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le A Sbort Summary of the Present Status

The purpose of our rather formal approach is to elucidate the
nature of localization phenomenon without relying, as far as
possible, on approximation which often makes the nature obscure.
It is practically inevitable to stick to simple, in particular

one~dimensional models, to make the theory free from approximation.

It bas been known that to discuss one—dimensional models, the
method of phase is particularly powerful, though in prineciple it
can handle multidimensional systems also. In this section a short
summary of the present status of phase-theoretical treatment will

be given.

Let us consider at first a system which can be described by a

. difference equation

Nyt Authy~ Va,, =0, (1.1)
Vibration of a mass-disordered linear chain,with nearest-neighbour
harmonic interactions only, is an example of the systems of this
type. In this case V=Ff is spring constant of interactions,
oly, = 200 — am,, L0* ’, where M., is mass of the nth atom, and u.,,
is its displacement} Anderson's model for an electron in
disordered crystal is another example, in which |/ is overlap
integral, o, =£-§, , where &, is energy at the nth site, and «,,
is probability amplitude at the nth site.

Equation (1.1) can be written in a vector-matrix form
ey dalV =/ (u‘h : ( )
p——4 1 02
A a I (0] u“‘l“ﬂ

, Moy = T ¥, (1.3)

| AefV =/
We call X, = (u,,,/ Umer) and W:E( ) state vector and

or

/ o]
transfer matrix respectively.

Upon introducing two linearly independent solutions ., and U

of (1.1), we may write

[ V.- HKmf V - PU ¥ . ’
] f —_ M/ , u ,y (1.4)
[ U, / ) ey Uany



or

L. =Ty, | (1.5)

LN

Here we choose, as , and U, , the solutions which satisfy

respectively the boundary conditions

u~=’ MN'H' =0 and lj;l'-:OJ U-N‘f‘: {. (1‘6)

’

Then UN=-(; ?) =] s 80 that we have

u,.,= Tl - Tn. (1.7)

If we introduce the "state Tatio” = Um- /U, (1.1) can

also be written :

dll' /
zm=-_v—_— E (1-8)

The state ratio Z, is a real quantity so far as b(,,, is real. We

can map it onto a unit circle on the complex plane by a Cayley
Lt &
Em—u
important that all the guantities L, Z (or Zs') and S,.,.

trangform Z,,fe-- y and define its phase by Z.,.’ze"‘&" « It is
can be calculated.successively by starting from their boundary
value. It will be needless to say that we may start from the other

end of the system 72+ =0 , and proceed in the reverse direction.

In the phase theory we argue on the energy spectrum and the

shape of wave functions upon the basis of the basic properties of

&,, + It is a monbtoni’c increasing function of both 22 and &,
and the ihcreaae of &. by 2t with the increase of E means that
there is one eigen—energy within this interval of E. In this way we
can explain several characteristic features in the spectrum and the
eigenfunctions of disordered systems, which can be described by
transfer-matrix formalism (but not necessarily described by

difference equat ion (1.1)).

In this lecture we confine our consideration on the localization

of eigenfunctions.

Let P(§) be the distribution of &, when we proceed in the
direction of decreasing 22 . The phase § , which is obtained
when we proceed in the reverse direction, has a disiribution
function P7(§) , which is entirely different from P(§) , for



almost all values of energy parameter E . Each value of E s
at which an exception ocours, gives the eigenvalue of the system
under consideration. The phase é;, changes in general slowly
withE, but in the vicinity of each exceptional value of E it
changes rapidly for17L§hﬂ; Mo veing a certain value of 22
depending on E, and sweeps an interval whose length is nearly 2w .
Likewise, éLf changes with energy generally only slowly; Dbut at
each exceptional energy it changes rapidly for a1 Z ~is .

The eigenenergy is the value of F at which &, and £’ meet with
each other during the rapid change of either §, or &,/ or both.

Next consider the ratio of squared length of successive
state vectors: '

i{ %l Unmee 1t Um | (1 244

(et I1F | tad + U3 Zide 1e23 (1.9)

Taking the average of the logarithm, we have

0., Izl 1+ 25, (1.10)
uy.,.,n*> < e,...> (‘”’” .Tz..>

If the distribution of Z, is stationary, the last term will vanish,
and we obtain, as a measure of average increase of the "intensity" of

solution [[¥[|®, the quantity [ = <?L4 7 :> » It bas been
argued that for most one—-dimensional systems'Zi is positive with

probability 1 , irrespective of the direction of transfer. This
means that the eigenfunction is exponentially localized around
n=me , towards both directions. In this sense [ is called

"degree of localization".

The theoretical arguments sketched above have been given by

2) 3) 4),

Foberts, Makinson, Borland, Halperin, Hori and others

5)

Minami and Hori confirmed the argument also numerically.
Matsuda and Ishiis) showed that for an isctopically disordered
harmonic chain L is positive with probability l. Recently
Hirota and IshiiT) showed that the distribution function P(&)
and cgonsequently Z: can be calculated analytically for Lloyd model

in which & _obeys Cauchy distribution.



State~Ratio, Principal Minors of Secular Mairix and Self~Fneresy.

It is an important problem to find the quantity which
measures the degree of localization in multidimensional systems
also, and which reduces to L in one-dimensional case. Another
important problem is to elucidate the relation between our concept
of localization and that of Andersona). These are difficult
problems and only a small step towards this direction has just begun

to be made. In the following some preliminary results are reported.

It was proved by Fujitag).that the determinant of any
square matrix [A |=[fa;}] can be developed in terms of its

principal minors:

an=| Grlalse U
I/A ' = aL.qA Z_—:Z’ (_') Ayl Doy Ky A 3 (2-1)

M2 (irlye.

Sines

where A
deleting from hﬁ[ the hth,izm,---, and {,th rows and columns, and

is the principal minor which is obtained by

the prime wmeans that the sum must be carried out only over all the
sets of distinct indices éa2,¢3, .. , Cw o If we apply this

expansion to the secular determinant of the Anderson model

S=(EL- Hi=| 3™ TV s

-V-M‘N,N Q(N-f

2 (2.2)

olw
we obtain

S\" d"l ..‘ l—l 2——! \/...,l-; \/l-gl._; "/-l,.,t'., S l:‘_h”- L‘" (2°3)

ME2 i,y be)

In the one-dimensional, diagonally disordered nearest-neighbour case,

this becomes

oew -V
—V d*—ﬂ'"f.. So stoa‘ Vgsﬂ,-—]
o= | %o, = o B (2.4)
-v
-v olp
or
2 .
—-—S—“:do" V —— Vl . (2'5)

Se ge Se
§0.i "_S."?"':



If we write

g —Vv o VR
S'c_f: iy ew d S = | ~V %wn
and o , (2.6)
oly . ol
then we have
802 S:_‘S“ SOI": 51152)
N S Ve oty — - vt . (2.7)
ST T T sy T o=
5'.3) vt
-

On the other band, we obtain from (1.8), by putting +t., =Va2.,

Vl _ . VJ..

t. = dM———t:T- = Koy — o = (2.8)

Thus it turns out that successive ratios of principal minors S. /S\m,

just correspond to the state ratio multiplied by.\/ : Va., = S‘M/

nﬂ
In more general cases, in which long-range interactions are

present, the expansion (2.5) becomes much more complicated:

"—"—"" d“ Z z :' \/ﬂwv‘-u-z"' \/C o S - - ' (2.9)

-~

©
M (s ) S

This may be rewritten

o
-_EZ VO». l-i'vl o,\.. LzbJ o V"'.-ﬂ-l-{'-- Dt s Lot VmO(Z-lO)
ey (l-‘ -~ ) ) ) (§,.._-_._—-
SO [ Son-u Gly Com

which shows that the secular determinant can be expressed in
terms of all possible ratios S‘o"'"" """'“/S‘o’t"" o,

The formula (2.10) reminds us of the renormalized perturbation

. 8
expansion of the self~energy cons:.dered by Anderson

2oE)=Z ’vm.-—-—-—~v,,,“, 57 Yy —— Vi

{

s omg TG
d-m -An My, ML d’”l Ay O(”‘ Ao g
%0
Magaty, 0
Y S ¥ (2.11)
EZ Voni g Vnoms oy
' “ Adn, dM;'—A

m=[ o ma- My



Comparison of (2.10) and (2.11) gives identification

20 Y S‘-e;ea.-- é..
A ‘ ™ = dm_ . (2012)
- S\e,e:-' ?-..jﬁl

Thus it turned out that the self-energies are no other than the

ratio of principal minors of the secular determinant.

Since the relation (2.12) can also be obtained directly from
the very definition of Green's function, Fujita's argument
provides us with a very simple alternative derivation of the

renormalized perturbation expansion (2.11).

In the nearest-neighbour case, (2.11) becomes

_ v? Ve
LoE)= ——zm + Y (2.13)
and ’ \/“‘
Ve _ -
ﬂol (E) = d)._dja“ ™ dL - V <
3=, (2.14)
V&
-

0,‘,"

If we write A.. (E)=d+ ror m+0, we have, for m~I&/ |,

vz Ve
AM-‘ -— = b A
B o V
R —— 2-1
” O(aq-ﬂ - ( 5)
o v
and o
M -f S‘
L= Km— = = Oy~ (2.16)
S S:nﬂ

The last formula gives the connection between the state ratio: Z.,

and self-energy Q.

L = _L_ .
Dm-t (2.17)

Thus it turns out that our degree of localization is no other than
the average of logarithm of squared self-energy, apart from the

additive constant.

The relation (2.17) suggests that in multidimensional cases,
or in the case in which long-range interactions are present, the

degree of localization is given by some average over the quantities
A la Lo or S‘g"f"' e""/l?‘?'&-" £eai;» , But at present it is not



yet known whether this statement is correct or not. If it is
correct, it is difficult to calculate the appropriate average
because these quantities cannot be obtained successively by a
recurrence formula, in contrast to the one~dimensional

nearest-neighbour case.

A Possible Meazsure of Degree of Localization in the Case of

Long~Hange Interaction.

In this section we present a method by which we can avoid
the difficulty mentioned in the end of the last section. As a
simple example consider the Anderson model, in which only the
nearest and next-nearest interactions are present. Schr8dinger's

equation of this system is

/
- Vfbf»,-:. = Vdpoy + Ol U= Vider = V thme, =0 (3-1)
where o, =F-%<.,. .

The secular matrix is

04. -V "_V,
v o1 —v =V
= /v s -v -v (3.2)
This can be partitioned as .
o ~v |-V o ,
A' B2 —\,: ol ! L At
$=| B A = TG (3-3)
.‘-_ o =-v'|] =v oy 3-3
By putting
Uzj—i
d
. =
4 . ) (3+4)
%
the secular equation can be written
%n 'BJ- ul = o)
3,7 Az U
RS ; (3.5)
which iz of course equivalent to
D(‘ '—V ;V/ Ly = O
-V’ u
-y o -V v Z
/ . : (1.6)



The equation (3.1) may be written in a transfer-matrix form:

(2 v
Unn-z - S - - U=
Uar~y
o o o o
H i = = / ” = rﬂ:'(”f%". (3.7)
Un o / 9 o0 Uomey ‘
u”’q o O / O uarfl

If the system terminates at the 2NVt atom, we must put

Uapy
’7.1»/ = aw

: .5
. (3-8)
0
This is consistent with the form of the matrix & . For the moment
we shall assume that the system is semi~infinite in the direction

of decreasing 72 .

Now we define the new itransfer matrix by

(o) (c
M= T T | (3.9)

Then v N gy -t Vv ' V. __2‘."-‘—’- -V .y
v 77 - = _—y v/ v/
o / o o O / o (8]
o o / o O o / o
2 Olya- v, v v? v
v 3m=f Vo _ L
s v v Az i v ! v’
v o 2y v -/
= v v’ v . (3.10)
/ O O <
o / o e}
But since

- Koy
—RT =t
B A V"‘ - V’)(



s

/ -'V'.q,]"l-’ - V"' VV/-}- VQI‘.
vt

VV/ - V ;0(3-.,

ve e ~/A-v s

A -V
VA v v’e

"7]: turmms out to be

~18.7 "~ -7,
T = ) (3.11)
7 O

If we use the new transfer matrix, the equation (3.7) can be

written
X, -T.X,
where _ )
u (A 2ae—y .12
X:. = " = (52N = ’y“l, (3 )
umfl UJ"'I
- u.'h'r

Now we consider two independent solutions . and v, 5 which

fulfill the boundary conditions

/ o .
XJN; 3 ol Xan = (‘; | (3-13)
o] » o

respectifely. Then the matrix-vector

Um~y U~y
7]
U, = Un Ui = (m“) (3.14)
~ a
: Unf’ U:“-; U’"

Uz Unpa

1

algo satisfies the equation

v, =Tu., | (3.15)

7

with the boundary condition

PES ((l)l’) . | (3-10)



Or if we consider other two solutions a?h and x;n which associate with the

boundary conditions

and Kzy = » (3.17)

o F O O
H O o O

then the matrix solution

A~ (}‘.”_, w‘m-l' ?C-w-,
LA, Wi, Xw " 2\
.= Un A SN T
-~
uhf] U:|f[ w:" o X"'T’ LJ‘:-I U °2

Uanrz Yz Y y SV

(3.18)}

satisfies Eq.{3.15) with the boundary condition

Vin=I (3.19)
Next let us investigate the relation between the transfer matrices
'ﬂ"n and the secular matrix 9;' or its determinant. Contrary to the case of
the nearest-neighbour interaction, however, this becomes quite formidable
unless we introduce a new concept of matrix-determinent of & . This is
defined in the same way as for the ordinary determinant by regarding each
matrix entry in {3.37) as ordinary scalar matrix elements. We must of
course be careful to keep the order of row-index in order to avoid the
trouble which may be brought about by the non-commutability of the matrix
entries. The matrix-determinant thus defined is not a scalar but a 2 x 2

matrix. Let us denote it by 5' and the ordinary determinant by [S [ .

| For the product of transfer matrices we have, for instance,



r ! : , -
-IBJ-:’AM-f —Br-r me—] By -1/4,\, _an'{r 1Bw

W_’N--I W;'v =
I © I ©
By Pust B A By By By A BE By
B "ﬂ%fﬂ py =04 B

(3.20)

From now on we shall specialize in our model and put

v/ v
Then (3.20) becomes
oy ’ - / >/
W AV A= VT W VA VW
W-ﬁ'r-fﬂf: ' .
! v~/
v oAe | A0 4

(3.21)

Next we define the matrix
=f
Al TR A
- -]
= VW VA

-
L3
]

~f
VT B VTV
Vil ZENE 2 %

74 T-’A e iy

-y T “/T_{/ Y



- .

vl e
and denote by S; : the matrix which is obtained by deleting the
ilth, izth,..., and ikth rows and columns from &' . Now
A —w Ty
1y, W2 VT Ane

$ 'IVT.—{[V? lVT-JAM (3.23)

Shf”a‘“ -1 — ‘VT-I/A,V-{ VT-‘I%,V _ WT“/”/ ‘V‘r'fu/r

= ﬂ/rhf/‘hr—f IVT-’/}W'— “/r“"“/

(3.24)
In the same way we have
gyt e, ST T A (3.25)
If we define
t, o N2, =V
S =7, (3.26)
then we find that {3.21) can be written
5"{-’:11-'”"'3- —S”-”””—‘IN\VT—'/'IV
W%-;W3:=
(3.27)
{ o MLy =] b A=, V=LY
S’ -5’ A7 :
In general we obtain the result
- —{
Svln~,ﬁ-f __é?f"” ke LA/W’T v
%{ﬂgﬂ" qu:f =
i, B R fr- 5"”’%’~ ~7
s -5 VW
(3.28)

This can be prbved by induction as follows. For k¥ = 2 it has already been

proved. if



-l 3=

Saf by e __Sf fs-- FE.JV[V T—f"/

S
s
II

R Rer! sl R Berl, N

Sf £ _ S‘ “/r_,“/

(3.29)

then

;bR Lt RNty

I

S‘/ t- kakfl -_‘S\/ l’}"k-%*l;,v‘v‘l'w"lv

- =/
kfﬁfj _-“/T-IA& S.j.h 'R',N{v'l' n/
— "f'vr-ju/‘s\’lh“ k,ﬁf",Nﬂ/T—l'V

—gr M T

(3.30)
But since
SV"M R _ T S bR vy TS e R
S RIN e 1 RN Ty TS Ry
| (3.31)

(3.30) just becomes (3.28), QED.

The theorem proved asbove gives a relation

-

S.,,l';")
L, = Toer - Tty =

S\f fo0e vy

fa Any



~1hL-

Thus if we define the "norm" [ imfl of the matrix-vector llﬁ by
2 g () k (2] 2
I o= 10 0527 (3.33)

then we have

”wh”l IS’LH”WQT IS’“' “**Wi
[ AR I F A b (3.34)

If we define

S:)/vﬂ = s "
then this bhecomes ;
’S:h-rffl
”U_J,.,ﬂz l !-f ,S‘vau’-l&
= p .z___ /
(Lt {S%n] AR LT .
GAE [Sil? (3:39)

Taking the average of logarithm, we get

o, Ll [Sires Sauf? > ( iS4 >
uzu“.‘//‘> ( rs:..f.l‘> (2“5” [ St ! lS‘M- (3.36)

) .
If it is assumed that the distribution of rSthl//ISang is
stationary, the second and third terms of the r.h.s. cancel each other so

that we have

Il i ll
< { Wom Il> (e[ Swl S,,,,;/> . (3.37)

If we define the matrices IBg and W by

V ' he= Be  anmd VY =w, (3.38)

then the first relation in (26) becomes



W 4 ’
Sﬁ., = Ba S‘Qﬁ - (W'S‘ﬁ:r.z (3.39)
or
| 4 =]
SeSke = Ba~ W Sk Ser
. . . / s~
This is a recurrent formula for the matrix ﬁ;ﬁtlf;ﬁ+, 5 so that it

can be calculated successively by starting from S’,’S—’ -.'.—.. Bw -

The physical meaning of the norm f{ {L}.. ” is not so clear compared
with the nearest-neighbour case. But this demerit may be saved at least
to some extent by the following argument. In terms of the amplitudes of

the solution it is

2
_ !“Jm(”.)r* [Ue)'= Uny Vet [ Umgy  Lhan)

(3.%0)
(dm t/“.‘.‘ L{Mfl U:“'L

Uaw  Uiny

In the nearest-neighbour case the determinant U o

} is Just Wronskian

which is to be strictly conserved. But now Wronskian is given by the
determinant (3.18) so that expression {3.40) is not necessarily conserved.
If the system is periodic, however, this expression can at most osciliate.
Therefore if it turns out that it increases or decreases without limit,

then we can safely conclude that there occurs localication.

The above method may be applied not only to the cases in which
interactions of longer range are present, but alsoc to any miltidimensione.

systems.
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