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COURSE 10 INVERSE PROBLEMS B8.A HOBBS

1. Inverse Theory

1.1

Introduction

A gaophysicist wamts to learn something about the earth. In
order 10 study a particular aspect, or parameter, of the earth
some measyrements must be mada that relate to  that
parameter. for example supposa we are interested in the
garth’'s density There are several measurableg quantities that
depend on the density distribution within the earth If we
determine the times of travel of seismic waves from a particular
s0urce to a number of receivers around the world, we can then
determine the variation of seismic wave velocities with depth in
the earth. The Adams-Williamson equation then vyields the
density distribution.  Altarnativaly, after a large earthgquake, the
normal modes of vibration of the earth are exited and the earth
may continue wibrating for many days. The pericd of each
normal mede depends on the distibution of density, bulk
modulus and shear modulus in the earth As another examgple
suppose we are interested in the earth's conductivity
distribution. The raesponse of the earth to a periodic magnetic
figid variation of a given fraquency 15 a measure of the alectric
currents induced in the earth and these depend on the
dhstibution of conductivity. There are many such examples in
geophv§ics The inverse problem is simpty, given the
measurements, find the given paramaeter.

Clearly there is only ever a finite amount of data for the
invastigation of any given problem. For example the periods of
several hundred normal modes of vibration are known -
abtained from Fourier transforms of seismogram records. The

exitation of higher frequencies have small amplitudes and are

lost in the instrumantal nose level In the conductivity probiem,
theoretical considerations limit knowiedge of the response at
very high and very low frequencigs. Also it 1s nol possible to
obtain an infinite number of Fouriar transforms from data tor in
parforming the Fourier transform the record has (¢ be sampled
at smail intervals. The choice of these intervals limits the
number of independent transforms. Clearly then data are finite
in number - this has important consaquencas, it means that any
garth model found is non-unigue.

The starting point then is a set of measuremants

e, j=12...N (i

and these are necessarily fimitg in number How are these
numbers to be interpreted? First, methods may be classitied

into “forward” and “inverse”.

Forward methods

Let r represent the variation of radius within the earth and let
m(r) ba a modei - in other words a distribution of the parameter
of interest. Calculate the behaviour, or response, of the model
F(m) and compare this with the data e, Monte-Carlo methods
come into this category wheraeby a statistically random search
ot models is made and only those whose responses fit the data

to within a prescribed accuracy are ratained.

Invarse methods

Given the behaviour of the earth (namely the data e, ). calculate

the model mir).

There are many categories of inverse problems. One can
approach the subject through continuous or discrete theory,

thera are over-determinad, exact and underdetermined cases



and the problem can be linear or non-linear. | will illustrate the
concept of inverse theory through a developement of

continugus thaory,

1.2 Linear problems

It is trequently possible to relate a model m{r) to the data e, by
a linear relationship {3 Fredholm integral equation of the first
kind) of the form
8, = [o' Gyr) mir) dr (2)
For example the mass of the earth can be related to its density
by
mass = Io' 4nelp(r) dr {3)

and the moment of inertia by

MI. = [ (8nc*3) ptn) or {4)

When this is not possible. we may have to resort to linearised
inverse theoty

13 Unigqueness

We have admitted to only having a finite number of data values
for use in eq(2) Under these conditions Backus and
Gilbert(1967} have proved that the class of models satisfying the
data is either empty or infinite dimensional One source of

non-uniqueness is therefore associated with the data being

inadequate (ie finite in number). (Even if an infinite amaunt of
data were available, solution to eq(2) might still be non-unique)
The simplest of examples from discrete theory illustrates this
point. Suppose the “model” m is represented by a straight line,
requiring two paramatars for its description. Suppose further
that the data e, comprises only one paint {j=1). Then an inlinite
number of straight lines pass through that one point - even if
the one paoint is accurately located

The second source of non-unigueness stems from errors in
the data values e, - the data are thus maccurate as well as
baing inadequate. In the above simple example, many more
straight lines will pass through the area in which the datum is
knaown to lie within some given probability

In the light of the above discussion there are two aspects of
inverse theory to be addressed First, which model from the
infinite dimensional space should be selected and how and
second, how is this model to be interpreted - how certain can
we be of the characteristics of the model? The model finding
and model interpretation aspects witll be considered using

continuous inverse theory

2. The Backus-Gilbert formulation

Hitbert-space and Fréchet Differentiability

Let r be a real variable such that 0grg 1 (ih general r will be
the normalised earth radius) and let m{r) be an earth model -
that is m reprasents some distribution of parameters throughout
the earth. As examples m may represent a density model m{r)=
p{r). or a conductivity model m{rj= gir} or an n-tuple of the form
mir}={pir.e{r).u{r)). The model mir} must be real-vatued.
piecewisa continuous For any two earth models mir) and m'r).
their linear combination is the earth model amir} + a'm’{r} where
a and o are two real numbers. With this definition earth
models form points in an infinite-dimensional linear space M.
the space of all conceivable sarth models. By defiming an inner

product and a norm. M becomes an inner product space which



can be completed to a Hilbert space. It 15 conveniant to defina

the inner product as
tmm) = [ mrym(ry or {5}
and the norm as

imli = tm.m'’? (6)

The data obtained, & j=1.2. N are related to the model m

via
e, = F (m) i=1,2...N 7

F is simply a rule which alows calculation of the response of
the earth model m, i.e. F is a functional on the space M. The
simplest functionals are linear functionals as in eq(2), where

Fim) = (Gm) = J,' Ginmin ar 8)
with G independent of m.

The analysis may be extended to non-linear functionals by
considering Fréchet differentiation, that is: how does a smalt
change in the model affect the tunctional, or: what is the

derivative of tha functional with respect to the model? For

tinear functionals, from eq(B}.

Fim + &m) = Fm) + [,' Gindmir) dr (9
that is
Fim + ém) = Fim) + (G.6m) (10)

i, however, wa may write

21

Fim + §m} = Fm) + (G.&m) +« Oﬂémllz (11
where D&M, then the dawm 16 which F relates is Frachet
differentiable and G is the Fréchet derivative. Clearly linear
functionals are Frachet ditferentiable with Frachet derivative G
For the examples above, mass is Fréchet differentiable with
G=4nr? , momaent of nertia has G=8mr*/3. A non-linear axample
is provided by T{p} inversion where

p) = 2 Iﬂdeplh [uzm - pZ}IIZ dz . (12)

Looking at small perturbations,

ST = 2 [P wsuiz) (uiz) - p?) " dz + OlSuh (13

whera the Frachet derivative is

Gtz) = uf2) (u¥2) - p?) 12 (14)

and this depends on the model u{z).

Thus to tirst order in m, eq{11) may be written
Fim+dm) = F(m} + {G,8m) (15}
This equation is exact when F is linsar and is the tlinearised

varsion {which may be approximate) otharwise. We are now in
a position to find a modal fitting observations.

Generating & model

Given a st of data



e, j=12.. N (16)

we may propose a mode! m(r} and calculate the functionals
F(m) to which the e relate Unless we are axceptionally good
at guessing, it is likely that the calculated values F (m) will not
agree with the data & . How can we now change the model
mir) to mir) + &mir} in order to obtain agreement? Let us

consider changing the model as little as possible in order that

Fim + ém) = e j=1.2..N an
One measure of the closeness of m to m + &m is the smallmess
of the norm

Hemlt? = (dmam) = Jg' (6m)? dr (18)
Waea ask then, what §m minimises (18} subject to the constraints
{17)? Using eq{15) the constraints become

(G, §m} = e, - Fim} i=1.2...N {19
This is just a mnimisation problam with N constraints.

introduce Lagrange multiptiars 8., j=1.2...N and minimise

L4
S = (dmbm)+ ] B [ (G.6m) - o + Fim) ] {20)
-

It is actuslly more convenient to set 8, = -2a, , then minimising
(20) yields

L
ém = § agG, 21

Substituting {21) into {19} the coefficients may be determined

2.2

from the tinear equations

L
I a, {G.Gy) = 9, - Flm)

=12, .N {22)
L3}
More explicitly the equations are
N
1 a [y GG dr = e - Fm) =12..N 23

L 31

These are just N equations in N unknowns. The G's are linearly
independant (if not, the data are ld. hence one value can be
written as a combination of the remainder and provides no new
information, reduce N until the G's are Li). Thus the matrix
formed from values on the Lh.s of eq{23) s non- singular and
there is a unique solution for a; and hence for §m by eq(21).

It the problem is linear and hence eq{19) i$ exact, the
perturbation §m will result in a new model m + &m which
salisfies the data land is closest in the above sense to mj. Il
the problem is non-linear. so that {15) is an approximation to
(11) the new model wilt hopefully lead to a better fit with the
data {though this is not guaranteed). If the model m + &m is
petter it may be used as the starting modal in a further step
and in this way an iterative solution could be developed
providing a systematic method for generating a model whose
responses satisfy the data e .

Model interpretation

We now have a model m which fits the data, ia.

Fim) = e =12, N

that is vatues of the functionals F, calculated fram the model m

(24)



agree with the measured data e, There are an intimty of other

models that also fit the data in particular

Fime) = e i=1.2. N {25)

where mg is the real earth. What can we deduce about the real
earth mg from our model m?

The model obtained 1s simply one distibution of the
parameter mir) in {0,1). Al a particular radius ry , the model has
a certain value, m{rg). s this true of the real earth? - not
necassarly. otherwisa (24} has a unigque solution, so0 we know
thera are many other models with different values of mirg).
What can we say? Suppose we take an average value (maybe a
waighted average) of m around rg . Suppose in particular we
take a length L and average m over that length. We might ask
the question. what tength & (at ry } do we have to take to
ensure that the average over & is the same for all models that
satisly the data (including the real earth) ? I we can lind such
an L then the average of our model over & is some definite
property of the earth. If we make L the smaliest length over
which an average of any model is the same, then we can think
of L as the resolving length. Any detail that is finer than L in
any given model will be smoothed out by the average and will
not be a property of all the models -~ hence such detail is not
resolvabie by the data. Our problem 15 to ftind £ at each radius
rp- M the smallest length scale we can find is very large, then
wa haven't defined the model parameter very well, we have poor
resolution. On the other hand. if we only have to average over
a small interval to bring all the models into line, our rasolution
is good The deductions we are able to make depend on

whether the functionals are linear or non-lingar

Linear funcuonals

Since linear averaging is simplest. consider a linear average

of m to give an estimate <m>{rg) . then
<m>{rg = [4' Alreg ) mir) dr (26)

where A 1s a weighting function, or averaging kernal. The total
waighting must be unity. hepce

Jo' Alrrgyae = 1 27

Now F(m) is Ld. on mir) and <m>{rg} is Ld on miry It
therefore follows that <m>{ry) is 1.d. on F'(m) 50 that

LY

<m>{rg) = T arg) Fim) (28}

et
for some cosefficients afrpl [=1.2,..N. But since m satisfies the
data

N

<m>{rg) = { ajirg) e, (29}

e
s0 that the average valve depends directly on the data. Since
the average is independent of the mode! and comes directly
from the data, it is the same for ali models sartistying the data.
How do we find the appropriate coefficiants afrg)? This is the
part played by A, the averaging kernel. We want to average mir)
over a smali langth % around ry , not over the whole range (0.1).
The a's must therefore be chosen so that A[rrg) is concentrated
around rp , in other words has large values naar rg and small
values away from rg . Ideally we would like A to be the Dirac
delta function §(r-ry), for then <m>{rg) = m{rg), but this s
clearly not possible because m is not unique. One possibility is
to make A as close as we can to §(r-rg) The width of the
region in which we have succeeded in concentrating A is a
maeasura of the resolving {ength of the data.

19



From eqgns (2). {26) and (29} o

" s(rgA) = ] 85,3 = 2a'Sa (25)
Alrrg) = ] ajfro) Gyir) 130) et
4§ subject to the constraint
ie A is @ linear combination of the data kernels - a different v
combination for each ry Immediately it is apparent that a linear [ 3y = 1 = gt._a_ {36}
combination of only a few data kernels will probably not "
produce a good averaging kernel. The situation may improve Introducing a Lagrange multiplier 2k the minimisation gives
with more data. To make A concentrated around ry we must
define something like the peak width of A and minimise it ' Sa = Au (37}
Thera are many dafinitions of the [ength scale over which a
function is concentrated, a conveniant one 1o use here is the ) The solution to these N linear eguations is
spread of A defined by
8+ As'y (38)
strgA) = 12 [' r - rg? A%(rryp) or (31
whare
Clearly this is only smail it A is concentrated near ry. The
problem then is to choose the coefficients a|(fn) 50 as to A = 1/ uT.§"g {39)

minimise s{rpA} with the one constraint coming from eq(27) as

" This is the aigebraic problem which must he solved numerically

Z al(rn} I01 Gl(r) dr = 1 {32) With a determined for each ry. s and <m> can be calculated at
e each ry

This minimisation problem must be solved for each rg.

2.2.3 Geometrical interpretation

222 Solution
Backus and Gilbert{1970) give a simpie interpretation ot the
above by considering the case N=3. The G,s are ti, so S is
Calculate the data kernels Gr} and define positive definite. For a fixad s, {35) represents an ellipsoid, (36)
a plane. If they intersect, the 2-D figure of intersection in the
u, - In' G'(r) dr (33} plane is an ellipsa. Take s large enough so that they do
imtersect, then shrink s. The ellipse of intersection reduces to a

single point. With s any smaller, there is no solution. Hence

S,l = 12 Iol ir - rl,)z Gin) Glr} dr {34) this value of 5 is the smallest possiblie spread {5} and is the

solution to the problem. together with a, the point at which it

Then minimising the spread (31) subject to the constraint (32) is takes this valus, Note that a vecter normal te the plane is u
aquivalant 1o minimising and a vector normal to the surface of the eliipsoid is $ a3 When
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5 = 5q,, these two are parallel as expressed by (37}

Errors in data

Up to this stage the data e have been assumed perfectly
accurate whereas in reality this is neaver so. and we could not
expect there to be any model which gives exact agreement in
the form of {17}, If 0, is the one standard error estimate for the
datum e, ftor model generation the constraint (17} becomes the

inequality constraint

e -0 ¢ Fim+dm) g e + g {40)

) ]

The model generation calculations proceed as above until this
constraint is satisfied.

For model interpretation, suppose the actual error in e 1o be

Ael Then the error in the estimate of the average model from
(29} is
»
A<m>{rg) = ): a.{fu) be {41)

e
Choosing tha as 50 as to minimise the spread would lead to an
unacceptably large error as given by (41). It might be better to
accept a larger spfead o this reduced our arror estimate.
Naturally the errors themselves, bel, arg unknown but we may
know samething of [heir underlying statistics. The 8's may
have been obtained as the means of repeated measurements in
which case the Ae's have zero means E;, = ) Repeated
measurements also enable the variance matrix E to be
determined. with elements €, = 8¢,48, It will often be that E is
diagonal with elements G, From (40} an estimate of the

variance in the model average <m>{rg) is

~
el = [Aem>(rg)? = I ak,

YR

a,

|

(42}

ar
eiay - aEa

50 that € is an astimate of the arror in the average value

We have previously determined that a which gives the
minimum spread, that is the best resolution That a will give an
error which is unacceptably large. We could find an a which
minimises €2 - then the spread would be unacceptably large.
Backus & Gilbert{1970} prove that decreasing the spread
ncreases the error - a situation analagous to the uncertainty

principte

The problem can be formuiated as folows Consider all

vectors a for which the spread is a certain value, so that

—

Then we ask what a that satishes {44) gives the mmimum value
of ¢ The problem is then to rmumipuse (43) with the
constraints (44) and (36). For every s we obtain the minimum
possible error €{s). A graph of spread against error is called a

trade-off curve.

A parameterisation sets the problem succinctly. Consider

minimising the linear combination of s and e? given by

q=9s + {(1-8} ¢? {45}

where the parameter 8 varies between 1 and 0. 8 = 1
corresponds to mimimising spread. 8 = 0 corresponds to
minimising error. As 8 goes from Y to 0 the trade-off curve
£(s) is described and this. as Backus & Gilbert prove, 15 a

manotonically decreasing function of s
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Geometrical interpretation

Again examine the casa for N=3. Eq{44) represents an

ellipsoid and since e?

> 0. {43) represents an ellipsoid. These
two intersect the plane {35) as ellipses. |f we decrease s the
region of intersection shrinks to a paint whera a = a, and this
gives the minimum possible spread s., - here 8 = 1.

Decreasing e?

we find a point ag which gives the minimum
possible variance szm,n - at this point € = 0 For a fixed s {or
8} there wilt be a point where the ellipses just touch. This
point, say a(s) is the solution to the probtem - it gives the
mHnimum sz for a given s. As s increases from s, a(s} traces
a path fram a, to ag. There is no point in increasing s further

as there will be no further reduction in error.

In  the earth some physicat properties, for example
conductivity, vary over many orders of magnitude - it might
then be more appropriate to consider relative errors in the
maodel rather than absolute errors. The geometry changes to
that of the intersection of a plane with a double cone. This can
result in an ellipse, a parabola or a pair of hyperbolae and each
case has to be examined separately in conjynction with the
intersection of the spread eliipsoid with the plane. It is
sometimes easier in thesa cases to define the logarithm of the
parameter as the model and then consider the somaewhat easier
case of absolute errors

In the above we have assumed linear functignals. This

assurgs us that the calculated averages and inferences we make

from our single determined model are also true of the }eal
earth.

15

24 Non-linear functionals

K the functionals Fl are non-linear the computations can
proceed  almost  without change for  their  linearised
approximation - however the inferences we can make are no
longer precise - we can no longer make definite statements
concerning properties of the earth. This is indeed a high price
to pay

For non-linear functionals egqns (28} and {29) are no longer
trug. However it is still of use to construct hnear averages of

the model m of the form

N
<m>{rg) = } alry) q, {46)
‘:I
where
q, = (G.m} (47

The difference in caiculation is the use of q, in place of the data
e, Now the model average will depend on the model m - the
trade-off curve will also be model dependent Perhaps we could
have chosen a different starting model that would have led to 3
model m’ satistying (24} This model could be quite different
from m, with different average properties. We cannot be certain
of earth properties until al the models satistying (24) are
determined - but that is beyond us for there are an infinity of
them. It is often possible to use other data, or pre-conceived
ideas, to limit the form of our models but the limitations

inherent in linaarised rather than linear probiems needs always

" fo Be remembered.

16



25 Computational detals

251 Maodel finding

The matrix formed from (22) or (23) is theoretically
non-singular  but in  practise the equations may be
ill-canditioned, especially when the matrix is of large dimension
An alternative approach to direct matrix inversion, developed by
Parker(1977), is to consider a spectral expansion of the model m.
Eqn (22) may be wnttan

Pa =1y
where the elements of [ are given by

r, = fo'6G G dr
the elements of a are a, and the elements of y are e-F(m}
Since T is posnive definite and symmetric it may be
diagonahsed with an orthogonal matrix O such that

o'ro =t
where

A = diag(Ay ko hy)

and Ay > A3 > 3> > Ay > O

Thus eqn{48) transforms to

with the simple solution

IR
I
]
==
1o
=

(48)

(49)

(50}

{51

{52

{53)

The orthogonalsation may be achieved by singular value
decomposition. With this aorthogonalisation eqn(21) becomes

~ &
sm=] o ( 2"] 0,4 ) {54)
'Rl L
It will often be the case that many of the eigenvaiues )&' are
small ang closely spaced i{eading to instability. With the
eiganvalues arranged in decreasing order it is preferable now to
truncate eqn(52) leaving the first few, say L, large eigenvalues
only. The orthogonalisation actually has the etfect of combining
the data into "significant” pieces of information {associated with
the larger eigenvalues) The truncation effectively takes only
terms | = 1 to L in the spectral expansion (54). Parker{1977)
shows further that a suitable truncation level L may be
determined by examining tha misfit )(2 between the data e, and
substitution of tha truncated form of {54) into F](mﬁ'im). For L

tarms retainad, the misfit is

2 T 2
X =1 A (55)
J':L-l
Coafficients associated with small sigenvalues contribute little
10 the mistit but greatly to the solution and its uncertainty, the

standard error in each a; being Al'”z,

252 Model interpretatian

Trade-off calculations either for linear or non-linear

problems and including data errors require solution of

Wa =y (56}
with

al.y o= {57)
whara



W= 85 ¢« {(1-0)E {58
8 = 1 corresponds to the error-free algebraic solution detailed
earlier,

As above. diagonalisation is the key. Diagonalisation of W
reguires simultaneous diagonalisation of S and E. which can be
achieved since both are symmetric and positive delinite. E s
usually diagonal but may not nacessanly be. If E is diagonal,
scale the matrix S with € 72 so that

w=EF "weg?

= 8 E-VZ §§-I!2 N (1—3)']_'. ‘591
where Tis the unit matrix and write W' as

W= 85 + (1-9)1 (60)

Now diagonalise $' (and hence W) with an orthogonal
transformation O so that the elements of W' bacome

wo= (8080 + (1-9)1),
= 8d + (1-8) (61)
where d, are the diagonal elements of §. Applying the
transtormation to u and a so that u' = O u and a° = O 3 the
system equations become
Wa = Juy {62)

and

al w1 (63)

Since W 15 now diagonal. the solution is simply

a, = hu; [0 d +0-9))" (64}

whaere

A= s ] (wi(eas0-8))") 65)

Calculations tor the spread and variance of the estimate are

then
spread = §T§g = ): a‘,2 d, {66)
variance = a'Eas = J o} {67)

These calculations can be made for each 0 and the trade-off

between spread and error investigated

2.6 General procedure for inversion studies

(1} Generate a model that tits the data and associated errors.
An acceptable model may be one that satisfies the inequalities
{40} or altérnativalv one that yields a suitably small value of
misfit xz. The model parameter may not necessarily vary
smoothly, there may be fine scale detail superimposed on more

general trands.

{2) Calculate and examine the trade-off information and
decide on a suitable error. Minimise the spread with this error,
resulting in a set of coefficiants a, for each selected radius ry
Alternatively find the spread and error at the “knee” of each

trade-off curve. Compute the model averages <m> for each ry

(3) Examine the averages together with their error and

spread estimates M. for example. the model and the averages

20



exhibit ting detald, the associated error and spreads will indicate

whether or not such detail 15 resolvable.

3. Applications

3.1 The inversion of travel time data

Lat the earth be spherically symmetric with velocity structure
vir). Then the travel time T for a seismic wave travelting from a
surface source to a surface receiver epicentral distance A away
1S given by

Tip) = 2 J-,.R vty (et - |:oz]'”2 dr
where R is the earth’s radius, p is the ray parameter and r, is

the radius at the bottom of the ray path. The epicentral

distance 4 may also be expressed in integral form as

Alp) = 2p j,.“ et - v gy {69)

The ray parameter p is given by

-
"
15

3

and satisties the relation

P = v rsini (71

along the ray path, where i is the angle between the ray and the

radius vector. Thus at the deepest penetration of the ray, whera
= n/2,

o = PV (72)

2

{68)

(70}

311

Formal inversion by Herylotz & Wiechert

Travel time data consists ot pairs of values (T.A) for a
particular body wave type. Difterentiation enables the (p.A)
relations to ba determined in principle. Eqn (69) specifies Alp)
as a tunction of the velocity structure v{r} - what we require is
the inverse. that is w{r) as a functicn of the {p.A) relations.
Herglotz{1907) and Wiechert{1910} provide an analytic solution
which is presented before the Backus-Gilbert approach is
applied

In eqn(69) put n = r/v and change the variable of integration
from r to n. Then

Mp =2 [ A% pin? - pz)—sz :‘51)‘1”

=2 [ M pn?-py2 i“" r) dn i73)

where vy = virg). This is now an integral equation determining
In r as a function of rA,

Suppose n decreases monotonically as r decreases in the
range R 3 r > r for some r" and let n' = r/v(r} Let n; be such
that n; > 1. Then (73) holds for n; € p € R/vg Multiply {73)
by ([.:\2 - mz) " dp and integrate from p = n,; to R/vg. Then

G, " " !
Fofs 2-nh 2 A dp = ;f Jl’( P(t’"":\ {,H,‘) “—‘(!«rxd-l
n, P
the ¥ h
) 3( s p(E R LN dy
m, ", (74)
on changing the order of integration. The integral over p is
standard and with n > n,

2

J'n"‘ p - 02 (n2 - pHy V2 ap = w2 (751
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Therefore
J‘nnfu_ A (pz _ nlz)-IIZ dp = 1 Inm" }1 {In r} dn
=1 In (R/1)) (76}
where 1, = n; vy. The Lhs. may be integrated by parts yielding
Job* cosh M {p/nyh da = @ in (R 77)

where A = A, at n = n,. This integral equation gives r, as a
function of n, ( = ry/v;} and hence v as a function of r.

Use of this equation is as follows. p is a known function of &
{the pA relations). Select an epicentral distance A, and
determine n, = dT/dA at A, (ie the slope of the travel time
curve at A;). Now the Ihs of (77} can be evatuated by
determining p at intermediate points and evaluating cosh”'
{p/n). Hence ry is determined But ry, = n; v, thus determining
vy This procedure holds for any ry in the range R 3 ry > r.
Hence v 15 determined as a function of r down to radius r’ {ie.
provided n is manctonically decreasing)

Complications arise when n increases. For a discontinuous
increase in n {implying a discontinuous decrease in velocity as
at the mantle/core boundary) shadow zones are created and
thaere are gaps in the (T A) relations Triplications occur in the

{T.4) relations for a rapid increase in velocity with depth.

3.1.2 The tunction Tau - p

The above classic methods of Herglotz & Wiechert have
been extended by Gerver & Markusevitch (1966) to atlow for the
presence of a finite number of low velocity zones. All these
classical methods have disadvantages. First they require
knowledge of the complete exact travel time curve, requiring in
practice intarpolation. Second, complexities in the {T.4) or (p.A)

relations make these functions difficult to estimate from
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measurements. The functions may not be single valued (as at
triplications) and may only be partially defined (as in the case of
shadow zones).

The problem may be circumvented by considering the single
vaiuad delay time 1(p} defined as

tip) = T(A) - p Alp) {78}
From (68) and {69)
wpr=2 [ R rtn? - oY ar (79)

T has the useful proparty of being monotonic. Differantiating
{78)

dr
T -A {80)

hence. since A is always positive, T is a monotonic decreasing
single wvalued function of p. A tnplication s therefore
“unwrapped” and appears on a T{p) plot as a kink. Low velocity
regions resuly in discontinuities in T but no discontinuity in p.

Discrete values of the lunction T, at points p, for j=1.2._ N
together with estimates of error bounds may be determined by
the methods of Bessonova et al{1974) or Kennett{1976). These
form the discrete data set to which a (slightly modified)
Backus-Gilbert inverse scheme may be applied

As with many examples in geophysics, there is an
equivalence between spherical and planar geomeatry. The above
spherical earth problem may be converted te its planar

equivalent in 2 > 0 by the transformation
x=RA
z = R In (R/r} (a1
wiz} = (r/R) (1/v(ir})

x is now distance along the surface, 2 is depth and u{z) is the
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stownass protile (rectprocal of the wvalocily)  With  thas

transformation gqn{79) hecomaes
e = 2 [ (via - p2)Y? a2

where 2, 15 the maximum depth reached by the ray with

paramater p.

3.13 The inversion of 1{p)

It is clear that T{p} depends non-linearly on the slowness
parametar u{z} so that the linearised version of (82} is required
A small pertwrbation du will lead to a small change &1
according to

Stp) = 2 [ ulz Su(@) (viz) - pB) 2 a2
s 2 fo"“z - P2 V2 miz) dz
where the model m is introduced as the relative perturbation

miz) = GSuf2)/uiz)

Now let zy, be the greatest depth to be considered in any
modet. Then {84} may be writtan

61, = fu"' G,(2) m(2) dz
where

Gfz) = 2 u? - ;:nlz)""2 02«2

Having now identified the Fréchel darivative we would like to
be able to proceed to the calcuiations detailed above. Model
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{82)

(83)

(84}

(85}

(86)

(87)
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interpretation does proceed along these lines but tha preceding
stap of 'modei generation has one further complexity. In egn{49)
the Frachet kernal is required to be square integrable. but fram
{87} this is not so. The singularity in G may be removed by
intagrating by parts:

Jo™ Gz} m(2) dz = 3(0) mi0) + [ Jz) m(z} az (88}
whaere
4D = [,* Gis)ds (89)

and m’ is the derivative of m. The new kernels J are the travel
times from level z to the bottoming of the ray 2, and thus may
be calculated for any given velocity structure. We now seek the

smoothest pertwbation, that is the minimum of
Lo (m@)2 0z + mi@) (90)

subject to the constraints (40). Having found mi{0) and m’ the
latter may be integrated 10 yield the relative parturbation miz}
and a “new” model determined. Since this i5 a non-linear
problem, the new modeal could be used as the starting model in

the next step. thus generating an iterative process.

The invarsion of free oscillation data

Tha problem of determining an earth model (density and
sgismic velocities) satisfying measured squared eigenfrequencies
of the earth’'s spharoidal and toroidal free oscillations, in part
stimuiated the inversion theory developed by Backus and Gilbert.
Before their theory, although forward calculations could be
performed, it was not clear how to change a maodel to give
baetter agreament with the substantial body of data available.



An earth model consists of the 3-tuple {(p.k.u) where o is
density and « and u are the bulk and shear moduli respectivaly
Thus for the application of inverse theory three Frachet
derivatives are requirad corresponding to changes in p, x and p.
Rayleigh's principte is first invoked to vield the squared
eigenfrequency w? for a particular normal mode. Applying small
perturbations §p, §x and &yu and linearising determines the

required kernels KMR which satisfy

t5w?) [y psPdv = [, (Kék + M&u « Rép) dv
{91)

where V is the volume of the earth and s the displacement fiald
The faorm of K, M and R, together with their derivations are given
explicitly in Backus and Gilbert{1967),

The squared fraguencias ot the normal modes, which are
non-linear functionals, are aygmented by the linear functionals
of mass and moment of inertia to yield a data set for inversion.
The simplest application i3 to assume the compressional and
shear wave velocities (and hence x and y) to be known and 10
infer the density p as a function of radius r. Early experiments
on small data sets illustrated the nature of the problem and
solution and were given by Backus and Gilbart (1967, 1968,
1970). Dziewanski and Gilbert{1972} extended tha data set with
the inclusion of 70 overtones (spheroidal and toroidal} together
with fundamantal modes. Some of the overtones are interpreted
as implying solidty of the inner core. Gilbert and
Dziewonski( 1975} have given a standardised data set consisting
ot 1064 distinct eigenfrequencies and have applied these to
refine earth models and to determine the mechanism of an
earthquake source.

2!

3.3 The inversion of geomagnetic data

Geomagnetic data may be inverted to vyield the earth's
condyctivity profile oir} Taking the earth as spherical, outside
any conducting region the magnetic scalar potential {! satisfies

Laplace’s equation
¥n-o (92)

In conducting regions the electric field E satisfies the ditftusion

aqguation
9E = podE (93}

where 1 is the permeability of free space The appropriate
solution of {92} may be written

A = 110 a™ en,m ) 5, ™0.0)

Aew (94)

where $,™ is a surface harmonic of degree n order m and a and
b reprasent external (inducing) and internal {induced) parts of
the potantial respectively In the conducting regions, the

appropriate solution of (93) is

E = curl ¥r {95)
where
v = I 1 R™nSMe.) (96}

aAro mcv

with R,™ satistying a second arder differential equation

;lr(r’}rn,."‘) + { iwpor? - nfp+)} R™ = 0 (97)
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A pumber ot ‘response measures” may be constructed. for

axample
Q" = b, 7a," {98)

which is the ratio of internal to exiernal parts Another such

measure is the logarithm of apparent resistivity given by
¥ = in (iwpc) (99)
where c, the penetration depth, is
co= afl-2Qp/2(+0) {100}

and tha sub- and super-scripts have been dropped from QFor
tha response y the Frachet derivative may be determinad as

Flyrw) = -2 piw R3r) 7 ROV} RYD) {101)

Clearly the problem is non-linear since F depends on g through
the function R Parker{1970} applies this theory to determine the
electrical conductivity in the earth’s mantle and Hobbs{1977) and

Hobbs et al{1984) give applications concerning the maon.

4 Canclusions

Provided the forward problem can be solved and the
appropriate Fréchet darivative found. inverse theory provides a
systematic mathod for determining an earth model satisfying
data and for intarpreting that model in tarms of its linaar
averages. The severe i{imitations inherent in the use of
linearised wversions of non-linear problems must always be
remembared
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