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Stationary Turing patterns versus
time-dependent structures in the
chlorite—iodide—malonic acid reaction

J.J. Perraud, K. Agladze, E. Dulos and P. De Kepper

Centre de Recherche Paul Pascal/CNRS, Université Bordeaux I, Av. A. Schweilzer,
33600 Pessac, France

The standing concentration patterns recently discovered in open gel-filled reactors, with the
chlorite-iodide—malonic acid (CIMA) oscillating reaction in the presence of starch, were
ascribed to a Turing-type reaction—diffusion symmetry breaking instability. Here we extend
the investigations to other regions of parameters, with a particular emphasis to the role played
by the chemical nature of the gel matrix and by the starch concentration on the onset of
stationary patterns. Stationary Turing patterns are shown to develop in gel-free systems.
Transitions between stationary Turing structures and wave patterns are presented. The first
evidence of an anti-symmetric “homogeneous” wave source is presented.

1. Introduction

The first clear evidence, in a single-phase system, of the stationary concen-
tration patterns predicted by Turing, in 1952 [1], was made in our laboratory in
December 1989 [2,3]. This long sought nonequilibrium chemical structure
[4,5] was obtained by operating the chlorite—iodide-malonic acid (CIMA)
reaction [6, 7] in an open spatial reactor. This discovery sets chemical systems
again in the main stream of the most advanced problems of nonlinear physics
and has revived theoretical studies on Turing patterns [8-12] with special
emphasis on pattern selection in three-dimensional systems [9, 10] and on the
role played by the technically unavoidable constraint gradients in the spatial
mode selection processes [8]. The initial experimental ascertainment of Turing
pattern was rapidly confirmed in other laboratories [13] and new properties of
these standing spatial structures were investigated [13-16].

In this report, we summarize some of our previous observations, enlarge the
scope of investigation, and describe a number of undocumented phenomena.
We shall, in particular, address problems such as those risen by the tridi-
mensionality of the patterns, by the possible interaction with the gel-matrix,
and the actual role of starch. Finally we will focus on a new type of
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Abstract

We describe experimental evidence of stable triangular and hexagon-band
mixed mode nonstandard patterns, in a three-dimensional chemical
reaction—diffusion system with steep gradients of chemical constraints.
These gradients confine the structures in a more or less thick stratum of the
system. At onset, patterns develop in monolayers which approximate two-
dimensional systems; but beyond onset, threc-dimensional aspects bave to
be considered. We show that the nonstandard pattern symmetries result
from the coupling of standard hexagonal and striped pattern modes which
develop at adjacent positions, due to the differences in parameter values
along the direction of the gradients.

We evidence a Turing-Hopf codimension-2 point and show that some
mixed mode chaotic dynamics, reminiscent of spatio-temporal inter-
mittency combining the Turing and the Hopf modes, are also a conse-
quence of the three-dimensional aspect of the structure. The relations
between these observations and the theorctical studies performed in
gennine two-dimensional systems are still open to discussion.

1. Introduction

A large number of nonlinear systems, maintained far from
equilibrium, can produce stationary, boundary symmetry-
breaking patterns in spatially extended systems 1], The
chemical patterns predicted by Turing in 1452 [2] have
received a renewed interest {3] since their first observation
in appropriate open spatial reactors [4]. Turing patterns are
quite special; not only they are often proposed as a route to
morphogenesis in living things, but contrary to most other
pattern forming systems, the wavelength selection does not
depend on any geometric dimension of the system (contrary
to Rayleigh-Bénard convection cells or Taylor—Couette
vortices) and they are not linked to the existence of an inter-
face (at the opposite of capillary waves or Marangoni
convection). The critical wavelength of Turing patterns only
depends on intrinsic parameters such as rate constants and
diffusion coefficients [5, 6]. The corollary is that the Turing
instability readily produces patterns that organize in the
three directions of space [6], whenever the geometric dimen-
sions of the system make it possible. The originality of
Turing structures lies in the conterintuitive organizing role
of diffusion, a physical process that usually smears out any
concentration gradient. Selforganization originates in
appropriate differences in the diffusion coeflicients of species
involved in the nonlinear kinetic mechanism. Species con-
trolling the positive feedback loop must diffuse slower than
any inhibitory species.

For simplicity reasons and mathematical tractability,
most theoretical studies were devoted to onme- and two-
dimensional systems. Also, most hydrodynamic systems can

appropriately be accounted for by low dimensionality
approaches. Moreover most theoretical and analytical
works were performed on systems considered as uniformly
constrained in space. In this case, the only spontancous
stable planforms that tesselate the plane are hexagonal
arrays of spots and parallel stripes (or bands). In three-
dimensional systems, the most stable structures are body
centered cubic lattices, columns forming bexagonal prisms,
and stacks of parallel sheets [5, 7]. At onset, geperaily, the
first stable patterns in 2D and 3D systems are respectively
the hexagons and the bce structures and the transition from
the uniform state is subcritical. Note that in real chemical
systems, it is difficult to fulfill the uniform constraint sim-
plifying assumption and, as a resuit, unexpected planforms
are readily observed [8-10].

Moreover, like many nonlinear systems, chemical
reaction-diffusion systems can exhibit besides a spatial
instability (the Turing bifurcation) a temporal instability
(the Hopf bifurcation). A direct transition for stationary pat-
terns to temporal patterns can be obtained as a function of
constraints. In the vicinity of this transition, the Turing and
Hopf instabilities can couple to produce mixed-mode pat-
terns which often lead to spatio-temporal chaos.

The aim of this paper is to contribute to the understand-
ing of the non standard patterns and complex spatio-
temporal patterns experimentally observed in commonly
used open spatial reactors. For this purpose we establish
and analyse a typical section of the phasc diagram of the
CIMA reaction. But prior to this, we briefly recall the main
features of the reaction and the basic principles of the open
spatial reactors used in these and previous experiments.

A Turing instability has been experimentally demon-
strated in only one family of liquid phase chemical reac-
tions, the chlorite-iodide-malonic acid (CIMA) oscillatory
redox reaction and its variants [11, 12]. The important
kinetic steps of the reaction mechanism have been eluci-
dated [13]; iodide (I ") and chlorite (C10;) play respectively
the roles of the main activator and inhibitor species. The
necessary difference in diffusivity between the activator and
the inhibitor is obtained by introducing a species of reduced
mobility that forms a reversible selective complex with the
activator [14-16]. Polyvinylalcohol (PVA), a macro-
molecule used as an iodine-iodide colour indicator, plays
this function in the experiments reported here.

In closed reactors, only transient spatial organizations
can be observed [16], precluding appropriate cha--cter-
ization of the stability of states and of the bifur. .ons
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Fig. 1. Sketches of open spatial reactors. (2) Basic principles: The reactor
proper consists of a block of hydrogel (L x h x w) in contact with the con-
tents of two scparated reservoirs (A and B). The reservoirs are vigorously
stirred and continuously fed with fresh solutions of reagents. L and h are
the geometric dimensions of the feed surfaces of the gel reactor and w is the
width of the gel, the distance between the reservoirs. A is the width over
which the chemical pattern, of characteristic wavelength A, develops.
(b) Disc reactor, L=hk»wp»l Dimensions presently
dizmeter = 2imm; w=3mm. (c) Thin sttip reactor, L wph=x4i
Dimensions presently used: L = 20mm; h = 0.2 mm; w = Imm.

between them. To overcome this limitation, open reactors
were designed to maintain the reaction systems at a con-
trolled distance from equilibrium. The core of these reactors
(Fig. 1) is a block of soft hydrogel (polyacrylamide, poly-
vinylalcohol, or agarose) [5, 6] with two opposite sides in
contact with the contents of two stirred tanks filled with two
different subsets of reagents. The reagents in the tanks, con-
tinuously refreshed by pumps, diffuse into the gel where they
react. The other sides of the piece of gel usually correspond
to impermeable boundaries. The gel damps out convective
fluid motions so that the only processes within the gel are
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Fig. 2, Pattern phasc diagram obtained with the disc reactor. Section in

the ([KI], [CH,{COOH]},]y) plane, all other constraints maintained con-
stant, see text.
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reaction and diffusion. With such a boundary control of the
system, chemical concentration gradients naturally settie
perpendicularly to the feed surfaces, producing iso-
concentration planes parallel to these surfaces. Now, one
can intuitively understand that in such feed conditions, a
spatial or temporal pattern will only develop in a more or
less restrained region A of the gel, between the feed surfaces.
Depending on how the wavelength of the patterns compares
with the geometric size of the reactor and with A, one-, two-
or three-dimensional patterns can develop {5].

Two main geometries of reactors are commonly used: the
disc [Fig. 1(b)] and the thin strip [Fig. 1(c)] reactors. They
provide complementary views of the patterns in two orthog-
onal directions. The thin strip allows for a clear determi-
nation of the relative width A and position of the patterning,
region between the two feed boundaries. The disc allows for
the observation of the pattern organization over the iso-
concentration planes. Note also that because of the gra-
dients, different instabilities or pattern modes can be
selected at different distances from the feed surfaces. Observ-
ations are made with a video camera fitted with macrolens.
Images are sent to a frame grabber and contrasts are subse-
quently enhanced.

2. Experimental observations
2.1. Experimental conditions

The experimental conditions are very similar to those used
in previous publications of our group [4, 6, 8]. The gel
matrix is made of agarose (Fluka Biochemica 05070), 2%
weight dry material. It is loaded with Polyvinylalcohol
(PVA) (Aldrich, 9000-10000 MW). PV A is used both as a
polyiodide colour indicator and as an agent of reduced
mobility complexing the activator. PVA is a better defined
and a more easily soluble chemical than strach which was
used in our previous experiments. It forms redish-purple
complexes in the presence of iodine and iodide species and
is colourless in the absence of iodide. However, this colour
mdicator can slowly diffuse out of the gel; to avoid these
losses, PYA was fed into the reservoirs with same concen-
tration as in the gel. Chlorite and iodate in basic solutions
were fed onto one side (side A) and iedide and malonic acid
in an acetic acid solution were fed onto the other side (side
B). Note that in the presence of PVA the solution in
reservoir B turns redish-purple because iodine diffuses out
of the gel; reservoir A remains clear. During the whole set of
experiments, the following constraints were maintained con-
stant: [KIO,], = 1.88 x 1073 M, [NaClO,1, =20
x 107*M, [NaOH], =80 x 107*M, [CH,COOH];=
2.1M, and [PVA],, = [PVA], = [PVAl = 1.5¢/L. The
residence time 7 of the reservoirs is 8.7 minutes, and all
experiments were performed at 5 + 0.1 °C. A phase diagram
was established by gradually changing the [CH(COOH), 1,
for different fixed values of [KI]y. The qualitative changes
in pattern were tracked down and the transition values
determined with more or less refined steps. Each feed com-
position was maintained for at least 12h to make sure that
the system had reached its asymptotic state; in some cases,
close to the different bifurcation lines, the composition was
maintained constant over 72h, because of the slowing down
of the pattern settling dynamics. Each feed composition was
repeated several times and the reproducibility of the experi-
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Fig. 3. Stationary planforms observed in the disc reactor. Standard patterns: (a) hexagonal array of “clear” spots from region Ila ([KI]g =20 x 1073 M;
[CH,(COOH),1 = 2.25 x 10~*M); (b} array of parallel stripes (bands) from region Ib ([KI], = 2.0 x 107>M, [CH(COOH), ], = 2.5 x 107* M). Non-
standard patterns: (c) array of symmetric triangles from region Ilc ([KIJp = 3.0 x 107*M, [CH,{(COOH),]p = 3.2 x 1073 M); (d) array of “dark” hexa-
bands from region Id ([KI]g = 2.5 x 107 M, [CH,(COOH), 15 = 3.1 x 10~ * M). All patterns are at the same scale: view size 1.7 x 1.7mm.

ments over different separated runs was better than 10%.
The resulting phase diagram was plotied on Fig. 2; it can be
divided into three main regions: Region I corresponds to
the uniform state (no symmetry breaking pattern) observed
at low [MA], and at [KI]g below 1.68 x 10~ *M; region II
corresponds to stationary Turing patterns; different plan-
forms can be distinguished in this region; region III gathers
different time dependent structures. TT'P and HPH’ respec-
tively correspond to the Turing and Hopf bifurcation lines.
In spite of refined experiments (step changes of about 2%)
occasionally performed in the vicinity of these lines, no hys-
teresis was unambiguously observed as a function of the
malonic feed concentration.

At low iodide concentration, the relative malonic acid
concentration range over which the Turing pattern develops
gradually decreases. This would agree with the trend pre-

dicted by the skeletal model proposed by Lengyel and
Epstein [14], if one supposes that, in the patterning stratum,
the iodine concentration grossly follows that of iodide fed at
the boundary of the gel. However, this gradual decrease is
suddenly interrupted at a critical iodide feed concentration.
Below this value no symmetry breaking pattern and no time
dependent structure is observed. The Turing and Hopf
bifurcation lines suddenly curve and collide at the point P.
This is a Turing/Hopf codimension-2 point around which
the two instabilities develop from the uniform stationary
state. This is the first determination of such a point in a
chemical reaction—diffusion system. Unfortunately the situ-
ation is degenerated, since the Turing and Hopf bifurcation
lines practically merge together; moreover, the contrast of
stationary patterns and waves sharply decreases along the
TPH’ line,

Physica Scripta T67



&b I3, kuaomcs, iL. LJulos and 10, de s.epper

Fig. 4. Mixture of plaoforms observed in region Ile ([KI], =335
x 1072 M, [CH,(COOH),]; = 4.6 x 10™? M); view sizc 3.0 x 3.0mm.

22. Stationary patterns

As predicted by theory of two dimensional systems, the first
stable pattern mode observed at onset is an hexagonal array
of light intensity maxima (subregion IIa). This region is fol-
lowed, at low [KI], by 2 domain of stripe (or band) pattern
{sub-region IIb). Figures 3(a) and 3(b) illustrate these pat-
terns. Note that close to the point P, the band pattern seems
to develop at onset; this would iofer that the quadratic term
of the Turing normal form drops to zero in this region of
the phase diagram [1, 5, 6]. At higher iodide feed concentra-
tions, more unusual templates are observed: They are the
symmetric triangles of subregion Ilc [Fig. 3(c)], and the
mixed hexagon and stripe modes of subregion IId [Fig.

Fig. 5. Wave pattern observed in region IMla; full view of the disc rcactor,
average wavelength of the pattern 12mm ([KIJp=2.5x 107°M,
[CH,(COOH), ]z = 4.5 x 1073 M).

Physica Scripta T67

Fig. 6. Superposition of a stationary hexagonal array of “clear” spots and
travelling waves from region IITb. Wave paticrns are often more intricate
than the one shown here, these were chosen for clarity reasons; (&) and (b)
are two snapshots separated by balf a period of oscillation. View size
7.5 x 5.0 mm.

3(d)] — we shall call the latter an “hexa-band” pattern. In
addition, an intricate mixture of more or less symmetric tri-
angles, hexa-bands and poorly contrasted stripes is found in

_subregion Ile (Fig. 4). The transitions between all these new

patterns are relatively smooth: patches of coexistent plan-
forms are observed close to the pattern transition regions.

2.3. Spatio-temporal patterns

At high malonic acid feed concentrations, the chemical
system exhibits travelling waves. As illustrated on Fig, 5, the
wave patterns are not very regular, the wavelength is rather
loosely defined, but the period is quite uniform over the
whole surface. The mean wavelength and period generally
decrease with increasing malonic acid concentration and the
contrast or amplitude decrease with the iodide feed concen-
tration. In particular, the amplitude becomes vanishingly
small along the PH’ transition line. Waves are very sensitive
to small inhomogeneities and usually start at the rim of the
disc where the boundary conditions are slightly different due
to the holding techmique of the piece of gel [18]. Many
wavefronts spontaneously break and the separated tips of
the waves tend to rotate with the same period than the rest
of the wave pattern. Note that this differs from triggered
waves in excitable media where spirals always tend to
induce a higher frequency than the spontaneous bulk relax-
ation oscillations [19]. The waves observed in the present
experiments are phase waves and the origin of the wave
breakage is not clearly determined; it could result from an

-3 -



Fig. 7. Turing-Hopf spatio-temporal “turbulence”. The two snapshots (a)
and (b) arc taken at half-an-hour interval and illustrate the complex pattern
dynamics observed in region Il

intrinsic instability [20] of the wavetrain dynamics or from
small inhomogeneities in the texture of the gel. The latter
are difficult to totally eliminate from experiments. Wave
breakages are not totally randomly distributed over the
surface but they are not always precisely located at one
place either. The spiraling tips of the waves tend to drift
away from the place they were formed. From time to time,
two counterrotating spirals annihilate on head on collision.

The transition from the stationary Turing patterns of
region II to the plane wave state of region 111a can be direct,
along the MP portion of the Hopf bifurcation line, or indi-
rect, through a series of complex spatio-temporal behav-
iours where both waves and Turing like patterns are
associated. The direct transition is sharp and, as mentioned
above, exhibit no detectable hysteresis.

In the neighbourhood of the MP transition line, depend-
ing on the direction of the supercritical change, one or the
other state slowly invades the other with a sharp transition
front between the two states. The oscillatory dynamics does
not penetrate over more than one Turing wavelength into
the stationary stripe (band) structure. Furthermore, the
transition front acts as a wave source [8].

At high iodide concentration, above point M, two differ-
ent mixed mode states are observed: In subregion Illc, the
mixed mode appears as a stationary hexagonal pattern over
which wavelike changes of the intensity are superimposed
(Fig. 6); the two modes scem to very little interact in this
region of control parameter. In contrast, waves and Turing

like patterns strongly interact in subregion Ilib. This new
spatio-temporal structure, is characterized by a less ordered
Turing mode superposed by irregular waves and scattered
with more or less large “holes” dominated by the sole oscil-
latory Hopf mode. Figure 7 provides a snapshot of such a
spatio-temporal structure. The “Hopf-holes” correspond to
the large uniform grey patches surrounded by regions of
smaller mosaic-like structures, the Turing mode. The
dynamics of the system never scttles into a regular spatio-
temporal pattern, even after several hours: While the Hopf-
holes are slowly invaded by the irregular Turing mode,
conversely, new holes suddenly appear inside the Turing
mode texture at other random locations. The Turing mode
evolves on a time scale slower than that of the oscillations.
The waves start at the rim of the holes and the phase of the
oscillations tends to organize, from hole to hole, in such a
way that a phase difference of = establishes between adja-
cent oscillatory holes. A more detailed description of the
dynamics can be found in Ref. [8].

3. Discussion

It is natural to assume that at onset the width A of the
pattern stratum is minimum and that it is likely to grow as
the system is moved away from the uniform state. Theoreti-
cal calculations show [21] that in three-dimensional systems
with parameter gradients that mimic our experimental pro-
cedure, Turing patterns initially develop in monolayers. At
onset, monolayer patterns follow the same pattern selection
rules as genuine two-dimensional systems but the bifur-
cation is delayed until A ~ 1/2. The first transition is generi-
cally subcritical and leads to a fully developed layer of
beaded structures with hexagonal symmetry. It is followed
by a pattern made of columns laying on the initial iso-
concentration planes with an overlap of the stability ranges
of the respective structures. By projection on a plane per-
pendicular to the gradients these beads and columns are
viewed as 2D hexagon and band planforms. No other stable
planform is predicted for monolayers close to onset. This is
just what it is observed in the phase diagram (Fig. 2) at low
iodide feed concentration, except that no hysteresis is
observed as a function of [MA]p at the transition lines. The
parameter range over which states overlap could be so
narrow that the small inhomogeneities of our system would
always nucleate a transition to the most stable state.

At a distance from onmset, monolayer theory predicts a
new generic feature, the restabilization of the hexagonal
modes [21]; this type of phenomenon is often referred as
re-entrance [22]. Beyond the case of monolayers, there is no
systematic theoretical studies of pattern selection in contin-
wous 3-D systems with steep parameter gradients. New
types of stable planforms could be expected with A > A. In
this respect, it is attractive to think that the nonstandard
patterns observed in subregions IIb, Ilc and I1d are gener-
ated by “outgrowths” of the monolayer patterns in the third
direction to form a more or less separated second layer of
patterns. This would be consistent with the fact that the
nonstandard planforms are always observed at a distance
from the Turing bifurcation lines.

It is a difficult technical task to directly solve the three-
dimensional organization of the chemical patterns by
optical means, because the patterns are not sharp objects
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and the light intensity contrasts decrease with the decrease
of focal depth, thus with spatial resolution; also the pattern
contrast (amplitude) changes with the local values of the
parameters. Nevertheless, experiments performed in thin
strip reactors, can provide a direct information on the loca-
tion and width of the patterning region between the two
feed boundaries. Different complementary sets of experi-
ments were performed with such a reactor geometry with
the same feed composition, residence time t of the
reservoirs, and temperature T as in experiments performed
in the disc reactor. Though experiments performed in so dif-
ferent reactor geometries are not always easily comparable
in the details, the gross features of the phase diagram are
preserved. The colour profiles viewed in the strip reactor are
composed of several parts explained elsewhere [4, 6, 8, 10];
the patterns of interest to us are those breaking the bound-
ary feed symmetry. The experiments in the thin strip reactor
show that at low iodide feed concentration either only one
row of spots (stationary Turing pattern) or a train of waves
with a small extent in the direction of the gradients are
observed as a function of malonic acid feed concentration.
Figures 8(a) and 8(b) illustrate these features. At high iodide
values, two (and even three) rows of spots can be observed
at intermediate values of malonic acid concentration [Fig.
9(a)l. On gradually increasing [MA]Jg, first the most inter-
nal row of Turing pattern loses stability and give place to
waves. At that time, the wavetrain only “weakly” interacts
with the row of stationary spots. This interaction basically
produces [Fig. 9(b)] an elongation or even a brief spot split-
ting in the direction of the gradients as the clear (oxidized)
phase of the wave passes by; but spots recover their original
shape under the dark (reduced) phase of the wave and their
positions remain unchanged. On further increasing [MA],
[Fig. 9(c)], waves “strongly” interact with the stationary
pattern which can then be partly erased from place to place,
After some time, the stationary Turing mode grows again at

Fig. 8. Patterns observed in the thin strip reactor. At [KI]g =15
x 1073 M;; (a) single row of stationary spots obtained at low malonic acid
feed concentation. (b} wave pattern travelli- . parallel to the feed bound-
aries (horizontal) found at higher malonic . J feed concentration; note
that the extension of the waves in the direction of the feed gradient is small,
of the order of L Arrows indicate the direction in which the wave pattern
Propagates.
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Fig. 9. Patterns observed in the thin strip reactor. At [KIJg = 3.0
x 10™*M: (a) Double row of stationary spots; (b) one row of stationary
pattern next to travelling wave patterns, arrows indicate the direction of
wave propagation; (c) intricate wave and transient stationary spot pattern;
(d) travelling wave pattern observed at high malonic acid feed concentra-
tion (case of a wave sink), note the large extension of these waves in the
direction of the feed gradients. Arrows indicate the direction of the trav-
clling wave patterns. All snapshots arc taken at the same scale: view size
26 x 1.0mm.

these locations and is erased again a while later. Finally, at
still higher [MA], the Turing mode completely vanishes
and only travelling waves extending over a width A larger
than the Turing wavelength i1 are observed [Fig. 9d)}.
These complementary observations support the idea that
the stationary nonstandard planforms and the complex
spatio—temporal structures viewed in the disc reactor corre-
spond to two-dimensional projections of actually three-
dimensional organizations.

Numerical calculations show [23] that in the presence of
parameter gradients, patterns with different symmetries can
develop at different locations along these gradients. Pre-
vious experimental observations [6, 8, 24] are consistent
with the above mentioned numerical results. The main open
question concerns the possible stable phase relations
between the different adjacent planforms. The triangular
patterns of subregion IIc can be produced by a moiré effect
due to the superposition of a layer with an hexagonal array
of clear spots and a layer with an hexagonal array of dark
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spots, with the spots of one array on the top of every two
lacuna of the other. Though only stable monolayer arrays of
clear spots have been obtained, monolayers of black hexa-
gons have been observed as transients, in these and other
experimental conditions [6, 10, 247 The dark hexa-band
patterns, in subregion IId, can correspond either to the
superposition of a layer of columns and a layer with an hex-
agonal array of dark beads with the lines of beads in phase
with the dark phase of the columns, or to the superposition
of two layers with hexagonal arrays of clear beads slightly
off their respective lacunarity positions. The first hypothesis
would be more in the continuity of the interpretation for the
triangles but the second cannot be totally rejected at the
present time.

Recently Bestehorn [25] has performed a stability
analysis of the global patterns resulting from the linear
coupling of two normal form equations for Turing in two
planes which differ by the value of their quadratic terms — a
parameter which controls the sign and stability of the
hexagon patterns [1, 5, 6]. He shows that in these condi-
tions, symmetric triangles and the bexa-band mixed modes
are stable global patterns which respectively result from the
coupling of hexagons of reverse signs and of hexagons and
bands. However, the bifurcation sequence predicted by these
calculations does not agree with the experimental observ-
ations. In the calculations the standard hexagonal planform
is separated from the triangular planform either by hexa-
bands or by stripes; in experiments the triangles (subregion
IIc) follow immediately the hexagons (subregion lla). The
difference might come from the discrete nature of the two
plane model which contrasts with the spatial continuum in
the third direction of the real system. The sequence and the
possible stable phase relations between the different layers
of patterns could also depend on the shape of the confining
parameter well. Also the neighbouring uniform modes
should be taken into account since they can enhance quite
dramatically the stability of the hexagonal modes [22].

The spatio-temporal behaviours reported here have
already been described in a previous publication [8]. It was
suggested that the class of spatio-temporal structures found
in subregion IIic results from the simple superposition of a
space instability and a time instability living in two adjacent
layers, but the effective dimensionality of the spatio—
temporal intermittency found in subregion Iilb was until
now unclear. Theoretical calculations show that the coup-
ling between the Turing and the Hopf instabilities can lead
to a mixed mode and to spatio—temporal chaos in one- and
two-dimensional systems [27]; the latter chaos is remi-
niscent of observations made in subregion IIIb. Now, the
present experiments show that the phase diagram domains
corresponding to dynamical behaviours suggestive of a
Turing-Hopf interaction disappear below the same critical
todide feed value than the nonstandard stationary patterns
which we have attributed to pattern outgrowths in the third
direction. This leads us to think that the observed Turing-
Hopf intermittency heavily relies on the structure organiz-
ation in the third direction. The spatio-temporal dynamics
observed in subregion IIic and I1Ib are probably both the
result of the spatial coupling of a Turing and a Hopf insta-
bility turned on in adjacent planes. This assumption is
further supported by the observations performed in the thin
strip reactor. Though spatio-temporal intermittency can be

obtained in genuine 2-D systems, it seems that the three-
dimensional aspects play an important role in experiments.
When the spatio-temporal pattern confinement width Als
reduced to the size of A, the Turing-Hopfl mixed mode and
intermittent dynamics disappear. Only the plane wave pat-
terns remain. However, the spiral defects of these waves
exhibit a quite interesting peculiarity: A finite amplitude
corresponding to an elementary Turing cell forms the core
of the spirals [8]. Note that, the amplitude of this residual
Turing mode decreases as the system is driven away from
the HP bifurcation line. It is also worth mentioning that the
present observations do not preclude that quasi-2D Turing-
Hopf modes might exist for other experimental conditions.

4, Conclusion

Though it is difficult to make a direct analysis of the three-
dimensional organization of chemical patterns, we argue
that the stable triangular and hexa-band mixed mode pat-
terns, observed in an extended disc reactor, originate in the
interaction of different classical hexagon and band plan-
forms developing at adjacent positions between the feed
boundaries. Triangles and hexa-bands can be obtained by
moiré effects from the superposition of an hexagonal array
of dark spots with respectively an hexagonal array of clear
spots or an array of stripes. Using a new type of disc reactor
which allows for the unfolding in space of a sequence of
pattern transitions, we have recently observed [10] stable
moiré patterns resulting from the overlay of an array of
clear spots and an array of stripes with the lines of spots in
concordance either with the clear phase or with the dark
phase of the stripes. Furthermore, staggered layers of bands
were identified in these experiments. Other nonstandard
pattern planforms were also reported by another group; in
particular, an array of clear spots exhibiting an harmonic
substructure, dubbed “black eyes”, is reported [9]. The
unharmonic features of these seemingly 2-D patterns could
be excited by the longitudinal instability, that is the insta-
bility growing in the direction of the parameter gradients,

Summarizing, the presence of steep parameter gradients
in one direction of an extended three-dimensional system
makes pattern selectton mechanisms more versatile than
genuine two- or three-dimensional systems with uniform
constraints. Though there are a few promising theoretical
results on pattern selection in systems in the presence of
parameter gradients, further advanced analysis are still
necessary in order to determine which are the relevant fea-
tures that control the stable phase relations between the
successive “layers” of pattern modes and if the parameter
gradients can play a role in the excitation of unharmonic
terms.

In the case of the observed spatio-temporal structures, it
is still unclear if the dynamics obtained by coupling regions
of space with different autonomous space and time insta-
bilities can be readily compared with the Turing-Hopf
mixed modes computed for genuine 2> systems. In this
respect more theoretical work should be petformed around
the Turing-Hopf codimension-2 point in systems submitted
to steep gradients of constraints.

The understanding of pattern selection under nonuniform
parameter conditions is of great interest since most natural
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systems are not uniformly constrained over space. In partic-
ular, these studies could be relevant to biological systems
since all biochemical informations and nutrients that come
across tissues or cellular membranes can seldom be con-
sidered as uniformly spread over space.
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Abstract

We elaborate on the transition from quasi-two-dimensional to three-dimensional Turing patterns in a chemical reaction—
diffusion system confined in gradients of chemicals between two feed boundaries. This transition is observed in open spatial
reactors specially designed 1o make possible the unfolding of a pattern sequence in one direction of the plane of observation.
In this direction, the confinement of the structure is progressively relaxed. Complementary observations from two reactor
geometries allow the dimensionality of the structure to be elucidated: quasi-two-dimensional and three-dimensional patterns,
respectively, correspond to patterns developing in monolayers and in bilayers. Beyond the now classical hexagonal and stripe
patterns, various new stable planforms are shown to result from the coupling of these two classical pattern modes which

develop in two adjacent layers, with well-defined phase retations between the two pattern modes.

PACS: 05.70.Ln, 47.54.4r; 82.20.Mj; 80,

Keywords: Turing patterns; Reaction—diffusion; Pattern dimensionality; Confined systems; CIMA reaction

1. Introduction

Turing patterns belong to the class of self-
organization phenomena that result from a sponta-
neous symmetry breaking instability in non-linear
dynarmical systems maintained at a controlled dis-
tance from thermodynamic equilibrium. These are
stationary concentration patterns of solvated species
that result from the sole interplay of molecular diffu-
sion and chemical reaction. Such chemical reactions
must involve antagonistic activatory and inhibitory
kinetic processes. Turing patterns call for differences
in the diffusion coefficients of species, in particular,
a species controlling the inhibitory process must dif-
fuse faster than species in control of the activatory

* Corresponding author.

process. The patterns are characterized by an intrinsic
wavelength, that is wavelength is independent of any
geometric dimension of the system. Due (o seemingly
contradictory requirements for their formation, the
first unambiguous experimental observation of Tur-
ing patterns [1] occurred nearly 40 years after their
theoretical prediction by Turing in 1952 [2]. Besides
their fundamental interest in physics [3], their pos-
sible implication in certain stages of morphogenesis
made them popular among a community of biologists
and biomathematicians [4—6].

Most of the theoretical works on pattern forma-
tion assume, for mathematical simplicity, that the sys-
tem be uniformly constrained over space. Under these
conditions, it has been analytically determined and
confirmed by numerical simulations that only a small
number of planforms can spontaneously develop. In

0167-2789/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved
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two-dimensional systems, these planforms consist of
hexagonal arrays of dots and parallel stripe patterns
{7-9]. In three-dimensional systems, lamella, hexag-
onal prisms and body centered cubic arrays {10] are
such selected pattemns.

It is worth noting that in real chemical systems, it is
impossible to fulfil the uniform constraint conditions.
As we shail see in more detail further on, the experi-
mentally observed Turing patterns develop in systems
that naturally involve parameter gradients. These gra-
dients confine the pattern in a more or less narrow re-
gion of space where appropriate chemical conditions
are met for the Turing instability to develop.

Nonetheless, the effect of parameter gradients in
a chemical one-dimensional system was considered
form a theoretical point of view during 1970’5 [11].
It was also theoretically examined in two- or three-
dimensional systems, in the framework of patterning
models for biological systems {12,13]. In this con-

“text, Boissonade [14] provided in 1988 a numerical
analysis of a Turing bifurcation in a two-dimensional
rectangular system fed only by diffusion from two
opposite boundaries, a configuration which naturally
leads to gradients of feeding species. These calcula-
tions show that at onset, the Turing instability develops
a dot pattern orthogonally to the parameter gradients.
Our initial experimental observation of sustained Tur-
ing patterns followed this more practical approach [1].

Using the CIMA reaction, we have observed pat-
terns developing in successive rows of spots [1,15,16],
in perfect agreement with Boissonade’s theoretical
results [14,16]. Soon after, with the same reaction
and a reactor more exiended in the third direction,
Ouyang and Swinney produced spot and stripe pat-
terns [17,18] analogue to those predicted in extended
two-dimensional systems; these patterns tessellate
planes that extend in the third direction of the re-
actor. Some of our experiments indicated that pat-
tern can be three-dimensional [19]. Quyang et al.
rather produced apparently two-dimensional patterns
[17,18,20]; then, they also considered the develop-
ment of three-dimensional patterns. Further experi-
mental observations show that different patterns can
develop at different distances to the feed boundaries
(21} and that the dimensionality of patterns may de-

pend on some geomeltric size of the reactor [22]). More
recently, we have published a preliminary observation
of three-dimensional patterns consisting either of two
contiguous planes tessellated with stationary patterns
or of one plane of stationary patterns and one with
travelling waves [23 24],

Here, we report on experiments performed in
reactors designed lo elucidate how two-dimensional
patterns evolve to three-dimensional patterns as the
confinement in the third direction is gradually re-
laxed. We also examine the transition between differ-
ent types of two-dimensional patterns under a slow
parameter ramp. We emphasize that there are no gen-
uine two-dimensional experimental patterns but rather
patterns developing in monolayers and we discuss the
experimental patterns in monolayers in connection
with actually two-dimensional patterns produced by
simulations, The experimental conditions (reactors
and reaction) used for the reported experiments are
indicated in Section 2. We describe in Section 3 the
patterns observed first in the asymptotic state of the
system, then in a transient situation. Finally these
experimental results are discussed in Section 4, in
the light of results of theoretical studies and simu-
lations of such systems, and taking into account the
dimensionality of the patterns.

2. Experimental conditions

2.1. Reactor

The core of the reactor is a piece of soft hydrogel
with two opposite faces in contact with solutions of
reagents kept in two reservoirs I and I (see Fig. 1(a)).
Starting from these faces, reagents diffuse into the
gel where they meet and react. The other sides of
the piece of gel correspond to impermeable bound-
aries. The gel prevents the chemical reacting medium
from any convective fluid motion so that the only
active processes inside the gel are the reaction and
the molecular diffusion of species. Solutions in reser-
voirs I and 11 are permanently renewed by pumps
and continuously stirred, ensuring constant and uni-
form boundary conditions. Reagents are distributed in
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Fig. |. Sketches of the open spatial reactors. {a) The basic principle: the piece of gel (L x h x w) is in contact with the contents
of stirred reservoirs | and II; A is the width of the pattern-forming region. Observations are made from above (atrow y) in the thin strip
reactor {with dimensions A < w < L), and perpendicularly to the feed surfaces in the disc reactor {(diameter L. = h). (b) and (c) The
bevelled thin strip and disc reactors. In the thin strip A = 0.2 mm; in both reactors: Wiax = 3.5mm, Wiy = 1.75mm, L = 25mm;

Arrows y and x indicate the observation directions.

reservoirs | and 11 in such a way that neither of the so-
lutions is separately reactive and, due to the differences
in their compositions, strong concentration gradients
of chemicals naturally settle in the gel perpendicu-
larly to the feed surfaces, leading to iso-concentration
planes parailel to these surfaces. Generally, the appro-
priate conditions for the development of a reaction—
diffusion instability are only met in a restricted region
of width A between the two feed surfaces: A depends
on such parameters as the concentrations of feed
species and, of course, on the distance w between
the feed surfaces. Depending on how the wavelength
A of the pattern compares with the dimensions A,
L and h of the pattem-forming region (Fig. 1(a)},

one-, two- or three-dimensional spatial patterns can
develop.

Two different geometries of reactors — the thin strip
reactor and the disc reactor — have been derived from
the general scheme in Fig. 1(a) as follows.

2.1.1. Thin strip reactor

The thin strip reactor is made of a thin narrow
rectangular piece of gel (L 3> w > h; typically
h < I mm). The gel strip is fed by the two long edges
(L x k). Observations made as above (see arrow y
in Fig. 1(a)) provide a direct view of the area that
extends between the feed surfaces. In particular, the
location and the width A of the pattern-forming region

agll=
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can immediately be seen. Pattern develops in rows
of spots or in stripes paraliel to the feed boundaries,
that is orthogonal to the initial ramps of chemicals.
The initial observations of Turing patterns were pef-
formed in a thin strip reactor [1,15,16]. If the gel strip
is thin enough (k of the order of the wavelength A
of the structure), it approximales a two-dimensional
rectangular system. Then one-dimensional or two-

dimensional patterns can be obtained, depending on -

whether they develop on one or more rows.

2.1.2. Disc reactor

The disc reactor is made of a flat disc of gel with
a thickness w. In this geometry, the faces L x & in
Fig. I(a) are circles with a diameter L = h. The
disc is fed by these two circutar faces. Observations
made perpendicularly to the feed surfaces (arrow x in
Fig. 1(a)) give a view of planes paralle! to these faces,
that is in a direction perpendicular to that used in the
thin strip reactor. The disc reactor was first used by
Quyang and Swinney [17,18]. With this geomelry of
reactor, patterns made of arrays of spots or of stripes
readily spread over the whole plane of observation. An
obvious advantage of this reactor geometry is Lo allow
for observation of patterns extended over large planar
areas of uniform parameter values; but it obscures the
pattern development in the third direction (that of the
ramps of chemicals).

Summarizing, patiern in the thin strip reactor usu-
ally appears as rows of spots while it extends over
planes in the disc reactor. Further these rows and
planes are parallel to the feed boundaries in both re-
actor geometries.

2.1.3. Bevelled gel reactors

The reactors in Section 2.1 were slightly modified
for the experiments reported here. The feed surfaces
are no longer parallel but make an angle. Both bev-
elled thin strip and disc reactors (Figs. 1(b) and (c))
were used. In such geometries, w, the distance be-
tween the feed surfaces changes continuously from
175 to 3.5mm over a length (or diameter) L of
25mm. Thus, the feed surfaces make an angle of
4°.

The slant between the feed surfaces introduces a
slow continuous change in control parameters along
the plane of observation. Indeed, the gradient in w
produces a gradual change in the concentration ramps
across the gel, which results in a gradual change in
A, the width of the patternforming region. As a con-
sequence, the number of rows (or planes) of patterns
gradually changes from one end to the other of the
bevelled piece of gel. In addition, since the chemical
processes within the gel are non-linear, the chemical
composition along one row (or plane) will also grad-
ually change. In such conditions, we can expect dif-
ferent types of patterns to develop in the direction of
the slope.

Images were acquired with a black and white video
CCD camera fitted with macrolens and attached to a
personal computer. Subsequently, a picture processor
was used to enhance the grey level contrasts.

2.2, Gel

Experiments were performed in a polyacrylamide
gel loaded with thiodene [1]. Thiodéne is an iodine
colour indicator from Prolabo, containing 7% soluble
starch [25], the excipient is washed out of the gel prior
to use. The picces of gel were made with a solution
of the following composition per 100 ml: 2 g of acry-
lamide, 0.46 g of N, N'-methylenebisacrylamide, both
from Aldrich and 3 g of thiodéne. Polymerization oc-
curs in about 10mm at 0°C.

2.3. Reaction

Experiments were conducted with the chlorite—
iodine-malonic acid oscillating reaction [26] currently
referred as the “CIMA” reaction. Based on a skeleton
kinetic mechanism of the reaction, it was proposed
[27] that iodide {17} and chlorite (C10; ) play, respec-
tively, the roles of the activator and of the inhibitar
species. It was also proposed [27-29] that starch, 2
macromolecule immobilized in the gel network (or
any immobilie functional site of the gel), that makes a
reservible complex with the activator, plays a key role
in the formation of Turing patterns. This assumption
was experimentally corroborated [30].
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The reagents were distributed as follows in the
reservoirs: lodide and malonic acid in sulphuric acid
solution were fed on one side. lodate and chlorite in
basic solution were fed on the other side. Note that on
the chlorite side, the reservoir was fed with iodate in-
stead of iodide. Indeed, when fed on this side, iodide
is rapidly oxidized 1o iodate near the corresponding
feed surface of the gel.

Since the oxidizers, chlorite and iodate, are only
on one side, the oxidation capacity of the chemical
medium inside the gel decreases from that side to the
other. Consequently, near the chlorite side, the iodine
species are oxidized and the gel remains colourless.
Near the malonic acid side, iodine species are present
mostly under their reduced forms [/~ and I which
produce a dark blue complex with starch enclosed in
the gel. Thus, along this side, the gel becomes dark.

The residence time was identical in both reservoirs
and had the same value for both types of reactors.
Al feed parameters and bath temperature (4°C) were
identical in reactors of both types in order to enable
us to compare observations.

3. Experimental results
3.1. Global description

Figs. 2 and 3 give an example of the unfolding of
patterns observed in our two types of bevelled reac-
tors for a same set of feed concentrations. The figures
provide a global view of the bevelled gel strip and disc
after 36 h,

As already mentioned, the directions of observa-
tions for the two reactor geometries are orthogonal.
The symmetry breaking pattern in the thin strip reac-
tor appears as rows of spots parallel to the feed edges
of the strip, In the disc reactor, a much wider variety
of pattems tesselating the plane is observed.

Due to the small wavelength of the patterns (about
0.13 mm) and the pixel resolution of the CCD camera,
macrolens were used to obtain pictures of patterns
with enough resolution. Consequently, only a small
part of the reactor is viewed at one time; the images of
the whole bevelled pieces of gel can be reconstructed

by placing side by side several pictures such as those
presented in Figs. 2 and 3. Note that the magnification
of Fig. 2 is greater than that of Fig. 3. In all the cases,
larger magnifications of selected areas are provided
when necessary. Note also that the focal depth of the
optical set-up used in the reported experiments is of
the order of | mm.

3.1.1. In bevelled thin strip
The experiment presented in Fig. 2 was performed

with a gel strip 0.2 mm thick. The width of the stnp

increases from Fig. 2(a) to Fig. 2(e) and from left to
right in each figure. The figures only show the side of
the strip that bears patterns. Each figure exhibits from
bottom to top: (i) a first dark band that develops next
to the malonic acid fed boundary located atong the
bottom of the pictures, followed by (ii) a clear band
parallel to the preceding dark one, and (iii} a second

dark band parallel to the other bands, inside which a

pattern of clear dots develops; the width of this band

increases with the width of the strip; beyond this, (iv)

a clear zone extends over the rest of the strip.

Let us now focus on the second dark band. Typi-
cally, as the width of the gel strip increases, a spot
pattern emerges in that region; the spots organize in
one, then two rows parallel to the feed boundaries:

- In the narrowest part of the strip (Fig. 2(a)), no spot
pattern is observed: in this region of the gel, no
symmetry breaking pattern develops.

— In the following part {(Fig. 2(b)), the clear spot pat-
tern breaking the boundary symmetry emerges and
develops over one row. Note that the pattern be-
comes fuzzy at the right end of this figure.

— In the widest parts of the strip (Fig. 2{d) and (e}), the
width of the region of symmetry breaking pattern
has increased and the pattern is essentially made
of two rows of spots. However, at some locations,
the amplitude of the spot modulation decreases or
even disappears (right end of Fig. 2(d), left end of
Fig. 2(e)), giving place to a mere or less uniform
clear band. At the very end of the gel strip (right
end of Fig. 2(e)), the two rows can fuse back into
one. Indeed, the parts holding up the gel at each end
may introduce defects of feed in the first and last

.
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Fig. 2. Patterns in the bevelled thin strip. (a)-(¢) are the binarized images of five successive porticns of the strip. The whole pattern
sequence can be reconstructed by placing side by side the five successive images. Pairs of vertical dotted lines (1 and ', 2 and
2', etc.) indicate the same location along the strip. The bar inside {a) corresponds to 1 mm. (a) no symmetry breading pattern;
(b) no symmetry breaking pattern and symmetry breaking pattern forming one row of spots; {c) transition region belween one and
two rows; (d} and (e) symmetry breaking pattern forming two rows of spots. Experimental conditions: concentrations of reagents
in reservoir I:[NaCl0;) = 0.0475M, [NaOH] = 1.2 x 10°2M, [KIO3] = 2 x 1073 M; in reservoir 11: [AM] = 1.3 x 10-2 M,
[H2804] = 1071 M; [KI} = 2 x 1073 M, [Na;80,4] = 3 x 1073 M; temperature = 4°C; residence time of reservoirs = 6 min.

5% along the length of the strip (see also the left
end of Fig. 2(a)).

— The transition between one and two rows can be
seen in Fig. 2(c). A magnification of such a tran-
sition region is given in Fig. 4. At the approach of
the transition region, the modulation of the light in-
tensity in the single row rapidly decreases: spots al-
most disappear. Then, as this fuzzy region becomes
wider, a new clear spot pattern gains consistency.
These spots elongate before separating in two spots
of unequal sizes. The resulting pairs of spots first
arrange obliguely in the pattern band. Then, as spots

in the pairs become more equal in size and inten-
sity, the pairs tilt in the direction of the feed gradi-
ent, giving rise to the appearance of a second row
of spots. Progressively, a shift appears which then
increases between the two spots of each pair. The fi-
nal arrangement in two rows of perfectly staggered
spots is reached at the right end of Fig. 4(b) (and in
the middie part of Fig. 2(c)).

Thus, the emergence of the second row of spots
as the width of the pattern region increases, is very
progressive. It proceeds through some sort of spot
division followed by the separation of the second

o Y Y-



E. Dulos et al./Physica D 98 (1996) 53-66 59

Ui
NV,

Pyiy Ty st ¥

==

Fig. 3. Sequence of pattern in the bevelied disc. The whole
sequence can be reconstructed by juxtaposing (a) and (b) and
superposing the dotted lines at the lop of (a) and at the bottom
of (b). The various patterns extend over parallel bands. The
vertical arrows delimit their successive domains: 1. uniform
state (truncated at the bottom of the figure); 2. hexagonal array
of spots; 3. stripes; 4. mixture of stripes and spots; 5. asymmetric
stripes; 6. “non-standard” planforms. Experimental conditions
as in Fig. 2(a) and (b): view size 6.9 mm x 6.9 mm.

row from the first one and by a progressive increase
of the phase shift between spots in the two rows.

3.1.2. In bevelled disc

Each picture in Fig. 3 gives a view of about haif
the height of the disc in the median region; the lateral
parts not shown bear the same types of pattems. The

Fig. 4. The transition region between domains with one and
two rows of spots, in the bevelled strip. The whole sequence
can be reconstructed by placing side by side images (a) and (b).
The vertical dotted lines indicate the same location along the
strip. Form left to right in cach figure: (a) fuzzy pattern with a
few clear spots, spots of large size, spots splitting in two spots
obliquely arranged; (b} pairs of spots arranged more or less
perpendicularly to the feed boundary, two rows of staggered

spots.

thickness of the disc progressively increases from the
bottom of Fig. 3(b} to the top of Fig. 3(a). Patterns of
different types extend over successive regions (num-
bered on the figure). These regions are almost parallel
and organize as follows with the increasing thickness

of the disc:
1 —a narrow uniform (structureless) region;

2—a region of clear spots exhibiting a hexagonal
arrangement;

3 —a wide domain of stripes;

4 —a region of complex organization exhibiting an
intricate mixture of spots and stripes;

5 a region of less contrasted, asymmetric stripes;

6—a region of very intricate planform, located at

the top of the disc.
The global organization can hold for days without

significant modification of the general pattern. The
area covered with patterns as well as the relative ex-
tent of the domain of each type of planform depend on
the feed concentrations. The pictures of Fig. 3 were
obtained with a chiorite concentration ([NaClOz]) of
0.0475M in the reservoir. In this case, the structure-
less region 1 extended over one eighth of the height
of the disc. When [NaClO2] was increased by 30%,
the extent of region | increased by a factor of 6. Con-
versely, a decrease of 5% of [NaClO2] resulted in the
total disappearence of the uniform region; then the
whole disc surgace was covered with patterns.

-06 —



60 E. Dulos et al. /Physica D 98 ({996) 5366

Fig. 5. Transient situation in the bevelled thin strip. The whole sequence can be reconstructed by placing side by side images (a)
and (b). The vertical dotted lines indicate the same location along the strip. Note that the symmetry breaking pattern has disappeared
over large lumps of the reactor. Picture taken 2 h after a 10% increase in the chlorite concentration. All other experimental conditions

as in Fig. 2.

3.2. Transient situation

Asymptotic states as those presented above, in
Figs. 2 and 3, are reached after about 10h. Before
this time, some remarkable transient situations can be
observed, either when a new experiment is started or
after a jump in the value of some chemical constraint
during a series of experiments. In the latter case, the
initial symmetry breaking patterns are erased over
more or less extended parts of the gel reactors. In
Sections 3.2.1 and 3.2.2, we shall examine transient
situations observed after a 10% increase in the chlo-
rite concentration.

3.2.1. In bevelled thin strip

Fig. 5 shows a transient situation in the bevelled
gel strip. The symmetry breaking pattern was com-
pletely erased (see right end of Fig. 5(a) and left end
of Fig. 5(b)) over a large extent comprised between
the region with one row of spots (Fig. 5(a)) and the
transition region (right end of Fig. 5(b)). At both ends
of this now uniform clear band, pattems are similar
to those observed in the initial asymptotic state. After
this transient situation, the system evolves towards a
new asymptotic state: spots slowly reinvade this tem-
porally featureless band while, at the other end of the
row, spots disappear and the region without symmetry
breaking pattern gains in extension in the namrowest
parts of the bevelled strip.

3.2.2. In bevelled disc

An equivalent transient situation is observed in the
bevelled disc reactor, Fig. 6. The patterns in regions
3 and 4 are transiently erased. Then during the evolu-

tion towards the new steady state, stripes progressively
reinvade this temporary uniform region. However, the
expanding stripe region is preceded by a region tesse-
lated with hexagonal arrays of dark spots. This remark-
able new hexagonal patterns could never be stabilized
in any of the tested asymptotic states. Note that these
patterns are relatively long-lived since they have been
observed for about 8 h. Ultimately, the stripe structure
spreads over the whole area, and a pattern sequence
similar to that of Fig. 3 is recovered.

4. Discussion

It is worth noting that, in the thin strip reactor, es-
sentially one type of symmetry breaking pattern is
observed, i.e. spots arranged in rows parallel to the
feed boundaries. However, in the transition region be-
tween one and two rows, there can be different sta-
tionary phase relations between the peaks in two rows.
As already mentioned, in a very thin strip (A < ),
one row of spots can be thought as the experimen-
tal approximation of a one-dimensional Turing pat-
tern. In a genuine uniformly constrained (theoretical)
one-dimensional reaction — diffusion system, the only
possible stationary symmetry breaking pattern is a pe-
riedic fongitudinal amplitude modulation. In an ideally
thin two-dimensional system with a strong parame-
ter gradient in one direction, theoretical simulations
show that the Turing pattern emerges as a single row
of spots perpendicular to the gradient. This pattern is
shown to have the same bifurcation properties as a one-
dimensional system [9]. Our experiments are usually
performed in gel strips with a thickness comparable to
the wavelength of the pattern (A = ). The observed

~96 -
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Fig. 6. Transient pattern sequence in the bevelled disc. Note
that, as in Fig. 5, the pattern has disappeared over large extents;
see the region of homogeneous state located in the upper parts
of the figure; see also the black hexagons at the borders of
this region. Picture taken 2 h afier 10% increase in the chlorite
concentration. All other experimental conditions as in Fig. 3.

“guasi-one-dimensional” pattern can actually be made
either of short columns perpendicular to the observa-
tion plane or of beads, and no distinction can be made
between a column and a bead pattern. However, as
we have mentioned, in the widest parts of the bev-

elled gel strip, at some places, spots inside one row
become fuzzy or even disappear, giving place to seg-
ments of clear bands, Such segments can be under-
stood as columns layed parallel to the impermeable
boundaries. Another possibility is that, due to a dif-
ficult rearrangement of a number of spots emerging
in a limited space inside the row, the corresponding
zone in the pattern region exhibits a vanishing ampli-
tude modulation. Such segments can be considered as
defects of the pattern. The capability of the system to
eliminate such defects seems very limited since these
clear segments held unchanged for about two days,
the usual duration of an experiment.

The diversity of patierns observed in the bevelled
disc reactor will be better understood when compar-
ing these observations with those made in the bevelled
strip reactor at locations with comparable distances
between the feed boundaries. We thus compare in the
two reactors, locations with the same width of pattern-
forming region. However, if the gel strip reactor pro-
vides information on the number of separated pattern
layers, in any case it can provide information on the
type of pattern selected in the layers that develop in
the disc reactor.

In the thinnest region of the disc as in the narrowest
part of the strip, no symmetry breaking pattern devel-
ops. The region of the gel strip where pattern is made
of one row of spots fits regions 2 and 3 in the disc
over which hexagonal arrays of clear spots and stripe
patterns can be seen. Thus, these patterns correspond
to genuine monolayer patterns. In these monolayers,
the spot and stripe pattemns actually correspond, re-
spectively, to bead and column structures. Note that
these columns are seldom straight but generally bent
columns. In the following, they will be simply re-
ferred as “columns”. The spot and stripe patterns in
regions 2 and 3 of the disc are characterized by their
relative sharpness. Such hexagon and stripe patierns
have initially been observed by Ouyang and Swinney
{17,18] and later by others {23] and thought as effec-
tive quasi-two-dimensional patterns. It has been shown
theoretically that, at onset, monolayers of Turing pat-
terns have the same qualitative bifurcation diagram
and pattern selection properties than two-dimensional
systems [7,9). The hexagonal mode is generally the
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Fig. 7. The transition between the domains of uniform state and
hexagon pattern. Magnification of a small region.

first stable mode and appears subcritically; the stripe
mode becomes stable only at some distance from onset
while hexagons loose their stability. The stability do-
mains of these two modes overfap over some range of
bifurcation parameter values. However, there is an m-
portant difference between genuine two-dimensional
systems and monolayers: in the latter, the hexago-
nal mode is generically restabilized at some distance
from onset [7.9]. Note that the sequence uniform-
hexagons—stripes experimentally observed in the bev-
elied disc, follows exactly the stability order predicted
by the linear stability analysis. In the asymptotic state
we usually observe a very sharp transition between the
uniform state and the hexagon pattern, i.e. the ampli-
tude suddenly damps within a2 wavelength (see Fig. 7)
which is consistent with the subcritical nature of the
bifurcation to hexagons. However, we have never ob-
served any obvious hysteresis in the position of this
transition front as a function of feed parameters. Such
hysteresis could be expected as a result of a front pin-
ning due to non-variational effects. The same sharp
transition is observed between hexagon (region 2) and
stripe (region 3) patierns (see Fig. 8). No mixed state
is observed at this front. This is consistent with the dis-

Fig. 8. The transition between the domains of hexagon and
stripe patierns. Magnification of a small region,

continuous nature of the transition between the stable
hexagonal and striped modes. Here again no noticeable
hysteresis is found as a function of constraints, con-
trary to another report [21]. No pinning is observed in
our experimental conditiens which infers a weak over-
lap of the stability domains of hexagons and stripes.
The intricate pattern in region 4 is made of mod-
ulated stripes and it is very tempting to think of this
pattern as a mixed mode. However, in the classical
two-dimensional approach, this mixed mode is unsta-
ble [31]. The modulated stripes of region 4 develop
in the continuation of the regular stripes of region 3.
Modulations are regularly spaced along the stripes and
form a hexagonal array of higher light intensity. Re-
gion 4 in the bevelled disc of gel would correspond
1o the transition region where a second row of spots
is seen to progressively emerge in the bevelled strip.
This occurs when the width A of the pattern-forming
region exceeds a critical size. Region 4 in the disc
can be understood as a region where a second layer
of pattern is building up; a truely three-dimensionai
pattern is unfolding here. Fig. 9 provides a magnifica-
tion of the transition region between regions 3 and 4:
At the frontier with region 3, spots are few and have
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Fig. 9. Detailed view of the transition zone between regions 3 and 4. Note the hexagon-stripe mixed pattern.

a low amplitude. Going upwards, towards region 3,
spots along the stripes become more numerous and
regularly spaced. In the light of our observations in
the gel strip. we conjecture that these spots develop as
outgrowths on the columnar structure of the first pat-
tern layer. Note that the spots stay basically centred
along the clear columns,

Subsequently, with the increased thickness of the
disc of gel, outgrowths would form an extra roll along
the initial columns, so that we can understand the
structure in region 5 as being formed of two layers
of parallel columns. Region 5 in the disc corresponds
in the gel strip to the regions with two rows of spots
either with a slight shift between splitting pairs or
completely staggered spots. Generally, in region 3,
the columns of the second layer do not settle at equal
distance from two neighbour columns in the first layer
but rather stay closer to one of them. The projection
of such a three-dimensional arrangement on the plane
of the picture results in a pattern made of stripes with
poorer constrast than in region 3. A magnification
of such a picture with enhanced constrast is given in
Fig. 10 with the light intensity profile taken along a

line perpendicular to the direction of the stripes. The
profile shows a period made of two peaks with two
unequal heights. This can be understood as the super-
position of two non-harmonic modulations of the light
intensity. Note that non-harmonic modulations are
generally expected far from onset. The non-symmetric
shape of the profile could result either from a phase
shift actually slightly less than haif a wavelength be-
tween the columns in the two layers (as suggested
also by the observations in the bevelled strip reactor)
or from a bias in the observation direction of a sym-
metric array of staggered columns. Qur observations
in the strip reactor seem to favour the first assumption.

Thus, we have observed the emergence of a sec-
ond layer of pattern which, in region 4, is made of
a hexagonal array of beads more or less separated
from the columns of the first pattern layer; these beads
transform into parallel columns in region 5 and the
sequence hexagon-stripe experimentally observed for
the first layer repeats in the second one. This means
that various layers of patterns can develop at different
distances from the feed boundaries, and each layer can
undergo, somewhat independently, the same pattern
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Fig. 10. The asymmetric stripes of region 5: (a) a magnification; (b) the light intensily profile along the line (-----— ) drawn In

picture {a).

mode sequence as the thickness of the disc reactor
increases. Moreover, different planforms can be ob-
served at a given disc thickness, in adjacent layers.
This is in agreement with preliminary theoretical [24]
as well as experimental [21] resulis obtained in three-
dimensional systems in the presence of parameter gra-
dients.

At first glance, region 6 exhibits a wealth of very
intricate planforms. However, a closer examination of

these apparently different planforms brings the con-
clusion that they are various aspects of the same basic
organization. Such patterns typically appear as illus-
trated in Fig. | |. Planforms of this type are observed
at the top of the disc, as in Fig. 3. Such regions of
the bevelled disc correspond to regions of the bevelled
strip where the pattern is made of two rows of spots;
so that the planform of Fig. 11 can be considered as
the projection on the observation plane of two patierns
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Fig. 11. An example of intricate planform commonly observed
in region 6.

that develop in two adjacent layers. Such non-standard
planforms are rather difficult to elucidate. They can
be understood as moiré images of standard planforms.
Patterns very similar to those of region 6 can be ob-
tained by summing an image of hexagonal array of
clear spots and an image of stripes from regions 2 and
3, with the clear spots superposed to the dark stripes.
Note the necessary phase shift of m compared to the
superposition that produces planforms such as those
observed in region 4. This superposition of spots and
stripes in region 6 implies that a spot patiern is resta-
bitized in the top of the disc reactor, Such a restabi-
lization of the hexagonal mode is also found in many
computations and analytical calculations on the Brus-
selator [7,32] and the Schnackenberg [8,9] models.
This phenomen is often referred as reentrance.
Another case of reentrance is obtained in the tran-
sient shown in Fig. 6 which exhibits the sequence
uniform — clear hexagons — stripes — dark hexagons —
uniform. This can be thought as two different Turing
bifurcations from uniform to hexagons, one of them
from uniform to clear hexagons, and the other from
uniform to dark hexagons. This can be theoretically
understood if the quadratic term of the normal form
of the Turing bifurcation changes sign. Note that dark
hexagons have always been observed as transient in

experiments. [t is also remarkable that dark spots were
never observed in the bevelled strip, even transiently.

Let us now consider again the uniform state next to
the dark hexagons. This region has to be associated
to the temporary featureless clear band in the strip
reactor (Fig. 5). In the disc reactor, this should then
correspond to a clear sheet which could constitute the
first element of a lamellar structure predicted by the-
ory in three-dimensional systems [10]. As the black
hexagons, this structure is unstable under our experi-
mental conditions.

5. Conclusion

We have used an indirect approach in order to ad-
dress the problem of the actual pattern organization in
three-dimensional systems, in the presence of feed gra-
dients. Indeed, there is a severe technical obstacle to
the direct analysis of three-dimensional structures: the
structures correspond to smooth continuous changes
in concentration of diluted species and the contrast of
patterns decreases with the decrease of the focal depth.
The direct anatysis would call for focal depth much
smaller than the wavelength of the pattern, that is of
the order of a few hundredth of millimeter; in these
conditions, contrast would be so low that very low
noise camera and frame average techniques should be
used much in the same way as in confocal microscopy.
Other authors seem to have made a rough measure-
ment of the thickness and position of the pattern-
forming region [33]. However, as mentioned by these
authors, the accuracy of their method heavily depends
on the pattern contrast which can decrease from one
layer to the next, making difficult the actual determi-
nation of the number of layers.

Qur innovative approach consisted in designing
reactors that enable to slowly unfold the pattern tran-
sitions along one direction of the reactors. These
reactors can be thought of as the non-linear chem-
istry analogues of the Kofler hot stage used in the
determination of equilibrium phase transitions. In
our reactors, the uniform-hexagon-stripe transition
sequence classically predicted in theoretical studies,
was directly viewed, unfolded in space. The continous
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follow up of pattern evoiution allowed us to draw
some conclusions on bilayer patterns. In particular,
we have been able to follow the emergence of a bi-
layer from a monolayer pattern and have shown that
this transition is progressive.

The presence of steep feed gradients seems to make
the three-dimensional pattern selection mechanism re-
sourceful through the coupling of basic patterns, In
our experiments these are the basic two-dimensional
hexagonal and stripe modes. The main question which
is still to be solved is that of the determination of the
possible stable phase relations that can exist between
the patterns in the two layers. Qur observations suggest
that several such phase shifts are possible and that the
relative stability of these phase relations may depend
on the constraints and probably on the exact shape of
the confining parameter well. However, the method be-
comes unreliable for more than two patterned planes.

Note that in this series of experiments, we have not
identified patterns that could result from the superpo-
sition of two layers of hexagons. However, triangular
patterns observed in other experiments [34] suggest
that the superposition of a clear and a dark hexagon
layers is possible. Refined experiments with our bey-
elled reactors are now in progress, Moreover in new
sets of experiments, the spatio-temporal behaviours
{23] that result from the superposition of a temporal
instability (Hopf} in one plane and a spatial instability
{Turing} in another are distinguished from behaviours
that develop in a single stratum of width A compara-
ble to the Turing wavelength A. This will be the sub-
ject of a forthcoming paper.
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We perform simulations of Turing pattemns confined to a monolayer by a gradient of parameters in a
three-dimensional system. The results provide a more comprehensive basis for the interpretation of the actual
experimental results than the usuai, but disputable, interpretation in terms of ideal two-dimensional systems.
Systematic comparison of the bifurcation behavior in genuine two-dimensional systems and in such monolay-
ers is achieved with a theoretical model. We show that in the monolayers, hexageonal phases are restabilized as
a result of the longitudinal instability. [$1063-651X(96)09905-9]

PACS number(s): 47.54.-+r, 05.70.Ln, 82.20.Mj, 82.20.Wt

I. INTRODUCTION

Turing structures are self-organized stationary concentra-
tion patterns which result from the sole competition between
reaction and diffusion in a class of chemical systems kept far
from equilibrium by a permanent feed of fresh reactants.
These chemical systems must exhibit the following features.
First, the reaction kinetics is controlled by two antagonistic
feedback loops, namely, an activation process—such as an
autocatalytic reaction—and an inhibitory process. This set of
properties is common to various types of ‘‘active media”
that exhibit exotic temporal or spatial behavior, like multi-
stability, periodic or chaotic oscillations, excitability, or
wave propagation [1-5]. For Turing patterns to form, a spe-
cies controlling the inhibitory process must diffuse much
faster than any species controlling the activation process.
First predicted in 1952 [6], they have been thoroughly inves-
tigated from a theoretical point of view (for reviews see
Refs. [1, 4, 7]). Nevertheless, almost 40 years passed before
they were experimentally evidenced with the so-called
chlorite-iodine-malonic acid {(CIMA) reaction [8], first in a
gel strip reactor [9-11], then in a gel disk reactor [12,13].
The latter setup has become the most comnmonly used. It is
made of a thin flat piece of gel with two opposite faces kept
in contact with permanently refreshed reservoirs of different
input solutions. The input species diffuse from the reservoirs
into the gel where they meet and react. A gradient of the
input reactants concentrations spontancously develops in the
direction orthogonal to the faces, establishing a continuous
change of control parameters. A pattern, breaking the planar
symmetry, will form in regions where the values of these
local parameters meet the conditions for a Turing instability,
i.e., in a thick stratum parailel to the faces (Fig. 1) [14]. In
the actual experiments, the width of this stratum commonly
reaches three or four wavelengths [15). Thus—contrary to
the well-known Rayleigh-Bémard convective structures—
they present a three-dimensional character. The patterns are
normally looked at in a direction paralle! to the gradient, so
that the light absorption is averaged over the film thickness
and there is some uncertainty on the true geometry of the
structures. Nevertheless, when a control parameter is
changed continuously, the width of the unstable region
grows progressively. The structures are thus found to form
one layer after the other, so that just beyond the pattern onset
there is a single layer [16). We shall call this type of pattern

1063-651X/96/53(5)/4883(10)/$10.00 33

a ‘‘monolayer.”’ Transverse dimensions of reactors are large
enough (more than 100 wavelengths) for the boundary ef-
fects to be negligible and these patterns are generally coher-
ent and quite periodic over large size domains separated by
topological defects. In these conditions, the most common
regular planforms observed through the gel are stripes or
hexagons. In regard of their quasi-two-dimensional character
and the analogies in planforms, pattern selection theories de-
veloped for genuine two-dimensional (2D) system are com-
monly applied to the experimental monolayers.

Unfortunately, there is no definite evidence that the selec-
tion stability properties are identical in these genuine 2D
patterns and in those restricted to a single layer bounded by
a strong gradient of control parameters. There has been a
number of analytical and numerical studies of patterns in a
ramp of control parameters [11,17-27]. None of them really
meet the requirements above. Analytical methods generally
rely on slow parameter ramps in contradiction with such
strong localization problems. Two-dimensional systems with
parameter ramps may exhibit patterns made of a single row
of dots, the 1D analog of the 2D monolayers [11,21], but this
problem turns out to be of a different kind due to the nonex-
istence of rotational invariance in one dimension.

In order to clarify the relations between the genuine ho-
mogeneous 2D systems and the monolayers, we have studied
the selection of patterns close to onset for the same model in
both geometries. In Sec. II, we introduce a simple appropri-
ate reaction-diffusion model that exhibits Turing patterns.
Then we study the selection of patterns close to onset and
check the numerical results with those predicted from a
weakly nonlinear analysis. In Sec. HI, we mimic a disk re-
actor by introducing a parameter ramp that induces the for-
mation of monolayers in agreement with the experimental
observations. On the basis of 3D numerical simulations we
show that a transverse instability leading to the formation of
a monolayer precedes a longitudinal instability. We show
that, very close to onset, the monolayers behave like genuine
2D systems but that, in relation with the longitudinal insta-
bility, hexagonal phases are restabilized when the distance to
threshold increases. This property is interpreted as a result of
the coupling of the cubic terms with a homogeneous mode,
in agreement with the recent theory of Price [28].

In the following, we call ‘2D systems”’ without further
precision genuine two-dimensional systems with uniform
control parameters. We always consider the relative stability

4883 © 1996 The American Physical Society
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FIG. I. Scheme of a disk reactor. Input reactants are provided
by solutions | and 2. Structures form in the gray region. The arrow
indicates the direction of observation.

of regular periodic patterns—stripes or hexagons pattems—
without topological defects and assume pertodic boundary
conditions in the pattern plane. All 2D and 3D computations
were performed with an implicit hopscotch method [29] tai-
lored to handle the nonlinear terms {30].

1, TWO-DIMENSIONAL SYSTEMS

In order to make clear the comparison with the monolay-
ers, we shall report rather extensively the analytical and nu-
merical properties of the two-dimensional systems that will
be used as a reference in Sec. [II

A. Reaction-diffusion model

The linearization around the stationary state of any two-
variable reaction-diffusion system able to exhibit Turing pat-
terns can always be written in the form

du 2

il na,v+D,V-u,

au 2
E=7]a3u—a4v+DUV v, (1)

where a,>0, n=11, and D, and D, are the diffusion coef-
ficients [4,31,32). The model is called activator-inhibitor if
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FIG. 2. Bifurcation diagram at 4=20. (1) Turing space. (2)
Stable stationnaite state (8>1). AB: limit of Turing bifurcation
(8<20). CD: limit of Hopf bifurcation {er>1).
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=+ 1 and substrate-depleted if n=—1. The number of co-
efficients can be reduced to three for each type of model by
rescaling the concentrations, the time, and the space coordi-

nates. Without lack of generality, we can restrict ourself to
the activator-inhibitor type. Introducing the ratio d=D /D,
a convenient form of the tescaled system is

du v?

— =y — +

at u—au u,

i +dVv?

T =u-—pv u, (2)

with @>0 and 3>0. Variable u is the activator, whereas v is
the inhibitor.

One can define a reaction-diffusion system that give rise
to Turing patterns by adding a minimum of nonlinear terms
to this set of equations:

du 3 )
~a—r—u—av+yuv—u +V*u,
v (3)
E:u—ﬁv-dezU.

The cubic term —u° limits the exponential growth of the
perturbation and allows for the saturation of the instability.
The guadratic term yuv avoids the invariance in the trans-
formation (u,v)—{—u,—v), which is nongeneric in chemi-
cal systems. This particular symmetry can be restored by
setting y=0. Although this model has not been derived from
a chemical scheme, it exhibits the same properties and has
been preferred in regard of its simplest analytical properties.

This model has a uniform stationary state (u=v=0) in-
dependent of the control parameters a, B, v, d. The linear
stability analysis of this stationary state—-hereafter referred
as the “‘zero’' state—follows from the linearization of sys-
tem (3) which actually reduces to Eqs. {2). In the absence of
diffusion, the homogeneous system exhibits a Hopf bifurca-
tion at 8=1 (when e>1) and an exchange of stability or a
pitchfork bifurcation along the line ee=g. The stationary
state is stable to any small homogeneous perturbation for
1<B<a (Fig. 2). When the diffusion terms are present, the
stationary state can become unstable, in this parameter do-
main, to a nonuniform perturbation u=u, exp(ik.r) of wave
vector k#@, where u=(:j'|). This Turing bifurcation occurs

when the real part of an eigenvalue of the linear operator

1— &% -
= 4
L 1 —B—dk? @

becomes positive, that is, when the determinant A and the
first derivative dA/dk are simultaneously zero. The Turing
bifurcation is located along the line AB (Fig. 2) defined by
the equation

(B+d)’
Q== (5)
The critical wavenumber k. is given by
d-p
2_
k; 2d (6)
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d

FIG. 3. Two-dimensional patterns, (a} hexagonal pattern H (a
=781, B=5, y=0.75, d=20, size: 100x100}); (b} hexagonal pat-
tern 5 (@=7.81, 8=5, y=0.75, d =20, size: 100X 100); (c) striped
pattern (a=7.45, B=5, y=1, d=20, size: 100X100); (d) zigzag
pattern (@=7.3, B=5, y=1, d =20, size: 100X100).

The parameter domain where the stationary state is unstable
only to a nonuniform perturbation—sometimes called the
“Turing space’’ [3]—is represented in Fig. 2. As expected,
this domain exists only when the inhibitor species diffuses
faster than the activator species and the area of this Turing
space increases with the ratio d.

We shall now consider the formation and the selection of
patterns close to the onset a=a,—i.e., the line AB-—and
avoid as much as possible coupling with other instabilities,
i.e., the vicinity of lines BD and CD.

If not otherwise stated, « is used as the expandable bifur-
cation parameter and the numerical simulations are carried
out with the values 4 =20 and =5, With this parameter set,
the Turing bifurcation is located at a,=7.8125 and
k. =0.6124.

B. Weakly noniinear theory and selection of patterns

Figure 3 illustrates the different types of stable stationary
patterns that are found in numerical simulations when ex-
ploring the parameter space. The variable u is represented on
a gray scale, changing from black {minimum value) to white
{maximum value). The vartable v changes in phase with u
and exhibits similar patterns. When the patterns spontane-
ously emerge from a noisy initial unstable stationary state,
they naturally contain topological defects that move and re-
lax slowly, If the system is finite these defects tend to vanish
on a long time scale. From now on, we shall consider only
periodic patterns without topological defects. We also as-
sume that they are stable to small charges of wavelength
caused by cross-roll or phase instabilities [33].

All the patterns in Fig. 3 are made of stripes and hexa-
gons. There are two types of hexagons, respectively referred
to as My and A, according to whether the minima or the
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maxima are disposed on the hexagonal lattice. Stripes can be
straight lines or exhibit periodic undulations that result from
a previous zigzag instability [34]. The latter stili befong to
the stripe pattern category. The planforms in Fig. 3 are iden-
tical to those observed with other chemical schemes, like the
Schnackenberg mode!} [35,36) or the Brussellator {37]. This
supports the validity of this simplified model.

Close to onset, the eigenvalues associated to the critical
modes are close to zero, so that they evolve on a long time
scale, whereas the noncriticai stable modes relax rapidly. The
whole dynamics can be therefore reduced to the dynamics of
the active slow modes, which slave the fast stable modes [2].
The stability and the selection of the different patterns close
to onset can be derived from the amplitude equations that
governs the dynamics of these active modes. Hexagonal and
stripe patterns are thus well described by a system of three
active resonant pairs of modes (k;,—k;);- | ;3 making angles
of 27/3.

Close to onset, the solutions are given by

u=u0-§ [Ajexp(ikj-r)+A}"exp(-ikj-r)], (7)

where ug defines the direction of the eigenmodes in concen-
tration space {i.e., the ratio u/v} and where A; and the con-
jugate AY are, respectively, the amplitude associated with
modes k; and —k; . From standard symmetry arguments, one
can predict the general form of these amplitude equations at
third order [38]:
A |
T ——=puA,+TAFAT - [g|A P+ (|4,)* +14;5])]4,,

at
(8)

where p={a, —a)/a is a normalized distance to onset. Simi-
lar equations for A, and A, are obtained by circular permu-
tation of indices. To avoid confusions, always keep in mind
that, for model (3), the stationary state becomes Turing un-
stable when the bifurcation parameter a decreases, so that
the distance to onset increases when the bifurcation param-
eter decreases.

The form of Eq. (8) is general for Turing bifurcations, but
the exact expressions of the coefficients are specific to the
model. Their derivation for our particular model (3) is re-
ported in Ref. [30]. For amplitude of «, they are

_2(d-1) | 8dy o
=grd " (BT ©)

6d  16d*y*(538+ 23d)

8T B+d 9(B-AB+d
. 12d  32d%)(3B+d)
87 B+d (B-Bp+d)

(10)

For these amplitude equations to be valid, saturation of
the instability must be achieved at third order. This condition
is satisfied when

3V3(d2—b?)
2vI[d(538+23d]"?

i<y, = (rn

For 8=5 and d=20, y,~5.721, and the above conditions are
satisfied for [Y=1.
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FIG. 4. Schematic bifurcation diagram for ['>>0. H: hexagonal
patterns with =0; H @ hexagonal patterns with &=, B: striped
patterns; —; stable states, -—-: unstable states. For '<0, the indices
0 and 7 must be exchanged.

Amplitudes in Eq. (8) can be written A,=p; exp ¢;. It
results from a standard stability analysis [26,38—40] that the
only possible stable solutions are the steady state, a stripe
pattern {(p, #0, p,=p;=0) and the hexagonal pattems H, or
H, (py=p,=p;, with ®=g, +@,+ ;=0 or m, respectively).
Their existence and stability limits, as a function of the
scaled bifurcation parameter u, are ordered according to the
scheme in Fig. 4 where the u, are given by

. o
“agrzey T

B g _ 2g+g' r2 12)
Mg M-t

Stable branches H, and H, are mutually exclusive. The
stable branch is H, if I'>0 and H_ if I'<<0. A subcritical
hexagonal branch comes out first at 4=z, <0 but loses sta-
bility when p>u,>0. The supercritical stripe state branch is
unstable close to the critical point but becomes stable for
4>, In the range py<p<<p, both branches are stable.
When y=0 the nongeneric symmetry (u,u)—{—u,—v) is
restored, one has ['=0 and p;= u,=p3=p4=0. In this case,
the stripe patiern bifurcates supercritically whereas the sta-
bility range of the hexagonal pattern vanishes. The latter is
indeed directly related to the quadratic term I' and propor-
tional to * {41}, in the model [y so this stability range can
be easily tuned.

The amplitude and stability of patterns obtained by direct
numerical simulations and those obtained from the Eq. {(8)
are reported in Fig. 5 for y=0 and y=0.75 as a function of
the distance to onset a, —a. Close to onset, these resulfs are
in excellent agreement and confirm the validity of the ap-
proach. '

When the nonlinear coefficients of the model also depend
on the bifurcation parameter, the coefficients in Eq. {(8) and
the w;'s may also depend on w so that one of the hexagonal
phases can regain stability at large . This direct reentrant
phenomenon depends on the model and has been extensively
discussed for the Brussellator [37] and for the Schnacken-
berg model [30,36]. Our model (3) avoids such a behavior
that could bias the interpretation of results in Sec. IIL. How-
ever, Price has recently shown that hexagonal phases can be
also restabilized—even in the absence of quadratic terms—if
an active homogeneous mode, commonly referred as a d.c.
mode, is present [28]. This can be found in particular when
an homogeneous bifurcation occurs at some distance beyond

V. DUFIET AND J. BOISSONADE 53

Amplitude

Amplitude

FIG. 5. Bifurcation diagrams of 2D system for modetl defined by
Eqs. (3). @: stable stripes, A: stable hexagons, Hg (limit at C), ¥:
stable hexagons H ., (limit at D) (numerical simulation), —: stable
states, --: unstable states [computed from amplitude equations (8}
(10)]. (a) B=5, y=0, d=20. (b) B=5, ¥=0.75, d=20.

onset, as in our model at @=p. In the vicinity of such bifur-
cations, the homogeneous mode becomes active and has to
be included in the amplitude equations. Cubic interaction
involving such an active mode of zero wave vector 0 gener-
ates in Eq. (8) a term of the form AgA¥A¥ . This term origi-
nates in the conservation law k,=-k,—k;+0, where
(k, K, Ky) is the basic triplet of the hexagonal structure. As it
contains AFA¥ like the quadratic term in Eq. (8), it plays the
same stabilizing role for the hexagonal patterns. Neverthe-
less, if no other quadratic terms are present, Hy and H _ are
equivalent and are both restabilized. If there are quadratic
terms in the dynamical equations [y#0 for model (3)], one
of these pattern is favored and is restabilized first. This re-
stabilization is shown in Fig. 5 for model (3) when & comes
close to B. As expected, Hy and H , are both reentrant, at a
common value a=ag,=6.02 (ie., a,—ag= 1.7925) for
v=0 {Fig. 5(a)], at different values for for y#0 [Fig. (b))
In any case, the bifurcation scheme in Fig. 4 is preserved,
provided that ¥ remains small enough. Note that since the
wave vector of the faster growing mode gradually change
with the distance to onset, the reentrant branches are actually
only (re)stabilized for wave vectors slightly different of k.
Those represented in Fig. 5 correspond to the wavevectors at
which this restabilization occurs at the closest point to onset
(respectively, k,.~0.55 at y=0 and k,~0.57 at y=0.75). We
shall see in Sec. I1I that the restabilization of hexagonal plan-
forms by a d.c. mode can derive in a more indirect way from
a different type of bifurcation.
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1I1. MONOLAYERS

A. Monolayer modeling

We shall mimic the behavior of the experimental three
dimensional disk reactors by introducing permanent gradi-
ents of at least one of the bifurcation parameters. In real disk
reactors the input species concentrations are actually kept
constant only on the feed surfaces but their gradients inside
the gel are controlled both by diffusion and reaction. Thus,
there is a feedback on the control parameters so that they are
dynamical variables of the prcblem. Although such feed-
backs can be incorporated in theoretical calculations [21],
they depend on the specific form of the model. Nevertheless,
in many cases, the reaction dynamics can be described by
reduced models in which the control parameters are not the
concentrations of input species themselves, but are effective
constants, obtained by adiabatic eliminations or approxima-
tions on numerous variables. The experimental control pa-
rameters enter the equations through these constants. For in-
stance, some of these species can be precursors that produce
intermediate species at rates depending mainly on the input
concentrations {a formal example is the Schnackenberg
model [11]). Close to onset, supercritical Turing structures
correspond to small amplitude spatial oscillations around the
unstable stationary state. These small modulations are gener-
ally smoothed out and averaged in the feedback. In practice,
one can thus assume that the spatial profiles of the control
parameters are not coupled to these small variations of con-
centrations. For example, Lengyel and Epstein have pro-
posed a satisfactory model of the {ClO, -I"-malonic acid)
reaction, a variant of the CIMA reaction which is also known
to give Turing patterns [42]. They have shown that the whole
set of reactions can be approximated by a two-variable
model in a large range of parameters. The control parameters
only depend on the feed concentrations and on the distance
to the feed surfaces. They can be tuned independently in
order that the system become supercritical in a layer parallel
to the faces [14], i.e., the conditions expected to produce
monolayers. Although the extension of these conclusions to
the CIMA reaction or other models is not straightforward,
modeling monolayers by introducing a tunable parameter
profile appears to be a sound approach. The exact form of the
model and of this profile do not seem critical for the conclu-
sions that we shall draw in Sec. IV, provided that a few
prerequisites accounting for experimental conditions are met.

In agreement with Sec. I, the following requirements must
be retained: (a) The control parameter in the reaction-
diffusion equations, say, a in Eq. (3), must change continu-
ously along the sole direction O,, orthogonal to the opposite
faces, and remain uniform in directions O, and Oy, paraliel
to these faces. (b} The profile of this primary parameter must
be controlled through one (or several) tunable secondary
control parameters that play the role of the tunable experi-
mental constraints. (¢) The primary control parameter must
be subcritical on the faces {at z=0 and z=L) and take su-
percritical values over a range AL located at some distance
from these faces. In the explored range of tunable param-
eters, AL must grow from zero to AL~X, in order to go from
a uniform state to a structure extending over at least one
wavelength along the direction (,. When AL further grows,

i,

‘i

I

FIG. 6. Control parameter profile.

multilayer structures settle. Such structures are beyond the
scope of this paper.

So far, there is no conclusive experimental argument to
chose a particular parameter profile meeting these condi-
tions. Thus we have retained a simple formn, that is, a para-
botic profile centered on the median plane z=3L. A priori,
this gradient could be applied to any coefficient of the lin-
earized equations. Since the different coefficients of the lin-
earized equations [before scaling in order to keep all of them;
see Eq. (1)] play different roles in the dynamics, one couid
expect that the properties depend of the choice of the coef-
ficient on which the gradient is applied. Whichever coeffi-
cient is concerned, the results actually happen 1o be similar.
This point will be briefly checked at the end of this section.
The results extensively reported in this section have been
obtained with the model (3) with the following spatial con-
trol parameter profile:

a(z)= ag+ p(z=zo)%. {13)

Parameter p was kept fixed in each series of numerical ex-
periments whereas ay was used as the tunable parameter.
The function o(z) is maximum in the median plane
z=124,=L/2, where a(z)=ay—the most supercritical value—
and define a supercritical domain AL, where a(z)<a, cen-
tered on this median plane (Fig. 6). When comparing bifur-
cation diagrams of the 2D uniform systems of Sec. II with
those of these 3D gradient systems, it is natural to use re-
spectively o and ag, or the distances to onset A=, —a and
Aay=a.4—ay-

Since the zero stationary state of our particular model is
independent of the primary parameter a, the spatial organi-
zation results unambiguously from the Turing instability and
cannot be confused with trivial spatial changes of the station-
ary state.

Two types of instabilities may occur according to the ori-
entation of the wave vector.

A longitudinal instability, if the critical wave vector noted
k., is oriented parallel to the gradient (orthogonal to the
faces). The critical parameter can be determined in a 1D
systemn colinear to the parameter gradient since, in this case,
it is the only possible instability.

A transverse instability, if the critical wave vector noted
k,, is oriented orthogonal to the gradient (parallet to the
faces). This transverse mode is rotationally invariant in
planes parallel to the faces. When a monolayer is considered
as a 2D system, the wave vector k; matches with k.

Section Il B is devoted to the determination of the first
linear instability leading to a Turing structure and the form

-..'5‘?_
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FIG. 7. Concentration profile «(z) in the 1D system. op=6.1,
p=0.15, =5, y=1, d=20.

of the dispersion curve in the 3D systems described above. In
Sec. Il C, we report the bifurcation diagrams close to onset
and the relative stability of the different patterns. These nu-
merical results are compared to those obtained in Sec. II for
genuine 2D systems and we discuss the limits of the concept
of *‘monolayer.”” From now on, fixed parameters are given
the following values: 8=5, d=20, p=0.15. The linear prop-
erties are independent of the parameter ¥, which is involved
only in nonlinear terms.

B. Linear instability

We have determined the onset of the longitudinal insta-
bility by numerical simulation of a 1D system. The uniform
stationary state becomes unstable for ag>a;=6.16. The in-
homogeneous profile just beyond the transition is given in
Fig. 7. The transition does not occur for ap=a,=7.8125, but
is delayed until the width of the supercritical domain is
larger than a critical value, here when AL=~0.65A.

The transverse instability was studied by following the
emergence of a pattern in the median plane. We have deter-
mined, not only the onset of this instability, but also the
dispersion curves o(k,) (Fig. 8) by following, after the fast
relaxation onto the unstable eigenvector, the growth of a
small perturbation of wavevector k; and amplitude A. Since,
in the linear regime, the amplitude grows according to the

a(ki) i LANR I R TR B B R O A ]

0.08 |- ;

0.04 h

b 4 ]

o.02 [ ]

C 3 1

of— 2\ ]

: e\

—-0.02 L. . 1 v MR | ]
0 0.2 0.4 o8 0.8

FIG. 8. Dispersion curves: growth rate glk,) for different ap
values. (1) a;=7.2, (2) ag=7.1350, (3) ap=T, 4) ay=638, (5)
ag=0.3.

a
Ay

6.5

ajg

75

FIG. 9. Marginal stability curves of 2D and monolayer (M)
systems. otk ) is maximal on dotted lines.

equation dA/dt=a(k;)A, where k, =k, |, the eigenvalue o
is constant in time and given by

A(r+Ar))
In| ————

ok, }=

A1)

As (14)

A comparison of the upper and the lower limits of the un-
stable band as a function of g, with those obtained analyt-
cally for the genuine 2D systems is given in Fig. 9. The
transverse instability is delayed t0 apy=a, =7.135>a,, ie.,
AL=~0.41). However, since a, >>ay, this transverse instabil-
ity precedes the longitudinal instability, so that the critical
value is oy, =, and Aay=a) —ay.

A significant feature of the monolayer system is that the
sideband rapidly expands on the lower side of k, when the
distance Aay increases. The transverse mode k, =0 becomes
actually unstable for ay=a;. Therefore, the longitudinal in-
stability behaves like an homogeneous instability for the
structures that develop in the transverse direction. This prop-
erty will take a major importance in the interpretation of the
nonlinear properties in Sec. III C. Another noticeabie differ-
ence with the genuine 2D case is the shift to lower values of
the wave vector corresponding to the maximum growth, i.e.,
the most unstable mode.

In order to check that the succession of the instabilities
does not depend on the choice of the linear coefficient on
which the parameter ramp is applied, we have successively
applied this ramp to the coefficients a,3 or to the coefficients
«' and B’ which come from a different normalization of the
linearised equations:

du s

a1 = u v,

v {15)
—_— T

£y Blu—uv.

We have kept the parabolic profile but the factor p has been
adjusted to meet the conditions that define a monolayer 5ys-
tem, but, to avoid additional spurious effects, we have re-
quired that for the most subcritical values the system do not
comes close to an unstationary instability [e.g., when
B(z)~0). In this purpose the parabolic profile is limited to
the central region and limited to a nondangerous copstant
subcritical value elsewhere (e.g., B=1.5). These minor
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TABLE L. Values of computed criticatl parameters.

Transverse Longitudinal
Control instability instability
Model paramelers p 2D system (AL) (AL}
i —a B=5 0.15 a,=738125 @, =7.135 ,=6.16
. 63N
(1 —B) {0.41N) (0.65A)
1 —a a=7 _ _ B, =4.53 By=5.77
(1 - ﬁ) B=14 015 F.=3.66 (0.49)) (0.76M)
a1 B =1 . . o) =0.640 o) =0.783
(ﬂ, _,) >0 0012 @~ 0582 (0.36M) (0.670)
a -l o . B =1.599 B =1.067
(B' j 1) @’ =06 0.1 B.=2.112 (037 l0.53)

changes are always located well outside the core of the
monolayer [43] The values of the computed critical param-
eter are collected in Table I.

Whichever the ramped coefficient is, both instabilities are
always delayed and the transverse instability always comes
first. This precedence was also predicted some time ago by
Dewel er al. [20], on the basis of slightly different hypoth-
eses. We shall now focus exclusively on model (3) in the
case where the spatial profile is set on parameter a.

C. Stability and pattern selection

To analyze the two-dimensional symmetries of the differ-
ent monolayer patterns, one can use different concentration
amplitudes. Naturat choices are the concentrations in the me-
dian plane, that is the most supercritical region with the
higher contrast, or the spatial average of concentrations over
the system depth, i.c., over the range 0<<z<L. The latter
representation more closely mimics the experimental obser-
vation in the disk reactor. In practice, there is no qualitative
differences between these two descriptions, as shown in Fig.
10, where both representations of the same monolayer of
hexagonal symmetry are given. To evidence the monolayer

FIiG. 10. Monolayer pattern. ag=7, p=0.15, §=3, y=3, d=20,
size: BOXBOX27. (a) distribution of concentration u in the median
plane; {b) distribution of concentration u averaged over the system
depth; (c} distribution of concentration u in a plane (0, ,0;) parallel
te the parameter gradient.

character of the structure, a vertical section paraliel to O, is
also shown. Other plane sections paralle] to the faces exhibit
the same symmetry, so that one can refer to the 2D termi-
nology to classify the monolayers. If not otherwise stated,
the reported amplitudes will always correspond to the con-
centrations in the median plane.

In Fig. 11, the different kinds of monolayer patterns ob-
served in our numerical simulations are collected. They ex-
hibit precisely the same planforms as the genuine 2D sys-
tems, that is hexagons H, or H,, and straight or zigzag
stripes (compare with Fig. 3).

The bifurcation diagrams for the monolayers at y=0.75
are reported in Fig. 12. The wavelength is set to the critical
value. Note that, contrary to diagrams of Sec. II, full and
dotted lines do not represent analytical predictions, but are

FIG. 1. Monolayer patterns: distribution of concentration 4 in
the median plane. Common parameters: p=0.15, g=5, d=20. (a)
hexagonal pattern Hy (ag=7, y=3, size: 60X 60X 27); (b) hexago-
nal pattern H , (ag="T, y=—3. size: 60X 6027); {c) striped pattern
(ag=7, ¥=0, size: 60X60x27); (d) zigzag pattern (@y=6.6. y=13,
size: 127X 127X27).
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FIG. 12. Bifurcation diagrams for monolayers at y=0.75 (am-
plitude of variable #). p=0.15, 8=5, d=20. A: stable hexagons
H,. ¥ stable hexagons H, (limit at point D). @: stable stripes. —:

stable states. —-: unstable states (numerical simulation). (a) ampli-
tude in the median plane, (b} amplitude averaged over the system
depth.

drawn to highlight the continuity of the numerical branches.
In Fig. 12(a), we used the amplitude A, in median plane,
whereas in Fig. 12(b), we used the amplitude A,,, averaged
over the system depth. As expected, both diagrams exhibit
the same qualitative behavior. Close to onset, they are simi-
lar to those of 2D systemns. The hexagonal form H, bifur-
cates first in a subcritical way. The stripe patiern branch is
supercritical but is unstable nearly beyond onset. It recovers
stability at some distance from the bifurcation point.

Close to onset, the amplitude A, remains finite. This
attests that the layer thickness & does not vanish at the criti-
cal point. This thickness can actually been estimated from
the values of the maximum and averaged amplitude if one
assume that the amplitude of a fully developed structure av-
eraged on a wavelength should be about A /2. In our sys-
tem, one has L/A~3. From Figs. 12{a) and 12(b) one gets
A A e—6~2 LI\ from which we can give an estimated
value &~2LA, JA N Therefore, at onset, the layer
arises at once with a thickness of one wavelength. When
¥#0, this in agreement with the subcritical character of the
bifurcation but in contrast with the analog problem in lower
dimensions. Actually, in two-dimensional systems where one
imposes a gradient of input reactant concentrations, the tran-
sition was essentially found to be supercritical [21].

Although, in the close vicinity of the bifurcation point,
genuine 2D systems and monolayers exhibit similar stability
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FIG. 13. Bifurcation diagram for the monolayers at y=0.5 (am-
plitude of variable u). p=0.15, B=5, d=20. A: stable hexagons H,
{limit at point C). ¥: stable hexagons H_ (limit at point D). &
stable stripes. —: stable states, ---: unstable states (numerical simu-
lation).

properties, in the latter, the hexagonal phase H does not lose
stability away from onset. For smaller values of 7, the hex-
agonal branch loses indeed its stability (see Fig. 13, y=0.5),
vanishing as expected when y=0 (Fig. 14), but retrieves rap-
idly this stability at larger values of Ac, as shown in Figs. 13
and 14. Whichever the value of v is, a stable branch of H
hexagons also comes out at some distance from onset. Con-
trary to the two dimensional case of Figs. 5, this branch
exists at k=k,. When y=0, the stability ranges of the
branches H, and H, merge. In Fig. 15, we represent the
different stability domains as a function both of
Aay={a, —ay)—the distance to onset—and of the parameter
v. The stability limits are identical for y and — 7 except that
the hexagon types Hg and H , are exchanged.

IV. DISCUSSION AND CONCLUSION

We have shown that close to onset, 2D systems and
monolayers have similar stability properties but that in the
tatter, when the distance to onset increases, both hexagonal
phases are strongly restabilised. In the range where stripe
patterns are also stable, patterns that form spontaneously
from random fluctuations of the uniform state are indeed

Amplitude

05

0 L I I i
o] 0.5 1 1.5 2
a;—dp

FIG. 14. Bifurcation diagrams for the monolayers at y=0,
p=0.15, 8=5, d=20. A: stable hexagons Hy and H.. ®: stable
stripes. —: stable states. --- unstable states (numerical simulation).
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FIG. 15. Nature and stability of patterns in the parameter space
(ag,y). p=0.15, B=5, d=20. - stability limit of hexagons Hy.
----: stability limit of hexagons H .. - stability limit of stripes.
Hy, H ., and B, respectively, specify the stability region of patterns
H,, H,, and stripes.

stripes, but this does not dismiss the importance of these
hexagonal phases. Since the latter usually bifurcate first, they
can be maintained afterwards by a slow continuous change
of tunable parameters such as ag or y. This should be a
widespread situation in real experiments, where the concen-
trations gradients build up progressively from the initial state
without physical break off. Simultaneous stabilization and/or
reentrance of both types of hexagonal patterns suggests a d.c.
mode induced reentrance. Although we have shown in Sec.
1I B, that the 2D model exhibits such a phenomenon in rela-
tion with a transeritical or pitchfork bifurcation at a=8, this
reentrance has a different origin in the monolayers. Due to
the delayed bifurcation, it is more pertinent to use the devia-
tions to onset Aa and Aag than the parameters a and ag 10
compare the stability of the 2D systems and of the monolay-
ers. Accordingly, the restabilization of hexagonal phases
turns out to be strongly advanced in the monolayers, as il-
lustrated in Fig. 16(a) in the case y=0. This particular ex-
ample was chosen for simplicity since there is no hexagonal
pattern at onset and since H and H  are both reentrant at the
same value a=ag,. The shift suggests that the origin of the
d.c. mode is different in the two types of systems. Moreover,
agy is close to g, the value at which the longitudinal insta-
bility occurs. To corroborate this point, the numerical simu-
lations have been repeated with d=50 [Fig. 16(b)]. In the
monolayers the restabilization point is again significantly ad-
vanced, but remains still located nearby the longitudinal in-
stability. As we have shown in Sec. I1 B, this instability ac-
tually behaves like a homogeneous instability (d.c. mode) for
the transverse structures of wave vector k, . It is thus natural
that the coupling with this mode restabilizes these transverse
hexagonal structures that constitute the monolayer, in agree-
ment with the Price theory. Therefore, the origin of the d.c.
mode is quite different in the genuine 2D systems and in the
monolayers. In the former, it resulted from the specific form
of the reactive part (and could be absent in other models),
whereas, in the latter, it follows from the *‘geometric’’ effect
induced by the concentrations gradients that confine the
structure. It is an intrinsic property of these monolayers.

So far, we have used a control parameter profile symmet-
ric with respect to the plane z=1L. However, we have
checked that the properties reported above do not depend on

s s T T S

RS LR R

v TR A
g
Wik

a
X~y
O~ Ugz
[ —
a, Opa a=4
| a‘ al al L L ]
I L 1 L i l 1 1 st l!’ l L 1 J. J
8 6 5
a;—a
WZL TR
. ac_aRz .
e e a=g
T a Qpg & ) )
[ I Ii i yi Rsl II l 1 L [l 'l J
15 10 5

FIG. 16. Summary of relevant stability limits in 2D and mono-
layer systems. All quantities are defined in the text. (a} y=0, B=5,
4=120, p=0.15; (b} ¥=0, B=35, d=50, p=0.25,

this particular choice by replacing the symmetric parabola by
two half-parabolas with different curvatures [30]. The results
are definitely similar to those of Sec. IIT and are not reported
here.

In conclusion, we have shown than monolayer Turing pat-
terns arise from a transverse instability with a delay when
compared to the genuine 2D systems. The first pattern devel-
ops over a full wavelength in the direction O, . Very close to
onset, monolayers and 2D patterns exhibit similar stability
properties, but important changes occur in the vicinity of the
longitudinal instability: the dispersion curve stretches toward
a d.c. mode and, consequently, both hexagonal patterns Hy
and H, are (re)stabilized. Thus, one can say that the patterns
lose their two-dimensional character close to this longitudi-
nal instability, Nevertheless, this instability does not corre-
spond to any visual qualitative change of the structure—
visible multiple layers actually come far beyond the
transition—so that it seems experimentalty impossible to dis-
tinguish the narrow parameter range where the 2D descrip-
tion is valid from that of the ambiguous—between 2D and
3D—regime that comes next. Thus, contrary to what is com-
monly accepted, one should be very cautious in the applica-
tion of the well developed 2D pattern selection formalism to
the experimental results, even when the structure is restricted
to a single layer.
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