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Coherence and Phase Sensitive
Measurements of a Quantum Dot

A. Yacoby, M. Heiblum and R. Schuster
V. Umansky, D. Mahalu, H. Shtrikman

Braun Center for Submicron Research,
Dep. Condensed Matter Physics, Weizmann Institute

Embedding a Quantum Dot in an A - B ring as a tool for
studying its phase properties

- Method to Measure Phase of Transmission Coefficients

* Background on : Resonant Tunneling
Coulomb blockade

* Coherent transport through a Quantum Dot - a
Resonant Tunneling structure

* Dephasing within the dot

* Unexpected phase behavior of the A - B
oscillations was found



Scattering Experiments

eikr

« Landauer (1957) has shown

]2

» Loss of phase of transmission
coefficient (relative phase)

Interference Experiments Provide a Tool to
Measure: |

» Actual phase of transmission
 Dephasing processes

» Phase coherence length



Coherent vs Sequential Tunnelling
Energy

Transmission

» Coherency is Maintained During Transport

Energy

>
>

Transmission

i
o

Phase Breaking Event ¢

* No Deterministic Phase Between Input and Output

- T < T x i 2Ne’ R < T
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Sequential Coherent



Experimentally We Measure ...

2(E,-Ef)  2E, vV

Can one determine from the | - V characteristics

the nature of transport ?
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Landauer’s (1957) Formalism leads to :

conductivity of one channel

. Only the Area under the Absolute Value of
the transmission coefficient is important !

Weil & Vinter (1987) showed that even though
t(E) is different in COHERENT and
SEQUENTIAL mechanisms - - -

The Predicted Conductance is the Same !



There is a Long Lasting Controversy
on the Nature of Transportin
Resonant Tunnelling (RT) Devices ...

Is it Coherent or Sequential ?

Introducing a RT Structure in an
Interference Experiment and
Measuring Phase Coherency

is a Definite Way tb Determine it !

-6-

i e YW WY ST W T A el i




How Can One Determine
Coherency of RT ?

RT
-
5-10 channels
Persistence of the Oscillations with : ®
Expected Periodicity is AB-A =,
Order of Magnitude :

A=2um?; AB=2 G

Phase coherence in the ring sets the
physical dimension of the experiment
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A Small RT Structure

v

Contains a Small Puddle of Electrons

It is Called a Quantum Dot (QD)

y

The Small Puddle has a
Small Capacitance C

y

Adding an Electron to the Puddle

Acquires Energy : U = e

' C

This is the Coulomb Blockade Regime
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The Realization of a QD in 2DEG
out 2DEG

in

Area without electrons Plunger; |
Gate modulating
number of electrons




Current Flow Through the QD

-- as a function of gate voltage --

2
Ne
F = (Ne) + VpNe
2¢
F
Ve = NZ
C
N-1 U N+1
N #
F
V = (N+}—)g
F B 2/ ¢
N N+1
#
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The Quantum Dot :

Coulomb Blocked - Resonant Tunnelling

.

Homogeneous or
Thermal Broadening

Current

Coulomb Blockage



SCHEMATIC DRAWING OF EXPERIMENT

S Regions in the 2DEG that are gated beyond depletion

1 mode
10 KOhm

o

3 -5 modes
3 KOhm
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Typical Coulomb Blockade Peaks

x 10711

7 e, e M AR .
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046 -047
Gate Voltage [V]
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Some Important Values:

e << kgT << A << U

Elastic Level Width Level Spacing

e QD size 300 nm x 300 nm

Number of electrons 100 - 300
Capacitance 160 aF

Charging energy 0.5 meV

Level spacing 50 4 ev
Temperature (100 mK) 10 u eV
Single particle level width 0.1-1 u eV
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Typical A - B Oscillations

x 10710
9 i t 1 H

8.5

7.5

¥

0 200 400 600 800 1000
Magnetic Field, B [G]
Typical contrast of 10% due to :

° LT
. Multiple channels (3 - 5)



Is Transport Through the QD
Coherent ?

The Experimental Process ...

Current

: :

full ring’s current : :
: : ?
: . RN
'\ form the QD ! control the Plunger Gate
: (one arm’s current) :

A - B Oscillations no oscillations look for oscillations ...
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Oscillations in a Modified A - B Ring

-0.486 0484 V, 0482 0480

Plunger Gate Voltage, Vp [V]
* The QD Supports Coherent Transport

WhenR=0.1-1M Ohm,
Dwell Time Changes 1 - 10 nS
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What Contrast Do We Expect ?

e Using a simple interference picture |

_ezV y)

I Ring = — P Right T 1D

¢ Case of a coherent - symmetric dot:

t — Felast
D = .
(E - El) + 1 Felast

Breit - Wigner

I 3 ezV[
Ring —
h

The interference contrast is independent of
h

T dwell

» Contrast = 41,

Independentof [, < Rj

2
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Coherency Allows the Measurement
of Phase, or:

the Complex Transmission Coefficient

t =tle' 7

Usually we measure: G ~ ]t'z

* Breit - Wigner Predicts:

t (coher ) = r"_’”‘
E +1i I‘elast

An accumulated phase change of 7
as a resonance is being crossed !



A 1D Model Can Provide a Feel ...

Transmission Phase [ *]

’ Temperature Smears Changes on

the Scale of kT

® Each Resonance Leads to Phase
changeof 7

e Consecutive Resonances are
Out of Phase

* |f Spin Degeneracy is Lifted, Every
Two Resonances are Out of Phase
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Phase Behavior in Different
Resonances

0485 0475 0465 0455
Plunger Gate Voitage, Vp [V]

A .
. o
00 950 1000 1050

Magnetic Field, B [G]



-11

Phase Evolution Through a
Resonance Peak
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Noise Measurements

 The transition region is also characterized
by a large measured noise signal :

1) Amplitude noise
Should be observed with the

umlp> bare dot.

2) Phase noise
Supports the abruptness of
the measured phase change.
> P 9
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Summary of Phase Behavior

Current

\ Coulomb Blockage

Gate letage, Vg

Phase change does not necessatily
occur at peak

-Qh -
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Dot and Ring : One System

T=0 1D Model fﬂ_ﬂ_"\o
‘LGdUmYmeJlYmﬁu;i J(\\&ji’///fﬁ >
1984

G. Hackenbroich and
H. A. Weidenmuller, PRL 76, (1996)

0 [Arb. Units]

—

Amplitude [Arb. Units]

150 200

Normalized Oscillation

0 [Arb. Units]

25 -



Underlying Physics
e Onsager relations :
tos(B) = t5p(-B)
tos = tso Two terminal measurement

» At B = 0 have a maximum or minimum.

. Isolated Ring : System = Ring + Dot

The system has discrete energy
levels that oscillate periodically

with flux.
Peak moves with flux _
Higher
¥ harmonics
le+ /> | los A
- N >
N % / m\ o ¢

m)> Related to the Persistent Currents

-6~
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esting the Two Terminal ldea

Replace the QD in the AB ring’s arm with a
phase shifter (an anti dot) .

-a%-




R(kn)

Two Terminal Resistance of an
A - B Ring + Antidot in Arm

B(mT)

G(B) = G(-B)

-a%-

Vg,mod

-100mV

-220mV
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3.0

2.5

2.0

1.5

1.0

0.5

0.0

i

Fourier Plots
of two Terminal Resistance

(\ o
I L\\ -100mY
N :
; :‘ /\____
= Al \\—
\ T N—
e —
-220mV

—

| ¥ ‘ L] i L] { 1 ' ¥ ‘ ]
0.0 0.1 02 03 0.4 0.5 0.6

1/AB(mT)

h/e and h/2e oscillations



A - B Experiment vs
Injection Energy

- s e ma wm e o W A -

Oscillation Amplitude
[Arb. Units]

Adding a QD Should Reveal a Continuos
Phase Evolution due to the Strong Coulomb
Repulsion.C. Bruder et al PRL 76, (1996)
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Open Geometry can Reveal the
Details of the Phase Evolution

~ Study the Shift in Phase Due to the
Modulating Gate and the Flux
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Fig. 1

b

e —



AB Oscillations in :
a Modified Double Slit Configuration

Phase is being changed along one arm

8.0 |
.g i
g 75}
L |
g g0l
o
g ,
E 65 [
o L
E 6.0 |
S |

55 |

0 50 5 10
magnetic field (mT)

No phase rigidity !

o — A A . A e ————— ;2 . [ B T



AB Oscillations Along a Resonance Peak

8.5}

o
o

collector voltage (a.u.)
\l
h

-0.58 -0.56
plunger gate voltage A\

VAV,

A |
N

5 10 5 0 5 10 15
magnetic fietd (mT)

" collector voltage (a.u)

...3‘_'..

l
¥ i in




Phase Evolution Along a Resonance Peak

The phase is calculated via a Fourier transform

00 \

.5 \

collector voltage (a.u)

4.0

(z jo sjun) § 4 jo eseyd

0604 0602 0800 -0.508 0.506 0.504 -0.592
plunger gate voltage [V]

An approximate change of 77 across a peak !
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Phase Evolution Along Several Resonances

Electrons are added to the QD with plunger gate voltage

w
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-1.0

s'é ¢
«
Vet
o)
N
(x jo syun) 14 jo aseyd

v | i 1 ! 1
-0.58 -0.56 -0.54 -0.52
plunger gate voltage [V]

B> As the plunger gate voltage is more positive :
- the QD couples better to the reservoirs ;

-- The overlapping of resonances reduces the extent
of phase change ;
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T e T T T T AT R T E BN AT b e P e W S 5ok o e ————




Overlap of Breit - Wigner Resonances

If we assume that each resonance leads to the same

phase behavior .....

=)

un

)

g 4
£ 5
= 73
® =4
=]

©

=

»

3 ®
= c
= 3,
€ 73
© °
T,

Energy

.... Overlapping resonances lead to smaller phase oscillations .
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Summary

An interference experiment
“was devised to study the phase
properties of a quantum dot

Observe coherent transport
through the dot

The phase of the A -B
oscillations revealed :

* An abrupt & change
* No phase change between

resonances

ID model predicts
* An abrupt = change
¢ Higher harmonics
* Phase change for
successive resonances
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Why do Such Dephasing Experiment ?

Dephasing of QD

\\\\\\\\\%—__”’/’iaﬁrifv'

With Increasing resistance of QD and dwell time
10nS ) QD remained coherent.

Coherency can be affected by side detector ,
determining which path informationglh Decohering the QD

detector

-39-



Can an Electron in the QD be Detected ?

* A distant detector can sense an induced potential ;

* Charging a QD with a single electron changes its potential ;

f\\’ F I Total Capacitance: C;

Charging energy : €¥/C;

Plunger gate

Coulomb

blockade
. VP
Average V, k
QD potential < electron enters
fluctuates in B c‘ﬁ’" /
time

\'2
detector "’
CQD-De'tector

VQD

Ve

C
V. = VQD QDE:Detcctor
T

Field et al, PRL 70, 1311 (1993).

-k -

Molenkamp et al., PRL 75, 4282 (1995).
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The Detector

A Quantum Point Contact (QPC) is used as a Detector

DEG W 2DEG
ML HRr
/\r——‘

. o
My — Mg = €Varc

without e in QD

An electron in the QD changes the potential in the QPC ;
The potential change affects the transmission probability ;
The conductance changes ;

For a fixed current the voltage across the QPC changes,
or, for a fixed voltage the current though the QPC changes.



Effect of Electron in QD on QPC Detector

010 4 QPC ,, QD /’ 08
& =

008 -
2 B
= 8.
O 006 4 o)
t-pa =
3 los S,

o)
S 0.04 - o
5 o
R -
=]
(=] 0.02 4 ‘|
3 U A
— !
0.00 - > - Y I Y 0.4
0.10 0.05 0.00 0.05 0.10
Plunger Voltage, v [V]

* The QPC is sensitive to an electron in the QD even when
Coulomb Peaks (of the QD) and weak !

Y T T Y Y Y T r T - T
or——
“ p
0.030

0.025

0.020 A

AT

0.015 1

0.010 A

0.005 -

T T T ] ¥ 1 L 1 ¥ |
0.0 0.2 0.4 0.6 08 10
Transmission Probability, TQPC
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A Realization of the Experiment
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As T of QPC changes, SO does the visibility ...

1 1 1 \ 1
0.076- 1
'\ Temp.= 100 mK
0.074 . | i
- _ 1
: .
© 0072 \ .
-l .
c ' )
® o070 \ , ; ’ A K )
b \
3 . | | .
Q o068
= 0 A
2 Tz J |
- ~
= 0.066] ' i
)
&)

. ,_ ' \ ]
0.064- 4

-10 -5 0 ] 10




Dephasing the QD with the QPC Detector

P 10 1 ' ] v |
=
S Temp.=100 mK
)
W
&
® 05 -
o
8
8 , ..
=
0'0 1 [ BB ] L [ 1 ' | | ] | |
0.054 V. =10ueV |
'Aﬂ/-’.\' 8 QPC |
0.053] T TN —
2 0052 -
= |AT<< ) AT<<
® 0051 _
> _ !
o.osg Vooc= 1oopew_
! 1 ! | ' | ! | ' | |

0.182 0.184 0.186 0.188 0.190 0.192 0.194
Gate Voltage, VG (V)
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Simple Dephasing Arguments

& For an applied voltage Vgpc aCross the QPC :

e’
IQPC = VorC ‘E'T

& Due to an electron in the QD:

2e’
AIQPC = QPC -—“ﬁ'—AT

& During dwell time, 74, of an electron in the QD,
" axtra no. of electrons cross the QPC:

4 This number has to be larger than the Quantum Shot
Noise number fluctuations.

The spectral density of current fluctuations:

2 2
(AQ) _ 2. Vpe 22-T-(1-T)
T \__Y_J\____Jl__—J\__Y__J

S(0) =2

: 26 @ IQPC @ (l'T)
No fluctuations at  T=1 - — —

Max. fluctuations at T=0.5 classical shot noise ~ suppression

._H.G_




Simple Dephasing Arguments :

Continue...

< The intrinsic number charge fluctuations is :

an=2Q_ [ 50
e 2e

2e’

1
AN = \/;thQPC—}TT(l—T)

v For An= AN the detector dephases

1 zzeVQPC (AT)Z =rdephasing

T, h TU-T) &
—— - _S
Measurement rate Dephasing rate

v The visibility of the Interference Oscillations,
for a practical detector :

T4

T depha sin
v=g e =] —

Iy

ephasing

L'op
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What is Expected ?

More exact calculations lead to :

1 eVope (AT)?
8n Iy T(1-T)

v=1

T v T T T v | Y I Y Y 0.010
0.030 | e J
\n 4 0.008
0.025 . ;
do006 2
0.020 - :-!l
g S
-4 0.004
0.015 - \b
v | 3
o.ow_,-'- -4 0.002
N \:"
0'?05 —r T T ! T T—0.000
. 0.0 0.2 0.4 0.6 0.8 1.0 B
Transmission Probability, T QPC
AT=0 " strong noise AT=0
near a plateau near a plateau
Recent calculations are :

—L L. Aleiner, N. S. Wingreen, and Y. Merr, cond-mat / 9702001

-- Y. Levinson, cond-mat / 9702164
- S. Gurvich, quant-ph/960729 and private communications.
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Conductance, g

Visibility

1.0

Comparison with Theory

o
&

0.0

0.054-

0.053]

o
Q
O
N

0.051-

0.050-

A

= 100 ueV-

QPC

0.182

| ! | ' | ' |

0.192
(V)

0.186 0.188 0.190 0.194

Gate Voltage, V

0.184

QPC

Fop=0.5 peV (t;=InS ) was used !
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What Have We done thus Far ?

A quantum point contact used as a which path detector ;

The which path detector led to dephasing ;

Reasonable agreement with theory ;

A method to dephase electrons in a QD .

(Bare QD was found before to resist dephasing ...)
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