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1. Infroduction

The quantum mechanical problem of Bloch electron in an exiemal magnetic field attracts
more and more aitention of physicists. The basic ideas sbout the nature of s Bloch electron
spectrum were laid down by Zilberman [1], Zak [2], Azbel [3], Rauh [4], Wannier [5] and
Hofstadter [6]. Significant progress has been recently made in the analysis of the nature of
electron energy spectrum, wave functions and symmetry of electronic states. Al the present time
the anelytical and numerical methods of calculations of an electronic states have also been
developed.

A brief mention should be made of the basic results obtained in the tight-binding and

neady- free-electron approximations. Let E(k) in the tight-binding spproximation describe the

electron energy 85 8 function of the quasimomentum k. The simplest way 10 acount for the
influence of a magnetic field on a Bloch electron is the Peieds substitution. It deals with the

replacement of #k in E(k) by E(—ihV - eA/c), where h is the Planck’s constant, € is the
electron chamge, ¢ is the Lght veclocity, A(l‘) i3 a vector-potential Then the Schrdinger
equation to be solved is

E[—mv - -z—A(r))w - Ey. (1)
If the energy E(k) in 2D-band is choosen as
E(k) = 2E,(cos k,a + cosk,a) 93
and the Landau gauge hes the fomn A(O, Hx,O) {(a i a lattice constant) then the
quasimomenium component ky becomes a constant of motion. Therefore, the sohition of
Eq(1) can be written in the form w(x,y) = exp(ik,y)U{x). It leads 1o a discrete Schrodinger
equation in a quasiperiodic potential ( Harper's equation ) [6] '

Ulx +a)+ U(x—_—a)+2cos(f—i—ax—kyaJU(x)= eU(x), (3)

where £ = Ef2E, . By shifting the zero point of x, Eq(3) can be transformed to the following
one

C,., +C,. +2cos(2m plq - v)C, = £C,. 4
In the difference equation (4) C, is the value of the function U(X) on the nth site,
plg =a*f2nd} gives the number of flux quants threading & unit cell area a’. Here
5 = Jch/eH is the magnetic length. The matrix equation (4) is called s Harper's equation.
Harper's equation has a simple form but the structure of spectrum £ is quite complicated. When
the rumber of fux quanta per unit cell p/g is a rtional number, Eq.(4) is pesiodic on 7 with
period g . It means that every enemgy band (2) splits into g subbends, and the enemgy becomes &
function of k,. In the opposite cese, When the ratio of p/q is en irrational number, the
quantity of subbands is infinitely large. This fact was predicted by Azbel [3] who proved that the
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enetgy spectrum has the form of Cantor set when p/q is imational. Hofstedter solved Eq.(4)

numerically and obtained the spectrum (see fig.1) which was called as *a butterfly”. The tight-
binding epproximation was also discussed in |8, 9, 10].

The well-known altemate approach to treating the problem ( the neady-free-clectron
approximstion in the Landsu basis ) has been discussed in [1, 4, 8, 9]. The Landau functions
satisfying the genemlized Bloch conditions are choosen as non-perturbaied funclions. It means

that under the iranslation on vector A, = 1A, + 1,qa, (7, and N, are integer numbers, A,
and &, are the vectors of a unit cell), the electron quantum state is chamcterized by the same

value of quasimomentum k. If the magnetic field satisfies the condition h[al,az] =4m/q,
where h = IelH /hc, then under the action of the magnetic translation operator the wave
function transforms as

() = vir + 8 xp{i]b, a)/2) = oxpfkaly ),
When the weak pedodic perurbation V(x, y) = 2V, (cos[2fzx/ a] + cos[2ﬂy/a]) is

introduced the Schrédinger equation for the coefficients of expansion of the wave function in
terms of Landau states € has the form [11}

cxp(-igak,a/p)C,,, + exp(igak,a/p)C, , +2 cos(qaky [p+2mgf p)C,, =eC. (5
Eq.(5) describes the structure of electron states formed from the single Landau level Eq.(5) is
similar to Harper's equation (3) , however, it is periodic in # with the pedod £, but not g. The
later means that each Landau level splits under the action of the periodic potential into p
subbands and the energy depends upon &, and k. The full width of the band formed at the

position of the Landau leve]l equals

252 2
AE, =8V, L), [3%2-5'!;} cx‘p(— —ééﬁl], (6)
where Lg, (x) is a Lsguerre polynomial. The enegy & in (5) is measured in units of AF N

(see Eq(6)). _
The important stage in the development of a knowledge about the nature of electron

states in a periodic potential and in a uniform magnetic field was created by Kohmoto et al [10].
The total energy of 2D-clectrons was calculsied for the square, trisnguler and hexagonal lattices.
They also computed the Fermd enesgy as a function of number of magnetic flux quanta threading
a unit cell for a fixed electron density. It is shown that the total energy has 8 cusp (local
minimum) at the position where the Fermi energy jumps across & gap. The minimum of a total
energy occurs when the number of flux quanta per electron is equal {o unity.

A mention should be made of interesting papers by Zilberbauer et al. [12,13] where the
solution of Schrddinger equation is decomposed not upon Landsu functions, bwt on the
functions celculated in the symmetric gauge of the vector-potential A(—-Hy /2, Hx/2 ,0) . This
solution is invadant with respect 1o megnetic transiations. Such functions were originaily
discovered by Fermuri [14]. The results of calculating electron spectra for amays of quantum dots
and antidois in 8 magnetic ficld are displayed in [12] under the following parameters of the
lattice: a=500 nm, Vy=5 meV. The 2D-potential shape in [12] is designed by different periodic
functions allowing Fourer series decomposition.

This is an establithed fact that in the classical imit a system of antidots in a magnetic
field exhibits the phenomenon of dynamical chaos, that in the quantum limit this 6ne is
embodied in the structure of electron energy spectrum. It is found in [13] that the nearest-
neighbour level distdbution in this problem changes with respect to magnetic field from
Poissonian to GUE for different points of the Brllouin zone.

The experimental study of electron phenomena in periodic and magnetic fields is not as
successful as the theoretical one in spile of the fact that this problem is very attmactive. In order
to observe the effects dealing with the rebuilding of Landsu spectrum it is mecessary to apply a

very strong megnetic fields. Actually, the magnetic length /5 = 26/H" nm (H is measured in
Tesla) and in the fields about 10 MGs the number of magnetic fux quanta passing through a unit
cell with the ordinary lattice constant 8=0.3 nm has the order of 10-1. It i3 easy to see in fig.1
(see also Eq(6)) that st such values of fhix p/q the spectrum comsists of the single Landsu
levels.
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In recent years the essential progress in the creation of 2D-lattices consisting of quantum
dot and antidot arrays has been achived {15,16]. Such structures can be obtained in & process of
the epitaxial growth due to the self-omganization. An equilibrium shape of a 2D-lattice arsed
from single islands is determined by a relation between surface enempy, elastic energy and other
parametess. In particular, two-dimensional lattices with periods 15-30 nm formed by guantum

dots of [In,Ga )AS on the GaAs substrate were obtained {16). The two-dimensional crystals

of gquantum dot and antidot amays can be also created by using the electronic lithogrephy
method.

In this report the resulis of calculating electron enemgy spectrum and wave functions are
displayed for two-dimensional periodic artifitial crysials [16] placed in a strong megnetic field H.
The typical value of a lattice constant has the order of 10 nm and more. It is shown that the
effects of radical spectrum rebuilding defining the transport and magnetooptical phenomena
must be observed in the magnetic fields equal to 1 MGs.

2. Basic equaﬁons; Calculational method

The Schrédinger equation for the electron moving in a two-dimensional square lattice
placed in s perpendicular magnetic field has the form

( Jig E) - (L—_E_A;/_C_)i 1% 2| X A2 _glu=0 7
-Ely= o~ Vocos | jcos |-y =0, ™
where m’ is the effective mass, p if 8 momentum. When the Landau gauge

A = (0,Hx ), (8)
is used the magnetic field H points in the Z direction. The potential of the 2D-lattice in (7)
(see fig.2) is descrbed by a periodic function, therewith, the positive sign of Vo corresponds to

a quantum dot system, and the negative one to a antidot lattice. The period of such a Jattice is
equal to d. We suppose that the motion along the 7 axis is limited so that the electron is

located in the lowest subband of dimensional quantization
Irp /q is a rational number the solutions of Schrsdinger equation (7) must satisfy to the
generalized Bloch conditions

l,{fknk (x.¥)= W, (x+qa,y +a) exp(—ik .qa) cxp(—ik,a) exp(-2npy /a). (9

Here the vectors of magnetic translations is chosen as follows

a, = mga, + mha,, (10)
where 71, and 71, are integer numbers. Therefore, under the translation on a, the wave function
{ransforms into the function with the same values of &, and X, .

The sohution of Eq.(7) satisfying the boundary conditions (9) mey be written in the form
of o serics of cigenfunctions of the Hamiltonian H, = (p — eA/c)’ /2m" . Such fanctions
correspond to the spectrum

ES = ho (N +1/2), ’ (11)
where NV is 8 Landau level number, This solution of the Schrédinger equation can be wiitten as

v., (5.9) = gﬂg Cr, qu)ﬁ [x - x, - lga - nqa/Pj crp(ik, [lqa + %B X

e

x expl 2y b+ n] ex‘p(ik,y).

a

(12)

Here X, = ch'ky /eH . @N (z) is the eigenfunction of a harmonic oscillator. The components of

quasimomentum K, and K, arc determined in the magnetic Brillouin zone.
Afier the substitution (12) into (7) we obtain the system of difference equations
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> HyyCovw = 3 (Eg.ﬁ,,wa,,,,, + Vi, [% ,kx,ky])cm,. - EC,, (13
N

N

which defines the energy spectrum E'(kx , ky) and electronic weve functions Cy, .The scheme

of calculation of matfix elements V.. is given in the Appendix. The Hamiltonian matrix
Nn

H ., hes a block structure. Eech block is a three-diagonal square matrix P x p. 1t is labeled by
Nn

numbers N and N'. The number of blocks is equal to the Landsu level number. The elements

inside the block are marked by numbers 72 and 7' . Therefore, the size of a full metrix is equal to

Np x Np. Duding the numerical calculations the Lendau levels number N__ wes defined

experimentally 8o that the energy spectrum and wave functions were independent on N

X -

3. Resnlts and discussion

We carried out the calculations of electron energy spectra and wave functions for a
different typical parameters of two-dimensional superlattices consisting of arrays of quantum dJots
and antidots. The results of computations of energy spectrum for the dot lattice with a=30 nm
are shown in fig.3s, 3b for different vatues of the magnetic field H . For the square lattice with

the period 2=30 nm the largest vatue of magnetic flux number per unit cell was plg=15 1
corresponds to the magnetic field & = 69 T'. The depth of potential wells is cqual to 300 meV

and the effective mass is m” = 0.067 m,.

Let us discuss the evolution of energy bands in the system of quantum dots and antidots
in the case where the magnetic field increases. In the sbsence of magnetic field the levels of 8
single well split into the enemgy band and the wave functions are highly localized. Consequently,
the conditions of the tight-binding approximation should be met. In a magnetic field every band
splits into ¢ subbands and the spectrum takes the form of Hofstadter's “buiterfly”. Such a

“butterlly” produced from the lowest level of the potential well is displayed on the left side in
fig.3a. The second and the third levels of the potential well are degenerated. With the increase of
the magnetic ficld this degeneracy disappears and corresponding “buiterflies” are overdepping. The

system of Egs.(13) is not periodic in p/g. Therefore, the energy band structure is also non-
pedodic in p/g. In the next interval 1< pfg <2 the “butterfly” is not clearly defined.

With the increase of the magnetic ficld the localization of wave functions in the wells
becomes stronger. Simultaneously, the transfer integrals which define a width of the energy bends
in the tight-binding spproximation are decreases. It leads to the namowing of enerpy bands
formed from the levels of a single well. We can see this in fig.3b. which prolongs fig.3a to the

range of higher magnetic fields where p/g > 2. At the region of negative and positive energies,

very narrow bands are being formed with increasing the magnetic feld. These bands are clustered
to the unperturbed Landau levels. Their location is marked by thick points in fig. 3b.

The energy in every subband is a function of qussimomenium components k, and k, .

In fig4 the energy bands E(ky,kx = 0) are shown. The component k, is changed in the

Brillouin zone (parameters of the well are the same as in fig. 3a, 3b). At the top of this figure the
location of unperturbed Landau levels is displayed. At the bottom of fig4 the parabolic dot levels
in the presence of a magnetic field are plotted.

The energy spectrum of the lattice with the parameters a=10 nm, V=300 meV is
displayed in fig.5. In this case, the following pequliarities of electron energy spectrum should be

mentioned. In higher megnetic fields when V,/R@_ <<1 the neary-free-electron approach may
be used. Under these conditions the interaction between different Landau levels is not significant
and the spectrum consists of subbands formed from e single Landau level It is easy 1o see that in
the range of magnetic fields corresponding to p/g >4 every Lendau level splis into D
subbands. The energy changes in a single subband when the quasimomentum rins all values in
the magnetic Brllouin zone: —-n/ga < k, < x/qa; ~xja<k, < zfa.
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In fig.6 the function £ [k,, k, = 0) is shown for different subbands formed from the

Landan levels. The parameters are the same as in fig.5, bul the magnetic field corresponds to
p/g =15 1t is necessary to stress that the location of a level depends on k, very weakly. This

is as il should be since the pammeter F, /A, <<1 and the width of the subband is

exponenticlly small. With the increasing of Landau level's number the total width of the band
decreases.

The eleciron energy spectrum for the antidot Isttice (=10 nm) is pictured in fig.7 with
sespect {0 magnetic field. The potential shape is the same 28 for the dot lattice but the amplitude

has a negative sign (Vo=-300 meV). In strong magnetic fields ( p/q 2 5) the spectrum consists
of narrow subbands which are clustered near the position of Landau levels. In the magnetic field
comresponding to p/q = 10 the parameter A fV; = 25. Therefore, the structure of the

encigy spectrum here is the same ‘a5 in the weak-binding approximation. The amount of subbands

is equal to  p. The location of unperturbed Landau levels is labeled by thick points.

Now let us discuss the electron eigenfunctions. The probabililty density corresponding to
the quantum state from the lowest energy subband (see figd (/g = 7)) is shown in fig.8 The

wave functions are localized in the quantum wells. All distributions have the lattice symmetry
but st the bottom of the well the probability density hes the cylindrical symmetry. The shape of

this function depends weakly upon &, and X,. The probability density for the second energy

band (see fig.4) is pictured in fig.9. We can aiso cleady see the lattice symmety of probability
distribution but such & function has & zero point st the center of the well

The probability distribution corresponding to the lowest energy band for a dot superlattice
under p/g = 10 s the conditions of fig.5 is shown in fig. 10. The energy of this state is positive,
however, the function is mainly localized in the dot srea. Ome can be seen the translation
symmetry of the probability density. The clectron density in an antidot laitice for the highest
state splitted from the first Landau Jevel is shown in fig.11. The flux quanta number here is equal
1o 10 and the parameters are the same as in fig.10. The structure of the wave functions pictured
in fig.10 and fig.11 is simdlar to the one of impurity states in the field of aitractive and repulsive
potentials in a strong megnetic field

4. Conclusion

The results of this paper permil to determine the range of magnetic fields and parameters
of lattices in which it is possible to observe quantum effects dealing with the spectrum rebuilding
of the Bloch electron in a magnetic field H = 1 MGs. In order to calculaic the oscillating
thermodynamical and kinetic solid state effects it is necessary to compute the density of states
and the encrgy under the fixed concentration of camiers. It will be done in the next paper.

This research was made possible thanks to financial support from the High School
Commitee of Russia (Grant 95-0-5, 5-63) and Russian Foundation for Bagic Research (Grani
96-02-180672).

_Apﬁendix
Let us discuss the scheme of calculation of the matrix elements V., of the periodic
potential "
)= o (2 (2] w»

in the basis (12). The potentiat (A.1) can be written in the form
Vix,y)=- Yo [1 + cos(z—m) + cos(z—ny) + cos(2—fgc—] cos(z—ﬂy)} (A2)
4 a a a a

X
1. The calculation of matrix elements of COS(?——] reduces to the definite integral
a



T 12 nga
Teor 221,65+ 22) g, (9, (9 ®
which has been computed in {17].
2. The matrix element of 003[2—3}’) determines the transitions for ky on igﬁ . This one is
a a

govemed by the following expression

%[Jn'.nﬂ + 5n-p-1]GXp(ka gpc'l"(n— n‘)JI(DN [x— Xq = ﬂqa/pj q)N' (x ~ X~ nfqa/rp){&’

Iy Iy
{A.4)

which is defined as the sum of two integrals

T@N(f) @, (£talds. (A.5)

Such definite integrals have been evaluated in {17].
3. In order to calculate the matrix elements of the product of cosines in (A.2) let us consider the
suxiliary integral [1}

Lenls£) = [0, @, (6~ a) xofipeiaz 70

Differentiating the expression (A6) with respect to @ and # and using the proreries of
Hermite functions the last integral can be written as

Tyn(a, f) = cxp{-;- [a;b‘ +2(N"’ - N)arcsin ﬂ} B ) (A7)

where y = ot +,82 . The integral ¥ ) depends only upon the single parameter ¥ and
NN
equals

bon®)= 10,00, el )

The value of the last integral is given in [17).
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ELECTRON STATES IN PERTIODIC NANOSTRUCTURES SUBJECTED TO
A STRONG MAGNETIC FIELD

V.Ya. Demikhovskii, A.A. Perov

Fig.1. Hofstadter's “butterdly”. Electronic spectrum calculated for a square laitice with
regard to magnetic fux guanta number per unit cell p/q.

Fig.2. Two-dimensional periodic potential V(x, y) = -V, cos? (;rzx/a) cos® (ﬂy/ﬂ)
comresponding to a square lattice.

Fig 3a. Electron energy specirum in a square lattice in a magnetic field. The negative
range of energy is shown. The pambolic dot levels are pictured st the boitom of this figure. Such
2 pamabolic well approximates the pedodic potential V(x, y) when x —» 0,y - 0. The

vertical varable is the number of magnetic fhux quanta per unit cell (=30 nm, Vg =300 meV).
Fig 3b. Energy spectrum for a square lattice in a magnetic field (a=30 nm, V; =300 meV).

The position of Landau levels in the sbsense of periodic potential is marked by thick points.
FigA. The relationship between energy £ and K, under the fixed parameter k, = 0.

Tne number of magnetic flux quante passing through a unit cell (=30 nm) p/ g=17.

Fig.5. Energy spectrum for a quantum dot system (a=10 nm, V;=300 meV) in strong
magnetic fields (2 < p/g < 10). The location of unperturbed Landau levels is labeled by thick
points,

Fig.6. Energy band structure for a square lattice of quantum dots (a=10 nm, V=300
meV) in a magnetic field. p/g =15, H =620 T.

Fig.7. Electronic enesgy spectrum for an array of quantum antidois (a=10 nm, Vy=-300
meV).

Fig 8. The probsbility density in a quantum dot system corresponding to the electron
stale in the first (Jowest) subband plotted in fig.4.

Fig.9. The probability density in a quantum dot system cotresponding to the electron
state in the second subband in fig.4.

Fig.10. The probability density in the quantum dot system for the electron state with the
lowest energy displayed in fig.5 when p/q = 10.

Fig 11. The probability densily in the antidot lattice for the electron state with the highest

energy under the conditions of fig.7. Here p/q = 10.
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