nontrivial infyence
of the glehal couphng. which gives rise to <cme ~ibrie
wierent offecrs spoiling the stanistical properties of the
“vsteni,

1 4

II. GLOBALLY COUPLED LOGISTIC MAPS

Here we consider some of these coherence efecr«
through the particular example of a globally coupled lat-
tice of logistic maps. obeying the equations

1
Trn-til}

hY
L= (@) = = > flra). ]

;=1

where ! 1= the space index and n is the time index. Here
firiis he familiar logistic map. f{r) =1 -ar’. and the
mean held h ar rime n appears in the last term of *h
equation above.

N
he = %Zﬁ Fraist). .-

This is a simple prototype of globally coupled chaotic »v-
tems. and has been exhaustively explored in Refs. 2-1
For large ¢ and small ¢ the svstem settles in a “turbu
lent” regime. where. as mentioned before, all element:
i1 evolve chaorically. without any obvious mutual syn-
chranization.

In this regime. it is reasonable to expect the mes.
firld to nbev general statistical rules. since it ts an &
erage over quasirandom variables. [n particular. it wa
expected that h should converge to a fixed value h° v
N -~ . with Auctuations around this limiting vals
normally distributed {central limit theorem). and with 2
dispersion that decays as 1,v'N (law of large numbers
Surprisingly. it was found that this simple system failed
o fulfill these expectations 3. 4. This failure has al0
been verified in similar models 3.. which suggests that
this is a generic behavior. In particular, it was found that
he dispersion of the mean field did not go to zero. as ex-
pected. but instead saturated to a fixed positive value
for large \: broad peaks indicating a quasiperiodic com-
ponent were found in the Fourier spectrum of the time

7491 € 1992 The American Physical Society
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.. yzence for the mean field: and the mutual information
- +he lattice also saturated to a nonzero value for large

~~ understand the relevance of these facts. we should
-ice that. if in effect the mean field converged to a fixed
..ze. the svstem would decouple. Each and every one
715 elements would behave like a single logistic map of
s lorm

yaos = 1= Ala e R™)y] 3

oA =all —elfl —e~e¢h*)and y = z/(1 — e —eh").
- ~ere the value of h* is obtained self-consistently. In fact.
-:.s assumption of convergence of h to a fixed limit has
-en used successfully in the study of a different globally

::pled nonlinear system ‘6,. For logistic maps. this re-
:.wtion of the dynamics of the {infinite) lattice to that of
- -ingle map does not happen. which clearly implies that
.-« self-consistency equation for h* is unstable around its
=wnd points.

IIl. STATIC MEAN-FIELD MAPPING
A. Definition

Lot us consider A. for the time being. not as a dynam-
., variable but as a fixed input in the system. and call
* ‘... Taking the N — x limit on a lattice of the type
~~.rthed by Eq. 11} we can define a system of equations
-:.4" zives as a final result a static mean field hgy,. in the
© Lwing manner:
o - — . O
o = _\!-_.“:‘: N —_ wi)). {

1

Cer 1 om L=F Flrl ) = €hg. i3}

o~ ocives us a funenien fae hisiale,. which we will
.. ~iie “static mappina.” In this simplified problem we
. +heck whether ur nut the self-consistency equation
- = h,p has a solution. and explore its stability. Notice
v Ry is invariant because of the existence of an invari-
. Jdistribution for r ‘and therefore for fiz): 7. when
"= maps are in the chaotic regime. For cases where the
.p# are in some periodic regime fand even when they
- in chaotic motion inside some periodic window. as
. narts of the 3-window!i, the existence of an invariant
w~+ribution depends on the distribution of initial condi-
“-ns Wa will assume that in these cases all different
“mwex of the relevant ¢vcle are equally represented, so
‘Lt an invariant distribution can be achieved.
. <hould he clear that this static mapping iz not
uvalent to the actual evolution of the mean feld.
o=k hoo; haoy....:ia 6. alsodefinedinthe V - x
. This "dvnamic mapping” depends in principle on
- previous values of k. although this dependence is neg-
Znde dor very old K ciel for Aoom when m > 1L
.1 »xhibits therefore a much richer behavior. ‘What
- unportant for us here is that thev have the same
“ned points. On the stability of these fixed points we
“Topose the following v, “ies.s. fhe Gyhumic mapping
v = Ao ha_y. keoj...." cannot be stable around tts fized
stk =kt 1 =n.n-1..... 1f the static mapping 1s

[ e |

not. Basically, we are assuming that if the process i

unstable even in the very simplified form given * the
static mapping, the complexities introduced by \  de
pendence on all previous values of h cannot make its sta-
bility anything but worse. The numerical results verify
this statement. as we will see next.

B. Numerical results

We have evaluated numerically the static mapping ir
the range of hi, that contains the fixed points hqy = hy,
for the parameters @ = 1.99 and ¢ = 0.1. The resyjt:
are shown in Fig. 1. Although this is an extremely non
smooth function, it has to be continuous, since for the
different types of bifurcations present in the logist  af
the average value of x changes continuously (8). The .xec
points in this graph give h* = 0.311, not too differem
from the actual average of the mean field ({h} = 0.3063)
but different enough to imply that (h) does not fall o1
a fixed point. It is clear from the graph that none o
these fixed points can be stable, since the absolute slope:
'Ahgur/ ARin| obtained numerically are much larger thar
1 almnost everywhere. We should keep in mind that only
300 points have been calculated to get this figure, anc
therefore these slopes are defined only in a coarse-grainec
sense. In fact. the function hgu(hin) has well-definec
derivatives only inside its periodic windows. Therefore
even though this function cannot reveal all the complex-
ity of the actual mapping hn = hn(hn_1.hn-2,...), it:
nonsmooth behavior is indicative of why A, does not con.
verge to an invariant value as N — .
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FIG 1 Static mapping Rgue{hin) from Eq. (1}). The line

joins 300 points caiculated over equally spaced hin values.
These points were obtained averaging over 1.5 x 10® iterations,
after a transient of 1000 iterations. The straight line is the
diagonal how = hin. The typical error level is indicated with
the error bar in the upper-right corner. Herea = 1.99, ¢ = 0.1,
and fiz}is the logistic map.
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The presence of the “well” visible .n Fig. 1. and of
which an enlarged view is given in Fig. 2. deserves some
comment. The bottom of the well corresponds to a peri-
odic l4-window that. as is common in the logistic map.
hegins in a tangent bifurcation and ends in an internal
crisis. The infinite slope at the left end of the periodic
window is due to the fact that at both sides of a tan-
gent bifurcation in the logistic map the average value of
z changes as ‘70 ~iT). = a—a. 2. where a.is the criti-
cal parameter for the bifurcation. This is also true on the
one-band side of an internal crisis ;9'. where the probabil-
ity density spreads from the several bands at one side into
the one on the other. also as a —a.i'’?. This explains the
infinite slope at the right end. These two facts. together
with the contintity of ) in period-doubling bifurcations.
sustain our assertion that Agy{ha) is continuous. These
~wells” and their infinite-slope walls should not be iso-
lated instances in the hey versus hia graph. since the
periodic windows from where thev arise are thought to
be dense in the bifurcation diagram of the logistic map
'7.10;. This is what makes it impossible for the map to
have a derivative except inside a periodic window.

As pointed out in Ref. 4., all these peculiar phenomena
disappear if we change f(z) in the set of equations (1) toa
tent map. f(r} = 1—a r . For this system. the mean field
h.. seems to converge to a limit. with flufruations that
decav a3 1V N, as expected. A look to the bifurcation
diagram for the tent map shows a complete absence of
periodic windows. tangent bifurcations. or internal crisis.
and suggests a smooth behavior of r as a function of

|
A DL E L ) ——-

231 - -
4 0305~ -
—-c - -
33 - -
03211555 731156 0311565 231157
hy
FiG. ?  Enlargement of the ~well” vigible m Fig 1 The

hottom corresponds tu d proodic 14-window. the left wall 1
& tangent bifurcation. and the night wall 15 an internal crisis,
The line joins 300 points calculated as averages over ¥ 5 x W
itetations. after a transient of 3000 rterations. The straight
line 15 the diagonal Raue = Ain All other parameters are as in
Fig. i. Typical error bars are not significant at the scale of
the tigure.
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FIG. 3. Static mapping fou{hin) for the tent map. The
line joins 300 points calculated as in Fig. 1. The straight line
is the diagonal hou = Ain. and a tvpical error bar is given n
the lower-right corner.

2. which of course would imply a smooth behavior in
Rour(hi). This has been verified numerically. for a =
1.99 and ¢ = 0.1. The results are shown in Fig. 3. The
curve Hoyr VEISu: “in obtained here is extremely smoath.
within our lovets . T error. and has a very small slope. The
fixed point ix i .- = hin = 0.1787.in perfect agreement
with the ca ula-nd value of {k}. Therefore. the simplified

L -
. i
ve- 4
: |
? o.;si?— —1
' a
- i
-“ -]
[
! J
- ]

02 .3 0.4
hy

FIG. 3. Distributions of the values of the mean field Anst
vs ha 10 the dynamic mapping, where f{z) is the logistic map-
These results are for a lattice of size N = 200000. Here we
have plotted 10000 points. after a transient of 5000 iterstions-
Other parameters are as in Fig. 1.
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-auc mapping does not suggest instabilities in the more

-mplex dynamic mapping.
1~ summary. the strong instability of the static map-

-2 hour(hin) is @ good indicator of the lack of conver-

.arce of the mean field h to a fixed value as N grows.
-+ convergence of h towards such a limit in the svstem

+:th tent maps is accompanied by a smooth and almost

<3t houlhin). However. we should not forget that this
s+ only a static construction. and cannot represent the
;.1 dvnamics of the problem. As a matter of fact. the
2i5t Of hpay VETSUS h.. obtained for a value of N such
“nat the fiuctuations have reached their saturation level.

.hows a very different behavior. as can be seen in Fig. 4.
2o we have to keep in mind that the static function tells
.« about the impossibility of achieving a fixed vaiue for h
- the v — x limit. but it does not say anything about
-+e actual evolution of this quantity.

IV. INTERMEDIATE CASES:
MIXING TENT AND LOGISTIC MAPS

Given the fact that nonstatistical behavior is present
.= iogistic but not in tent maps. it is natural to ask what
..appens for intermediate situations. For this we have

;nsidered a “logistic plus tent” map that interpolates
.rween quadratic and linear behavior. It is given by

fuizt=1- garf-fl-alr ‘6)

"+ L5 a¢ limits the tent map. whena = 0. and the logistic
-.ap. when a = 1. There are. of course. many other ways
: .rerpolating between these two limits. a simple one
-ng the power map fpiz)=1-a7z “.withl=-<2
¢ . ‘oncreteness. we will consider here oniv the function
c~enin Eq. (6).

We have explored numerically the behavior of coupied
--ices of these maps. The results for the mean-square
- +arion {MSD) of the mean field for a close to 1 show
war nonstatistical behavior. which seems to disappear
- notonically with decreasing 2. .See Fig. 5.0 A very
- reresting feature here is the slight but consistent recov-
- »f the values of the MSD for values of a less than

::p to the value of saturation of the MSD. A similar

- ere menon «as found in Ref. 4", in a coupled lattice of

z:stic maps subject to the influence of static parametric
~tuations.
A much stronger evidence of coherence is found in the
wor spectrum of the mean . feld. As mentioned be-
- cne of the signals of nonstatistical behavior in these
- wums is the appearance of broad peaks in the power
ecrrum. indicating a quasipenodic component in the
~ mion of the svstem. As can be seen in Fig. 4. this
.= penodicity i3 strongly accentuated in the case of
e with 4 small tent component .1 —na = 1. The
. soenodie behavior s SUTORE enough as to be visible
Lo ha_. versus ho plot. as shown in Figs. 7 and =
“wiasly, as we make a even smaller this trend reverses
"t tLe power spectrum becomes almost flat.
" nis increase in the quasiperiodicity of the mean field
« nren encountered in two other cases: in the pres-
"« i a very small additive noise '11. and when the

o1 r T BEAL{ _%
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- . ]
- []
aot g % -
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. £ ] ] a g s o a e B 3
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= T . .
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-n-. . 1
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10 100 1000 e 10°*

Lattice Size

FIG. 5. Mean-square deviation for the mean field vs lat-
tice size for several values of ¢, in the mixed map. For all
points we have used s total of 102 400 iterations, with a tran-
sient of 3000 iterations. The values of a are (a=10
(logistic), ((1) a = 0.95, (x) a = 035, () a = 0.75, (&)
a = 0.0 (tent). As before, a = 1.99 ande=0.1.

mean field is not giobal but includes only the N/2 near-
est neighbors {12]. These three cases are similar in that
all of them point to a connection between small smoothly
distributed noise and an increase in quasiperiodicity. In
our case. we could roughly consider the tent part of our
map as a perturbation over the logistic part (for a close to
1 .. since one part is added to the other to obtain the total
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FIG.6 Power spectra for the mean field for a = 1 {upper
lines. & = 0.9 (middle line}, and a = 0.0 (lower line). Here
we are averaging over 100 runs of 1024 iterations each. af*er
a transient of 5000 iterations. The parameters are ¢ = 1.98

ande=01.
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FIG. 7. Distributions of the values of the mean field An-:
vs ha in the dynamic mapping. where f(z) is the mixed “lo-
gistic plus tent” map. Here a = 0.5. All other parameters
are as in Fig. 4.

mapping. Obviously. this is a highly correlated pertur-
bation: however. taking into account that the tent map
has a behavior closer to white noise {its invariant dis-
tributions for a < 2.0 are almost flat) than that of the
logistic map. the connection berween these two processes
is at least plausible. Notice that here we cannot invoke
the influence of some periodic window for this increase

228 [+ V-3 0

FIG. %, Distributions of the values of the mean field ha.:
vs A, in the dynanuc mapping. Here f{x} 15 the logistic map.
as in Fig. 4. but we have added a uniformly distributed noise
of amplitude o = 00045 All other parameters are as i1
Fig 4
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FIG. 8. Static mapping Aeuc(hia) for the mixed “logistic
plus tent” map. The line joins 300 points calculated as in
Fig. 1. The straight line is the diagonal heyr = hin, and 2
tvpical error bar is given in the lower-right comner.

in quasiperiodicity: first because periodic windows are al-
most nonexistent in the bifurcation diagram of fi.(z) for
a = 0.9, and second because this would make it difficult
to explain why the total strength of the signal decreases,
i.e.. why the MSD goes down as we decrease a. A sim-
ilar argument can be made for the semiglobally coupled
map. in the sense that the infivence of the elements of the
lattice that are not directly affected by the—now local—
mean field can be roughly considered &s a smoothly dis-
tributed smali noise.

Finally. we have also checked. for these mixed maps,
the behavior of the static mapping houc(hin}. Result for
a = 0.9 can be seen in Fig. 9. Since the mixed map
has a negative Schwarzian derivative except at I = 0.
where derivatives are not defined, we expect to find only
one attractor. and therefore a well-defined (z), indepen-
dent of the initial value zg. The behavior of the static
mapping seems smooth and already (for this value of @)
close to that of the tent map. Within our error levels,
the curve still shows some structure. A careful look at
the bifurcation diagram of this map shows that almost
all the periodic windows have disappeared —this is due
to the tent-like behavior of the map at its critical point—
thus eliminating the multiple points of infinite slope in
the hoy versus hin graph. The coarse-grained slopes

ARoge/Ahin| obtained here are much smaller than 1.

Therefore, the results for this case indicate that the
stability of the static mapping (at least in the coarse
grained sense we have considered) is not sufficient to in-
sure the stability of the actual dynamics. Our numerical
results are of course insufficient to describe the behav-
ior of the actual derivative dhour/dhin (oF, equivalently,
d!r)/de) in these maps. and may still allow for differen-
tiability in the tent map and nondifferentiability in the
mixed cases.
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V. CONCLUSIONS

~he behavior of the mean field in globally coupled
aotic systems contains a number of surprises. The
._,netatistical behavior of this quantity indicates the ex-
rence of an intrinsic instability in the evolution of the
.-stem. when we consider its infinite-size limit. Here we
-ave explored the relationship between this instability
.nd the corresponding problem in a simplified mapping
-, the mean field. which assumes that the dynamics de-
- ends only on the last value of this quantity. Thisisa
-erv crude approximation. since it assumes an infinitely
‘1zt relaxation of the probability densities of the process.
~ut it still gives information about its fixed points and
.sme idea about their stability.

The numerical results obtained here indicate that the
.:ability of this static mapping may be a necessarv but
~ot sufficient condition for the stability of the actual dy-
amics. i.e.. for & normal statistical behavior of the mean
z¢ld on the system. This result should be taken only as a
-zst step in the study of the behavior of this kind of prob-
~m. In principle. a complete program should be carried

<t through the analysis of the stability of the eigen-
-ades of the Perron-Frobenious equation of the system.
. voint that has been mentioned in Ref. iql,

T'nder the influence of the previously mentioned in-
--abilities. the mean field develops a dymamics that is
weakiy quasiperiodic. This is already unexpected. and

gives rise to some as yet unresolved questions, as, for
instance. what is the mechanism that selects the domi-
nant frequencies? Even more remarkable is the fact that
several mechanisms have already been found to strongly
incresse this quasiperiodicity, and none of them can be
considered a form of periodic driving. On the contrary,
directly or indirectly all of them can be assimilated into
the addition of a small white noise, Also, this increase
in quasiperiodicity is accompanied by a reduction of the
total strength of the signal.

Finally, we want to mention that there has been recent
evidence showing that the phenomena we have explored

here also appear in locally coupled systems. Periodicity ’

and quasiperiodicity have been observed in some total-
istic cellular automata in 3, 4. and 5 dimensions {13}, in
medium-range coupled one-dimensional lattice maps (12,
14!, and in locally coupled high-dimensional lattice maps
'15]. All of this wealth of evidence says that there should
be a common and fairly robust mechanism that extracts
periodic behavior out of coupled chaos. The precise na-
ture of this mechanism is still unknown.
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We study the behavior of globally coupled maps when the coupling mean field is either delayed or averaged
over several time steps. We find that introducing a delay does not reduce, and in some cases increases, the
saturation values for the fiuctuations of the mean field. The mean field changes its quasiperiedic behavior by
introducing more components in its spectrum, and the distance between main components of this spectrum is
reduced in a linear way. On the other hand, averaging the mean field reduces th= satration value for fluctua-

tions, but does not fully restore statistical behavior to the system except in the limit of very large averages. As
before, quasiperiodicity is changed by the introduction of more beating frequencies, and the distance between

the most important among them decreases linearly. As an exra test, we study the effects that a small periodic
driving has over this dynamics, and find that aithough there is some influence, there are not strong resonances

to simple sinusoidal driving. [$1063-651X{96)02412-9]

PACS number(s): 05.45.+b, 47.52.4]

There has been in recent years sustained interest in the
dynamics of large lattices of coupled chaotic systems (1
These models give simple approximations to many interest-
ing physical models, such as coupled Josephson junctions,
multimode lasers, arrays of coupled nonlinear circuits, etc. A
particular area of interest is that of globally coupled maps
(GCMs), where the dynamics is discrete and the coupling is
made global.

For these systemns, a problem that has attracted some at-
tention is how close to statistical is the behavior of the sys-
tem when the dynamics of the local maps is chaotic and the
coupling is weak. In this case, it is tempting to propose a
“*simplicity hypothesis,”” which says that since the chaotic
behavior would give for independent maps invariant distri-
butions with compact support, and the influence of the aver-
age is moderated by a small parameter, it could happen that
in the limit of infinite lattices the average would converge to
a fixed point, therefore decoupling the maps; and that for
large but finite lattices this mean field would have a Gaussian
distribution (central limit theorem), with a variance propor-
tional to /N (law of large numbers). These hypotheses were
originally checked by Kaneko 2], who found that the behav-
ior in most cases was clearly nonstatistical, i.e., that the fluc-
tuations of the mean field saturated at a finite value, as
shown by their mean square deviation (MSD), and moreover,
that this mean field developed some quasiperiodicity. This
phenomenon has been confirmed in several types of coupled
systems, and has been shown to survive, and in some cases
to be enhanced, under the influence of noise or partial cou-
pling [3].

Giobal coupling can cormrespond in some cases to the ac-
tual physics of the system [4,5], but in many cases is intro-
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duced as a simplifying limit (a mean field approach) to local
couplings, which are usually diffusive. One aspect of this use
of GCMs that is not satisfactory is the fact that, even though
under local dynamics information takes time to travel though
the lattice, in the globalty coupled limit all effects are always
instantaneous. As an approximate way of considering the
unavoidable delay effects that appear in locally coupled sys-
tems, we have studied the behavior of GCMs under both
delay and averaging (in time) of the mean field. Two ex-
amples are chosen here. One is Kaneko's original model of a
globally coupled lattice of logistic maps (2], a system with
the following equations:

xni-l(i):(l“e)f(xn(i))'}' Ehr: .
{0

1 N
b=y & Sl f)=1-ax’,
=1

where x,(i) is the local variable at location i and iteration
n. Here € is the global coupling, and the local map
flx,(i)) is normalized by 1 — € so as to avoid getiing out o
the range ~ 1 <x< 1. The other test case is that of a lattice of
nonlinear optical elements susceptible of modeling via the
Ikeda equations [4,6]

En+l(£)_=A +Bf(£n(£))+ Ehn .
(2

1 N
hnsﬁzl FEG), fE)=Eexp(iE*E),
e

where now E is complex and represents the amplitude of the
slowly varying envelope of the electric field in a nonlinea
optical element.

I. DELAY OF THE MEAN FIELD

For both systems, we have studied the effects of delayin
the mean field & by changing h,, to h,.p in Egs. (1) and (2’
where D denotes how many iterations k is delayed, We hav

6936 © 1996 The American Physical Sociel
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IG. 1. MSD of the mean field vs lattice size for the delayed
tic GCM. Parameters are given in the text. Here we are aver-
g over 50 runs of 1024 iterations each, after a transient of
00 iterations. The error levels are of the same size or smaller
the markers.

:d values of D from 0 (no delay) up to 17. The param-
5 used have been a=1.99 and e=0.1 for the coupled
stic maps of Eqgs. (1), and A=3, B=0.3, and =0.1 for
(keda mappings Egs. (2). (Lattice sizes and running times
indicated in the figure captions). The first important find-
is that delaying the effects of the mean field does not in
case destroy the subtle coherence responsible for the
ire of the simplicity hypothesis, and saturation of the
D of k as N grows is actualty enhanced (see Figs. I and
This is in itself a nontrivial assertion, since it means that
e are memory effects in the dynamics, which allow the
sence of past mean fields k,_p.Rp-p-1hn-p-2+---+
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1 3 * delay = 0 E
E . x delay = 1 3
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7G. 2. MSD of the mean field vs lattice size for the delayed
ta GCM. Parameters are given in the text, and running times are
1 Fig. 1. The error levels are of the same size or smaller than the
kers.
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FIG. 3. Power spectra for the mean field of the delayed logistic
GCM. The delays are {a) D=0 (no delay). (b) D=4, and (c)
D = 16. Parameters are given in the text, Here we have performed
the Fourier transform over runs of 1024 iterations. and averaged
over 50 such runs. The tattice contains 32 000 elements.

to affect the present evolution of the system over a span of

D iterations: this for a model where each individual oscilla-
tor is losing track of its previous state exponentially fast, due
to the existence of positive Lyapunov exponents. In this case,
however, the small quasiperiodic fluctuations that affect 4
for large lattices manage to reproduce themselves even after
long delays.

Delaying the mean field does have a clear influence in the
form of the quasiperiodicity-of the system, as can be seen in
the Fourier spectra shown in Figs. 3 and 4. The main effect is
an increase in the number of peaks in the spectrum, and a
corresponding decrease in their separation. This decrease in
separation seems to be linear for the Ikeda mappings [Egs.
(2)], where one can fit the distance between the main peaks
in the spectrum (those closest to w=0) by an approximate
formula

HAwy~(1/Awg)+aD, (3)

" where D is the delay, and for the parameters used here,

Awy=0316£0.005 and a=1.005x0.006 (i.e., consistent
with a=1).

For the logistic mappings this particular behavior is not as
clear as in the Tkeda system, but estimates made for the larg-
est two peaks in the spectrum (those closest to w=0.5) show
a behavior similar to the one given in Eq. (3), except that we
need here to consider odd and even values of D separately.
As before, the value found for the constant o is consistent
with a= 1!, suggesting an exceedingly simple rule for the
accumulation of new peaks in the spectrum: in practice, one
gets one new peak for each increase of the delay in one
iteration.

o "a,

" i sy
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FIG. 4. Power spectra for the mean field of the delayed Ikeda
GCM. The delays are (a) D=0 (no delay), (b} D=4, and (c)
D= 16. Parameters are given in the text. Here we have performed
the Fourier transform over runs of 1024 iterations, and averaged
over 50 such runs. The lattice contains 40 000 elements.

II. AVERAGING OF THE MEAN FIELD

For both systems, we have studied the averaging of the
mean field over a total of P contiguous iterations by chang-
ing h, in Egs. (1} and (2) to hf where

L
P__
hn=sz::O h’l-j'

AL B AL IR AL B AR IS
01 3 » avgd. 1 E
E - *~ avgd, 2 3
- . e avgd, 3 9
i . « avgd. 10 1
0.01 | ¥ i + mvgd. 30 =
3 : - :
A -

- .1 . " & s = a2z & v o
o 0.001 b AL -
czn E t . S %8 0o o oa %
0.0001 | P
10-8 - : N -
o | APPUTIHY EEETII INEEOUPT EIPRTIY WS N

1 10 100 1000 104 10®

Lattice Size

FIG. 5. MSD of the mean field vs lattice size for the averaged
fogistic GCM. Parameters are given in the text. Here we are aver-
aging over 50 runs of 1024 iterations each, after a transient of
10 000 iterations. The error levels are of the same size or smaller
than the markers.
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FIG. 6. MSD of the mean field vs lattice size for the averaged
Ikeda GCM. Parameters are given in the text, and running times and
lattice size are as in Fig. 5. The error levels are of the same size or
smaller than the markers.

We have tested values of P up to 30. For this modification of
the dynamics one finds, as expected [7]., that averaging over
several iterations tends to reduce the level of the fluctuations
and therefore to render the system closer to statistical. We
should notice, however, the following two points: one, the
Auctuations in & show robustness, in the sense that, even if it
is true that a time average over a few of them reduces the
Jevel of saturation of its MSD, it does not restore its statisti-
cal behavior. It just increases the value of N where the MSD
stops decreasing. Two, the quasiperiodicity of the mean fieid
is still manifest, (see Figs. 5 and 6), and, at least for the case
of the Ikeda mappings, show a behavior similar to the one
found for detaying: the Fourier spectrum acquires more
peaks, and the distance among the two largest of them (the
two closest to w=0) decays linearly, following an approxi-
mate rule 1/Awp=~(1/Aw)+B(P—1). For the param-
eters given, we have found Aw=039% 0.01  an
B=0.554*0.008,

For the logistic mappings, the trend towards multiplicit:
of peaks and the corresponding decrease in distance betwee:
them is visible in the Fourier spectra, but not clearly enougl
as to be unequivocally quantified.

HL PERIODIC DRIVING

The presence of quasiperiodicity in the mean field fo
globally coupled maps suggests a test of these systems fo
possible resonant behavior. For the logistic model, we hay
done this by changing the action of the mean field £ in Eq:
(1) to a mixture €k,— ah,+ Bsin(nw), with e=a+ g {thi
in order to keep Jx, . (i)|=<1). We have kept €=0.1, an
have checked the behavior of h for two values of a, sweej
ing over the available @ range. The most important resu
here is a negative one: we do not find strong resonance
this system, even for the frequencies corresponding to
largest peaks in the nondriven spectrum.

In the first test we have set @=0.099 and f=0.001. Ta

e —
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'IG. 7. Power spectra for the mean field of the averaged logistic
A. Here we are averaging over (2) P=3, {b) P=10, and (c)
30 iterations. Parameters are given in the text. We have per-
\ed the Fourier transform over runs of 1024 iterations, and av-
od over 50 such runs. The lattice contains 128 000 elements.

into account the size of the fluctuations of & for the
driven system with the same value of €, we have that in
case the autonomous fluctuations should have an ampli-
» around five times larger than the amplitude of the driv-

For this case, there is essentially no response of the
iem to the periodic driving. The Fourier spectrum ob-
«ed in this case is the same as for the nondriven case, with
addition of an isolated & spike at the frequency of the
Ang.
In the second test we have set a=0.09 and B=0.01,
«ch gives an approximated ratio of amplitudes of autono-
us 1o driven fluctuations of 1 to 2, so that in this case the
>rnal driving is dominant. In this case we have observed
y clear effects of the driving, but not the expected strong
snances at the peak frequencies. Typically, the spectrum
ws a somewhat deformed version of the quasiperiodic
ctrum from the nondriven case, plus several & spikes at
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FIG. 8. Power spectra for the mean field of the averaged [keda
GCM. Here we are averaging over (a) P=4 and (b} P=16 itera-
tions. Parameters are given in the text. We have performed the
Fourier transform over runs of 1024 iterations, and averaged over
50 such runs. The latice contains 40 000 elements.

the frequencies of the driving and its harmonics {including
aliased harmonics). In no case have we seen a strong en-
hancement of the main peaks of the spectrum due to the
periodic driving.

Results similar to these were obtained for the Ikeda map-
pings, showing how the introduction of a very small driving
just adds a single spike to the spectrum, with no changes in
the quasiperiodic background, and that larger drivings do
deform the spectrum and introduce harmonics, but does not
create strong resonances. These two results indicate that the
quasiperiodicity of the mean field cannot be enhanced by an
external driving.

In conclusion, we have found that the use of nonsimulta-
neous mean fields in globally coupled maps affects the char-
acter of their quasiperiodic behavior, increasing linearly the
number of peaks in the spectra of their mean fields. The
nonstatistical character of these mean fields is preserved, ex-
cept for the obvious case of time averages over very large
spans. Finally, we have not found strong resonance effects in
these systems. :
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We show that an ensemble of logistic maps, with parameters distributed in some range inside a chaotic

region, cannot be statistical.

This is so because any parameter range for this map includes periodic win-

dows. The effects of this periodicity in the averages of the system can be estimated, and are also ap-
parent in the power spectra of average values. Asa counterexample, we show that the behavior for tent
maps, where chaotic regions do not include periodic windows, is statistical.

PACS numberfs}): 05.45. + b, 05.90.4+m

I INTRODUCTION

It was shown in a recent work by Sinha [1] that in-
dependent chaotic maps under the influence of global
noise behave in a nonstatistical manner. In particular, it
was found that when a collection of logistic maps in their
chaotic regime has time-dependent but spatially homo-
geneous fluctuations in its nonlinear parameter, the aver-
age value of x shows persistent fluctuations even in the
large-N limit. This behavior is similar to that of an en-
semble of chaotic maps under weak global coupling, a
problem that has been studied in several recent works
(2-5).

It was also claimed in that work that when the applied
noise is static but space dependent, the behavior of this
uncoupled chaotic system is statistical. This means that,
for instance, if we have a large collection of logistic maps
with their parameters distributed in Some narrow range
in the chaotic region, the average value of x should con-
Verge to some fixed value with fluctuations that die out as
1VN. At first sight, this seems quite plausible, since this
just reflects the statistical behavior one expects from a
collection of independent chaotic oscillators, where each
and every one of them is characterized by an invariant
probability distribution with finite support. But upon
more careful examination one has to realize that there is
a fatlure in this reasoning. This failure lies in the fact
that the statistica] superposition mentioned before works
onl.y if all the mappings included in the. parameter region
of interest are purely chaotic. By “purely chaotic” we
mean here the absence of any periodic behavior, i.e., we
exclude cases of the type known as “periodic chaos™ [6],
where the motion covers in a periodic way a finite collec-
tion of distinct chaotie windows.

But it is well known [7] that this is impossible to do
with any smooth distribution of parameters in the logistic
map, since there is at least a periodic window between
any two different points in parameter space where the
map is chaotic, and this periedic window (or windows)
fepresents a nonzero fraction of the parameter range.

1063-651X/94/49(1}/15(4)/506.00 49

Therefore, as we increase the size of the lattice on which
we are working, we will be at the same time maintaining
some fraction of the elements moving in a periodic way.
And this part of the system will spoil the convergence of
the average, by keeping persistent fluctuations whose ori-
gin is simply the periodicity of the map in these windows.

In this paper we show that the intrusion of periodic
windows does alter the statistical properties of a collec-
tion of chaotic maps whose parameters are distributed.
We also show that in typical cases this effect is extremely
small, thus explaining the results reported in Ref, [1].
We show how this effect depends on the initial
configuration of the lattice, and how the effect of periodic
windows on the fluctuations of the average can be es-
tirnated,

II. UNCOUPLED LOGISTIC MAPS
WITH PARAMETRIC NOISE

The model used for this work is

Xp oy =l—aixi?, (2.1)
where i is the space index and » is the time index. The
values of the parameter a are given by

a'=g+gé, 2.2
where €' is a random number uniformly distributed be-
tween —1 and 1, ¢ is the (small) amplitude of the param-
eter fluctuations, and a is just the center of the distribu-
tion. This is denoted as “case {iii)” in Ref. [1}, where a
slightly different prescription a’=a(1+0'¢’) was used. It
is clear that these two prescriptions are identical if one
makes c =ao’.

In order to test whether or not this system is statistica]
we calculate the instantaneous mean valye h, of the vari-
able x!, over large size lattices, and study the time evolu-
tion of this average. In particular, we check its mean-
square  deviation (MSD), which is defined by
({{h)—h 1), where the angular brackets are time aver-
ages. We also check its power spectrum, which for a sy-
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perposition of purely chaotic systems should be broad.

A comment should be made here about the meaning of
these averages. What we want to know here is whether a
single lattice, made out of many elements, can be statisti-
cal, in the sense that averages over those elements ocbey
the central limit theorem and the law of large numbers.
We are not considering the different problem of an en-
semble of lattices [8], which depending on the conditions
of the problem may or may not be statistical.

Before going over the numerical results, let us try to
give an estimate of the size we can expect these effects to
have. For this, we can do the following approximation:
we can separate the average h, into two parts. One
comes from the points of the lattice where a falls in the
purely chaotic region, and another comes from those
points with # in a periodic window,

1 i1 ;
= 3 x"+F 3y x,. (2.3)

af chaotic a2’ periodic

hy=hS+hP=

Now, the part that comes from chaotic a will converge
towards some fixed value A* in the infinite lattice limit,
with uncorrelated fluctuations §,. These fiuctuations wil}
have zero mean and a mean-square deviation that decays
as 1/N (multiplied by some coefficient of order 1).

For the periodic part we will take into account only the
largest periodic window, of periodicity K. At some arbi-
trarily chosen time n =0, after the transients have died, a
fraction w, will have been attracted to the kth point in
the cycle, denoted x,. It is clear that the value x;
changes along the window, and is not even well defined at
its end, where the motion is over narrow chaotic strips.
However, since for narrow periodic windows these
changes are small, we will just approximate the whole in-
terval, including the chaotic strips, by a single representa-
tive value of x,.

With these approximations the value for the periodic
part of the average is now

K
he=A'S wix, . (2.4)
k=1

where Wy =w, - nmodk is the fraction of points in the lat-
tice with value x; at time #, and A is the relative width of
the periodic window, assumed to be small. The time
average of k is

K
(h )=(h‘)+(h’)=(l—A)h'+-§— 3 ox, (2.5
k=1
where the 1/K comes from the time average of wy. The
mean-square deviation of & becomes

2
1
<(h—<h>)2)=-ﬁ+al( X, ) 2.6)

i lwk_%

k=1

1 X i
=—+AL {w,w,)—— X;X; , (2.7

where we are taking {1 — A2 =1, Notice that if one could
choose the initial conditions for the lattice so as to cover
equally the K basins of attraction of the map /¥, then all
the w, would be equal to /K and the second term would

2F
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be zero. Therefore we are considering here an effect that
is strongly dependent on the distribution of the initial
conditions. In general, if this distribution is homogene-
ous between some two values—not too close to each
other—and covers a good part of the (—1,1) range,
there will be small but nonzero deviations from the 1/K
mean value. This effect is the one that induces persistent
fluctuations on the mean values for a lattice of logistic
maps.

III. NUMERICAL RESULTS !

A, Estimate of nonstatistical effects

To verify what have been said above, we have done a
numerical estimate of the size of the effects one may ex-
pect in a simulation of a logistic map lattice, in order to
see under which conditions we may expect to find them.
The first limiting factor here is the relative width of the
periodic window, which for typically small cases (say of
order 1073 already makes the possible effects visible only
for lattices of 10° points or more. Besides this, we also
have to check what are the typical values for the frac-
tions w, for a uniformly distributed set of initial condi-
tions. Our numerical results show that these fractions
tend to deviate from the even value 1/K by a small
amount—of the order of a few percent—for initial con-
ditions with some bias {for instance, x; chosen between 0
and 1), and even for initial conditions distributed homo-
geneously in the whole { —1,1) range. This adds another
factor of 107°~107* or smaller to our estimate for the
saturation point of the MSD, and means that in typical
cases one should not see any nonstatistical effects for lat-
tices of less of 10°-10'° points. This explains the null re-
sults found in Ref. [1], where lattices up to 10* points
were used, and means that in order to see the nonstatisti-
cal behavior of these systems in smaller lattices one has
to look for some specific conditions, in particular, a pa-
rameter range that includes small but still appreciable
periodic windows.

In our simulations we have used the parameters
a=1,96 and 0=0.02, which gives us a’ in the range
1.94-1.98. This range in parameter space includes a

narrow four-window around a =1.941, which takes close

to 5 of the covered range. We have tested the saturation
value given by Eq. (2.7) using an initial distribution with
x{ between —0.5 and 0.5, which introduces some bias.
The results obtained for three different points inside the
window-—one of them in its chaotic part—were con-
sistent with each other, and the final estimate for the sat-
uration point of the MSD is around 1.5X 10%. The actual
values of w, and x, for the three tested points are given
in Table L.

B. Actual simulation of the lattice

We have simulated the dynamics of this systems on lat-
tices of sizes up to 633960 points, with the same ranges
of @ and of initial conditions given above. The first 5000
iterations were discarded as a transient, and the statistics
were collected over 50 runs of 1024 iterations each. Since
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TABLE 1. Values of x for the four cycle, and fractions of initial conditions attracted to them after 5000 iterations. The statistics
were compiled over 50 runs, on lattices of 40000 points, Here we show the results for three different values of a inside the four-

window. Errors in the fractions w are all of order 2 10™*.

a Xy X1 Xy Xy w wy iy Wy Estimated MSD
1.9410 —0.5410 —0.7186 —0.0022 0.9999 0.2506 0.2376 0.2698 0.2420 1.1x107¢
19415 —0.9412 ~0.7199 —0.0062 0.999% 0.2500 0.2355 0.2740 0.2405 1.6x107¢
1.9425 —(0.9425 —0.7255 ~0.0225 0.9990 0.2502 0.2315 0.2809 0.2374 2.7%107¢

these effects are sensitive to fluctuations in the distribu-
ion of initial conditions, we have repeated the simulation
our times, each with a different set of initial conditions.
he results of this calculation are given in Fig. 1, which
hows the beginning of the saturation of the MSD of k as
grows, and in Fig. 2, which shows the power spectrum
fh

In Fig. I we can see that for large # the MSD has devi-
ted strongly for the 1/N behavior, and is clearly starting
© saturate, with values that approach our previous esti-
ate of 1.5X107¢ from above. The bars give the total
pread obtained for the four repetitions, i.e., they go from
he minimum to the maximum value obtained for the
SD. As a comparison (and control, in order to test that
his effect is not just some roundoff effect from the com-
uter), we are including the resuits from the same calcu-
ations performed on lattices of tent maps,

ogistic case. This system is expected to show perfectly
ood statistical behavior in this case, because it does not
ave any periodic windows in the range of a considered;
he tent map is purely chaotic for all values of a in the
ange 1.94-1.98, In the figure we see that the behavior
f the MSD for tent map lattices is perfectly statistical,
ollowing the 1/N law. We have not included spread
ars for these points since here the spreads are negligible.

In Fig. 2 we have plotted the power spectrum of 4 for
oth the logistic and the tent lattices, for N =633 960.
he spikes corresponding to the frequencies + and 1 are

T
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FIG. 1. Mean-square deviation for the lattice average k vs
ttice size. The squares correspond to lattices of logistic maps,
d the bars show the spread of the MSD. The expected satura-
ton value for the MSD is around 1.5X 107%. The crosses corre-
nd to lattices of tent maps, whose MSD) does not saturate.

quite evident in the spectrum for the logistic map. They
arise from the periodic part of the mean field, #°, and in-
clude contributions from the purely periodic part {funda-
mental and subharmonics), and the periodically chaotic
(6] final part of the window. The noisy background is
formed by the purely chaotic part of the mean field, 4,
which comes from most of the included range in a, with
some contribution from the periodically chaotic segment.
Notice that periodic chaos contributes to both types of
spectrum; in fact, the typical power spectrum of this kind
of motion is quite similar to that shown in Fig. 2. The
origins of these two are different, however. In “periodic
chaos™ one single degree of freedom hops periodically
from one chaotic window to another. In the present situ-
ation, we are thinking about the addition of many degrees
of freedom. The average we perform in getting the mean
field & reduces the power of the spectrum of h° for
nonzero frequencies, while maintaining the (relatively
weak) component k”*.

We should mention that periodic spikes are visible
even for much smaller lattices, and appear in power spec-
tra well before saturation of the MSD. For comparison,
we also plot the power spectrum for the mean value for a
lattice of tent maps. It is evident that there is no periodi-
city at all in this case.

IV. CONCLUSIONS

We have shown that nonstatistical behavior appears
for lattices of uncoupled chaotic maps when these maps
are subject to static parametric fluctuations. This effect is
due to the intrusion of periodic windows in the chaotic
parameter sector, which makes it impossible to say that a
given parameter range is purely chaotic. The magnitude

1E
101
L E
L E
s 107 F
e 3
-g-
10 4
) S B I ST 1 1
10-: Yl‘lllTII 1T Trprror
10-% b bt
0 01 02 03 04 05
Frequency

FIG. 2. Power spectrum of the lattice average h for lattices
of logistic maps (top}, and tent maps (bottom). The vertical
scale is the same for both figures.
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of this effect can be calculated, and the results from actu-
al simulations agree with other estimates. These effects
disappear in cases where it is possible to set a parameter
range where the evolution of the maps is purely chaotic,
and in the case of the tent map. (Notice that tent maps
were used in Ref. [8].)

This nonstatistical behavior is manifested in the satura-
tion of the MSD of the average h as the lattice size N
grows, and in the appearance of sharp spikes in the
power spectrum of h. However, for most typical cases,
the saturation values for the MSD of the average h are so
small that they affect only extremely large lattices. Also,
the effect is quite sensitive to the distribution one chooses
for the initial conditions in the lattice. In principle, it
may even be possible to produce a distribution of initia!
conditions that cancels the effects of at least the largest
periodic window, and makes the system behave statisti-
cally for even larger sizes of the lattice.

The situation with the power spectrum is different.
The spikes that signal periodicity in the lattice appear
even for small lattice sizes, even though their behavior
becomes consistent only as N grows. For large lattices,
one can observe very clearly the effect of the periodic
windows on the evolution of the average. The signals
coming from the whole window contribute to this period-
ic effect, including the subharmonics and the periedic
chaos. The noisy background comes mainly from the

1

i

mappings outside the periodic window, with some contrii
butions from the periodic chaos section inside.

This is a very simple model, whose nonstatistical
behavior is easy to understand, so much so that it can be
estimated beforehand. We believe, however, that there
has to be a connection with the more complex but similar
phenomena one finds in the case of globally coupled
chaotic mappings. (A review is given in Ref. [9].} BotH
of them show saturation of the MSD, peaks in the power
spectrum (broad in the coupled case), and in both cases
the nonstatistical effects disappear for the continuously
chaotic examples of the tent map. In the uncoupled case
the explanation of this fact is simple; with no periodic
windows one gets invariant distributions for any values of
a, which gives finally simple statistical behavior. For the
coupled case the connection between continuous (in pa-
rameter space) chaos and statistical behavior has been
only postulated and discussed within a static approxima-
tion [10], but still the similarity between the two modes
seems to imply a deeper connection.
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We show that an ensemble of logistic maps, with parameters distributed in some range inside a chaotic
region, cannot be statistical. This is so because any parameter range for this map includes periodic win-
dows. The effects of this periodicity in the averages of the system can be estimated, and are also ap-
parent in the power spectra of average values. Asa counterexample, we show that the behavier for tent
maps, where chaotic regions do not include periodic windows, is statistical,

PACS number(s): 05.45. + b, 05.90.+m

L. INTRODUCTION

It was shown in a recent work by Sinha [1] that in-
dependent chaotic maps under the influence of global
noise behave in a nonstatistical manner, In particular, it
was found that when a collection of logistic maps in their
chaotic regime has time-dependent but spatially homo-
geneous fluctuations in its nonlinear parameter, the aver-
age value of x shows persistent fluctuations even in the
large-N limit. This behavior is similar to that of an en-
semble of chaotic maps under weak global coupling, a
problem that has been studied in several recent works
[2-5].

It was also claimed in that work that when the applied
noige is static but space dependent, the behavior of this
uncoupled chaotic system is statistical. This means that,
for instance, if we have a large collection of logistic maps
with their parameters distributed in some narrow range
in the chaotic region, the average value of x should con-
Verge to some fixed value with fluctuations that die out as
IV'N. At first sight, this seems quite plausible, since this
just reflects the statistical behavior one expects from a
collection of independent chaotic oscillators, where each
and every one of them is characterized by an invariant
probability distribution with finite support. But upon
more careful examination one has to realize that there is
a failure in thig reasoning. This failure lies in the fact
that the siatistical Superposition mentioned before works
onl;( if ail the mappings included in the parameter region
of interest are purely chaotic. By “purely chaotic” we
mean here the absence of any periodic behavior, i.e., we
exclude cases of the type known as ““periodic chaos™ [6],
where the motion covers in a periodic way a finite collec-
tion of distinct chaotic windows,

But it is well known (7] that this is impossible to do
with any smooth distribution of parameters in the logistic
map, since there is at least a periodic window between
any two different points in parameter space where the
map is chaotic, and this periodic window (or windows)
Tepresents a nonzero fraction of the parameter range,

1063-651X/94,/49(1)/15(4)/$06.00 49

Therefore, as we increase the size of the lattice on which
we are working, we will be at the same time maintaining
some fraction of the elements moving in a periodic way,
And this part of the system will spoil the convergence of
the average, by keeping persistent fluctuations whose ori-
gin is simply the periodicity of the map in these windows.

In this paper we show that the intrusion of periodic
windows does alter the statistical properties of a collec-
tion of chaotic maps whose parameters are distributed.
We also show that in typical cases this effect is extremely
small, thus explaining the results reported in Ref. [1].
We show how this effect depends on the initial
configuration of the lattice, and how the effect of periodic
windows on the fluctuations of the average can be es-
timated. :

1I. UNCOUPLED LOGISTIC MAPS
WITH PARAMETRIC NQISE

The mode! used for this work is
] (2.1

X, =1=—ax))?,
where / is the space index and # is the time index. The
values of the parameter g are given by

a'=a+oe, (2.2)
where €' is a random number uniformly distributed be-
tween — 1 and 1, ¢ is the (small) amplitude of the param-
eter fluctuations, and a is just the center of the distribu-
tion. This is denoted as “case (iii)” in Ref. [1], where a
slightly different prescription a'=a(1+ o"¢') was used. It
is clear that these two prescriptions are identical if one
makes o =ao’,

In order to test whether or not this system is statistical
we calculate the instantaneous mean value k, of the vari-
able x), over large size lattices, and study the time evolu-
tion of this average. In particular, we check its mean-
square  deviation (MSD), which is defined by
{(({h)—h 2}, where the angular brackets are time aver-
ages. We also check its power spectrum, which for a gy-

RIS ©1994 The American Physical Society
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perposition of purely chaotic systems should be broad.

A comment should be made here about the meaning of
these averages. What we want to know here is whether a
single lattice, made out of many elements, can be statisti-
cal, in the sense that averages over those elements obey
the central limit theorem and the law of large numbers.
We are not considering the different problem of an en-
semble of lattices [8], which depending on the conditions
of the problem may or may not be statistical.

Before going over the numerical results, let us try to
give an estimate of the size we can expect these effects to
have. For this, we can do the following approximation:
we can separate the average h, into two parts. One
comes from the points of the lattice where g falls in the
purely chaotic region, and another comes from those
points with a in a periodic window,

L > x"+L 3 x) (2.3}
n N n " M

a' chaotic a' periodic

h,=hE+he=

Now, the part that comes from chaotic a will converge
towards some fixed value A * in the infinite lattice limit,
with uncorrelated fluctuations £,. These fluctuations will
have zero mean and a mean-square deviation that decays
as 1/N (multiplied by some coefficient of order 1).

For the periodic part we will take into account only the
largest periodic window, of pericdicity K. At some arbi-
trarily chosen time n =0, after the transients have died, a
fraction w, will have been attracted to the kth point in
the cycle, denoted x,. It is clear that the value x,
changes along the window, and is not even well defined at
its end, where the motion is over narrow chaotic strips.
However, since for narrow periodic windows these
changes are small, we will just approximate the whole in-
terval, including the chaaotic strips, by a single representa-
tive value of x.

With these approximations the value for the periodic
part of the average is now

X
hP=A'S wix, , (2.4)
k=1
where W =W —modx 18 the fraction of points in the lat-
tice with value x, at time n, and A is the relative width of
the periodic window, assumed to be small. The time
average of h is
A X
(R)y={h)+{(RP}=(1—AM "t X oxe, 23
k=1

where the 1/K comes from the time average of w/. The
mean-square deviation of k becomes

2
) (2.6)

1
wy — -

((h—(h))z)'"—l——i-Az( s x
N = K |k

1 K 1
=—+ Al {ww,)—— |x;x; , 2.7
N i';:' 07T j

where we are taking {1 —A)?= 1. Notice that if one could
choose the initial conditions for the lattice 50 as to cover
equally the K basins of attraction of the map f¥, then all
the w, would be equal to 1/K and the second term would

be zero. Therefore we are considering here an effect that
is strongly dependent on the distribution of the initial
conditions. In general, il this distribution is homogene-

ous between some two values—not too close to each

other—and covers a good part of the (—1,1) range,
there will be small but nonzero deviations from the 1/K
mean value. This effect is the one that induces persistent
fluctuations on the mean values for a lattice of logistic
maps. '

III. NUMERICAL RESULTS

A. Estimate of nonstatistical effects

To verify what have been said above, we have done a
numerical estimate of the size of the effects one may ex-
pect in a simulation of a logistic map lattice, in order to
see under which conditions we may expect to find them.
The first limiting factor here is the relative width of the
periodic window, which for typically small cases (say of
order 107% already makes the possible effects visible only
for lattices of 10° points or more. Besides this, we also
have to check what are the typical values for the frac-
tions w, for a uniformly distributed set of initial condi-
tions. QOur numerical results show that these fractions
tend to deviate from the even value 1/K by a small
amount—of the order of a few percent—for initial con-
ditions with some bias {for instance, x chosen between O
and 1), and even for initial conditions distributed homo-
geneously in the whole (—1,1) range. This adds another
factor of 107*~107* or smaller to our estimate for the
saturation point of the MSD, and means that in typical
cases one should not see any nonstatistical effects for lat-
tices of less of 10°-10'? points. This explains the nuii re-
sults found in Ref. [1], where lattices up to 10* points
were used, and means that in order to see the nonstatisti-
cal behavior of these systems in smaller lattices one has
to look for some specific conditions, in particular. a pa-
rameter range that includes small but still appreciable
periodic windows.

In our simulations we have used the parameters
a=1,96 and o =0.02, which gives us a' in the range
1.94-1.98. This range in parameter space includes a
narrow four-window around a =1.941, which takes close
to & of the covered range. We have tested the saturation
value given by Eq. (2.7} using an initial distribution with
x5 between —0.5 and 0.5, which introduces some bias,
The results obtained for three different points inside the
window—one of them in its chaotic part—were con-
sistent with each other, and the final estimate for the sat-
uration point of the MSD is around {.5X 10%. The actual
values of w; and x, for the three tested points are given
in Table I.

B. Actual simulation of the lattice

We have simulated the dynamics of this systems on lat-
tices of sizes up to 633 960 points, with the same ranges
of a and of initial conditions given above. The first 5000
iterations were discarded as a transient, and the statistics
were collected over 50 runs of 1024 iterations each. Since
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TABLE I. Values of x for the four cycle, and fractions of initial conditions attracted to them after 5000 iterations. The statistics
were compiled over 50 runs, on lattices of 40000 points. Here we show the results for three different values of ¢ inside the four-

window. Errors in the fractions w are all of order 2 X 10™*,

a X, X1 Xy Xy w, U, wy Wy Estimated MSD
1.9410 —0.9410 —0.7186 —0.0022 0.9999 0.2506 0.2376 0.2698 0.2420 1.1x107®
1.9415 —0.9412 —0.7199 —0.0062 0.9999 0.2500 0.2355 0.2740 0.2405 1.6x10"¢
1.942% —0.9425 —0.7255 —0.0225 0.9990 0.2502 0.2315 0.2809 . 0.2374 2,7X1078

these effects are sensitive to fluctuations in the distribu-
ion of initial conditions, we have repeated the simulation
our times, each with 2 different set of initial conditions.
he results of this calculation are given in Fig. 1, which
hows the beginning of the saturation of the MSD of 4 as
grows, and in Fig. 2, which shows the power spectrum
fh

In Fig. 1 we can see that for large n the MSD has devi-
ted strongly for the 1/N behavior, and is clearly starting
o saturate, with values that approach our previous esti-
ate of 1.5X 107 from above. The bars give the total
pread obtained for the four repetitions, i.e., they go from
he minimum to the maximum value obtained for the
SD. As a comparison {and control, in order to test that
his effect is not just some roundoff effect from the com-
uter), we are including the results from the same calcu-
ations performed on lattices of tent maps,

x,_,=1—a'lx}|, (3.1
sing exactly the same parameters and run times as in the
ogistic case. This system is expected to show perfectly
ood statistical behavior in this case, because it does not
ave any periodic windows in the range of @ considered;
he tent map is purely chaotic for all values of g in the
ange 1.94-1.98. In the figure we see that the behavior
f the MSD for tent map lattices is perfectly statistical,
ollowing the 1/N law. We have not included spread
ars for these points since here the spreads are negligible.

In Fig. 2 we have plotted the power spectrum of h for
oth the logistic and the tent lattices, for N =633 960.
he spikes corresponding to the frequencies L and 1 are

Amanss T
Rl ~q
. x E
" I :
- X 4
X 1
LI }

= 107 | -
o = ¥ ] 3
= x E I 3
Lol
10-* E = . _:.
S il i

10+ 108

Lattice Size

FI1G. 1. Mean-square deviation for the lattice average k vs
ttice size, The squares correspond to lattices of logistic maps,
d the bars show the spread of the MSD. The expected satura-
ion vatue for the MSD is around 1.5X 107, The crosses corre-
nd to lattices of tent maps, whose MSD does not saturate,

quite evident in the spectrum for the logistic map. They
arise from the periodic part of the mean field, #?, and in-
clude contributions from the purely periodic part {(funda-
mental and subharmonics), and the periodically chaotic
(6] final part of the window. The noisy background is
formed by the purely chaotic part of the mean field, k<,
which comes from most of the included range in a, with
some contribution from the periodically chaotic segment.
Notice that periodic chaos contributes to both types of
spectrum; in fact, the typical power spectrum of this kind
of motion is quite similar to that shown in Fig. 2. The
origins of these two are different, however. In “periodic
chaos” one single degree of freedom hops periodically
from one chaotic window to another. In the present situ-
ation, we are thinking about the addition of many degrees
of freedom. The average we perform in getting the mean
field h reduces the power of the spectrum of £° for
nonzero frequencies, while maintaining the (relatively
weak) component A*.

We should mention that periodic spikes are visible
even for much smaller lattices, and appear in power spec-
tra well before saturation of the MSD. For comparison,
we also plot the power spectrum for the mean value for a
lattice of tent maps. It is evident that there is no periodi-
city at all in this case,

IV, CONCLUSIONS

We have shown that nonstatistical behavior appears
for lattices of uncoupled chaotic maps when these maps
are subject to static parametric fluctuations. This effect is
due to the intrusion of periodic windows in the chaotic
parameter sector, which makes it impossible to say that a
given parameter range is purely chaotic. The magnitude
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FIG. 2. Power spectrum of the lattice average k for lattices
of logistic maps (top), and tent maps (bottom). The vertical
scale is the same for both figures.
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of this effect can be calculated, and the results from actu-
al simulations agree with other estimates. These effects
disappear in cases where it is possible to set a parameter
range where the evolution of the maps is purely chaotic,
and in the case of the tent map. (Notice that tent maps
were used in Ref. [8].)

This nonstatistical behavior is manifested in the satura-
tion of the MSD of the average h as the lattice size N
grows, and in the appearance of sharp spikes in the
power spectrum of h. However, for most typical cases,
the saturation values for the MSD of the average A are so
small that they affect only extremely large lattices. Also,
the effect is quite sensitive to the distribution one chooses
for the initial conditions in the lattice. In principle, it
may even be possible to produce a distribution of initial
conditions that cancels the effects of at least the largest
periodic window, and makes the system behave statisti-
cally for even larger sizes of the lattice.

The situation with the power spectrum is different.
The spikes that signal periodicity in the lattice appear
even for small lattice sizes, even though their behavior
becomes consistent only as N grows, For large lattices,
one can observe very clearly the effect of the periodic
windows on the evolution of the average. The signals
coming from the whole window contribute to this period-
ic effect, including the subharmonics and the periodic
chaos. The noisy background comes mainly from the

mappings outside the periodic window, with some contri
butions from the periodic chaos section inside.

This is a very simple model, whose nonstatistical
behavior 1s easy to understand, so much so that it can be
estimated beforehand. We believe, however, that there
has to be a connection with the more complex but simila.
phenomena one finds in the case of globally couplec
chaotic mappings. (A review is given in Ref. {9].) Bptt
of them show saturation of the MSD, peaks in the power
spectrum (broad in the coupled case), and in both cases
the nonstatistical effects disappear for the continuously
chaotic examples of the tent map. In the uncoupled case
the explanation of this fact is simple; with no periodic
windows one gets invariant distributions for any values of
a, which gives finally simple statistical behavior. For the
coupled case the connection between continuous (in pa-
rameter space) chaos and statistical behavior has been
only postulated and discussed within a static approxima-
tion [10], but still the similarity between the two modes
seems to imply a deeper connection,
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We study underdamped Josephson junction series arrays that are globally coupled through a
resistive shunting load and driven by an rf bias current. We find coherent, ordered, partially ordered,
and turbulent regimes in the -V characteristics. The ordered regime corresponds to giant Shapiro
steps. In the turbulent regime there is a saturation of the broadband noise for a large number of
junctions. This corresponds to & breaking of the law of large numbers already seen in globally coupled
maps. Coexisting with this, we find an emergence of novel pseudosteps in the I-V characteristics.

PACS numbers: 74.50.+r, 05.45.+b, 74.40.+k, 85.25.Cp

The dynamics of rf-driven Josephson junction arrays
has been of great interest in recent years, both experi-
mentally [1] and theoretically [2]. Much of the interest
has concentrated in the study of giant Shapiro steps in
two-dimensional arrays {1,2]. Also one-dimensional se-
ries arrays, but with a dc current drive, have been exten-
sively studied when the junctions are globally coupled
through an external shunting load [3,4]. Some investiga-
tions of chaos and turbulence on two-dimensional Joseph-
son junction arrays, but where there is a locally coupled
dynamics, have also been done recently [5]. Apart from
being a realization of nonlinear dynamical systems with
many degrees of freedom, Josephson junction arrays are
devices that have potential applications as high frequency
coherent power sources [6,7], parametric amplifiers, and
voltage standards [6].

Here we study one-dimensional Josephson junction se-
ries arrays {JJSA) when they are driven by an rf bias
current. It has been shown that underdamped, rf-driven,
single Josephson junctions show chaotic behavior [8,9].
When these junctions are globally coupled in a JISA,
two conflicting trends will be present: destruction of co-

, herence due to the chaotic divergences of the individual
junctions, and synchronization through the global av-
eraging of the common shunting load. This interplay
between temporal chaos and space synchronization has
been studied recently in globally coupled logistic maps
(GCM) {10-13). These systems exhibit coherent, ordered,
partially ordered, and turbulent phases [10]. In particu-
lar, a surprising result was found by Kaneko [11]: in the
turbulent phase, where spatial coherence is completely
destroyed, a subtle collective behavior emerges. This
was seen as a violation of the law of large numbers as
a function of the number of logistic maps. In this pa-
per, we show that the same kinds of phenomena exist
in rf-driven underdamped JISA. Moreover, we find that
whenever the JJSA shows a breaking of the law of large
numbers, novel pseudo-Shapiro steps emerge in the I-V
characteristics of the JISA. This last effect is a new re-
sult which does not result directly from the previously
known phenomena in GCM.

We consider an underdamped JJSA shunted by a re-

 sistive load, and subjected to an rf bias current Ig(t) =

0031-9007/93/71(20)/3359(4)$06.00

Tac+ It sin(wyt) [14]. The dynamical behavior of Joseph-
son junctions is commonly described with the resistively
shunted junction model [15]. With this model, the gov-
erning equations of the JJSA [3] are

ék + gk +oindi +iL =ige +iwsin(@yr), (1)
N

iL=ov(r) = = > eds, (2)
N &

where ¢; is the superconducting phase difference across
the junction k, and k = 1,..., N. We use reduced units,
with currents normalized by the critical current, i = I /1
time normalized by the plasma frequency wyt = 7, with
wp = /2el./hC and C the capacitance of the junctions;
and voltages by rl., with r the shunt resistance of the
junctions. Here, iz, is the current flowing through the re-
sistive load; g = (m—f_q:)‘/z =1/8Y2, with 8, the Mc-
Cumber parameter [15]; v = Viora1/N is the total voltage
across the array per junction; o = ¥, with R the resis-
tance of the shunting load, represents the strength of the
global coupling in the array; and the normalized rf fre-
quency is ¢ = wyr/wp. Equation (1) represents current
conservation, and Eq. (2) comes from requiring the total
voltage across the array equal to the voltage across the
load. ’

The simplest attractor of the system is the coherent
state for which ¢x(1) = ¢;(7) = do(7). In this case the
equations reduce to

b0 + Gbo + sin do = dgc + irt 5in(Qe7) | (3)

with § = g(1 + o). This corresponds to the dynamics of
one single Josephson junction. It is known that it can
have chaotic behavior in the underdamped regime, i.e.,
for § < 2, and below the plasma frequency, @,y < 1 [9). In
this paper we choose § = 0.2, 0 = 0.8, and iy = 0.61,
and we analyze the behavior of the JJSA as a function of
ide, the coupling ¢, and the number of junctions, N. We
work with fixed §, instead of g, in order to have the same
coberent attractor in all the cases . We integrate the
dynamical equations using a fourth order Runge-Kutta
method with fixed step Ar = T/160, with T = 2x/Q
the period of the rf drive, and we iterate the dynamics
for times as long as 10247, after discarding the first 256
periods. For some particular cases, we have checked our
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results with A7 = T/320 and integration time 2048T.
For each run we used different sets of random initial con-
ditions {¢x(0}, #x(0)}.

One of the responses that can be measured experimen-
tally is the J-V characteristics of the JISA, which is the
time average voltage per junction (v(r}) = ¥ as a func-
tion of i4c. When the junctions are rf biased, they show
Shapiro steps [8,9,16]. These are regions for which the

average voltage is constant and ¥ = Z-g€¢. They corre-
spond to phase locked states, which are periodic solutions
in resonance with the rf current, either harmonic (m = 1)
or subharmonic (m > 1). In other parts of the I-V it is
possible to have chactic solutions, in which the junction
switches pseudorandomly between unstable, overlapping
Shapiro steps [8,9]. We study the chaotic nature of the
solutions by computing the maximum Liapunov expo-
nent X of the JJSA. Experimentally, most chaotic modes
can be observed as broadband noise in the power spec-
trum of the voltage [8,9]. The power spectrum is com-
puted as S(w) = £| [T™ v(r)e“7dr|?. In the presence
of broadband noise, the low frequency part of the spec-
trum approaches a constant, Sy = lim,,_,¢ S{w).

We first analyze the dynamics of one single Joseph-
son junction with the parameters specified above. In
Figs. 1(a) and 1(b) we show the I-V characteristics and
Liapunov exponent, respectively. We have also computed
So (not shown), which essentially correlates with the be-
havior of A in this case. We distinguish four different
regimes as a function of ig.. (i) There are periodic solu-
tions, with A < 0 and Sy — 0. They appear either below
the critical current (igc < i, = 0.036), where there is no
average dissipation & = (, or at the Shapiro steps, which
in this case are at voltages 395+ (0.256 < igc. < 0.428)
and 3gQ;¢ (0.476 < igc < 0.508). (if) There are chaotic
solutions in the region between i, and the step at %gﬂ,f
(0.036 < ig. < 0.256), for which A > 0, Sp finite. In this
region some periodic “windows” are also seen (notably
for voltages 35 and $gQ). (iii) For high currents
(igc > 0.508), where there is a linear resistive behavior
in the I-V, we find quasiperiodic solutions (also subhar-
monics with high m are possible here), for which A = 0,
Sp — 0. (iv) Finally, between the two steps, there is a re-
gion (0.428 < i4c < 0.476) where either periodic solutions
with 7 = 19, quasiperiodic solutions, or chaotic solu-
tions can exist, depending on the initial conditions. In
this region the IV shows hysteresis. Note that we have
deliberately chosen & case with few stable Shapiro steps.
For this set of parameters, most of the Shapiro steps are
unstable and overlapping, giving place to a wide region
of chaotic states.

Now we study the spatiotemporal behavior of JISA.
Also in Figs. 1(a) and 1(b) we show the I-V curve and
maximum Liapunov exponent for an array with 128 junc-
tions and coupling ¢ = 0.2. With regard to the temporal
behavior, we see two main differences with respect to the
single junction. The chaotic region (ii) above i, = 0.03
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FIG. 1. (a) I-V characteristics for one single Josephson
junction with g = 0.2, ;¢ = 0.8, ir = 0.61 {dotted line);
and for a series array with the same parameters and N = 128
junctions with coupling ¢ = 0.2 (full line). We have normal-
ized the average voltage as V = 4/g{t+¢. The inset is a blowup
of the I-V curve in the region of low currents, showing the
emergence of a pseudostep with increasing N (N = 1, dotted
line; N = 16, dashed line; N = 128, full line). (b) Maximum
Liapunov exponent A as a function of igc. (c) Number of clus-
ters n. as a function of i4c for the series array with N = 128,
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is narrower (0.03 < i4. < 0.2), leaving place to periodic

solutions corresponding to the Shapiro step at 7 = % Gt 0

(0.2 < ige < 0.364). On the other hand, the region
(iv) with hysteresis is wider (0.364 < i4. < 0.514), and
shows more chaotic solutions than in the single junction
case. This region has grown at the expense of part of the
9 = 190 Shapiro step and the § = 3¢y Shapiro step.
We find that this tendency is increased as a function of
increasing o, with the chaotic region (ii) narrowing and
the region (iv) expanding in their respective ranges in
tde-

To further characterize these regimes in the JISA, we
analyze their spatial behavior. One important concept
in globally coupled maps is “clustering” [10]. A clus-
ter is defined as ¢;(t) = ¢;(t) for £,7 in the same clus-
ter. An attractor can be characterized by the number
of clusters it has, ng, and the number of elements of
each cluster (M, Ma,..., M, ). For example, the co-
herent state is a one-cluster attractor (ng = 1, M1 = N).
In Fig. 1(c) we show ng as a function of i4e, also for
N =128, ¢ = 0.2. We find different phases, according to”~
their spatial behavior, which are as follows. (a) First,
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we find that the coherent attractor only exists either
for currents below the critical current (ig. < i. = 0.3,
temporally periodic) or for high currents in the resis-
tive regime (ig. > 0.514), corresponding to the tempo-
rally quasiperiodic region (iii). (b) In the Shapiro step
at & = 190 (0.2 < ige < 0.364) there are few clus-
ters, ng < N, a behavior that corresponds to the “or-
dered” phase of GCM [10]. Here, for most of the cur-
rents is ng = 2, and in the places where ny > 2 (but
nel << N} almost all the junctions oscillate in two big
clusters (M; =~ N/2,M; = N/2,M3 =1,..., M, = 1).
(c) The temporally chaotic region (ii), 0.03 < i4; < 0.2,
has all the phases different, ngy ~ N, a behavior that cor-
responds to the termed “turbulent” phase of GCM [10}.
There is also an “ordered” window with ¥ = %- g8l in
the middle of the turbulent phase {0.156 < iy, < 0.170),
for which ng = 3. In fact, for the different cases we have
studied, the ordered phase of JISA seems to coincide with
the Shapiro steps, with the number of big clusters being
equal to the order m of the step. {d} The current range
above the step of %gﬂ,f that corresponds to the region
{iv), 0.364 < i4. < 0.514 , even when it can have some
temporally chaotic solutions, is clearly different from the
turbulent phase in its spatial behavior. It can have (de-
pending on the initial conditions) either attractors with
few clusters, ng < N, or attractors with many clusters,
ne ~ N, but with almost all the junctions concentrated
in one or two of these clusters. This regime corresponds
to the “partially ordered” or “glassy” phase of GCM [10].
We also find that while A and Sp change smoothly as a
function of iy in the turbulent phase, they change wildly
in the partially ordered phase.

How does the behavior of the JJSA depend on a func-
tion of N7 We find that the turbulent phase is the one
that shows the most notable changes with increasing N.
In fact, we find a nonstatistical behavior for large N, like
the one found by Kaneko in GCM [11] as a breaking of
the law of large numbers. First of all, let us note that
the voltage per junction v(M)(t) = & Z;\’:l gd; acts as a
“mean field” in Eqgs. (1) and (2). Since in the turbulent
phase the ¢;(t), and therefore the $;(t), take random
values almost independently, one might expect that v(t)

will behave as an average noise. The power spectrum of
v(t} will be

1 1
S{w) = 'N"IT/’J'(W)I2 + 55 Y wwwiw)| . @)
iy .
with v;{w) the Fourier transform of v;(t) = gd;(t). If
the dw,—(t) are completly independent, the second term in
(4) will vanish for low frequencies, w — 0. Therefore
Sc(,N) ~ ﬁlrSél), with S((,N) the low frequency part of the
power spectrum of a JISA with N junctions. This is the
equivalent of the law of large numbers for a periodically

driven system. Then we might expect that in the large
N limit the the broadband noise part of v/ (t) will tend

to vanish {Sp — 0, for N — o0, reducing the dynamics
of the JISA to N independent chaotic junctions with an
additional time periodic driving v{V—)(z).

In Fig. 2 we show the calculated values of Sp as a func-
tion of N for different values of ¢ and for igc = 0.124
(similar behavior is also seen for other values of 4. within
the turbulent phase}. We see that for some values of 7,
S, follows a 1/N behavior. But for some other values of
o, Sg saturates for large N, indicating that some “order”
has emerged in the turbulent phase. This corresponds
to the breaking of the law of large numbers found in
GCM [11,12]. This also affects the full power spectrum
S(w), where broad peaks develop for large N in the GCM
[11,12]. We have seen the same behavior in the JISA for
the power spectrum of v(t) {17].

We find that this subtle coherence of the turbulent
phase notably affects the I-V characteristics of the JSSA
in an unexpected way. We find that novel “pseudosteps”
emerge in the J-V curve for large N at the same time that
So saturates in the turbulent phase. This is detailed in
the inset of Fig. 1(a). There we see that, while for N =1
the I-V curve in this region has a “noisy” aspect, when
increasing N some pseudosteps tend to appear. Many
pseudosteps are present all along the range of i4. corre-
sponding to the turbulent phase, as we show in Fig. 3(a)
for ¢ = 0.4, N == 128. Note that N = 128 is a value
before the full saturation of Sp, since it is hard to simu-
late very large N for the full I-V. However, we see that
the pseudosteps emerge and sharpen up with increasing
N, always in coexistence with a saturation of S;. On the
other hand, in Fig. 3(b), we show the case for o = 0.1,
for which we do not see a breaking of the law of large
numbers. There is no evidence of any pseudosteps in the
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FIG. 2. Low frequency limit of the power spectrum,
5o = limy—o S(w), as a function of the size of the array N,
for § = 0.2, O = 0.8, 1ir = 0.61, fa. = 0.124 and different
valuesof ¢. (A, 0=0.1;0,0 =015 %, 0 = 0.2, ), o = 0.3;
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FIG. 3. I-V characteristics for an array with N = 128
junctions and with § = 0.2, flys = 0.8, iy = 0.61. (8) o = 0.4;
note the development of pseudosteps; (b) & = 0.1. The limits
of the turbulent phase (A > 0, nq = N) are detailed.

I-V either.,

The pseudosteps are not true Shapiro steps, since they
do not correspond to mode locked periodic states. In-
stead, they have a positive Liapunov exponent and fi-
nite broadband noise emission. This emergence of pseu-
dosteps within the turbulent regime of the JISA is a new
result which one could not have predicted from our pre-

vious knowledge of GCM. They seem to arise as an addi-
tional effect originated by the fact that we have a system
of coupled nonlinear differential equations with a time
periodic drive, instead of simply coupled logistic maps.

In conclusion, we find that many phenomena studied
in GCM [10-13] can be measured in the laboratory in rf-
driven JJSA through their I-V characteristics and power
spectra. Charge density waves can be another candidate
real system, where there are also many coupled degrees of
freedom [18]. Also there, mode locking phenomena and
Shapiro steps have been studied in large N systems [18],
but so far few studies of chaos have been conducted in
this case. Apart from finding an experimental realization
of the breaking of the law of large numbers in the turbu-
lent regime of the JJSA, we found that a new collective
phenomenon coexists with it. This is the appearance of
pseudosteps in the I-V characteristics. They can be ex-
perimentally distinguished from the true Shapiro steps
since they only exist for large N and have a finite broad-
band noise Sp. Instead, the true Shapiro steps exist for
any N and have 53 = 0.

We acknowledge C. Pando-Lambruschini and J. V.
José for useful comments and a critical reading of the
manuscript.
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We study underdamped Josephson junction series arrays that are globally coupled through a
resistive shunting load and driven by an rf bias current. They can be an experimental realization of
many phepomena currently studied in globally coupled logistic maps. We study their spatiotemporal
dynamics and we find coherent, ordered, partially ordered, turbulent, and quasiperiodic phases. The
ordered phase corresponds to giant Shapiro steps in the IV characteristics. In the turbulent phase
there is a saturation of the broad-band noise for a large number of junctions. This corresponds
to a breakdown of the law of large numbers as seen in globally coupled maps. Coexisting with
this phenomenon, we find an emergence of pseudosteps in the I'V characteristics, This effect can
be experimentally distinguished from the true Shapiro steps, which do not have broad-band noise
emission. We study the stability of the breakdown of the law of large numbers against thermal
fluctuations. We find that it is stable below a critical temperature T,;. A measurement of the
broad-band noise as a function of temperature T will show three different regimes: below 7., the
broad-band noise decreases when increasing T, and there is turbulence and the breakdown of the
law of large numbers. Between T%; and a second critical temperature T.; the broad-band noise is
copstant and the dynamics is dominated by the chaos of the individual junctions. Finally above T.;

LJULY 1995-1

all the broad-band poise is due to thermal fluctuations, since it increases linearly with T'.

I. INTRODUCTION

Josephson junction arrays are mesoscopic devices
which can be fabricated with very specific properties
and geometries.! In the last years they have become a
good laboratory for the study of nonlinear dynamical sys-
tems with many degrees of freedom.?27'? Moreover, they
have potential applications as high frequency coherent
power sources,'!* parametric amplifiers, and voltage
standards.'® One of the prototype models of nonlinear
systems with many degrees of freedom is coupled logis-
tic maps.!® In particular, globally coupled maps (GCM’s)
have been studied as a mean-field-type extension of these
models.’®17 As a consequence of the interplay between
temporal chaos and space synchronization, the GCM's
exhibit coherent, ordered, partially ordered, and turbu-
lent phases.'® In the turbulent phase, a surprising re-
sult was found by Kaneko:'® Even when spatial coher-
ence is completely destroyed, a subtle collective behav-
ior emerges. This was seen as a violation of the law of
large pumbers'®7?4 a5 a function of the number of logistic
maps.

We have made contact between these abstract models
of GCM's and one-dimensional Josephson junction se-
ries arrays (JJSA's).!11% In this system, the role of the
logistic maps is played by underdamped single Joseph-
son junctions, which are known to show chaotic behavior
when they are driven by a rf bias current.?5"28 The global
coupling is achieved by connecting this junctions in series
but with a common resistive shunting load. Therefore,
the two conflicting trends of GCM are present: destruc-

0163-1829/95/52(1)/513(14)/506.00 52

tion of coherence due to the chaotic divergences of the
individual junctions and synchronization through global
averaging of the common shunting load. We have found?!?!
that the breakdown of the law of large numbers can be
observed in rf-driven underdamped JISA’s, and that it is
stable for temperatures below a certain T.;.!2 Moreover,
we find that whenever the JJSA shows a breakdown of
the law of large numbers, pseudo Shapiro steps emerge
in the I'V characteristics of the JJSA.1! This last effect
is a result which does not result directly from previously
known phenomena in GCM's. In this paper we discuss
these phenomena in more detail, and we present a thor-
ough analysis of the different dynamical regimes of the
JISA (not only the turbulent phase).

Josephson junction series arrays coupled by an external
shunting load have been extensively studied before.?™5
But in these studies the arrays were driven by a dc cur-
rent, Since a single Josephson junction with a dc bias
never shows chaos, the many interesting chaotic phenom-
ena studied in Refs. 2-5 are a consequence of the high
dimeansionality of the system. On the other hand, the
dynamics of rf-driven two-dimensional Josephson junc-
tion arrays has been of great interest in recent years, both
experimentally® and theoretically.”® Much of the interest
has concentrated in the study of giant Shapiro steps and
coherent vortex states. Some investigations of chaos and
turbulence on two-dimensional Josephson junction arrays
have also been done recently.®!® In particular Bhaga-
vatula et al!° have studied chaos in two-dimensional rf-
driven Josephson junction arrays. The main difference
between the JISA and the two-dimensional Josephson

513 ©1995 The American Physical Society
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junction arrays simulated in Ref. 10 is that in the last
case there is a locally coupled dynamics instead of the
global coupling of the JJSA. Therefore, a breakdown of
the law of large numbers is not likely to be found in their
case.

The paper is organized as follows. In Sec. II we review
the dynamics of chaos in a single Josephson junction,
showing simulations for the parameters that will be used
for the JJSA in the rest of the paper. In Sec. III we intro-
duce the dynamical equations for the JJSA and compare
them with tbe GCM dynamics. In Sec. IV we present
a thorough study of the spatiotemporal dynamics of the
JISA for different coupling strengths and bias currents.
In particular we identify the various dynamical phases
and their consequences in the IV characteristics of the
JISA. In Sec. V we investigate the breakdown of the law
of large numbers in the turbulent phase of the JJSA. In
Sec. VI we discuss the effect of thermal noise on the tur-
bulent phase of the JISA. Finally in Sec. VII we present
our conclusions and discuss pessible experimental conse-
quences of our findings.

II. CHAOS IN SINGLE JOSEPHSON JUNCTIONS

Before considering the JJSA, let us review the dynam-
ics of a single Josephson junction. The supercurrent flow-
ing through a Josephson junction is

I;=1I.sing | (1)

where ¢ is the phase difference of the complex order pa-
rameters in the two superconductors of the junction, and
I, is the maximum current that can flow through the
junction. The voltage drop across the junction is

_ hdg
V=g (2)

In real junctions one has to take into account that there is
always a source of dissipation and that the junction also
works as a capacitor. This is usually described with the
resistively shunted junction (RSJ) model.?® In a current-
biased junction, the bias current I(t) flows in parallel
with an ideal Josephson junction, a resistor r, and a ca-
pacitor C so that the total current is given by

v dV . h dp Chd*d
I(t) = — — = _ .
(&) =1s+ T +Cdt Iosm¢+2erdt+ 2e di?
(3)
It can be written in reduced unmits, with currents nor-
malized by the critical current, i = I/I,, voltages by rl.,
v = V/rl,, and time normalized by the plasma frequency

w,=\/%=,w,t='r,as
$+gé+sing =i(), (4)

where g = (ﬁ,—ﬂ-)”z = l/ﬁélz, with 8, the McCumber
parameter.?®

2

One of the responses that can be measured experimen-
tally are the I'V characteristics of the Josephson junc-
tions; which is the time-averaged voltage (v(T)} = v as
a function of the time-averaged bias current (i(7)) = i.
When the bias current I{t) is time independent and the
junction is overdamped (C = 0), Eq. (3) can be solved
analytically.?® In this case, the time-averaged voltage is
v=yi?—1lfori>landv=0fori<1.

When the junctions are rf biased, with I(t) = 4 +
I ¢sin(w,st), they show Shapiro steps,31:30:25728 These
are plateaus in the IV characteristics where the voltages
are quantized at

hw
Vn=n_2"éi: n=123,... , (5)
or in reduced units v = ngQy, with Q = wer/wyp.

They correspond to phase-locked states, which are pe-
riodic solutions in resonance with the rf current, such
that ¢(r + 27/Q) = ¢(7) + 27n. In the underdamped
case g < 1, there are also subharmonic Shapire steps for
which v = 298, They correspond to periodic solutions
of the type ¢(r + 2rm /Qy) = ¢(7) + 27n.

Chaotic behavior can occur in underdamped junctions
(g < 2) driven by a rf current below the plasma fre-
quency (£ < 1).2® In these chaotic solutions the junc-
tion switches pseudorandomly between unstable, over-
lapping Shapiro steps.25 2% It has also been shown that
this dynamical system behaves as a circle map in certain
cases.?® Here, we study the chaotic nature of the solu-
tions by computing the maximum Liapunov exponent A
of the dynamical system of Eq. {4). Experimentally,?”
most chaotic modes can be observed as broad-band noise
in the power spectrum of the voltage. The power spec-
trum is computed as S(w) = £ Jo™ v(r)e™7d7|*. In the
presence of broad-band noise, the low-frequency part of
the spectrum approaches a constant, Sp = lim. 0 S (w).

Let us study one example of Josephson junctions in
which there are periodic solutions (Shapiro steps) and
chaotic solutions. We choose a case with g = 0.2, Q¢ =
0.8, and iy = 0.61. We integrate the dynamical system
of Eq. (4) using a fourth-order Runge-Kutta method with
fixed step At = T/160, with T' = 2/ the period of
the rf drive, and we iterate the dynamics for times as

_ long as 10247, after discarding the first 256 periods. For

some particular cases, we have checked our results with
At = T/320 and integration time 2048T.

In Fig. 1 we show the average voltage v/gQs, the Li-
apunov exponent A, and the broad-band noise So as a
function of i3.. We distinguish four different regimes as
a function of ige. (i) There are periodic solutions, with
A < 0 and S; = 0. They appear either below the criti-
cal current (i4. < i = 0.036), where there is no average
dissipation v = 0, or at the Shapiro steps, which in this
case are at voltages %gﬂd (0.256 < igc < 0.428) and
390y (0.476 < igc < 0.508). (ii) There are chaotic so-
lutions in the region between i, and the step at ;g
(0.036 < i4c < 0.256}, for which A > 0, §p finite. In this
region some periodic “windows” are also seen (notably
for voltages %gQ,f and %gﬂrf). (iii} For high currents
(iae > 0.508), where there is a linear resistive behavior
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FIG. 1. (a) IV characteristics for one single Josephson
junction with ¢ = 0.2, ;y = 0.8, iy = 0.61. We have nor-
malized the average voltage as ¥V = v/gQ¢. (b) Maximum
Liapunov exponent A as a function of ig.. {c) Low frequency
limit of the power spectrum Sy as a function of i4.. Dynamical
phases: p, mostly periodic solutions; q, mostly quasiperiodic
solutions; c, mostly chaotic solutions.

in the I'V characteristics, we find quasiperiodic solutions
(also subharmonics with high m are possible here), for
which A = 0, S, small. (iv) Finally, between the two
steps, there is a region (0.428 < 1. < 0.476) where ei-
ther periodic solutions with v = 1gQ,¢, quasiperiodic so-
lutions, or chaotic solutions can exist, depending on the
initial conditions. In this region the IV characteristics
show hysteresis. Note that we have deliberately chosen a
case with few stable Shapiro steps. For this set of param-
eters, most of the Shapiro steps are unstable and over-
lapping, giving place to a wide region of chaotic states.

III. JOSEPHSON JUNCTION SERIES ARRAYS

A, Dynamical equations

Let us now consider an underdamped JJISA shunted
by a resistive load,?3? and subjected to a rf bias current
Ig(t) = Igc + Igsin{w,st). This consists of a circuit
where there are N junctions connected in series one after
another, and there is a common resistive load in parallel
to all the junctions (see Fig. 2). The dynamical behavior
of each one of the Josephson junctions is described with

the RSJ model of Eq. (3),

515

In= I +1,sinowt

b B

FIG. 2. Schematic circuit of a Josephson junction series
array with a resistive load Ry and external current bias Ip.
Each Josephson junction, with critical current I, is modeled
including a shunt resistance r and a capacitance C,

. K dy
Iesings + 5= == +

2
Chd*dy - I

'i-e-'dtz k=1,...,N,

(6)

where Is is the current flowing through the circuit branch
with the junctions in series. On the other hand, the com-
mon load satisfies

N

Rplp = Z Vi =
k=1 k=1

o b -
2e dt '
where Ry, is the resistance of the load and Iy, is the cur-

rent flowing through the load. The bias current divides
between the load and the junctions in series,

IB(t) = Iy + I,fsin(w,.ft) =Is+1Ip. (8)

Therefore, the governing equations of the JISA in re-
duced umnits are

N

. . o . . ..

&k + g +sindy + 'ﬁ E gb; = tgc + zl'fszu;l(('!ri"r) y
=1

(9)

where ¢y, is the superconducting phase difference across
the junction k and k = 1,...,N. Here ¢ = % rep-
resents the strength of the glebal coupling in the array.
Note that, when o = 0, Eq. (9) reduces to a set of N
independent junctions. Here, the voltage per junction
v(t) = § X0k = & L 90k acts as a mean field vari-
able.

B. Comparison with globally coupled logistic maps

One of the simplest models among globally cou-
pled dynamical systems are the globally coupled maps
(GCM’s).'® They were originally introduced as a mean
field extension of coupled map lattices.!® The GCM’s are
given by

1
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N
Znia(i) = (1= f (ma(@)) + 57 2 Fl@ald))s  (10)
i=1

where (1) is a continuous variable z(i) at discrete time
n, withi = 1,2,..., N labeling sites in a lattice, and ¢isa
measure of the coupling strength. The mapping function
f(z) is chosen such that it shows one-dimensional chaos.
The simplest attractor of the GCM is the coherent at-
tractor for which z,(i) = z, for all i, and the system
reduces to the single map zp41 = f{z.). The most stud-
ied case is the well-known logistic map f(z) = 1 — az?.
Also the same phenomena has been studied for the tent
map,'®® f(z) = o(} — |z — }|), and for globally coupled
circle maps'”? as

Tari(i) =za + % sin[2rz, (1)) + ©
+§ﬁ Z,: sin[27z.(5)]- (11)

The main ingredients of GCM’s are that (i) the in-
dividual elements are chaotic and (ii) there is an addi-
tive coupling with the same weight for all the elements.
The first condition means that the GCM is reduced to a
chaotic one-dimensional system either for N = 1 (single
map) or for ¢ = 0 (ensemble of uncoupled maps), which
coincides with the coherent attractor, z,4+1 = f(za). As
a consequence, the system has two conflicting tendencies,
random behavior and incoherence because of the chaotic
instabilities of the single elements, and synchronization
because of global averaging by the coupling term.

The JISA studied here satisfies both conditions. To
make the analogy more obvious, the dynamical equations
(8) can be rewritten as

N
S+ (§— )bk +singi + —;—, Z b; = ide + trrsin(QeT)
et

(12)

with § = (1 + 0)g and ¢ = og. Either in the limit ¢ = 0
or N =1, it reduces to

&0 + §¢0 + singe = tdc + bt sin(§2.e7) , (13)

which is also the coherent attractor of the JISA, ¢w(t) =
¢o{t). This corresponds to the dynamics of a single
Josephson junction as given by Eq. (4). As discussed
in Sec. II in the underdamped case and with a rf bias it
can have chaotic behavior. Therefore, the only difference
with GCM’s is that in the JISA the time is a continu-
ous variable and the dynamics is governed by differential
equations instead of maps. Note that previously studied
JISA’s (Refs. 2-5) do not follow condition (i). They have
been studied only for dc current bias (i,f = 0), in which
case the single-junction equation does not have chaos.
Therefore, their dynamics can not be compared directly
with GCM’s. In this case the many interesting chaotic
phenomena observed arise only from the high dimension-
ality of the system.

{1

A closely related system is globally coupled oscillators
(GCO’s).3334 They are described by equations like

. 1 ud
bi=w+gm ) T(di—d5), (14)

i=1

where ¢; is a phase, and the coupling I' is 27 periodic.
These systems have a continuous time and in that sense
they are similar to the JJSA. In the absence of coupling,
g = 0, each unit is moving around its limit cycle at fre-
quency w. The GCO’s are, therefore, similar to the JIJSA
with a dc current bias only,2™* for large currents I4. > I
in the overdamped limit. This is because in that case
the single-junction dynamics reduces to the limit cycle
¢ =w= 2erlyfh

An important concept in both GCM’s and GCO’s is
“clustering”.'®3® This means that even when all the ele-
ments (i.e., the junctions in the JJSA) are identical, the
dynamics can break into different clusters, each of which
consists of fully synchronized elements. After the system
has fallen in an attractor, we say that i, j are in the same
cluster if z, (i} = z,(7). An attractor can be character-
ized by the number of clusters it has, n., and the num-
ber of elements of each cluster (My, Ma,..., M, ). Four
types of attractors have been identified in GCM's:!® (i)
the coherent attractor ng = 1; (ii) attractors with few
clusters, ny <« N; (iili] attractors with a large num-
ber of clusters, ng ~ N, and large M, [for example,
ng = N/2 + 1,{N/2,1,1,...,1)}; {iv) attractors with
a large pumber of clusters, ng ~ N and all M; small
(M; ~1,2). We will use this concept of clustering in the
next section in our study of the dynamical regimes of the
JISA.

IV. SPATIOTEMPORAL CHAOS
AND IV CHARACTERISTICS

Let us study the spatiotemporal behavior of the JISA
for different values of 4. and o. To compare with the
single-junction case presented in Sec. II, we choose § =
0.2, Qs = 0.8, and if = 0.61. We work with fixed g,
instead of g, in order to have in all the cases the same
coherent attractor. We integrate the dynamical system
of Eq. (9) with the same numerical procedure as in the
previous section. For each run we used different sets of
random initial conditions {#x(0), $%(0)}.

In Figs. 3, 4, and 5 we show our results for different
values of the coupling, o = 0.05, ¢ = 0.2, and ¢ = 0.8,
respectively, and fixed size N = 128. First, we plot the
IV characteristics, i.e., the average voltage per junction,
v = i 3.;{9¢;), vs the dc bias iq, in Figs. 3(a), 4(a),
and 5(a). Note that v, which is the quantity that can
be measured directly in the experiments, is alsc the time
average of the “mean field,” v(r) = % ZJ- g¢j, in the
globally coupled dynamical equations. At the same time,
we analyze the spatiotemporal behavior of the solutions
for each bias i4.. In what regards the temporal behavior,
we plot the maximum Liapunov exponent A of the system
in Figs. 3(b), 4(b), and 5(b). In what regards the spatial
behavior, we plot the number of clusters, i in Figs. 3(c),
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FIG. 3. (a) IV characteristics for a Josephson junction se-
ries array with § = 0.2, Q,, = 0.8, i,y = 0.61, N = 128
junctions, and coupling ¢ = 0.05. The average voltage per
junction is normalized as V = /9. (b) Maximum Lia-
punov exponent A as a function of ia.. (¢) Number of clusters
Met a5 a function of i4,. C, coherent phase, which can have
either periodic (p) or quasiperiodic {q) solutions; O, ordered
phase; PO, partially ordered phase; T, turbulent phase; Q,
quasiperiodic phase.

4(c), and 5{c). The criterion for clustering is that two
sites 7, j belong to the same cluster if @ = ¢; + 2mn,
with n an integer. We find five different phases,

(a) Turbulent phase: all the attractors have many clus-
ters, na ~ N, and their temporal behavior is chaotjc
A > 0. An example of this case is shown in Fig. 6(a).
There we plot the time evolution for each site, showing
the points in time where each phase ¢; hits 27rn. We see
that all the junctions follow a different time evolution,
and none of them is periodic. The chaotic behavior is zlso
evident in the power spectrum of the voltage v(7) shown
in Fig. 7(a). Besides the peaks corresponding to the driv-
ing frequency w,y, the spectrum is hroad and tends to a
constant at zero frequency. The turbulent phase appears
always between the critical current t; and the 1/2-integer
Shapiro step in the IV characteristics, for this choice of
parameters. Also for high values of o it can be found at
higher bias currents (see Fig. 5).

(b) Ordered phase: the attractors have few clusters,
and they are periodic in time. This phase corresponds
to Shapiro steps in the IV characteristics. In Fig. 6(b)
we show an example for a 1/3-integer Shapiro step
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(v/g = 1f4). We see that there are n, = 3 clusters
evenly distributed, each cluster oscillating with period
3T (T = 2 /w,t). This is also evident in the power spec-
trum shown in Fig. 7(b), where there are subharmonic
peaks at frequencies w = Swer. Another example, cor-
responding to a 1/2-integer Shapiro step (v/g = 1Q),
is shown in Fig. 6{c) and its corresponding power spec-
trum in Fig. 7(c). In this case there are n = 2 clusters,
each one of them oscillating with period 2T. Therefore
there are subharmonic peaks in the power spectrum at
frequencies w = Zwes. We always find that for p/g-integer
Shapiro steps (v/g = EQ,;) there are n., = g clusters
with period ¢T. In particular, for the case of integer
steps (¢ = 1), they fall in a coherent attractor (for ex-
ample, in Fig. 3 for o = 0.05 in the step at v/g = 3Qs).
We mention that similar periodic attractors with a small
number of clusters have also been found in globally cou-
pled oscillator systems.33:34

(c) Partially ordered phase: depending on the ini-
tial conditions, there are attractors with few clusters or
with many clusters unevenly distributed [type (iii) at-
tractor in Sec. III(b)]. Let us discuss some examples.
In Fig. 6(d} we show a case with ny = 4 clusters and
M; = (77,34,12,5), which is temporally periodic since
A < 0. Two of the clusters (M, = 77,M, = 34) are
in a periodic state with v/g = 1Q,¢ and the other two

(M3 = 12, My = 5) in a periodic state with v/g = 2.58.
The power spectrum in Fig. 7(d) shows subharmonic
peaks. Another case is shown in Fig. 6(e), with ny = 4
clusters but temporally chaotic A > 0. There are two
periodic clusters that correspond to v/g = %Q,g, and the
other two are chaotic. The corresponding power spec-
trum in Fig. 7(e) shows both subharmonic peaks and
broad-band noise. In Fig. 6(f) we show a case with
nc = 80 clusters {n. ~ N = 128), which is temporally
chaotic (A > 0). The clusters are unevenly distributed
M; = (26,24,1,1,1,...,1). The first two large clus-
ters correspond to a periodic solution with v/g = %Qrf,
whereas the other 78 single clusters are chaotic, but with
average voltage v/g = 2.5(1,s. The last example of this
phase is shown in Fig. 6(g). There are n. = 4 clusters
unevenly distributed M; = (114,10,3,1) and the max-
imum Liapunov exponent is A = 0. The large cluster
M; = 114 corresponds to a quasiperiodic solution, and
the small clusters correspond to periodic solutions with
vfg = %ﬂ,f and with v/g = 2Q. Their power spec-
trum, shown in Fig. 7(g), has both subharmonic peaks
and quasiperiodic peaks at incommensurate frequencies.
We found the partially ordered phase with all this differ-
ent type of solutions mostly at large currents above the
big 1/2-integer Shapiro step, for this case.

(d} Coherent phase: here all the junctions oscillate

43
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with the same phase, ng = 1. [t occurs for periodic
solutions either below the critical current (v = 0) or at
integer Shapiro steps (v/g = n{ly) and for quasiperi-
odic solutions at large currents. This last case is shown
in Fig. 6(h), and its corresponding power spectrum in
Fig. 7(k), where there are peaks at incommensurate fre-
quencies.

(e} Quasiperiodic phase: the attractors have a large
number of clusters, ng ~ N, but their behavior is
quasiperiodic in time (A ~ 0). This phase appears at
very large currents, when the IV curve is practically lin-
ear. A similar phase has been found in globally coupled
circle maps'? {but not in logistic GCM’s). It has been
suggested'? to correspond to the phenomena of “attrac-
tor crowding” .3

We have calculated the probability distribution in time
of the phases in a fixed site j. This is the probability
P ($\™) with ¢ = ¢;(to + nT) for fixed j and all the
realizations of n. This is shown in Fig. 8(a). Since we cal-
culate the probability only every period of the rf bias, the
periodic attractors with period ¢T show g peaks in P,
and the chaotic and quasiperiodic states show a broad
distribution. Also in Fig. 8(b) we have calculated the
probability distribution in space P,(¢;(t)) for a given
time t. Therefore, a distribution P, with a few peaks
corresponds to an attractor with ng = number of peaks,

m/")rf

whereas a broad distribution corresponds to a turbulent
attractor. Both plots correspond to o = 0.2 and show the
distributions as a function of 143.. We see that the main
qualitative difference in the temporal and spatial distri-
butions is in the partially ordered phase. In the ordered
phase both have the same peaks {periodicity=number of
clusters), and in the turbulent phase both have broad
distributions (but they do not coincide).

Finally, in Fig. 9 we show a complete phase diagram in
the o vs iy, plane. We see that in general the tendency for
increasing o is that the turbulent phase reduces in size,
the ordered phase (1/2-integer Shapiro step) displaces to
lower 14, values, and the partially ordered phase grows in
size. For large ¢ a new turbulent phase develops in the
middle of the partially ordered phase. We do not find
that, as in GCM's, the coherent phase is the domipant
attractor in the large coupling limit. Instead, there is
always a rich structure with all the five phases present.

V. BREAKDOWN OF THE LAW
OF LARGE NUMBERS AND PSEUDOSTEPS

Let us now study the turbulent phase in detail. As
discussed in the previous section, in this phase the time
evolution is chaotic {A > 0) and practically all the junc-

Lr 2,
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FIG. 8. Probability distribution of phases ¢ (t) as a func-
tion of 1gc. For § = 0.2, Iy = 0.8, i,y = 0.61, N = 128
junctions, and coupling ¢ = 0.2. {a) Temporal behavior: dis-
tribution for a given junction k as a function of time. (b)
Spatial behavior: distribution of phases at a given time t¢.
Grey scale: white = P(¢) = 0, black = P(¢) = 1.
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FIG. 9. Phase diagram in the o vs igc plane. For a Joseph-
son junction array with § = 0.2, Q. = 0.8, i,y = 0.61,
N = 128 junctions. C, coherent phase; O, ordered phase; PO,
partially ordered phase; T, turbulent phase; Q, quasiperiodic
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tions have different phases (ny ~ N). Some interesting
properties arise when studying the system as a function
of the number of junctions.

First, let us see how the chaos depends on N. In Fig. 10
we plot the maximum Liapunov exponent as a function of
N for different values of o, for a given bias in the turbu-
lent phase (4. = 0.124). We see that A grows with N and
seems to saturate in limit N — oo, In a system with local
coupling, like coupled map lattices, it is always possible
to define a characteristic length scale £ in the behavior

of A(N) in the “turbulent” regimes.’® But in our case

there is no characteristic scale in Fig. 10 since, because
of the global coupling, all the elements are equally close
in distance (i.e., it is equivalent to an infinite-dimensional
lattice). :

Instead of A, another quantity that has been stud-
ied in GCM’s is the fluctuations of the mean field.18724
For example, in the GCM of Eq. (10} the mean field
is hy, = (1/N) Y, f(za(i)). Kaneko!® studied the mean
square deviations of the mean field ((6h)2) = ({(h— (h))?),
with {---) the average over time and initial conditions. In
the turbulent phase each element z(i) is chaotic and dif-
ferent for each . If they can be taken as random uncor-
related numbers, then the mean field fluctuations would
follow the law of large numbers, ({(§h)?) « 1/N. Thus
in the thermodynamic limit N — oo the GCM could
be reduced to N independent logistic maps. However,
Kaneko!® found that the law of large numbers is bro-
ken in GCM's, and {(61)?) tends to a constant for large
N. The existence of this size-independent fAuctuation
suggests that there is a remaining correlation between
elements. This means that in the turbulent phase the
different variables are not independent ever in the ther-
modynamic limit. This dependence has been quantified
by Kaneko by measuring the mutual information between
elements.’® It was found that there remains a finite mu-
tual correlation even in the N = co limit. This question
of the relation between synchronization and chaotic be-
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FIG. 10. Maximum Liapunov exponent X in the turbulent
phase as a function of the number N of junctions. For § = 0.2,
Q¢ = 0.8, i,f = 0.61, fixed bias iy, = 0.124, and different
couplings: 4, o = 0.1; %, & = 0.15; {, & = 0.2; A, & = 0.3;
0,0 =04; x, e =0.5,
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havior has been an important topic in the framework of
neuronal modeling; see Ref. 35. In the GOM this mutual
correlation has been interpreted as a hidden coherence in
the turbulent phase. This coherence shows, for example,
in an emergence of broad peaks in the power spectrum of
he.181% However, an understanding of the origin of this
hidden coherence and the frequency dependence of these
broad peaks is still lacking in this problem. One of the
intriguing questions is that a GCM of tent maps does
follow the 1/N law.!%:23.24 Gince the tent map does not
have periodic windows, it is believed that the periodic
windows may be relevant in the origin of the breakdown
of the law of large number and emergence of peaks in
the power spectrum.'®1%23.24 These and related ques-
tions have motivated some discussion in the lterature
very recently.?1 24

Regardless of the origin of the breakdown of the law of
large numbers in GCM’s, we study here this phenomenon
in JISA's, since it may lead to some experimental con-
sequence in this system. First of all, let us note that in
this case the voltage per junction, vV (t) = L }:ﬁil aé;,
acts as the “mean field” in Eq. (9). Since in the turbu-
lent phase the ¢;(t) and, therefore, the qé,— (t) are chaotic
and different for different ;, the fluctuations of v(t) are
the quantity that interests us here. However, since this
is a periodically driven system, {(6v)?) = {((v — (v})?
will not only be due to noisy fluctuations but also to the
amplitude of the rf-induced oscillations in v(t). [Even in
the Shapiro steps it is ((6v)?) £ 0.) Instead, we have to
study the power spectrum of v(t) which can be written
as

Sw) = gl + 13 | Sutv@)]| ., 5)
i#]

with v;(w) the Fourier transform of v;(t) = gé;(t). If

10_9 s il 1 taaal . L

100 ol 10

FIG. 11. Low-frequency limit of the power spectrum,
So = lim, o S§(w), as a function of the number N of junc-
tions. For ¢ = 0.2, I = 0.8, i, = 0.61, ia. = 0.124, and
different values of the coupling: +, o = 0.1; », & = 0.15; ¢,
=02 A,0=030,0=04 x, s =05,

the ¢;(t) are completely independent, the second term
in (15) will vanish for low frequencies, w — 0. There-
fore S((,N) ~ —R—,Sgl), with S((,N) the low-frequency part of
the power spectrum of a JISA with N junctions. This
is the equivalent of the law of large numbers for a pe-
riodically driven system. If it were valid, we could ex-
pect that in the large NV limit the broad band noise part
of /M) will tend to vanish (So = 0, for N = oo),
reducing the dynamics of the JISA to N independent
chaotic junctions with an additional time-periodic driv-
ing C(t) = v{¥~*}¢t). On the other band, a finite value
in the limit S4(N — o) will be a measure of the strength
of the remaining synchrony between junctions in the tur-
bulent regime, coming from the second term in Eq. (15).

In Fig. 11 we show the calculated values of S, as a
function of N for different values of & and for igc = 0.124
(similar behavior is also seen for other values of i4. within
the turbulent phase). We see that for some values of the
coupling ¢, Sy does not follow the law of large numbers
since it saturates for large N. However, for ¢ > 0.5 or for

1073
1074} (a

1075 :
-8

0.0 02 0.4 0.6 0.8 1.0
C‘J/C'Jrf

FIG. 12. Power spectrum of v(7) for a turbulent state, with
increasing N. For g =102, Q¢ =08, i = 061, ig, = 0.124,
and o = 0.4. (a) N =4. (b) N = 16. (c) N = 128. (d)
N =16384.
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FIG. 13. Detailed IV curve in the turbulent phase, show-
ing the emergence of a pseudostep when increasing N. For
§ =02 Qs =084 =06l,ando =04 (+ N=1,
N =16; O, N =128).

o < 0.1 we find that it follows the 1/ law for the values
of N we can simulate. Therefore, this phenomenon seems
te happen only for intermediate coupling ¢ in the JISA.

We also studied the full power spectrum S({w) in the
turbulent phase. In Fig. 12 we show the low-frequency
part of the spectra, w < Q, for increasing number of
Jjunctions, for a case that has a breakdown of the law of
large numbers. We see that for small N the power spec-

trum is flat. But when N increases it develops broad
peaks. They get sharper with increasing N, up to when
So saturates, and then for higher values of N the spec-
trum remains invariant. This is the same kind of hidden
coherence that has been found in GCM’s (Refs. 18 and
18) as we mentioned previously,

We find that this subtle coberence of the turbulent
phase notably affects the IV characteristics of the JISA.
We find that “pseudosteps” emerge in the IV curve for
large IV at the same time that Sy saturates in the tur-
bulent phase. This can be seen in Fig. 13. There we see
that, while for N = 1 the IV curve in this region has
a “noisy” aspect, when increasing NV a plateau or pseu-
dostep tends to appear. Many pseudosteps are present
all along the range of i4. corresponding to the turbu-
lent phase for the various values of ¢ for which there is
a breakdown of the law of large number, as we show in
Fig. 14. Note that N = 128 is a value before the full
saturation of Sg, since it is hard to simulate very large
N for the full IV characteristics. However, we see that
the pseudosteps emerge and sharpen up with increasing
N, always in coexistence with a saturation of §,. These
pseudosteps are not true Shapiro steps, since they do not
correspond to mode-locked periodic states. Instead, they
have a positive Liapunov exponent and finite broad-band
noise emission. This emergence of pseudosteps within the
turbulent regime of the JJSA is a new result which one
could not have predicted from our previous knowledge of
GCM's. They seem to arise as an additional effect origi-
nated by the fact that we have a system of coupled non-
linear differential equations with a time-periodic drive,
instead of simply coupled logistic maps.

FIG. 14. IV characteristics in the turbu-
lent phase for different couplings ¢. For
§ =02, Q¢ = 0.8, i = 0.61. (2) o = 0.1.
(b e =0.2. (¢} ¢ =0.3. (d) ¢ = 0.4. (e}
a=105 (f)oc=08.
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VI. THERMAL NOISE EFFECTS

In this section we want to consider the effects of ther-
mal noise on the turbulent phase for two reasons: {a)
The thermal effects cannot be ignored in real experiments
{then we raust know if the phenomena studied in the pre-
vious sections are stable at finite temperatures); (b) the
addition of noise in the dynamics of GCM’s has shown in-
teresting effects in previous studies,’®1® correlated with
the breakdown of the law of large nurabers.

We consider the effect of temperature in the dynamical
equations of the JISA by adding the contribution of a
Johnson noise in the shunt resistances of each junction, as
it is common in the literature.*® We also add a Johnson
nojse contribution in the resistive load. Therefore the
dynamical equations are now given by

Si + 9 + sin gy + (209) 2 (7) + iy,

= igc + trsin(Q7) , (16)

i =

(17)

Z[a

al 2Fgr )/’
> 9o+ ( A'?U) 7L(7) .
i=1

The thermal Johnson noise is given by the white
noise terms 7x(7),nL(7), such that (m(r)) = 0,
(e () (7)) = 8(7 — 7')84 4». Temperature is normal-
ized such that T = 2ekT/RI.. We have done numeri-
cal simulations of these equations using a second-order
Runge Kutta method suitable for stochastic differential
equations,® and the same integration times and time
steps as for the previous T = 0 calculations.

Let us study the effect of temperature on the break-
down of the law of large numbers. In Fig. 15 we show S,

104
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10! 102 103 10# 105
N

FIG. 15. Low-frequency limit of the power spectrum,
So = limy—~0 §(w), as a function of the size of the array N.
For § = 0.2, Q¢ = 0.8, iy = 061, 4 = 0.124, o = 0.4,
and different temperatures T: +, T = 0; +, T = 1 x 1075;
v, T=2x10"%0,T=5x10"% A, T =1x10"% O,
T=2x10"%x,T=5x10"%,T=1x10"*

as a function of N for ¢ = 0.4 and for 4, = 0.124 (which
corresponds to the turbulent regime) for different tem-
peratures. We see that for T = 0, S, saturates for large
N (breakdown of the law of large numbers). This effect
is stable for small temperatures, and only after a critical
Te1 = 4 x 1075 is there a crossover to a 1/N behavior.
Similar phenomena has been found when adding a white
noise term to GCM's,'® where also the 1/N behavior is
recovered after a critical value of noise intensity.

More interesting, from the experimental point of view,
is the behavior of Sy as a function of temperature for a
fixed large number of junctions (if N, is the typical N
for saturation of Sy at T = 0, we consider N > N,). In
Fig. 16 we show the results for bias iy, = 0.124, o =
0.4, and N = 16384 junctions. We find three different
thermal regimes.

(i) For T < T =~ 4 x 10~5, the broad-band noise de-
creases when increasing the temperature. This counter-
intuitive behavior is a consequence of the fact that there
is a breakdown of the law of large numbers at 7' = 0.
The addition of thermal noise reduces in part the sub-
tle coherence that made S, saturate for large N. In
other words, N, increases when increasing the temper-
ature, This leads to a decrease of Sy when increasing T
at fixed N. Since there is still a breakdown of the law
of large numbers, this is the temperature regime where
the turbulence and the global coupling of the JJSA’s are
manifested. )

(ii) For Ty < T < T., with Top = 5x 1073, 5, remains
constant. Now the 1/N law is fulfilled. Here the ¢; act
as independent chaotic variables. In this temperature
regime, the subtle coherence of the global coupling has
been destroyed, and S, is mainly due to the chaos of the
individual junctions.

(iii) For T > T.p, Sp increases with temperature. In
this part the dynamics of the junctions is dominated by
the thermal fluctuations, and therefore the broad-band
noise Sy is a consequence of the thermal noise.

T T H v T H T T

TURBULENCE:  CHAOS

NOISE

-8

FIG. 16. Low-frequency limit of the power spectrum,
So = limy o ${w), as a function of the temperature T'. For
g = 0.2, Qur = 0.8, iy = 0.61, igc = 0.124, ¢ = 0.4, for a large
array, N = 16 384.
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T=2x10"% (¢)T=5x10""

=
!

T = 1 x107% (e
T =2x10"% (f)T =3x107",

T = 2 x107%. (h)
5 x 10™*,

w/wy

The thermal noise affects the full power spectrum in
a surprising way. Perez et al.}? found that in GCM’s
the broad peaks in the power spectrum sharpen up when
increasing the noise. In Fig. 17 we show the power spec-
trum for o = 0.4, igc = 0.124 as a function of temper-
ature. We see that also in this case the broad peaks,

3400 i
a.38[- _ >
3365
3.34i
3.32i .
a.aoi

3.28|

3.26[

-6 10™%
T

1074 1673

FIG. 18. Measure W of the sharpness of the peaks in the
power spectra as a function of the temperature T'. For § = 0.2,
Q¢ = 0.8, irr = 0.61, ig. = 0.124, 0 = 0.4, and N = 16384,

0.0 0.2 0.4 ce 08 1.0 0.0 0.2
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0.4 0.6 0.0 1.0
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due to the breakdown of the law of large numbers at
T = 0, get sharper and better defined when increasing
temperature [Figs. 17(a)-17(f)]. Only after T > T, does
the power spectrum start to become broadened by the
thermal fluctuations [Figs. 17(g), 17(h)]. More quantita-
tively, following Ref, 19, we have defined the measure of
sharpness,

_1_ z:‘il Ex=1 S{Wigm)S(wim)
M Efix S(wn)? ,

W = —log,g (18)

where M is the number of discrete points in the spectrum.
For a completely flat spectrumm W = 0, and for a set of
d peaks, W — oo. We show in Fig. 18 the sharpness
W as a function of T. We see that W increases with
temperature until it reaches T,.; where it drops abruptly.
Finally we analyze the effect of temperature in the
pseudosteps in the IV characteristics. We show in
Fig. 19 the IV curves for ¢ = 0.4 in the turbulent
phase for different temperatures. We see that the pseu-
dostep structure is stable up to temperatures much larger
than T, and slightly below T2, above which they disap-
pear. Therefore, the pseudosteps seem to be more stable
against thermal noise than the breakdown of the law of
large numbers. This result suggests that even when both
phenomena coexist, they are not completely correlated.
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FIG. 19. IV characteristics
in the turbulent phase for dif-
ferent temperatures 7' and cou-
pling 0 = 04. For § = 0.2,
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VII. CONCLUSIONS

We have presented a system!'? in which many in-
teresting phenomena that are being currently studied in
globally coupled logistic maps*®™2* can be measured in
concrete experiments. The JJSA’s can show coherent,
ordered, partially ordered, quasiperiodic, and turbulent
phases in their JV characteristics. The coherent phase
exists for ig. < i, or for large bias currents. The or-
dered phase corresponds to the Shapiro steps, for which
we have found that the number of big clusters is equal to
the order of the step. The turbulent phase of the JISA
shows a breakdown of the law of large numbers. The new
feature in this system is that this effect coexists with the
appearance of pseudosteps in the IV characteristics.

A closely related system is charge density waves. Also
in this case there are many coupled degrees of freedom,
which bave been recently described with a global coupling
model.3” Including a second time derivative term in their
equations {due to the displacement current) may lead to
the same kind of phenomena studied here.

Josephson junction series arrays like the one dis-
cussed in this paper can be fabricated with the present
techniques.!® One possible experiment consists in making

an underdamped JISA with a large number of junctions
(N ~ 10%-10%). At very low temperatures, there will be
true Shapiro steps, with no broad-band noise {5y = 0},
and pseudosteps with broad-band noise (Sy # 0}). A mea-
surement of the broad-band noise Sy as a function of tem-
perature should show first a plateau below a temperature
T2, and then a sharp increase when decreasing temper-
ature below a critical T (for junctions with I, = 1 pA,
Ter ~ 1 mK, T ~ 0.1 K). This would be a clear indi-
cation of the breakdown of the law of large numbers. Of
course, experiments with JJISA's with different number
of junctions of the same characteristics will be a more di-
rect verification. A comparison of the different IV curves
and the different power spectra as a function of N would
show clearly the breakdown of the law of large numbers
and the emergence of pseudosteps, as described here,
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We study coupled maps on a Cayley tree, with local (nearest-neighbor) interactions, and with
a variety of boundary conditions. The bhomogeneous state (where every lattice site has the same
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value) and the node-synchronized state (where sites of a given generation bave the same value) are
both shown to occur for particular values of the parameters and coupling constants. We study the
stability of these states and their domains of attractjon. Since the number of sites that become

synchronized is much bigher compared to that op a regular lattice, control is easier to achjeve. A
general procedure is given to deduce the eigenvalue spectrum for these states. Perturbations of
the synchronized state lead to different spatiotemporal structures. We find that a mean-field-like

treatment is valid on this (effectively infinite dimensional) lattice.

PACS pumber(s): 05.45.+b, 47.20.Ky

L. INTRODUCTION

Coupled map lattices {CML’s) have been explored in
a variety of contexts in recent years, particularly as pro-
totypes of spatially extended systems. These are simple
models wherein both space and time play a role; further-
more, it is anticipated that the insight gained over the
Past two decades in studying low-dimensional nonlinear
dynamical systems can be profitably exploited in provid-
ing an understanding of such complex systems [1].

The phenomenology displayed by coupled maps on reg-
ular one- and two-dimensional lattices has been exten-
sively studied by Kaneko [2]. In addition, CML’s have
been used to model a wide variety of complex phenom-
ena, such as the study of the kinetics of phase ordering
processes (3], crystal growth [4], neuronal systems [s],
optical fibers (6], and pattern formation [7]. Chaté and
Manneville have also used CML's to model] spatiotem-
poral intermittency (8]. A route to a spatiotemporally
inhomogeneous state through wavelength doubling bifur-
cations has also been recently identified [9].

In this paper, we study coupled maps on a Cayley tree.
This lattice is embedded in infinite dimensions and thus
should give some indication of CML phenomenology in
higher dimensions [10]. Although the Cayley tree (some-
times termed the Bethe lattice} is an idealized hierarchi-
cal lattice with no immediate physical application, it is
convenient for study since there are no closed loops. Fur-
thermore, the Bethe lattice is the simplest sort of branch-
ing media model encountered in many physical processes.

Previous studies of coupled map systems (except for
a study by Cosenza and Kapral [11] of CML's on a
Sierpinskij gasket) have largely been carried oyt with local
coupling on regular lattices in one and two dimensions or
with global coupling, in which case there is no notion of
lattice geometry. Our motivation in choosing the Bethe
lattice is twofold. Apart from the mathematical conve-
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nience, it is worth considering that in many physical sijtu-
ations the medium supporting dynamics could be nonupj- B
form; in cases like chemical reactions in porous media
or on diffusion-limited-aggregation clusters, heterogene-
ity can lead to hierarchical structures (12]. We note that
hierarchical structures have long since been studied in
spatiotemporal systems like neural nets, also because of
their exponentially higher storage capacity [13].

A related question of some current interest is the con-
trol of macroscopically cascaded dynamical systems. The
synchronization of a large set of oscillators connected in
series [14-17] in a given geometry and with particular
boundary conditions is directly related to the problem
of whether a similar CML can support a synchronized
state [18]. We address this problem and show below that
the criterion in CML's for a synchronized {but chaotic)
state to be stable is that only one Lyapunov exponent
be positive and all the rest negative. In both cases, i.e.,
synchronization of the coupled oscillators or of coupled
maps, the essence of the problem lies in the nature of the
eigenvalues and eigenvectors of the interaction matrix. In
the present work we deal with the situation of asymmet-
ric coupling that is easily obtained in experiments [19].

The plan of this paper is as follows. We define our
model and the boundary conditions, and show that the
stability of synchronized states depends on the spectrum
of eigenvalues of the interaction matrix. This is related to 3
the connectivity matrix for the lattice and has a singular- 4
continuous structure. Different patterns can arise from
the secondary instabilities. We note that for coupled 4
piecewise linear maps the study of the interaction matrix -}
gives the whole Lyapunov spectrum, which is related to
the correlation length.

In several recent studies of globally coupled maps
[2,20], a breakdown of the “law of large numbers” has
been observed, We find that for this system, even with
local coupling, the mean-field description is valid in the

©1995 The American Physical Socicty}
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FIG. 1. Cayley tree with three generations and the label-
ing scheme.

evolution rules and remain synchronized. With parame-
ters

Oo+3o'=bo+b'=ho+h,+2hd=l, (10)

another simple pattern is possible, This is also node-
homogeneous, with z; = z for all t; i.e., all the points on
the lattice are synchronized since the evolution is essen-
tially that of a single map I

These “allowed” patterns can be observed in practice
if and oaly if they are linearly and convectively stable
against small perturbations. In the present work, we
have mainly dealt with linear stability analysia of this
system in the stationary frame, and while we have not
analyzed convective stability, numerical experiments sug-
gest that no extra instabilities other than the ones in an
equivalent one-dimensional model creep in. This directly
evolves from the fact that there are no loops on the lat-
tice; there is only one direction in which instabilities can
be enhanced in a moving frame of reference, and these
are the same as in the equivalent one-dimensional model.

For the linear stability analysis the eigenvalues and
eigenvectors of the matrix J = bm,_,.J{T), where
J(7y = I Ty, are (asymptotically) relevant. The
Jacobian matrix at time ¢, i.e., Ji, is given by J,(i,7) =
I(i,j)f'(a:,-(t)) and z;(t) = z(t) for all j. Thus the Jaco-
bian matrix is J = im0 [I]7F (z2) f'(Tr-1) -+ f{21).
The eigenvalues of J are lim, o A7, where A; = v,
where v;, i = 1,2,...,g(k) are the eigenvalues of the
interaction matrix / and A = lim,_,,, V' (2(t)) ' (=(t —
1)) -+ f'(z(1))|/¢. The relevant eigenvectors are those
of I, and the problem reduces to a study of the eigenval-
ues and eigenvectors of the interaction matrix.

The fact that coherent patterns are allowed [by the
condition in Eq. (10)] implies that a right eigenvector
of the interaction matrix is ey = (1,1,...,1). Thisisa
characteristic of row stochastic matrices and corresponds
to the eigenvalue A for the product of the J's. From
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Greshgorin’s theorem (22] thia is the largest %
Consider a small deviation, Ag = {§;,8,,:.%} dgay) bra :
the bomogeneous pattern (z,z,...). We can reexpreséd '
Ag on the basis of eigenvectors e, e3,... ) Cg(k) B8 '

Apg=ae; +azez+ -+ Qg (k)Cg(k)- (11) l!

After t iterations the deviation from the homogbnebus '

condition will be .
A¢ = GIA:C]_ + a,,\;eg + -4 a,(;)A;{.)e,(.). (12)“

If the only eigenvalue with modulus greater than unity is, ' i

Ay = Xand [Avj| <1for j > 1,ie., the rest are less !

than unity in magnitude, then for large encugh ¢ we can
write

Ag oy G1Aicl . (13)

The perturbation grows along the direction e¢; =
(1,1,...,1), and any random deviation will eventually
be homogenized.

Thus the necessary (though not sufficient) condition
for the synchronized pattern to -exist (and evolve chaot-
ically in time) is that A; be the only eigenvalue greater
than unity and all others be less than unity in magnitude;
a linearly stable coherent pattern—in the infinite lattice
limit—therefore requires a finite gap in the eigenvalue
spectrum of the interaction matrix.

The interaction matrix is analogous to the tight-
binding Hamiltonian on the Bethe lattice [20], although
the eigenvectors are different (since the matrix is not nec-
essarily symmetrical or Hermitian). However, using sim-
ilar arguments [20], one can see that all the sites at a
given generation are equivalent in the sense that, if sites
at every generation are synchronized, this pattern will
continue to exist in the absence of small perturbations or
noise since the evolution rule is the same for all of them.
Furthermore, one can see that if any two sites that have
the same parent are interchanged along with their sub-
trees, the system is left unchanged. Using the equivalence
of all points at a generation and the permutation symme-
tries of the lattice, the similarity transformation that will

block-diagonalize the interaction matrix can be deduced’
to be

—
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(The first three vectors follow from the fact that lat-
tice points at each generation are equivalent. The fourth
and sixth vectors simply represent the two line I

dependent and mutually orthogonal interchar
ble between points at the second generation {(



E(0y1,—1)], while the iRk and seventh vectors are sim-

y¥ Bur interchanges within siblings with the phase derived

from the parent site. The last three vectors arise from

the i among the siblings of the same parent.)

"Thus the block-diagonalizing matrix is written using

.- permutation symmetries of the underlying lattice; the
. blocks are as follows:

op 30 0
hy ho 2hy (15)
0 ¥ b

i Tbe two doubly degenerate eigenvalues are the eigenval-

5. ues of the matrix given below. They correspond to the

¢ fact that one can have two independent permutations in
the three branches at the first node:

p: he 2hy4
1 3b’ bo )
Finally we have the triply degenerate eigenvalue by (re-
flecting the fact that one can have permutations among
the daughters of any of the three branches at the second
node without affecting the matrix). One can see that the
. consecutive blocks giving eigenvalues are just like earlier
f- blocks except that the first row and column of the matrix
' are removed. This construction can be trivially extended
p. 10 a matrix of higher order. The matrix $~'IS is block
diagonal.

This scheme can be generalized to higher dimensions
and the diagonalizing matrix for the kth stage can be
- deduced as follows. Specifying the nonzero components

of the column vectors [in the notation of Eq. (4) to denote
the components] the first k vectors are as follows:

(16)

1 -
"’n(a.) =1,
1,

vﬂ-(ﬂl Ar.aa) T

(17)

vn(n;,a;) =
a 1,

] .. and
k 1

Uﬂ(o. 182,88,...,04) =

(18)

[ [e.g., the first three columns of the matrix defined in Eq.
g (14)]. Then we have two sets of k — 1 vectors. One is

3 k+1 k4l [ _

b {vnton) =ik = Lvnlly = 2} 19
R Cor AN AR N I S
n(0.1,a3) = Yn(0,2,05) = H1Vn(0,3,05) = ~ b

_'. ceRay a-nd
3 {v*+E-1) — R (k—1)
N n(0,1,as,....a0) ~ "n(0,3,04,...,a4)
: 1 ket (k—1) o
=LY 03,00,0) = ~2} (20)

~[See, e.g., the fourth and fifth columns in Eq. (14).) The
- other set is

R

(oo =L oo = 1) (21)
. ’ A 7
{”n(o.l.n.) - L”n(ﬂ.:.u.) =-1},
and
A Sh-1e(h-1) | 3k—14(k—1) _
.ﬂ(o,‘l.q,...,ng) - lv”n(o.z,a.,...,o.,} = _1}‘ (22)

COUPLED MAPS ON TREES

[See, e.g., the sixth and seventh columns in Eq. (14).]
The next three sets of k — 2 vectors each are given as
follows. The first is of the type

k-1  _ 5 . 3k—1 _
{”n£0,1,1) =Ly e =1} 23
{u3 =1 vSk _ _1} ( )
n(0,1,1,a4} — 1 Vn0,2,2,04) T !
..., and
3h-2+(k-2)  _ .  3k-2+(k-2) _
{vn(O,l,l,u.,...,al,) =1, n{0,1,2,aq,...,a8}) _1} (24)
The second i1s
k-3 _ 4 . &k-3 _
ajean = Dthiezn = 1) (25)
{"n(n.z,x.c.) =Lt 02,2a) = -1},
...,and
Ak—tt(k—2) . ak—4+{k-2) _
(Va0 taernas) = ¥t siansasy = —1} (26)
The last set is
k— k-5 _
{".51(0,:,1) = 1=”i(o,s,z) = -1},

and so on. {The last three columns in Eq. (14) are v3*~1,
v¥#*=3 and v5*~%, For k > 3 newer sets will appear.)
Now we will have sets of vectors that will give blocks of
size k — 3. The next six blocks of £ —3 vectors arise from
permutations between the points on the fourth genera-
tion and their descendants and are of the same type as
the three sets of k — 2 vectors mentioned above, which
result from the three independent permutations possible
between the six points on the third generation. One can
continue this scheme until reaching the boundary. The
number of points on the boundary is g(k) - g(k — 1) =
3 x 2%72, and [g(k) — g(k — 1)]/2 = 3 x 2*~3 permuta-
tion vectors are possible [see Eq. (5)], which will give a
block of size 1 with the same degeneracy as the number
of permutations possible on the boundary.

For boundary conditions in which op = hg + hy, o' =
2ha/3, bo = ho + 2hg, b’ = h,, at stage k, the first block
of the block-diagonal form is

ho + hy, 2hy o - 0 )
hy ho 2k 0 0
. ' (27)
0 0 0 ho 2hy
0 0 o ... hp ho + 2hy

which exploits the equivalence symmetry of all the sites
at a given generation. The second block, which exploits
the permutation symmetry of the points on the first gen-
eration, is

ho 2hg 0 --- O 0
flp ho 2hy 0 1]
: o (28)
0 0 0 hg 2hg
0 0 0 -+ hy ho+2hy
and so on. The last two blocks are

ho 2ha Y

(h,. hlo‘), (ho + 2h4) . (29)

St
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The first block of order k appears once in the block-
diagonal form, the second of order k — 1 appears twice,
and next blocks of order k —n (k—~12>n > 2) appears
3 x 22 times. The first k eigenvalues are therefore
nondegenerate; then k — 1 eigenvalues are doubly degen-
erate, k — n eigenvalues have degeneracy 3 x 2"2 for
k=-12>n2>2, etc.

From the structure of the matrices and their degenera-
cies, one sees that for the Cayley tree with one more
generation, the k — 1 degenerate blocks are retained
(with, however, the doubly degenerate block becoming
triply degenerate and other blocks doubling their degen-
eracy) with an additional block that has degeneracy 2.
The block corresponding to nondegenerate eigenvalues is,
however, completely changed. The density of states has
to be singular continuous since the new eigenvalues that
are created have a lower degeneracy; the eigenvalue spec-
trum is a sum of 4 peaks and is nowhere differentiable,
as is common in hierarchical systems [11,21].

In the situation where the synchronized state is lin-
early stable in the stationary frame, the typical degener-
acy structure of eigenvalues is as shown in Fig. 2 for the
parameters and boundary conditions as discussed below.
The structure is generic if the system is linearly stable,
but the width of the gap varies with the parameters. For
p?ecewise linear maps; e.g., f(z) = rz mod y, the Jaco-
bian is constant in time and the spectrum of eigenvalues
of the interaction matrix determines the Lyapunov spec-
trum of the CML's, and thus (via the Lyapunov dimean-
sion) the fractal dimension.

We can see from the degeneracy structure that about
a quarter of the eigenstates have their support fully from
the boundary. The next layer is approximately half of
this number, and so on, with the number of states that
have their support up to a length ! from the boundary
reducing exponentially. This is in keeping with the ex-

IO!O T T T T T T T
. !
o o l
0 o ¢
D 0 00 c'0 & oo 0 0o,
- (5 0 Q ] 090
; o 0 o2 04 %0,
- 00300%0% $2.000
9 10“’ - 000 000 000000 -
0900, 590
; 0 000
< 0% §000
ALY
e
ots
.
i !
1
06 04 -02 0 02 04 06 08 1 12 14
Eigenvalue
FIG. 2. Eigenvalues and their degeneracies for the syn-

chronized state for k = 50 generations. The parameters are
hy = 0.7, ho = 0.2, h, = 0.05, and A = 1.26. One can clearly
see the gap that separates a nondegenerate eigenvalue greater
than unity and all the others below unity. Degeneracies are
on a logarithmic scale for clarity.
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“onal) submatrices of the earlier block, the eigenvalues are

pectation that the rate must be faster than that in fiz M
dimensional spaces where the number of modes with wavt 333" | [
number |x| < x is proportional to x4, S R -
Note that in the block-diagonal matrix, the blocks are 14, ' §-
tridiagonal and (for positive couplings) all elements are 53 [
positive. Such a matrix can be transformed to symmet-
ric form [22] and thus all its eigenvalues are real; there
can be no Hopf bifurcation leading to the instability of a
synchronized state.

Since the consecutive blocks are the principal (tridiag-

e

interlaced [23]. In other words, the bounds for the eigen-
values of the lower block are contained in the bounds for
the eigenvalues for the higher block, and it is enough to
consider the first two blocks in order to study the stabil-
ity of a spatially synchronized state.

For the first block, the nondegenerate eigenvalues are
given by ho + h, + 2hg, which is set to 1 by definition,
and the other k — 1 eigenvalues are ko + 2,/2hghpcos(f),
where 8 = 2xi/k, i = 1,2,...,k—1. The eigenvalues will
have a gap if 2hq # h,. :

Consider the second block of order m = k—1, which is
tridiagonal and can be symmetrized by using a similarity
transformation involving a diagonal matrix with elements
D;; = [\/2ha/Rh,]'"!. This yields a tridiagonal matrix O '
such that the diagonal elements remain unchanged and
all the elements on upper and lower diagonal are ,/2hgh,.
Using Greshgorin's theorem [22] again, one can see that
the largest eigenvalue cannot exceed ho + 24/2hphg if
hp > 2h4. As explained above, the analysis of the first §
two blocks suffices to explore the stability of the syn- ‘-
chronized state and thus the other blocks do not modify
the gap in the eigenvalue spectrum of the first block if
hp > Zhy. t

Aranson, Golomb, and Sompolinsky [14] consider '
asymmetrically coupled one-dimensional (1D) chains
with open boundary conditions where there is a convec-
tive instability of synchronized patterns; perturbations
growin the moving frame of reference, destroying macro-
scopic coherence. As we have shown above, under these
conditions macroscopic chaos is linearly stable in a sta-
tionary frame also on the Cayley tree. However, the dif-
ficulty in synchronizing large systems is less pronounced
in this case. Because of the ultrametric topology, much
larger systems can be synchronized under the conditions
above. With open boundary conditions and asymmetri-
cal coupling, coherence is more easily established in the
present case. For example, for by = 0.7 in one direction
and h, = 0.1 in the other direction, Aranson, Golumb,
and Sompolinsky [14] have a coberence length of around
55 for the choice of map f(z) = e — z2, with a value
of a such that the eigenvalue for a single map is 1.26.
With A, = 0.7, 2hg = 0.1, Fig. 2 shows a plot of eigen-
values as a function of degeneracies at these parameter
values for 50 generations. One can clearly see the gap.'.¥
between a single nondegenerate eigenvalue above unity ;;
and the others below unity. For the above parameters,
we can easily obtain a coherent pattern for k = 20 with
random initial conditions; a CML with =z 10° sites is
ily synchronized [24] to within 10~%, even under si
precision (16 binary digits} evolution. This is in’
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caatrast to one-dimensional 1D coupled CML, which has
:ml_iemnce length of about 55 sites. This example is
& good illustration of the dramatic increase in stability
with hierarchical connectivity.
: To check that no other instabilities than the ones ex-
" pected from an equivalent one-dimensional model come
into the picture, we looked at the function f {z) =
1.38  mod 1 with the same choice of coupling constants
as above. Here the coherence is within 10~ for the first
six sites on a one-dimensional lattice, and even on the
Cayley tree it is maintained for six genmerations. This
is expected since there are no closed loops and the only
direction in which the instabilities can flow and grow is
the one from the center to the boundary. However, we
can see that since the number of sites synchronized is ex-
ponentially higher on a tree with equivalent generations
than on a one-dimensional lattice, an exponentially larger
number of sites are synchronized on trees at equivalent
parameters. The base of the exponent is related to the
number of branches.

Auerbach [15] has shown that one can circumvent the
difficulty arising from convective instabilities on a 1D lat-
tice by using system-size dependent feedback control. In
essence, we achieve the same ends through a change in
geometry, without extra controls. The boundary condi-
tions og = by = hy, op = 3ba = Ay, + 2h, also give the
same result, which indicates that some more variants are
possible for open boundary conditions and asymmetric
coupling,

Now consider the node-homogeneous pattern. The sta-
bility matrix is given by

t=1

Thus analysis of the eigenvalues of the product of ma-
trices is reduced to the analysis of the eigenvalues of the
product of blocks. This is a great simplification since in-
stead of considering matrices of order 2%, where & is the
number of generations, we only need to consider k ma-
trices of order k and below. The analysis of the Jacobian
matrix reduces to analysis of the matrices

(30)

o 3 0 --- 0 0 lf’[zl(t)]
w | Bp ho 2h4 0 0 flza(8)]
II|: 5 ol
t=1 | g 0 o ho 2hy Flza_1(t)]
0 0 0 - b b f'lze(t)]
(31)
ho 2hy 0 0 f{z2(2)]
h, he 2hy 0 0 f'{z3{t)]
0 0 ho 2’:1d f’[zk;l 3
0 0 -+ b b Sz (t)]
v and 80 on

action matrix; the Lyapunov spectrum is the sum
peaks and is an everywhere discontinuous fune-
for the fully synchronized state (which is a spe-
e of the node-homogeneous structure). We can

similarly argue that the condition for stability of the
node-homogeneous state (evolving chaotically in time) is
that the first block corresponding to the nondegenerate
eigenvectors is the only one with eigenvalues of modulus
greater than unity, all other blocks having eigenvalues
with modulus less than unity. (This is because the first
block corresponds to eigenvectors that have a contribu-
tion from all the generations, and the contribution from
all the points of the same generation is the same.)

A simple example of such stable patterns can be con-
structed for f(z) = rz mod 1, with boundary condi-
tions og = 0,8y = 0,0' = hy, b = h, and parameters
T =+/(3)/2,ho = 0, hy = h, = L. For the Cayley tree
with five generations, i.e., 46 sites, it can be shown that
the eigenvalues are higher than unity for the first block
alone. Numerically, one can easily get node-homogenecus
patterns, starting from random initial conditions. Thus
the possible coherent patterns are characteristically dif-
ferent from those on regular lattices, and the stability
analysis is also distinct [26].

IV. INFINITE DIMENSIONAL CHARACTER

We now study the properties of this model, which
should reflect the fact that it is embedded in infinite di-
mensions, where a mean-field-like treatment can be ex-
pected to be valid. A collective variable (2, 20] k() is
defined as

g(k)
A(t) = Lk) 3 at), (32)

9(

where g(k) is the total number of sites on the Cayley tree
with k generations, as noted above; f(z) = pz(1—=z) with
ho=1—€ hy=ha=¢/3,bg =09 =ho, b =¢, 0 =¢/3;
while the parameter values are ¢ = 0.1 and g = 4. The
return map of this variable, i.e., h(t+1) vs h(t), is a filled
ellipse, whose size decreases rapidly with the number of
generations. We conjecture that in the macroscopic limit
it tends to a fixed point; i.e., though the evolution is
chaotic for the system, the collective variable is invari-
ant in time. The mean square deviation of h{t) decays
like 1/N, where N is the number of sites (see Fig. 3),
quite unlike the case of globally coupled maps [27], where
some reorganization occurs in such a way that the total
number of independent degrees of freedom is not linearly
proportional to the number of sites. This is not totally
unexpected [28] since the values being summed are not
independent random variables. This alsoc means that the
mean field is not valid in these systems. However, this
expectation is fulfilled for the Bethe lattice, although the
variables that are being summed are not only not in-
dependent but are also not identically distributed; the
boundary evoives differently from the bulk, and bound-
ary effects are not negligible in any limit since half the
points reside at the boundary. Figure 4 shows the prob-
ability distribution of the central sites and the boundary
for the above case, and they are clearly different. How-
ever, the sum behaves in a way that is expected from the
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A spatial coherent and temporally chaotic state in globally coupled maps exists in the strong coupling
regime. After the coherence loses stability the whole system is attracted to a two-cluster attractor (M, ,M,].
The number of elements in the clusters depends on the initial conditions, which are chosen at random. We find,
numerically. that the number of elements in the clusters obeys a power law decay near the onser of the
transition. The difference of the two clusters displays a temporal behavior characteristic of on-off intermit-
tency. although the distribution of the laminar phases shows a phase transition as a function of its length,
making it essentially different from the latter. [$1063-651X(96)07809-9] '

PACS number{s}: 05.45.+b

The transition routes to chaos in low-dimensional nonlin-
ear dynamical systems have been weil understood. One of
thern, the intermittency route, was classified into three types
by Pomeau and Manneville [1]. The essential feature of in-
termittency is that a simple periodic orbit is replaced by a
chaotic attractor, where the chaotic behavior is randomly in-
terspersed with periodic behavior resembling that before the
ransitton, in an intermittent fashion. Recently, the statistical
distribution of a different type of intermittency in some low-
dimensional nonlinear dynamical systems, called ‘‘on-off"’
intermittency, has been obtained analytically [2-10]. This
intermittency is characterized by a two-state nature. The
“off’" state, which is nearly constant, and remains so for
very long periods of time, is suddenly changed by random
bursts, the *“on"" state, which departs quickly from and re-
wms quickly to the “off™" state. A self-organized on-off spa-
tiotemporal intermittency has also been reported in a system
of coupled maps via nearest-neighbors interaction [11]. In
this paper we focus our attention on some transitions that
take place in globally coupled chaotic systems.

Globally coupled systems are ubiquitous in nature, They
arise naturally in studies of Josephson junction arrays, mui-
imode laser. charge-density wave, oscillatory neuronal sys-
tem. and so on [12-14]. As one of the simplest globally
voupled system, the globally coupled map (GCM) has been
the subject of intensive research in recent years. Some rather
-urprising and novel results, such as clustering, splay state,
<ullective chaotic behavior, and violation of the law of farge
numbers in the turbulent regime are revealed in the GCM
model [15-18]. In this paper we will study the transition to
intermittency in the GCM model, which takes place between
the coherent and the ordered phases. ,

Specifically, we use the following form of GCM:

s
.rf,,|=(l—e)f(,tf')+§2t fhy, =12, . .N, (1)
<

where . i. and € are the discrete time step. the index of
clements, and the coupling coefficient, respectively. The
mapping function f(x) is taken as the logistic map

1116365 1 X/96/54(4)/3235(4)/$10.00 54

flxy=ax(l—x), and a is the nonlinear parameter. N is the
total number of elements or system size.

An important concept in GCM mode! is *‘clustering.’
This means that even when the interactions between all ele-
ments are identical, the dynamics can break into different
clusters. each of which consists of fully synchronized ele-
ments. After the system falls in an attractor, we say that the
clements i and j belong to the same cluster if x),=x? . There-
fore, the behavior of the whole system can be characterized
by the number of clusters n, and the number of elements of
each cluster (M, . M5, ... .M, ) [15].

As the nonlinearity or coupling strength is varied, the sys-
tem exhibits successive phase transitions among coherent,
order, and turbulent phases [15). We shall study the transi-
tion from the coherent chaotic state to a two-cluster chaotic
attractor in the strong coupling regime.

In the coherent chaotic region the system is homogeneous
in space, i.e., x'=x/, ¥i,j, and chaotic in time. Thus, it is
characterized by only one cluster, ie., n,=1, M,=N. The
motion of each element is equivalent to that of the single
logistic map. The stability condition for this coherent state is
that modulus of all eigenvalues of the N X N stability matrix
J=I7_ f'(x,)Jo™ has magnitude less than ome. Here
f'(x,) is the derivative of the nth iteration of the logistic
map; m is taken as the periodic number or infinity for peri-
odic or chaotic motions, respectively. I, is a N XN constant
matrix given by

€ [3 €
l=e*y W N
€ € €
N TR N 2)
3 € €
N N o Tty

The matrix Jg4 is a circulant matrix, and can be written as
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FIG. I. Space-time evolution of the system at N =200, a=4,
and €=0.501.
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The eigenvalues of Jy are given by

Mo =1,
eV
o, =1-e+ _2 giImr= 1IN oy —,
Ni=o

r=23,....N. (¥

Thus the eigenvalues of the stability matrix J are

m=I1 £,

pe=(l-"[1 f(x,)., r=23.....N (5)
n=i

The eigenvector comresponding to the eigenvalue it is given
by (/MY(LL ....1)T. Thus, the amplification of a distur-
bance along this eigenvector does not destroy the coherence.
Eigenvectors for the other N— 1 identical eigenvalues are not
uniform: the amplification along these eigenvectors destroys
the coherent phase. Therefore, the stability condition of the
coherent chaotic state is decided by the N— | identical ei-
genvalues. Their corresponding Lyapunov exponents are

A=x,=in(l—€)+Ay, r=23,....N. (6)
where A is the Lyapunov exponent of the single logtstic
map. Therefore. the critical stability condition is given by
A=0, 1e. e, =1~e "o When ¢ is larger than €., all ele-
ments quickly evolve to the same motion (the homogeneous
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FIG. 2. (a) The same as in Fig. i for €=0.499. (b} The space
structure of the system after the (3 X 10°)th iterations of Eq (1.
Two clusters are clearly observed.

state} after a short transient process, since A <0. Generally
speaking, we are only interested in the parameters where the
behavior of the single logistic map is chaotic, Ay>0. We
have performed calculations for different values of a within
the chaotic region. The results that we shall describe hold for
all of them, therefore, we fix a=4 and N =200, where
Ag=1In2, thus, we have ¢.=1. Figure 1 shows a space-time
evolution at £€=0.501. The initial condition of each element
is randomly chosen in the uniform interval [0,1] throughout
this paper. It is very clearly observed that all elements syn-
chronize after almost 1100 iterations. We make the figure
according to the rule: if |x,(i)—x,(1)|>107*, then the cor-
responding pixel is black, otherwise, it stays white.

When the coupling ¢ is slightly smaller than the critical
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sdlue (0.5). the system suddenly evolves 10 a two-cluster
atrtor (M M.y (M, ~M,=N=200] after the transient
“ocess. Figure al shows a Space-time evolution ar
e =0.499. After some iterations. the system is exactly set
"W to a two-cluster chaotic attractor (M| .M.)=(8.192).
+he space structure after the (3X 10°)th iterations is also
fplaved in Fig. 2bh. Two clusters are clearly observed.
- and M+ depend on the chosen random initiai conditions.
viwe the sum of M, und My is always the same (200). only
ne of the two numbers can be varied freely. Assuming the
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FIG. 5. The relative distribution £, of the laminar phases of
al=y plotted against s tlog-log plot in the large frame and
#-log plot in the upper small frame) for several thresholds ar
€=0.499,

free variable 10 be M,. with M <M, then we have
I=M,<100. We choose many random initial conditions.
and uterate Eq. (1) for each one. then found, numerically, that
the distribution of various M,’s obeys an exact power law
decay as the control parameter crosses the critical value from
above. Figure 3 shows the distribution of M, for e=114y9,
A total of 10° different random injtial conditions 1o iterae
Eq. (1) were computed to obtain this curve. Except for the
first several points. this distribution is a bonafide power law
decay with an approximate exponent — 1,11,

When the system falls in a two-cluster attractor, the dy-
namics can be replaced by '

-

t -t € ¢ . ] . 4
.\',,_i=(l—e}j(_r,,)+‘v§' M fid). =12
=

Although the behavior of each cluster is chaotic. the ditfer-
ence of the two clusters ('~ x?) shows some very interest-
tng and complex features. Figure 4 shows a time evolution of
+'= %" for the same parameter as those of Fig. 2. It is easily
observed that x'~x" remains a long time near zero. and
suddenly departs from it and quickly returns after some ran-
dom bursts. As the deviation from €. becomes large, more
and more random bursts frequently occur.

In order 1o better characterize the intermittent behavior.
we have calculated numerically the statistical distribution of
the duration of the laminar phase x' = * shown in Fig. $ for
several thresholds of the difference 7 at €=0.499, These
thresholds for the laminar phase are defined by |x'— 17
< 7. with 7 ranging from 107 % to 10™®, For each threshoid a
total of 2 x 10 iterations of Eq. (1) were computed to obtain
these curves. P, represents the probability of the laminar
phase of length n, namely. P, =M, /M. where M is the totai
number of segments of the laminar phase. M, the number of

G
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FIG. 6. 8, vs €,— € at ¢,=0.5. The diamonds are numerical
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those of length n. The distribution has the following remark-
able property. For small segments of the laminar phase
(n<15) the distribution quickly tends to the same exponen-
tial law decay with an asymptotic exponent —0.7 as the
threshold r decreases (see Fig. 5). We found numericaily that
this exponent is independent of the control parameters for
smail values of n, while for large segments of the laminar
phase the distribution seems to depend on the threshold of
the laminar phase. For large values of 7 it obeys an asymp-
totic power law decay (see 7=10"7). As the threshold de-
creases, this power law is gradually replaced by another one.
The new exponent (— B,) depends on the deviation of the

parameter € from the critical value €,.. Figure 6 shows the
relation of 8. and the coupling deviation €.—¢€. It can be
best fitted by

Br=2{e.—€). ] 8

Actually. this statistical distnbution should be independe‘r:[
of the threshold chosen for the laminar phase. [n order to get
the invanant distribution. we take smaller values of ;
(107% is enough). The invariant distribution can be approxi-
mately formulated as

e B p<n,

Pu®) e, -ein 191

¢ n>n,.

where B;~0.7 and n_=15. Thus, the distribution of the
laminar phase described in this work shows a transition a
n, . Although this type of intermittency has similar charac-
teristics to those of the conventional on-off intermittency
(see Fig. 4), this transition does not exist in the latter. since
its distribution obeys an asymptotic power law near the oa-
set, with exponent — 1.

In conclusion we have investigated the intermittency tran-
sition from a coherent chaotic state to a twr ~histor ~kanvi.
attractor in globally coupled systems. We have found a new
intermittency transition for globally coupied maps. We found
that the numbers of elements in the clusters obey a power
law decay near the onset of the transition, We have seen thal
this type of intermittency is esseatially different from the
types of intermittency known before, showing a phase trun-
sition as a function of the length of the laminar phase. The
features of this type of intermittency are rather generic lw
globally coupled chaotic systems and are independent of the
local mapping function, which we have taken as the logisue
map to illustrate the phenomenon. Both spatially global um-
form coupling and chaotic motion of the individual elements
are of crucial importance.
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Abstract

We study the spatiotemporal dynamics of the underdamped Josephson
junction series arrays (JJSA) which are globally coupled through a resistive
shunting load and driver by an rf bias current. Clustering bifurcations are
shown to appear. In particular, cluster-doubling induced period-doubling
bifurcations and clustering induced spatiotemporal chaos are found. Fur-
thermore, an interesting spatiotemporal intermittency is also found. These

phenomena are closely related to the dynamics of the single cell.
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The dynamics of globally chaotic systems has been of great interest in recent years.
They arise naturally in.studies of Josephson junctions arrays, multimode laser, charge-
density wave, oscillatory neuronal system, and so on. Some rather surprising and novel
features, such as clustering, splay state, collective behavior, and violation of the law of large
numbers are revealed in these continuous and discrete globally coupled models [Benz et
al.; 1990, Bhattacharya et al., 1987; Chernikov & Schmidt, 1995; Dominguez et al., 1991;
Dominguez & Cerdeira, 1995; Eikmans & van Himbergen, 1991; Fisher, 1983; Free et al.,
1990; Hadley & Beasley, 1987; Hadley et al., 1988; Hebboul & Garland, 1991; Kaneko, 1989;
Kvale & Hebboul, 1991; Lee et al., 1992; Middleton et al., 1992; Strogatz & Mirollo, 1993;
Tchiastiakov, 1996; Tsang et al., 1991; Tsang & Schwartz, 1992; Watanabe and Strogatz,
1993; Wiesenfeld et al., 1996).

Being a paradigm for the study of nonlinear dynamical systems with many degrees
of freedom, Josephson junction series arrays (JJSA) have been a subject of active re-
search. After scaling the parameters [Dominguez et al., 1991], the dynamical equations
of an underdamped JISA shunted by a resistive load, and subject to a rf-bias current
I(t) = Iy + I,ysin(w,st),[Hadley & Beasley, 1987; Hadley et al., 1988; Tsang et al., 1991;
Tsang & Schwartz, 1992] are

&i + g + sin @y + i = 1a + 1y sin(Qy7),
N

iL=dv(T)=%Egci)j, i=1,...,N, (1)
j=1 .

where ¢; is the superconducting phase difference across the junction k. N is the total
number of Josephson junctions or system size. Here, we use reduced units, with currents
normalized by the critical current, i = [/l time normalized by the plasma frequency
wpt = 7, with w, = (2—,.1%9)% and C the capacitance of the junctions; and voltages by ri,

with r the shunt resistance of the junctions. ir, is the current flowing through the resistive

load; g = (Ee—c’:_—,f‘—ﬁz Be ';', with 8, the McCumber parameter [McCumber, 1968; Stewart,
‘ ‘/total

1968]; v = is the total voltage across the array per junction; o = %, with R the

resistance of the shunting load, represents the strength of the global coupling in the array;

2
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and the normalized rf frequency is .y = u::‘f . Eq. (1) exhibits rich spatiotemporal behavior,
including phase locking, bifurcations, char;s, solitonic excitation, and pattern formation,
breaking the law of large numbers and novel pseudo-Shapiro steps emerge in turbulence
[Benz et al., 1990; Dominguez et al., 1991; Dominguez & Cerdeira, 1995; Eikmans & van
Himbergen, 1991; Free et al., 1990; Hebboul & Garland, 1991; Kvale & Hebboul, 1991,
Lee et al., 1992]. However, to the best of our knowledge, the mechanism of the transitions
among these dynamical phases, specially the transition from coherence to turbulence, has
never been discussed. In this paper we study the interesting spatiotemporal intermittency,

clustering bifurcation and clustering induced spatiotemporal chaos in the system (1).

For a single cell (i.e., N = 1), the dynamical equation reduces to
$ + §é + sin ¢ = ig. + irssin(Q 1), (2)

with § = (1 4+ o)g. It is well known that Eq. (2) can exhibit chaotic behavior in the
underdamped regime, i.e., § < 1 and {},; < 1 [Ben-Jacob et al., 1982; Bhagavatula et al.,
1992; Huberman et al., 1980; lansiti et al., 1984; Jensen et al., 1984; Kautz & Monaco,
1985; Octavio & Raedi Nasser, 1984]). In Figs. 1(a) and 1(b) we show the bifurcation
diagrams, for § = 0.2,},; = 0.8, as a function of 7,; and i4. respectively. In Fig. 1(a) with
iae = 0.03, the following points are to be remarked: as i,; increases, the system undergoes a
series of continuous period-doubling bifurcation leading to a small scale region of chaos. At
i, ~ 0.832, this chaotic attractor suddenly expands, and is replaced by a large scale chaotic
motion. After the expanding transition the system acquires a rotating motion, and the
time-averaged voltage becomes nonzero. The bifurcation diagram as a function of 7., with
iry = 0.61, is shown in Fig. 1(b). The bifurcation béhavior is essentially different from that
of Fig. 1(a). As 14 increases, the pefiod-l orbit first loses its stability, then a new period-2
solution arises via period-doubling bifurcation. The most interesting and surprising point
is that this period-doubling solution meets with an unstable period-2 orbit {the dashed
lines), and they suddenly disappear via inverse tangent (saddle-node) bifurcation as i,

reaches a critical value ig. = 0.035076. Beyond this threshold, the behavior of the system

3

17



4 2B I & B s A4 - & &8 - - = . R A T

a2 A =B

A A& AR .

is rotating and the motion is chaotic in a large scale region, and have the characteristic of
type-1 intermittency [Pomeau & Manneville, 1980]. In Fig. 1(b), it is clear that another
period-2 orbit appears via tangent bifurcation for i4. near zero. Increasing ¢4, this period-2
solution first bifurcates into a small region of chaos through a series of continuous period-
doubling bifurcations, then this chaotic motion coincides with the unstable period-2 orbit,
and suddenly disappears due to a boundary crises [Grebpgi et al., 1983]. The two attractors
form an interesting hysteresis phenomenon. In the following we investigate the complicated
spatiotemporal dynamics in JJSA and how it originates from that of a single Josephson
junction.

An important concept in a model for globally coupled systems is “clustering.” This means
that even when the interaction between all elements is identical, the dynamics can break into
different clusters, each of which consists of fully synchronized elements. After the system
falls in an attractor, we say that the elements i and j belong to the same cluster if ¢; = ¢;
for all time. Therefore, the behavior of the whole system can be characterized by the number
of clusters n, and the number of elements of each cluster (My, M3, - -, M, ) [Dominguez
Cerdeira, 1995; Kaneko, 1989].

The simplest attractor of the system (1) is the spatially homogeneous configuration, so

called coherent state, i.e., ¢i(T) = ¢(7), na =1, My = N. Linearizing Eq. (1) around the

() state

s - N .
5¢-‘+95¢£+COS¢5¢;+%296¢>,-=0, i=1,...,N. (3)

i=1

Introducing the difference coordinates defined by
Yk=6¢k-—5¢k+11 k=1,...,N—-1 (4)

After simple algebra, the critical stability boundaries of this coherent state are determined

by the zero Lyapunov exponent of the following set of equations:

é + g‘q& +sin¢ = ige + 1ps 8in(Qrs7),
Yi + gYi + cos ¢Ys = 0. (5)
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The critical boundaries of the coherent state in the o vs. 1,y parameter plane are shown in

Fig. 2(a) with g = 0.2, and 7a. = 0.03. In the white region, the coherent state is locally
stable, while in the shaded region, the coherent state loses its stability, and bifurcates to
a multi-cluster state. As the coupling strength o decreases to zero, the instability regions
collapse to the discrete bifurcation points for a single cell (¢ = 0). After the coherent state
loses the stability, lots of multi-clusters are created in the JJSA. A class of interesting states
are multi-clusters with a uniform distribution of junctions per cluster (i.e., M; =--- = M,,_,
with M;, being the number of elements in the ith cluster), and each cluster may have the
same motion except for uniformly distributed phase shifts. We focus on this kind of states,
a period-m state with k clusters will be called TmCk state. It often happens that m = k,

then the dynamics of the TkCk state is reduced to

: koo 2
Hr) +98(0) 4 sin () + 1 087+ 73) = hac iy in 0. Q

To investigate the clustering bifurcations in JJSA with nonzero coupling, we show the
asymptotic state of the system (1) in Fig. 2(b) as a function of ¢,; with ¢ = 0.1 and
the other parameters equal to those of Fig. 1{a). However, the bifurcation diagram is
essentially different from that of Fig. 1(a). The T1C1 state first undergoes a cluster-period-
doubling bifurcation at i,y & 0.662 to create a stable T2C2 state. By increasing 7., the
state undergoes further cluster-period-doubling bifurcations leading to spatiotemporal chaos.
Fig. 2(b) is interesting due to the following novel features. First, we find a cluster-doubling
induced period-doubling. The bifurcation point value is below the period-doubling condition
for a single Josephson junction. Global coupling leads to cluster doubling at this parameter,
which induces period doubling in time. Second, we find a cluster-doubling sequence 1-2-4
(and the induced period-doubling sequence). Nevertheless, the tendency of cluster doubling
bifurcations leading to spatiotemporal chaos can still be seen in Fig. 2(c), where we plotl
number of clusters vs. ., for the state described in Fig. 2(b). Therefore, we conclude
that spatiotemporal chaos is made possible by clusterization, and call it “clustering induced

spatiotemporal chaos”. Moreover, these cluster-doubling sequences grow from the period-
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doubling sequences of the single cell due to the nonzero global coupling. As o decreases to
zero, the clustering-doubling sequerices is identified as the period-doubling sequence of the
single cell. If the period-doubling sequence of the single cell is broken off, then the character
of the clustering bifurcation in JJSA also changes suddenly. This can be clearly seen in Fig.
3(a) which shows the asymptotic state of the system (1) along the 4 axis, with ¢ = 0.6 and
the other parameters are the same as those of Fig. 1(b). The T1Cl state first undergoes a
cluster-period-doubling bifurcation at iz, & 0.02087 to create a stable T2C2 state. However,
since the period-doubling period-2 solution in the single cell (see Fig. 1{(b)) is destroyed
by the inverse saddle-node bifurcation by increasing ‘g, the T2C2 state in the JISA is
suddenly destroyed by the spatiotemporal intermittency transition near 14. = 0.02143. In
Figs. 2(b) and 3(a), first we run Egs. (1) to get the coherent state from random initial
conditions, then we compute Eqs. (1) by gradually increasing the parameter value (24, or
irs) and by using the final state for the previous parameter value as the initial state for
the new parameter value, in this way we can surely get clusters with a uniform distribution
of cells for all cluster-doubling cascade. Fig. 3(b) shows the phase diagram among T1Cl
state, T2C2 state and the turbulent phase in the o vs 74 plane. The two critical transition
curves in Fig. 3(b) are obtained by the numerical simulation of the system (1). It is clear
that the regime of the T2C2 state is very narrow. Figs. 4 show the snapshots of ¢ for the
T1C1 state and T2C2 state after a long transient process. The features of coherence and

two-cluster are clearly observed in Fig4. (a), and (b)-(c), respectively. The most interesting

. phenomenon is that the system suddenly evolves to a very complicated rotating motion as

{4 is increased beyond a critical value (ig. & 0.02143 for o = 0.6). The system falls in a
large nyg ~ N clusters motion with all M; small. Fig. 5 shows _the space-time evolution
after a very long and complicated transient process for ige = 0.0215 and & = 0.6. The
turbulent character of the motion is very clear. The evolution of ¢; (the first junction)
is displayed in Figs. 6(a) at the same parameters values as those of Fig. 5. The motion
displays periodic behavior (2P) for a long time, is suddenly interrupted by large bursts and

quickly resumes the periodic fashion. The similar features of the difference ¢; — ¢; are also
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displayed in Fig. 6(b). As iy is far from the critical value, more and more random large
bursts take place more frequently. Although this behavior is similar to the characteristic of
well-known intermittency, which were investigated in the low-dimensional systems [Pomeau
Manneville, 1980], it is an essential type of spatiotemporal intermittency, which has not
been found before in the rf-driven JJSA or other high dimensional globally chaotic systems.
The spatial variable, the dynamics of a single cell and the global coupling are of crucial
importance for this interesting phenomenon.

In conclusion we analyzed the complex spatiotemporal dynamics of the rf-driven JJSA.
Clustering bifurcation, clustering induced spatiotemporal chaos and spatiotemporal inter-
mittency are shown to appear in these systems. The spatial variable, the dynamics of a
single cell and the global coupling are of crucial importance for the existence of these inter-

esting spatiotemporal phenomena.
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FIGURE CAPTIONS

2 X .
1 Plots of ¢ at t = nT(T = er ), with n being large enough to exclude the transient

rf
process.

2 (a) Bifurcation diagram for the homogeneous or coherent state in o vs. i,s plane. In
the shaded region the coherent state is unstable due to the clustering bifurcation. (b)
bifurcation sequences plotted versus i,y for § = 0.2, Q.; = 0.8, 44, = 0.03 and o0 = 0.1.

(c) The number of cluster, ne, vs. i,y for the state of Fig. 2(b).

3 (a) Bifurcation sequences plotted versus i4. for § = 0.2, @,y = 0.8, i,y = 0.61 and
o = 0.6. (b) The critical boundaries among the T1C1 state, the T2C2 state and the

turbulent phase in ig. — o plane with the parameters of (a).

4 Snapshot of the asymptotic solution of the system (1) after the transient process for
G=02i;=0618,;=080c=06 and N = 100. (a) ig. = 0.0206. (b) and (c)

are two successive snapshots for ¢4, = 0.0210.

5 The time-space evolution of the system (1) for 4. = 0.0215 and the other parameters
the same as those of Fig. 4. The plots are at ¢ = nT after some transient process,

where T is the same as in Fig. 1. The features of turbulence are clearly observed.

6 The evolution of ¢, and ¢; — ¢ with the same parameters as those of Fig. 5. The

features of spatiotemporal intermittency are clear.
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