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1. Introduction.

Some ten years ago an eminent Cambridge physicist said that
there were no outstanding problems left in solid state physics
which were sufficiently challenging to be given to the best
students when they started on their post—graduate careers. I Tiinn
the theory of localisation in disordered systems 1s one (perhaps
not the only one) example that this statement is perhaps a-
exageration. Bven now there is no formal theory of disor - ...
systems which we can use to calc late standard properties ...
as conductivity, optical absorption, and Iall effect. FHowever,
the foundations of such a theory are in the process of being laig,
and perhaps this branch of solid state physics will become what

Ziman calls '"normal science" within the nexi five years.

The pattern of the present lectures is that I want first
(section 2) to review some experimental facts about disordered
systems which given knowledge of the existence and character of
the electronic states, i.e. whether they are present or noi, anc
whether they are localised or not. This review will present certain

chosen aspects and is not intended to be exhaustive.

Section 2 is a brief review of experimental evidence for the
metal insulator transition in disordered systems. Sectlon 3 ceals
with the failure of "traditional" G.F. approaches to the probie..
Seotion 4 deals with a simple approachk to the impurity band
problem which is essential to the approach we shall use to the
M.I. transitions. Section 5 introduces and discusses the Anderson model
The remaining sections deal with a new approach to the M.I.

transition in the three types of systems with which we are concerucd.



2. We shall follow Mott in defining a state to be localised if
it does not contribute to the static electrical conductivity.
let us review briefly some experimental facts about orystalline

systems and their theoretical explanation.

The conductivity of a normal metal at the absolute zero of
temperature is found to be infinite. For other crystalline
systems the conductivity is found to be zero. These differences
were explained on the Wilson-Sommerfeld model in terms of the
one electron branch structure which arises from the sclution of
the Scﬂﬂdinger equation. According to this, the wave functions

in allowed regions have the form
b.x
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W) = € 7 Wag (o) 201
in "allowed" regions which are separated from each other by
forbidden regions where no bounded solutions exist. The difference
beiween metals and insulators is then explained by the position of
the Fermi level: in metals it lies in an allowed-region, in
insulators it lies in a gap. Ii can easily be shown that if the
Fermi level lies in an allowed region the conductivity is infinite.
This result follows either from linear response theory or from
arguments which show that %; increases indefinitely on application
of a fielde In the insulator the Fermi level is in a gap, and the
Valenceband is full and the conduction band empty. It is therefore
& pufficient condition for the conductivity to be zero for the
density of states to be zero at the Fermi level. It is essential

to understand that this is a sufficient and not a necessary condition.

Insulators exist whose existence is not explained dn the
one-electron theory (e.g. Ni0). At least in some cases this can
be explained on the basis of a many body argument dus to Mott and
Hubbard. Essentially the argument is that in a band Coulomb
interactions can split the band so that a Fermi level which would
lie in a band on one~electron theory in fact lies in a gap. The
correct electron spectrum having been found, the distinction

between metals and insulators follows as before.



If the gap between valence and conduction bank is sufficient iy
amall thermal excitation can create an appreciable number of
electrons in the conduction bank and holes in the valence band.

In this case simple theory shows that the conductivity has the

form:

T = T AP Et/oeT 2.2

This relation is experimentally confirmed and provides a methed
for determining E} « A plot of log o T nas the form show
in Figc 1.

Conversely an experimental recult of this form is interpreted as
implying the existence of an activation energy, i.e. of an energy
gaps

Optical absorption also measures the energy necessary to
excite an electron from the valence band to the conduction band.
For parabolic bands and direct transitions the absorption
coeffioient has the approximate form:

'
wlw) = Clwwd)’ 2.3

- €
where kwo (3 2.4
Experimental results of the form of Fig. 2 again are interpretec
as implying the existence of a gap in the spectrum of electron

gtates.

We now turn to experimental results on disordered systems.
Here I wish to consider three types: l) systems which give rise
to impurity bands; 2) highly doped semiconductors; 1) amorphous

gemiconductors.



Some impurities, when put into a semiconductor in low
concentration, produce additional states in the gap
(e«gs S& in €e¢ ). These states can be seen, e.g. in optical
absorption,as sharp lines. It is also possible to see transitions

between two impurities as shown in luminescence.

As the density of donors is increased the luminescent line shape
changes from a line to a Caussian type curve (Fig. 3). On a
simple argument this shape is proportional to the density of
states and such resulis are therefore interpreted as showing that
impurity - impurity interactions broaden the line into a
continuous curve. As the density of impurities inocreases, the
the experiments suggest that the density of stateé merges with
the conduction band. With very high doping the absorption curve
eventually looks like Fig. 4.

Comparison with Fig. 2 suggests that there is now a continuous
distribution of states below the conduction band. Normally the

experimental results are fitted by a curve of the form:

Llw) = A L -(%03( 245 :
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The absorption curve of most amorphous materials also has
the same form, A= being the most common value. The density

of states is now continuous with the conduction band and has a

gimilar form shown in Fig. 5.

All the evidence suggests that when a semiconductor has a
low density of impurities, the Fermi level is in the impurity band
Tt is therefore surprising that where the den.ity of impurities
falls below a certain value, the conductivity falls by several
orders of magnitude to a value which is eﬁperimentally
indistinguishable from zero. The concentration when this
happens is of the order of 3-4 effective Bohr radii. Since the
conductivity is found to be zero in the impurity band, although
Jjuminescence measuremenis show that there are states at the Fermi
level, we are found to conclude that there are certain states which
can contribute to optical properties but which give zero conductivity.
We call these localised states. Fig. 6 gives the experimental -
results for the conductivity as a function of T”‘- which also
jllustrate this transitiom.As the concentration increases the
activation energy is seen to increase and eventually to go to zero.
Fig. 1 gives further results for the conductivity for experiments

in which acceptors are also present.

Experiments have also been carried out with much higher
concentrations, e.g. for Na in Argon and Cw in Argon. The
concentration at which the transition takes place is much higher,
corresponding to about 15% and 40% respectively. The density of
atates is then presumably of the form shown in FPig. 5. There 1is
no reason to believe that the Fermi level is in a region where the

density of states 1is zZero.

In the case of amorphous semiconductors, the conductivity has
typically the temperature dependence gshown in Fig. B, showing the
existence of a well defined activation energy. On the other hand,
the absorption coefficient behaves as shown in Fig. 9. This again
presents apparent contradictions: the presence of an activation
energy shows that these are states which do not contribute to the
conductivity, whereas the absorption coefficient data suggest a
continuous distribution of states. The contradiction was resolved
by the Mott—Cohen theory of a mobility gap which is illustrated in
Fig. 10.



The experiments whioh we have described are typical of those which
support the idea that there are electronic states present which do
not contribute to the conductivity. In the next section we shall
consider the "traditional" Green's function approach to such

problems and why it failg.

3. TIhe failure of "traditional" theories of disordered systbems.

What we describe ag the traditional theory of disordered
systems is summarised in "lectures on the Mathematical Theory of

Disordered Systems", to which we shall refer.

In the traditional theory we study the behaviour of the

average G.F., e.z. in {i representation, which may be written

\

<< C“C{:)»B = E"“'t— < (ﬁ‘g\ 3.1

Now linear response theory enables us to write the conductivity as

o~ Te[ v et (o) ] -

Here 4« denotes an average in a statistical sense over

whatever cause of disorder is present, e.g. impurity positions
( (4_. L- H'T“b's)a
Yo AT NG
Suppose that for the moment we assume << 4 V§>? = & § t

where

1 - "}m(c‘*\ 3.3
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It can be shown on general grounds that B %O . If 3 %0 +hen
3.2 hzs tbe form .

o~ S&“ﬁ’” A7 e
(F-tm-ay33>] "

which is clearly rnon zere if % +0 and - #2 ay B
1t is therefore difficult to see how, from such a theory, a Tesuit

cf the form

g =& . 3.7

we)y = - T )

3.8

could emerge. It iz not difficult to find more detailed
contradictions. Thus, consider how we could try to describe an
impurity band by approximation 4 of L.M.T.D.S. (p. 26).
Ezsentially here L. (5_;:‘?) = £ 4 4,4 « A look at the
details in the one dimensional case shows that while an impurity
band iz formed Ls is purely real within the band, implying
infiinite life time and therefore conductivity. Again, all
approximaiions for T in the one dimensional case lead to " 2 = O
2t some finite € , for all concentrations, in contradiction to

the exponential behaviour which would be expected from the

abgorption data for high densities.

These shortcomings are, I believe, essentially due to the
fact that the 4& representation 1is not a éood one for the problem.
A localiged state implied local asymmetiry; the 'é representation
implies translational invariance. This symmetry must be brcken

if localised states are 40 be obtained.
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45 The density of gtates in an impurity band.

In order to obtain a feel for the problem, let us. consider
the impurity band case first; the understanding of this is
essential to enable a correct theory %o be formulaied, as has

veen emphasized by Moit.

A defect of the mormal self energy expansions considered in
L.T+Du5. is that it does not provide a form of self energy which
reduces to the correct atomic limit in the low density cage. In

the atomic limit we can write the G.F.

C_n‘(’.bt!af\i = id': Uule) Malss) 4.1

E-Ex

where the “tmit‘i are ' the atomic wave functions. For ﬁ’% near a

pariicular Eg , say &,, we can write

Cr (e, e) = %le) i)

IR 4.2

E-tp L%

which gives '™ G-f( i\'ﬂq = T li'o(,'t\\fv(!.“) HTE “Eo ) 43

-t ; -
then we get ~T T«r g;w]’m C‘ftz‘.,\gl?\;—l = B[¢ Eo) 44

which is intuitively correct.

Wow consider the corrsctions due to this as a result of a
low density of impurities, so that an electiron can see several
iiﬁggurities. By analogy with the virial expansion we can consider
interaciions between pairs only in first approximation. Defining
the propagator K{¥) by

# et
ga ¢ = GTCE) 45

we obiain using the approximation 4.2
AEpt
¥ f
M«;,s_}b‘\ = Y le) %L»;,‘\c 1.6

AEeE

~ i
and for an atom at site o ‘KQL‘;\’.\i%} n\%{,w;- R ¢ [‘\;_-—9;,\\(2 4.7
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we now write Ha= Hot He =
where Ko = Tllz—m + "'(L’k,.\ : 2.9
Hp = vi1- ‘}.(.\ 4410

"{( Hot “I) €
Wleah¥) = Sxle e

4411 can be expanded in the usual way
\ t \ ‘ -
Klev 6) = Wl 8+ ) W (na™) Melew) Woleh v, eMNd g dr

W 4.12

If we took just the first ferm this would correspond to the
Born approximation which would not be adequate as we are
interested in a perturbation which changes the poles of 4.2 and
must thorefore sum an infinite series of terms, in some sense oOr
other. The simplest procedure is to bé a cumulant approxiamation

(Iukes, Somaratna, and Tharmalingam, 1970).

Essentially we write

oy = i) g LB e

where for example

&
Ay = gu Wobrac® 7Y Mz (24} Wl ¢, £7) A?’ALH/“.(v.\;',e-r)
4.14

Using 410 and 4.6 we obtain

A= ] vt wleog) (-t de 435
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If we take the H}(g\ to be an § state thig can be written

A, = EFle-g,) £26

We now use 4.5 to obtain

Clevne) = Wletdhl-r)

4.17
E~Ep - F(n)

This expression must now be average over both kw'ﬂf and over £ .

i.0 we sum over all pairs of atons.

For N impurities in a volume (see L.T.D.S.)

the average over the & is

T’ “r‘l(f- ‘i‘ﬁ\ Y‘(L“‘;a\ AL‘ - .Z _L - _’_{ - ?
~ ' RV ~ 0
4.18
where g is the number density of impuritiss.
We now average over the distances E_a \&ﬁ-&r\ + For a random

distribution the distribution of nearest neighbours is a Hertz

digtribution:

?(’n_\ = k-nk."‘g Axp "'%;. ’RR-?-g

4.19
The average dengity of states ocan then be written
N(eY = - Tra "wm ¢t (‘l\‘i\ ) M
= g Ae ¢ 7 e-E.-Fl0] p{0dAR
R | .

%
AR g1y

where the sum is taken over all values of R which satisfy

E'ED +F((L) = 0 4.21
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For a known ‘R(L\ the integral over 4.20 cén be carried out of
necessary numerically. This has been done taking for Melr)
hydrogenic ground state wavefunctions. Near E-Ep  the regult

can be expressed analytically:
& 2

= U < g -l ng égé
wle) ’é (_E'Eo s E'Eo) 4422

where mle) is the density of states per atom. ¥or {~¢c this
reduces to S{E-Ea) [Téquation 4.4_7 ag it should. The result
looks like Fige 11 . Pig. 12 shows a typical result of a more
complicated caloulation carried out by the same gsort of method
where we have included the effect of both dorors and acceptors and
also, in a simple way, eleciron correlation liukes, Somaraina and
Agrell, unpublisheg7. At least in this approximation the Coulomb
interaction splits the band, but I shall not coneider the effect
of electron correlations in any detail in these lectures. These
results could {and perhaps ghould) be extended to include higher

order cumulants.

5e The Anderson model for the insulator metal ftransitions.

Having obtained a reasonable model for the density of states
in an impurity band we now discuss the question of whether these
states are localised or not. A great step forward in attacking
such problems was taken by Anderson (1958). We shall refer to his
discussion as the Anderson model (not to be confused with the

Anderson Hamiltonian).

In the context of the results we have discussed, Anderson's
argument may be expressed as folloﬁs. The result 4.16 shows that
the energy levels % are modified by a fluctuating term Fn) .
Therefore instead of considering a distribution of distances in 4.16

we could write

gy~ € 5.1

'P(‘“\“‘ = gti\% de .
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We could now write 4.17

CHove o) = Wy (2. Yolo'-0, ) 5.3
' E-Ep—¢
where the ¢ have a probability distribution.

The problem we have been considering is complicated by the
fact that the k, have a random distribution. An essential part
of Anderson's contribution was to recognise that this was really
irrelevant to the problem. Anderson in fact put his atoms in a
periodic lattice. Thie enables him to introduce Wannier functions

which are labelled by the aitead,ﬁ; in faot his model is defiﬁed by
the BHamiltonian

bp = iy - 5.4

““V -~ Y l\P nearest neighbours. 55

We shall only consider a simple ocubic lattice here. Here V is
taken to be a comstant independent of 4;P .3 it can be taken

to be analogous to F(R) for a periodic lattioce.

In terms of thess

we can write down the equation for the G.F. as

C_sc.,,‘f C*tHIC" | '

5.6
= _| )
where {VG1py = Ab 5.7
E-g ! . g
Expanding 4.24 iteratively we get -
RO R iy WO I . 5.8

E-eu €~ %p E-ty

o .
where we have temporarily labelled the V2 by the lattice mites
whioh they conneot but shall, in fact, take them all to be the

]’T

BEME » The-tg in 4.26 are now defined with regpect to Ep .

C e T e e

e & 50 0 R & A S & Mitrwmaindh @ 8 & i: 8 = e SR 2 Fri

-
b
b
t
-
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From the shape of the density of states we can guess that
a rectangular density of states would not be a bad

approximation. We keep the height? of the digtribution the same

and fix the width W Dby the normalisation condition.

Using 4.22 we get for example

— -4 -
NlBamey) = K #p I T h[o'sr‘t)

il F

5.9

where A is the mean distance between the impurities which is
related to the density by

— .
R = ©0usw ¢ I3 5.10

<~
hence we define W= N{Eames ) 5.11

For the moment, we can now forget about the random positions of
the impurities and study the model Hamiltonian defined by

4.22 and 4.23, with the proviso that the &'y are independently
distributed of one another with distribution

T(Q:N“ —w e 512

) o8

For a long time the relationship of the Anderson model to the
random impurity problem was badly understood. It was Mott who,

in a series of papers, recbgnised the major importance of
Anderson'a work and that it could form the basis of a new approacl
to the metalwinsulator transition in a number of apparently

different cases.

Anderson's argument was now essentially as follows. Ina
time dependent representation the proper factor oorresponding
to 5.7 is

Vet
LAY = 2 bap- 5.13

and corresponds to an electron localised at site 4« . If the
electron is to diffuse away from the asite, this localised state

pmust decay. Now, using the standard G.F. methods we ocan sum 5.6



e = 5 H5 G

e
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into an expression by means of the self energy. If we do so

we would expect 5.13 to have a faotor

A (E-R)t afe-a-in)t
e = ¢

Hence we must have B0 for the gstate to decay.

Hence the condition for the electron to diffuse away is for
the imaginary part of the self energy to ve non zero. Now if
one writes down an expreasion for the self energy, curiously
enough the first few terms are real. A simple example of this
occurs in our expression 4.16 in which F{R) can be interpreted
ag a term in ‘7: « Thus it appears that the state never
decays! Anderson's argument now was to examine the convergence
of the series for Ta . This was found to be determined by the
ratio  V/W , and Anderson argued that the value of YW at which.
the meries diverged could be interpreted as that at which an
electron begins to diffuse away from the state. Thus we have a
model of an insulator-metal transition in the one-electron
approximation. Mottt has suggested that this model can in fact
be usged to explain metal inaulator transitions in all the cases

we have considered, using semi~quantitative arguments.

A review of Anderson's work has been given by Thowless (1470 )
and comments have been made by Ziman (1479 ). Nevertheless,
Anderson's theory is not very suited to practical applications.

The connection of his argument with the obseived phenomenon,
electrical conductivity, is very formal, nor can his work be
directly applied to the three types of system we have in mind.

In the following sections I want to describe a different approach

which attempts to remedy thess deficiencies.

6. The Conductivity in the Anderson Model.

In contraat to the usual situation in the theory of disordered
systems, it is the unperturbed G.F. which is subject to a

probability distribution and we define average G.F.

qo = LG 6.1

- KLEM
1 6.

where the bracket % now denotes an average over the €, .,

y——

| i“i‘i - . Y . r --'*m" m— ﬁﬂiw -l-w..ﬁr‘"uim-ﬁ'—a&m -
., :, i 1 . ' i .lu i . BT b, P e
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In the Wannier representation Dyson's equation becomes a matrix

equation ;
Q:(;+&&Q =Qw+%ﬁ§, 6.3
6.4

G- [&-ul

with solution

From 6.3 we can define a self-energy A by

- Go + W& 6.5

N
‘L=q‘—%‘ 6.6

The equation for the static elecirical conductivity can be written

)

in the form (we use units such that k>|
v o - . fth)
.= ‘wmn g%[;_ah: lf{S(EP'u\T#F(L‘-p'M)TJk

3
2 WD

Hence %’iﬂ the Fermi function.

Specialising to the case of zero temperature and putting

fle-w = = @aY (¢ () - ¢ (e)] 6.8

6.7 can be written

= T }f ot 10 [1,~{ CHeY vy ¢ H e+ ko)

r
NV |
— CHEV 1§ ( E¥hw)

For the Anderson Model we need to write this in terms of Wannier

functions. In order to do so,we use the result

<£\‘\1.$ = T"\S\‘r“

Here <9 label sites. Equation 6.9 can now be written
A * i, - 3

T = B w8 Rt Z v e (Y1 Gy (6 tha)

WD , ™

S RN N N N —{] |

I

6.7

6.9

Ch
.
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We define
fﬂq a X C’“Yi C-Pv‘: 6.11

It is seen that the contribution to the conductivity must be of
order W in order that a finite conductivity is obtained. In

the present case no such factor occurs. Thus the conductivity
goes to zero as w” . We can also use this argument to show,

e.2. that for a single electron in an atomic state the conductivity
is zero. We shall therefore agree that the condition for a finite
value of oconductivity is that the series for TN will diverge.
Since the separate terms of the series are finits wh w™o

we shall take this limit in the summand of 6.10 from now on.

T The integral equation for Tl .

If Fl¥)  denotes the power series
T,
Fla)s Cot Gy +Cy +

Then the Cauohy-Hadamard method of determining the ratios of
. iy ’ Yn
convergence depends on the series &\, 1G] ... ™ If the

~\
greater limit of the sequence is by then ~ ~¢ .

Ko = l

g G (Ketq™) T T g -

-1 -\
A'f- Kr‘i’% -—-C—o ,.{‘2

where

Thus e} = q* qA'G _ ‘ Te3

putting this into 6.11 and considering £ = f = 4  for simpliocity

we obtain
Mo = «% ¢ th‘“'\"l{‘}-r 0&&6—\5\
hvig + X GAG™g S + & ATIALY

o

4 << B hETy C-Mt >
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This equation is, so far, exact. We now consider the second fterm
& § ke g = feAEmTG
-1 -1
%«[C‘.. O -r‘i ~Go ]C"H >

_0 T1+5
The third term is similarly found to be zero.
The last term is
2\ -1 -t —f]
& §{uer g6 Cne [Her o601 %
G (M- T T e
We now obtain
C g+ G (e T) T (e %) 1.6

an equation of the Bethe~3alpeter type for W\f + This leads to

AN R (Hem ) 4

the iterative expans ilon

M g v 4L
+ d&[l{n i\%—(“n I‘\TJ%LHC E‘-\ 4{(”.:7 SBC{'

4 -

8. Divergence of the Bethe~ Salpetergqﬂ\'

In order to study the divergence of the series for ﬂd we

meat an exaot expression for %’ which is difficult o obtain.

- However, we can obtain an upper bound to the value of VIN

by replacing “. by fio in "1*1, i.e. we put

- Lal ﬂr\P‘) ~ 0‘0 = ¢__.- > FA?’

Using ihe distribution 5.12 we get

ﬂb _ \N..\ /tM-[ MT 8.0

E+ig-W

To estimate ‘i\ Wwe consider the approximation of a self-avoiding
walk. Asymptotically the number of terms is K™ for both the
diagoﬁa.l and off diagonal terms, where X is the connectivity

nonatant of the lattice.



Nl

T
Hence we obtain for the ™ term %0 N H and for the

gum

L \

Gt = X 8.3
4,"~ VR

Hence in this approximation the diagonal and off diagonal

elements of the (G.F. are the mame and given by -
= V
i K 8.4
Putting 7.11 and 7.9 into 7-.7, we again congider a self avoiding

walk approximation. In this case the series 7.7 is geometrio

and the condition for the series to diverge is
~ et
4o N-BYRT > 8.5

We now consider the centre of the band and put E*P in 8.2
This leads to a oritical value of W/q’ =Y 'which is in fact

an upper bound to this value.

Using methods which I do not have time to discuss, we can also
estimate ihe lower bound to be about 25.4. The upper bound is, in

faot, fairly clome to the estimate obtained by Anderson.

g. The impurity band problem.

We now consider the impurity band problem which forms an

important part of the evidence for the Anderson transition.

In order to apply the method of the previous sections, we
need to oconsider the G.F. for this model, whioh can be obtained
from the Dyson expansion

C'{;‘.'.\“.‘IL’\ = t& lr.fv,.-&..\ \h("‘-b\

-‘-.Eo 9.1

E
2 T Wlet) wloie) 2% rleteyy Tow(st
* €to ¥ v £to
where it is understood that the diagonal element A =fv= T ig

":r\ Yoly - ?:-c\

omitted since it gives rise to the atomic G.F. The remaining
terms now oconsist of overlap integrals which may be classified

into two typea, namely those of the firat type
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and those of the second type
’U:‘,l @,—,“P_-_‘,\ = .( Yole™ &) QRN ‘-’-p) lfo(‘t\,“— Lf\ OQ*L‘ 9.3

Wa now redefine the zero order G.F., by including in it all terms
of the first type. This may be done by the cumulant procedure
described in section 4. The result is that the G.F. redefined in

this way is now

(f‘(‘{_]'f_‘l E) = L4 ua(,\f_- p-"‘\ “"7(1-']'&’-\ 9.4
E-Eo— F(R)

where & = lEg-Ep\ and the brackeis denote an average over

both the intersite distances and over the sites ol themselves.
The advantage of carrying out such a partial summation is that
we can now put the theory into a similar form to that previously
considered for the Anderson problem. The distribution of

can be replaced by a distribution of energies with a parameter
defined by 5.11.

Again we obtain the Bethe-Salpeter equation as previously
FR,‘ = a[-*ia} + Q‘(H;‘E)TZ,‘( “3'3-\\ 2.5

where the only difference between these equations and those of
the Anderson model is that the averages aTre now carried out
over the random positions of the atoms and only implieitly over

the energy levels.

The terms of 9.5 now involve factors of the form

ala-t) Mol 0V [ T (et = 4 v(tea) |4 Waletp) Woln 25
E-a.
s 9.6

)

where we have evaluated the averages over intersite distances

at the maximum of the Hertz distribution which, to our order of
soouracy is indistinguishable from the mean. The value of &

is easily found to be

Ly = A v R | 9.7
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Hence we obtain for the condition 8.5

(1\%)" o) ) 5, |

2.8
Substituting a value of H~1P and 5.11, 5.9 into 9.8, we
obtain for the upper limit of concentration

Where ¥ is the dielectric constant and &  the Bohr radius.

We bhave used hydrogenic S state wave functions

ar(Lusd) = -'LED['*z-’—“;“'] Anp~ P/ 9.10

Using methods which I do not have time to discuss, we
can show that a lower limit of the concentration is given by

approximately

"i" - 5-.5 HC\, 9.11

10. A more general form of the localisation condition.

For the case of an impurity band, a more general and perhaps
more useful form of the upper bound for V/W can be obtained.
Making use of the Dirac relation

i - P _uaar(e-<) :

ﬁh [E'i"‘."] - =N NLE\

10.2

where NLE) is the density of states per atom. The real part

of 10.1 is given by the dispersion relation

)
« N = IN(E‘)At 10.3
E-E' :
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The form of this for a typical band bas been discussed
(Izyumov, 1965). It is antisymmetric about the maximum and

zero there. Thus for energies near the maximum we can write

& (- - ~ o N(E\
£ tva 1C.4

and hence the condition 9.8 can be written

Tt (y-0) NEEY T (Rem) ) 10.5

This Telation shows that a low density of states is favourable

for localisation and exhibits clearly the existence, in general,

of mobility edges in impurity bands.

11. localisation in highly doped and amorphous semiconductors.

Experimental evidence suggests that in both highly doped
and amorphous semiconductors the density of states is a
montonically decreasing function of energy as we move away from
the band edge of the pure material. Therefore the theory of the
preceding sections cannot be directly applied to these materials.
We shall, however, suggest that it can be applied in a medified

form.

It ig characteristic of both highly doped and amorpyous
materials that the random potentials are much morn d"hSe}y
digtributed than in systems which give rise to impurity bands.
For such systems it is reasonable to assume that the potential

at a point has a multivariate Qaussian distribution
1 S.O\fdﬂ‘\t(ﬂ\“('r‘q““\
'[’[“L‘ﬂ = A T3 ~ O VR TR T © 11.1 (a)

where the kernel “Ctdq can be defined in terms of the

gorrelation function w(gﬁn\ of the potential by the equations

wlea) = NS 11.1 (b)

( ay! wlsosml ety o = Ble-st)
11.1 (c)
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In systems containing a low density of impurities, natural
centres of localisation exist in the impurity atoms themselves.
In a highly doped material, however, the density of electrons
is sufficiently great to screen out atomic bound states and the
same is presumably true of amorphous semiconductors. In any
cage, the density of atoms is so high that it is meaningless to

associate an electron with a particular atonm.

A theory of localisation which applies generally to a
random collection of atoms of high density has been given by
Zittartz and Langer (1966) (Z.L.) and by Halperin and Lax (1966)
(HoL.) Although the existence of localised states is demonstrated,
no discussion is given of how the transition to non~localised
states takes place. . It is this particular point with which we are

here concerned.

The Z — L and H - L theories put forward the idea of a
non-zero average local field which is sufficiently strong to
localise an electron. The effective potential ac%ing on one
electron in weak binding theories can be identified with the self
energy. DBecause it is averaged over the free particle Green
funoction, such an effective potential is gpatially homogenous and
cannot bind an electron. By assuming the existence of localised
states it can be shown that an average potential can be derived

which depends on the Green's function. It ia given by

T () = —Yd««,}' wle®) Elew) Gl e )

1l.2
G‘(!\!'I
Under certain simplifying assumpiions this reduces to
Ve (x\ = ~ g dnd'u(v_-t,'\ \(‘C‘L'\‘l@-‘ 11.3

where the wavefunotion %,(e) is given by a Hartree type non-linear

differential equation

| * . - ! E,
FUREY T [ ol e v - Bt



Although these equations assume that the distribution of
potential can be described by the second moments alone, the
theory could, in principle, be extended by including higher

order correiations.

The assumption of localised states can be regarded as a
symmetry condition which produces a non-zero mean field,

given by 1ll.2, which can localige the electron.

Deep in the tail the potential given by 11.2 can be taken
to be randomly distributed throughout the material with little
overlap. Each potential then gives rise to a delta function in
the density of states. The density of states nevertheless

remains a continuous function of energy because the potentials
themselves depend on energy through 11.2. As the density of
states increases,the number of solutions of 1.4 in a given
energy range per unit volume increases proportionately and

therefores there will be increasing overlap of wavefunctions.

We can now discusé the localisation in similar terms to
those which have been used to discuss impurity bands. It is
convenient to refer to the centres of localisation with which
we associate the potentials 11.2 as quasi atoms; with each
quaéi atom, we associate a quasi atom wavefunction giyen by 1l.4.
We can now define an overlap integral of quasi potentials betiween
quasi atom wavefunctions similar to the “olv} discussed in$rg .
By considering the conductivity deep in the tail, we obtain a
value of zero, because the Green functions used in evaluating
6.7 are of the form 4.2 where the Wolt) are now given by 11.4.
Again, we look for a divergence in the series for the conductivity.
" By applying precisely the same reasoning as before we can recapture
all the results of 10 . Assuming that the width W assocciation
with each energy is sufficiently small, both the bounds given

previously are now close itogether and are given by

El,-u\(.’\r(lwm) N(E\‘r;l 11.5 (a)

- Ep— [E\»\
e YLt )u 11.5 (b)

where Nl?\ is now the average number of nearest neighbour quasi
atom solutions and MN{€} is the density of states per quasi atom

This eouation again predicts the existence of mobility edges in
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