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Chapter 3

Complements

This document correspond to material I alluded to during the lectures
and did not include in the previous documents.

3.1 Number of Complex Roots with Neg-

ative Real Part
So far Cauchy index was used only for the computation of Sturm-
queries. We describe in this section an important application of Cauchy
index to the determination of the number of complex roots with nega-
tive real part of a polynomial with real coefficients.

Let P(X) = a,X?+ ...+ a9 € R[X],a, # 0, where R is real closed,
and C = R]i] is algebraically closed. Define F(X), G(X) by

P(X) = F(X?) + XG(X?).
Note that if p = 2m is even

= anXm + a2m—2Xm_1 RERRR
G = g 1 X" Fagy 3 X240

and if p = 2m + 1 is odd

F = a2me + a2m72Xm71 + ey
G = o1 X™ + g X7 4

We are going to prove the following result.

121



122 CHAPTER 3. COMPLEMENTS

Theorem 3.1.1 Let n(P) be the difference between the number of roots
of P with positive real parts and the number of roots of P with negative
real parts.

—Ind(g) +Ind(X—G) if p is even,

_ F F
") —Ind(XiG) n Ind(g) if p is odd.

This result has useful consequences in control theory. When con-
sidering a linear differential equation with coefficients depending on
parameters a;,

apy(i”) (t) + ap_ly(p_l) (t) +...+ (I()y(t) =0, ap 7£ 0, (31)

it is important to determine for which values of the parameters all the
roots of the characteristic equation

P:apo—l—ap_lXp_l—l—...aO,ap7&0, (32)
have negative real parts. Indeed if x;,...,x, are the complex roots of
P with respective multiplicities pq, ..., i, the functions

eBit ottt =1,

form a basis of solutions of Equation (3.1) and when all the z; have
negative real parts, all the solutions of Equation (3.1) tend to 0 as ¢
tends to +oo, for every possible initial value. This is the reason why
the set of polynomials of degree p which have all their complex roots
with negative real part is called the domain of stability of degree p.

We shall prove the following result, as a corollary of Theorem 3.1.1.
Theorem 3.1.2 (Liénard/Chipart) The polynomial
P=a,X*+ ... +ag,a, >0,

belongs to the domain of stability of degree p if and only if all the a,
1=20,...,p, are strictly positive and

st (F,G) > 0,...,s10(F,G) >0 if p=2m is even,
Sty (XG, F) > 0,...,810(XG, F) >0 ifp=2m+1 is odd.
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As a consequence, we can decide whether or not P belongs to the
domain of stability by testing the signs of some polynomial conditions
in the a;, without having to approximate the roots of P.

Exercise 3.1.3 Determine the conditions on a,b, ¢ characterizing the
polynomials P = aX3 + bX? + ¢X + d, belonging to the domain of
stability of degree 3.

The end of the section is devoted to the proof of Theorem 3.1.1 and
Theorem 3.1.2.

Define A(X), B(X),deg(A) = p,deg(B) < p, as the real and imag-
inary parts of (—)PP(iX). Note that

A=a,X? —a, o XP 2+ ...,
B=—a, | XP' +a, 3XP ..,

so that when p is even A is even and B is odd (respectively when p is
odd A is odd and B is even).
We are going to first prove the following result.

Proposition 3.1.4 Let n(P) be the difference between the number of
roots of P with positive real part and the number of roots of P with
negative real part. Then,

n(P) = Ind(%).

A preliminary result on Cauchy index is useful.

Lemma 3.1.5 Denote byt — (A, By) a semi-algebraic and continuous
map from [0, 1] to the set of pairs of polynomials (A, B) of R[X] with
A monic of degree p, deg(B) < p (identifying pairs of polynomials with
their coefficients). Suppose that Ay has a root x of multiplicity 1 in
(a,b) and no other root in [a,b], and By has no root in [a,b]. Then, for
t small enough,

Ind(AO b) Ind(At a b)

Proof : Using the continuity of roots, there are two cases to consider:
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If p is odd, the number n of roots of A; in [a, b] with odd multiplicity
is odd, and thus the sign of A; changes n times while the sign of
By is fixed, and hence for ¢ small enough,

Ind(i0 a b) = Ind(it a b) = s1gn(A( )(O)BO( )-

If 1 is even, the number of roots of A; in [a, b] with odd multiplicity
is even, and thus for ¢ small enough,

Ind(A a b) Ind(I a b) 0.
0 t
O

Proof of Proposition 3.1.4: We can suppose without loss of gener-

ality that P(0) # 0.
If A and B have a common root a+1ib, a € R,b € R, b—1a is a root

of P.

If b = 0, ia and —ia are roots of P, and P = (X? + ¢*)Q. Denoting
(—i)P2Q(iX) = C(X) + iD(X), C € R[X], D € R[X], we have

A= (X?-d*)C,
B=(X?—-a*)D.

Ifb # 0, b+ia, b—ia,—b+ia,—b—ia are roots of P and P = (X*+2(a?*—
V) X2+ (a* + b2) )Q. Denoting (—2)P 1Q(iX) = C(X) +iD(X),
C € R[X], D € R[X], we have

A= (X*=2(a® - b)X? + (a® + b*)*)C,
B = (X*—-2(a* - ) X? + (* + b*)})D.

B D
In both cases n(P) = n(Q), Ind(z) = Ind(a).
So we can suppose without loss of generality that P has no two
roots on the imaginary axis and no two roots with opposite real part,

and A and B are coprime.
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Let x1 = ay 4+ iby, ..., 2, = a, + ib,, be the roots of P with multi-
plicities ..., i, ¢ be a positive number smaller than the difference
between two distinct absolute values of a;, M a positive number bigger
than twice the absolute value of the b;. Consider for t € [0,1] , and
1=1,...,71,

zip = (1 — )2 + ta; + %bi),

and the polynomial
Pt(X) = (X — .fl’t)ul RN (X — xnt)ﬂr.

Note that Py = P, P, has only real roots, and for every ¢ € [0, 1] no two
roots with opposite real parts, and hence for every ¢ € [0, 1], defining

(—i)PR(iX) = A(X) +iBy(X), 4 € R[X], B, € R[X],

Ay and By are coprime. Thus Res(A, B;) # 0 and denoting by M (A, By)
the matrix of coefficients of Bez( Ay, B;) in the canonical basis X?~1 ... |1,
det(M (A, By)) # 0. Thus the rank of M (A, By) is constantly p as ¢
varies in [0, 1]. Hence the signature of M(A,, B,) is constant as ¢ varies

B B
in [0, 1]. We have proved that, for every ¢ € [0, 1], Ind(zt) = Ind(Z>.
t

So, we need only to prove the claim for a polynomial P with all
roots real and no opposite roots. This is done by induction on the
degree of P.

The claim is obvious for a polynomial of degree 1 since if P = X —aq,

A=X,B = a, and Ind(%) is equal to 1 when ¢ > 0 and —1 when

a < 0.

Suppose that the claim is true for every polynomial of degree < p
and consider P of degree p. Let a be the root of P with minimum
absolute value among the roots of P and P = (X — a)Q.

If a > 0, we are going to prove, denoting
(=) 'Q(iX) = C(X)+iD(X),C € R[X], D € R[X],
that

Ind(g) - Ind(g) +1. (3.3)
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We define P, = (X — )@, t € (0,a] and denote

Note that P, = P, and for every t € (0,al], P, has only real roots, no
opposite roots, and A; and B; are coprime. Thus Res(A;, B;) # 0 and
denoting by M (A, B;) be the matrix of coefficients of Bez(A;, B;) in
the canonical basis XP~1 ... 1, det(M (A, By)) # 0. Thus the rank of
M (A, By) is constantly p as ¢ varies in (0,a]. Thus the signature of
M (A4, By) is constant as ¢ varies in (0,a]. We have proved that, for
every t € (0, al,

Ind(i) - Ind(g). (3.4)
We now prove that
In d(i) - Ind(g> T, (3.5)

if ¢ is small enough. Note that, since

A X) 4+ iBy(X) = (—i)PP(iX)
= (X +it)(—i)" 'Q(X) = (X +it)(C(X) +iD(X)),

A(X) = XC(X) — tD(X),
By/(X) = XD(X) + tC(X).

For ¢ small enough, A, is close to XC(X) and B, close to XD(X).

If p is even, C(0) # 0, D(0) = 0 since D is odd and C and D have
no common root. For ¢ small enough, using the continuity of
roots, A, has a simple root y close to 0. The sign of By(y) is the
sign of tC(0). Hence for [a,b] small enough containing 0, and ¢
sufficiently small,

Ind(%a,b) 0 Ind(A a b)
{

If p is odd, C'(0) = 0, D(0) # 0 since C' is odd and C' and D have no

common root.
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D
If C'(0)D(0) > 0, there is a jump from —oo to +oo in ol at
0, and A;(0) has two roots close to 0, one positive and one

negative. Hence for [a, b] small enough containing 0, and ¢
sufficiently small,

Ind(g;a, b) = 1,Ind(%;a, b) = 2.
t

D
If C'(0)D(0) < 0, there is a jump from 400 to —oo in ol at

0 and A;(0) has no root close to 0. Hence for [a,b] small
enough containing 0, and ¢ sufficiently small,

Ind(g;a, b) - —1,Ind(%;a, b) — 0.
{

Equation (3.5) follows. Equation (3.3) follows from Equation (3.4) and
Equation (3.5).
If a < 0, a similar analysis, left to the reader, proves that

Ind(g) - Ind(g) -~ 1

Proof of Theorem 3.1.1: If p = 2m, let

G| _
F(z)

)

) G(x o
£ = { SIEN ;0,20 (%) if hm$<07$ﬁo

otherwise.

Then, since A = F(—X?),B = XG(—X?),

Ind(E) - Ind(w>

A F—X?)
- Ind(%}éj); o, 0) + Ind(%; 04 oo) te
= 21nd(%; —00, 0) +e
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= —2Ind(%; —oo,O) +e
- —QInd(%; —00, 0) e
— —Ind(%; —oo,o) +Ind()§§§§?§); —oo,o) te
_ —Ind(%) +Ind(XTG).

Ifp=2m+1, let

. Flz)y ... F(z)
£ = { Slgn$<07$_>0 (@) lf 11mm<0,m_>0 (@) ;é 0,
0 otherwise.

Then, since A = XG(—X?), B=—F(—X?),

(5) = (50

F(-X?)
XG(—X?)

F(—X?)

= —Ind( XG(—X?)

;—oo,O)—Ind( ;O+oo)—€

F(-X?)
XG(—X2)

= —21nd(XFé€()3); —00, 0) —€

= _Ind()fC(?i()()'); —00, O) + Ind(%; —00, O) —¢€

_ —Ind(XiG) +Ind(g).

This proves the theorem, using Proposition 3.1.4. O

= —21nd( ;—oo,O) —€

Proof of Theorem 3.1.2: If
P=a,X?+ ... +ap,a, >0

belongs to the domain of stability of degree p, it is the product of a,,
polynomials X +u with v > 0 € R, and X?+sX +t withs >0 c R, ¢t >
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0 € R, and hence all the a;, 2 =0, ..., p, are strictly positive. Thus, F
and G have no positive real root, and sign(F'(0)G(0)) = sign(apa;) = 1.
Hence,

if p = 2m is even,

and
—p = —Ind(%) + Ind(X?G

it p=2m+1 is odd,

~——
T
3
I
=)
(o
~~
|
~—

Ind(XiG) = —Ind(g) +1,
and

F F F
—p=—Tnd( ) +nd(~) 1=Ind( ).
p=-hd\xg) T i\g) ot i=ndxg
The proof of the theorem follows, using the results already seen on
Cauchy index O

The domain of stability has attracted much attention, notably by
Routh [6], Hurwitz [4], and Liénart/Chipart [5]. A whole chapter is
devoted to this problem in [3].

3.2 Improved Sign Determination

We consider a general real closed field R, not necessarily archimedean.
Note that the approximation of the elements of R by rational numbers
cannot be performed. Our aim is to give a method for determining the
sign conditions realized by a family of polynomials on a finite set Z of
points in R”.

Let Z be a finite subset of R*. We denote

R(P=0,Z)={x e Z | P(z)=0},
R(P>0,Z)={zxeZ | Plx)>0},
R(P<0,Z)={zxeZ | Plx) <0},
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and ¢(P = 0,2),c¢(P > 0,Z),¢(P < 0,Z) the corresponding numbers
of elements. The Sturm-query of P for 7 is

SQ(P, Z) = ¢(P > 0,Z) — ¢(P < 0, Z).

We consider the computation of SQ(P, Z) as a basic black box. We
have already seen several algorithms for computing it when @ € R[X],
Z = 7Z(Q,R) (Algorithms 1.3.13 and 1.4.48). Later in the book, we
shall see other algorithms for the multivariate case.
Consider P = Py, ..., P, afinite list of polynomials in R[ X7, ..., X].
Let o be a sign condition on P, i.e. an element of {0,1,—1}". The
realization of the sign condition ¢ on 7 is

R(o,Z)={xz € Z | Apepsign(P(z)) =0c(P)},

and its cardinality is denoted c(o, 7).

We write Sign(P, Z) for the list of sign conditions realized by P on
Z, i.e. the list of 0 € {0,1, —1}” such that R(o, Z) is non-empty, and
c(P, Z) for the corresponding list of cardinals c¢(o, Z) = #(R (o, Z)) for
o € Sign(P, Z).

Our aim is to determine Sign(P, Z), and, more precisely, to compute
the numbers ¢(P, 7). The only information we are going to use to
compute Sign(P, Z) is the Sturm-query of products of elements of P.

A method for sign determination in the univariate case was already
presented earlier. This method can be easily generalized to the multi-
variate case, as we will see now.

Given a € {0,1,2}7, we write P* for [[p.p P*"). When R(0, Z) #
M, the sign of P* is fixed on R(o, Z) and is equal to [[p.po(P)*F),
with the understanding that 0° = 1. Hence, we define the sign of P
on o, sign(P%, o), to be [Tpcp o(P)F).

We order the elements of P so that P = {P,,..., P;}. Asin Chapter
2, we order {0, 1,2}7” lexicographically: « < 3 if and only if 37,1 <
i < s such that o(P) < B(P) and, for all j > i,a(F;) = S(F)).
We also order {0,1,—1}7 lexicographically: o <j 7 if and only if
Ji,1 <i <'s, such that o(F;) < 7(F5;) and, for all j > i,0(F;) = 7(F)
(with 0 < 1 < —1).

Given A = vy, ..., qy, a list of elements of {0, 1,2}” with

a1 <fex - - - <lex Qs
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we write P4 for P ... P and SQ(PA, Z) for SQ(P™, Z),...,SQ(Pum, Z).

Given ¥ = 0y,...,0,, a list of elements of {0,1,—1}", with
01 <lex - - - <lex On;

we write R(X, Z) for R(01, Z), ..., R(on, Z) and ¢(X, Z) for ¢(o1, Z), . .., ¢(on,
Z).

The matrix of signs of P4 on ¥ is the m x n matrix M (P4, )
whose 4, j-th entry is sign(P%, ;).

Proposition 3.2.1 If U,exR(0,Z) = Z, then
M(PA,Y) - (2, Z) = SQ(PA, 2).

Proof: This is obvious since the (i, j)—th entry of M (P4, %) is the
sign of the polynomial P* of P* on the sign condition o; of . O

When the matrix M (P4, ) is invertible, we can express ¢(X, Z) in
terms of SQ(P4, 7).

Note also that when P = {P}, A = {0,1,2}{"} and & = {0,1, —1}{"}
the conclusion of Proposition 3.2.1 is

11 1 (P =0,2) 5Q(1, 2)
01 —1|-|e(P>0,2)| =] SQP,2) |. (3.6)
01 1 (P <0,2) SQ(P2, Z)

This is a generalization to Z of Equation (2.1) which had been stated
for the set of zeroes of a univariate polynomial.
We shall express each ¢(o, Z) in terms of SQ(P?, Z), using all a €
{0,1,2}7. So we take A = {0,1,2}” and ¥ = {0,1,—1}".
As in Chapter 2, Notation 2.1.6, let M be the 3° x 3°* matrix defined
inductively by
1 1 1
Mi=10 1 -1
0 1 1
and
M1 = M, @ M.

We generalize Proposition 2.1.8 and obtain
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Proposition 3.2.2 Let P be a set of polynomials with s elements, A =
{0,1,2}7, and ¥ = {0, 1, —1}" ordered lexicographically. Then,
M(PA,%) = M,.

Proof: The proof is by induction on s. If s=1, the claim is Equation
(3.6). If the claim holds for s, it holds also for s+1 given the definitions
of Myy, and M(P#,Y), and the orderings on A = {0,1,2}” and ¥ =
{0,1,—1}". 0

As a consequence:
Corollary 3.2.3
M, - (2, Z) = SQ(PA, 2).

The preceding results give the following algorithm for sign determi-
nation, by using repeatedly the Sturm-query black box.

Algorithm 3.2.4 (Naive Sign Determination) Input: « finite sub-
set Z C R¥ with r elements and a finite list P = Py,..., P, of
polynomials of R[ X1, ..., X].

Output: the list of sign conditions realized by P on Z, Sign(P, 7).
Blackbox: For a polynomial P, the Sturm-query SQ(P, Z).

Procedure: Define A = {0,1,2}” and ¥ = {0,1,—1}", ordered lexi-
cographically. Call the Sturm-query black box 3° times with input
the elements of P to obtain SQ(P*A, Z). Solve the 3° x 3° system,

M, - (S, Z) = SQ(PA, Z)

to obtain the vector ¢(X, Z)of length 3°. Keep the sign conditions
o with ¢(0,Z) #0

Complexity analysis: The number of calls to the Sturm-query black
box is 3°. The calls to the Sturm-query black box are done for poly-
nomials which are products of at most s polynomials of the form P or
P?, PcP. O
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To avoid the exponential number of calls to the Sturm-query black
box in Algorithm 3.2.4 (Naive Sign Determination), notice that

#(Sign(P, 7)) < #(2),

so that the number of realizable sign conditions does not exceed #(Z2).
We are now going to determine the non-empty sign conditions induc-
tively getting rid of the empty sign conditions at each step of the com-
putation, in order to control the size of the data we manipulate.

Notation 3.2.5 We need to introduce some more notation. Let P; =
Py, ...,P. For o € {0,1,-1}7-1 and 7 € {0,1,—1}, we define 0 A T
to be the element of {0,1, —1}7¢ defined by

{ (e AT)(P)=0c(P) if PeP_y,
(cAT)B) =T.

If ¥ =o0y,...,0., is a list of elements of {0,1,—1}" with
01 <lex - - - <lex Om
and T'=T1,...,7, is a list of element of {0,1, —1} with
T1 <lex -« <lex Tn;
then > AT is the list
OINTE <fex -+ <lex LN T <lex - -+ dex Om A T1 <ex - - - <lex Om N\ Tp-
For a € {0,1,2}7-1 and 3 € {0,1, 2}, we define a x 8 € {0,1,2}
. { (ax B)(P)=«(P) if P e Py,
(a x B)(F) = B.

If A=0a) <jex -+ <lex Oy and B = F1 <jex ... <jex On are lists of
elements of {0,1,2}%-1 and {0, 1,2} we define A x B to be the list

a1 X B1 <jex - - <lex @1 X B <lex -+ - <lex Om X B1 <jex - - - <lex ¥m X Pn

in {0,1,2}".
The list P;**? is defined to be

PO PP PPl P P,
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Recall that the matrix of signs of P4 (of length m) on ¥ (of length
n) is the m x n matrix M(P*,X) whose i, j-th entry is sign(P%, o)
and that SQ(P4, Z) is the vector SQ(P*, 2),...,SQ(P*, Z). Using
Notation 2.1.4 we have

Proposition 3.2.6 If UycxR(0,Z) = 7Z and B=0,1,2,
(M(PA,S) @ M{PYP, T))e(S AT, Z) = SQ(P*P, 2).
Proof: Immediate from Proposition 3.2.1. O

Let Z C R* be a finite set, and let P be a finite list of polynomials
of R[Xy,...,Xg]. A list A of elements in {0,1,2}” is adapted to
sign determination for P on Z if the matrix of signs of P* over
Sign(P, Z) is invertible.

Example 3.2.7 Consider the set of polynomials {F;}. In this case,
{0,1,2}{7} can be identified with {0,1,2}. Note that when Z is non-
empty, Sign({F;}, Z) is also non-empty.

If Sign({P,;},Z) = {0,1,—1}, B; = 0,1,2 is adapted to sign determi-
nation for {P;} on Z, since {P;}"1? = 1, P;, P?, and the matrix
1 1 1
—1 |, which is
1

M; of signs of 1, P, P? over 0,1,—11is |0 1
0 1

invertible.

If Sign({ P}, Z) = {1, —1} (respectively {0, 1}, respectively {0, —1}),
B; = 0,1 is adapted to sign determination for {P;} on Z, since
{P}%! = 1, P and the matrix of signs M; of 1, P, over 1,—1

b } (respectively

(respectively 0,1, respectively 0,—1) is 1 -1

1 1 . 1 1 L .

[ 0 1 ], respectively [ 0 —1 } ), which is invertible.

If Sign({F;}, Z) = {0} (respectively {1}, respectively {—1}), B; =0
is adapted to sign determination for {P;} on Z, since {P;}" =
and the matrix M; of signs of 1 over 0 (respectively 1, respectively
—1) is [1], which is invertible.
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Definition 3.2.8 Let Z C RF be a finite set, let P = Py,..., P, be a
finite list of polynomials of R[ X}, ..., X], and let P; = P,..., P, for
0 < i <s. We now describe a method for determining inductively a
list A;(Z) of elements in {0, 1,2}” adapted to sign determination for
P, on Z.

The case 2 = 1 has been already treated in Example 3.2.7.

Choose i, 1 < ¢ < s, and consider P,. Let Sign(P;_1,Z)1 (re-
spectively Sign(P;_1, Z)a, respectively Sign(P;_1, Z)3) be the subset of
Sign(P;_1, Z) of sign conditions which are partitioned into at least 1
(respectively 2, respectively 3) distinct subsets by sign conditions on
P;.

Let
A U R0, Z), (3.7)
o€Sign(P;_1,2)2USign(Pi—1,Z)3
Z" = U R(o, Z). (3.8)
UESign('Pifl,Z)g
Note that
Sign(Pi_l, ZI) = Sign(PZ-_l, Z)Q U Sign(Pi_l, Z)37
Sign(Py 1, Z') = Sign(P,1, 2)s.
Let

rio1 = #(Sign(Pi_1, 2)),
i1 = #(Sign(Pi_1, Z2)2) U Sign(P;_1, Z)3),
ri—1,2 = #(Sign(Pi1, Z)3),

Then r; =11 + 111+ 712

Consider the matrix M(Pf_il’l(z), Sign(P;_1, Z")) and extract from it
the first 7,_; 1 linearly independent rows defining a list A, 1(Z’) adapted
to sign determination on Z'.

Similarly, consider the matrix M ( ffl‘l(z), Sign(P;_1,2")) and ex-
tract from it the first r;_; 5 linearly independent rows defining a list

A;_1(Z") adapted to sign determination on Z”.
Define

AZ(Z) = Az—l(Z) X 07Ai_1(ZI) X 1,AZ'_1(Z”> X 2.
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If 7 € Sign(P;, Z), we denote by 7" € Sign(P;_1, Z) the sign condi-
tion defined by 7'(P;) = 7(P;),j < i.

Proposition 3.2.9 The list A;(Z) is adapted to sign determination for
P; on Z.

Proof: The proof is by induction on i. The claim is obviously true for
1= 1.

The r;_; first rows of M(Pfi(z), Sign(P;, Z)) are obtained as follows.
Let C, be the column of M(’Pfffl(z), Sign(P;_1, Z)) corresponding to
o € Sign(P;_1, Z).

For every 7 € Sign(P;, Z), let the column of M(’Pf_ifl(z), Sign(P;, Z))
with index 7 be C7s. The r;_; ; following rows of M(PiAi(Z), Sign(P;, 7)),
are obtained as follows. Let C, be the column of M(’Pf_il’l(z,), Sign(P;_1, 7))
corresponding to o € Sign(P;_y, Z). For every 7 € Sign(P;, Z), let the
column of M (P71 ¥ Sign(P;, 7)) with index 7 be 7(P;)Cy.

The r;_1 2 following rows of M(’Pfi(z),Sign('Pi,Z)), are obtained
as follows. Let C, be the column of M(Pf_il’l(zu), Sign(P, 1, 7)) cor-
responding to ¢ € Sign(P;_1, Z). For every 7 € Sign(P;, Z), let the
column of M (P71 #") P2 Sign(P;, 7)) with index T be 7(P,)2Cy.

We want to prove that M(PiAi(Z), Sign(P;, Z)) is invertible. Denot-
ing by C; the column of M(PZ.AZ'(Z), Sign(P;, 7)) indexed by 7, consider
a zero linear combination of columns of M(Pfi(z), Sign(P;, Z)):

Z 2\C, = 0.

TESign(F;, %)

We want to prove that all A, are zero. If o € Sign(P; 1, Z)3, we denote
by 01 <lex 02 <jex 03 the sign conditions Sign(P;, Z) of such that o] =
o, = o} = 0. Similarly, if 0 € Sign(P;_1, Z)2, we denote by o) <jex 09
the sign conditions of Sign(P;, Z) such that o] = o = 0. Finally if
o € Sign(P;_1, Z)1 we denote by o1 the sign condition of Sign(P;, Z)
such that o] = o.

Since M(’Pfjfl(z), Sign(P;_1, Z)) is invertible, by the induction hy-
pothesis, A,, = 0, for every o € Sign(P;_1, Z)1.
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Now using the fact that, by the induction hypothesis,

M(PL Sign(Piy, 71)
is invertible, for every o € Sign(P;_y, Z)9
/\(71 =+ /\(72 =01 (P)i))\al — O'Q(P)Z'>)\(72 = 0

Thus A,, = A, =0, for every o € Sign(P;_1, Z)a.
Finally, using the fact that, by the induction hypothesis,

M(PEP, Sign(Pr 1, 7))
is invertible, for every o € Sign(P; 1, 7)3
Aoy + Aoy + Aoy = Aoy — Ay = Agy + gy = 0.

Thus A,, = Ay, = Ay, = 0 for every o € Sign(P;_1, Z)s;.
This proves that the matrix M (P, Sign(P;, Z)) is invertible. O

Remark 3.2.10 The list A;(Z) C {0,1,2}7 adapted to sign determi-
nation constructed above depends only on the list of non-empty sign
conditions Sign(P, Z), since the list A;(Z) C {0,1,2}% is constructed
inductively from A;_;(Z) and Sign(P;, Z).

We are now ready for the Sign Determination algorithm.

Algorithm 3.2.11 (Sign Determination) Input: « finite subset 7 C

R¥ with r elements and a finite list P = Py, ..., P, of polynomials
i R[Xl, ca ,Xk]

Output: the list of sign conditions realized by P on Z, Sign(P, Z).
Blackbox: for a polynomial P, the Sturm-query SQ(P, Z).
Procedure:

Use the Sturm-query black box with input 1 to determine r = SQ(L, Z).
If r =0, output .

Initialization: Sign(Po, Z) =0, Ao(Z) := 0.
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Let P; = Py, ..., P;. We are going to determine iteratively, for i from
1 to s, Sign(P;, Z) the non-empty sign conditions for P; on Z.
More precisely, we are going to compute Sign(P;, Z) and A;(Z),
a list of elements in {0,1,2}7 adapted to sign determination for
P; on Z. starting from Sign(P;_1,Z) and A,_1(Z) .

For i from 1 to s

Determine Sign(P;, Z), the list of sign conditions realized by P,
on Z, and a list B; of elements in {0,1,2} adapted to sign
determination for P; on Z as follows:

Use the Sturm-query black box with inputs P; and P? to
determine SQ(P;, Z) and SQ(P?, 7).
From these values, using the equality

1 1 1] [eP=0,2) SQ(1, Z)
0 1 —1||e(P>0,2)| =|5Q(P,2) |,
01 1| |eP<0,2) SQ(P2, Z)

compute ¢(P; = 0,2), ¢(P, > 0,Z) and ¢(P, < 0, Z) and
output Sign(P;, 7).
If r(P;) = #(Sign(P;, 7)) = 3, output B; = {0, 1, 2}.
If r(P;) = #(Sign(P;, 7)) = 2, output B; = {0, 1}.
If r(P;) = #(Sign(P;, 7)) = 1, output B; = {0}.
Define M; = M(P/ Sign(P;, 7)).
Compute Sign(P;, Z), the list of sign conditions realized by P;
on Z, as follows:
Use the Sturm-query black box with input the elements of
Pfi’l(Z)XBi to determine d' = SQ(’PZ-AH(Z)XBi7 7).
Take the matrix

M! = M(P}P) Sign(Pi1, 7)) @ M.

Compute the list ¢ = ¢(Sign(P;_1, Z)ASign(FP;, 7)) from
the equality M| - ¢ = d' by inverting M]. Compute
Sign(P;, Z), removing from Sign(P;_y, Z) A Sign(P;, Z)
the sign conditions with empty realization, which corre-
spond to the zeroes in c.
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Let Sign(P;_1, Z)1 (respectively Sign(P;_1, Z)3) be the subset
0

S{gn(Pi_l, Z) of sign conditions that are partitioned into at
least 2 (respectively 3) distinct subsets by sign conditions on
P,. Extract from M(’Pfffl(z)) the corresponding columns to
gel M(P, Sign(Piy,
Z") (respectively M(’Pfffl(z), Sign(P;_1,72"))) (see (3.7) and
(3.8)). Determine the set A; 1(Z') C A; 1(Z) (respectively
A, 1(Z") € A;i1(Z2)) indexing the first independent r;_q,
(resp 1i_1.2) rows ofM(’PZAffl(Z), Sign(P;_1,2")) (respectively
M(PAT) Sign(P,_y, 2"))). Take

()

AZ(Z) = Az—l(Z) X 07Ai_1(ZI) X ]_7Ai_1(Z”> X 2.
Output Sign(P, Z) = Sign(Ps, 7).

Remark 3.2.12 We denote by B(Sign(P, Z)) C {0,1,2}” the set con-
structed inductively as follows:

B(Slgﬂ(Pl, Z)) = {0, ]_7 2}1
B(Sign(PiH, Z)) = B(Slgﬂ(PZ7 Z)) U {0, ].7 2}i+1 U AZ(Z> X Bi7
denoting by {0, 1,2}; the subset of {0, 1,2}” with three elements defined

by
a € {0,1,2}; if and only if a(j) =0 Vj # 1,

and identifying a € {0, 1,2} with o/ € {0,1,2}” such that
d(Py) =a(P)),j <i,d(P)=0,j>1,

and using the notation of the algorithm. It is clear that B(Sign(P, Z))
is nothing but the list of elements o € {0, 1,2}” such that the Sturm-
query of P* has been computed in the algorithm. Using Remark 3.2.10,

it is clear that B(Sign(P, 7)) can be determined from Sign(P, 7).

Before discussing the correctness and complexity of the Sign Deter-
mination Algorithm, we first give an example.
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Example 3.2.13 Consider

Q= (X?-1)(X*-9),Z = %(P,R)
P1:X7P2:X+1,P3:X—27

7 = 7(P,Q). The call to the Sturm-query black box with input 1
determines SQ(1,7) = 3. So P has 3 real roots (which is not a real
surprise).

The call to the Sturm-query black box with inputs P, and P? de-
termines SQ(P, Z) = 1 and SQ(P?, Z) = 3. Thus

11 1 (P, =0,2) 3
01 —1|.|eP>0,2)|=1]1],
01 1 o(P, <0,7) 3

which means, after solving the system, that P has

2 roots with P, > 0 .
1 root with P, <0

Hence ¢(P, = 0,Z) = 0. So we have Sign(P,Z) = 1,—1 and A, =
By = 0,1. The matrix M (P;", Sign(P;, Z)) of signs of P! = 1, P, on
L1 1 1
s | |
We now consider Py = Py, Ps.
The call to the Sturm-query black box with inputs P, and P2 de-
termines SQ(Py, Z) = 1,SQ(R,?, Z) = 3. Hence,

L] Jnsea [
N

{ 0 root with P, =0

which means, after solving the system, that P has

2 roots with P, > 0 .
1 root with P, <0

Hence ¢(P, = 0,Z) = 0. So we have Sign(P,, Z) = 1,—1 and B, =0, 1.
The matrix M, of signs of ~{1D2}0’1 =1,Ponl —1is [1 1 }

{ 0 root with P, =0

1 -1
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The call to the Sturm-query black box with input P, P, determines
SQ(P, P, P,), which is equal to 3. Hence we have

1 1 1
-1 1 -1
1 -1 =11’
-1 -1 1

M, = M('PlAl, Sign(Py, 7)) @ My =

— = = =

1 1 1] [e(PL>0AP,>0,Z
“1 1 —1||e(PL>0AP,<0,Z
1 -1 —1||c(PL<0AP,>0,7
1 -1 -1 1| |(Pi<0AP<0,Z

—_ = =
|
Lo — = W

)
=
)
)

Solving the system we find that P has

roots with P, > 0 and /% > 0
roots with P, > 0 and /% < 0
roots with P, <0 and P >0 °
root with P, < 0 and P, <0

_ o O o

Hence ¢(Py > 0N P, < 0,Z) =c(PL <O0A P, >0,Z) =0. So we have
Sign(Pq, Z) = (1,1), (=1, —1). There is no sign condition on P; which is
partitioned by sign conditions on Pe, so Ay = (0,0), (1,0). The matrix
M (P42, Sign(Ps, Z)) of signs of PO =1, P on (1,1), (-1, —1) is

1 1
b4
Finally we consider P = P, P, P;.
The call to the Sturm-query black box with inputs P; and P§ de-
termines SQ(Ps, Z) = —1,SQ(P5%,Z) = 3. Hence c¢(P; = 0,Z) = 0.
So,

11 1 o(Py =0, 7) 3
01 —1|.|e(Ps>0,2)|=]-1],
01 1 ¢(Py < 0,7) 3

which means, after solving the system, that P has

1 root with P; >0

{ 0 root with P3 =10
2 roots with P3 < 0
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So we have Sign(Ps, 7) = {1, —1}, B3 = {0,1}. The matrix Mj; of signs

of {P}* =1, Pyon1,—1is } _11 .
The call to the Sturm-query black box with input P, P; determines
SQ(P1P37
Z) which is equal to 1. Hence we have
1 1 1 1
. 1 -1 1 -1
Mé = M('P;Q, Slgn(P27 Z)) ® M = 1 1 -1 -1
1 -1 -1 1
1 1 1 1 C(P1>O,P2>O,P3>O,Z) 3
1 -1 1 -1 C(P1>07P2>07P3<0,Z) . 1
1 1 -1 -1 C(P1<07P2<07P3>0,Z) -1
1 -1 -1 1 C(P1<07P2<07P3<0,Z) 1

Solving the system, we find that P has

root with 2 > 0 and /% > 0 and I3 > 0
root with 2 > 0 and /% > 0 and I3 <0
root with P, < 0and P, <0 and P; >0 °
root with P, < 0and P <0 and P53 <0

—_ O =

So we have Sign(P) = {(1,1,1),(1,1,—1),(—1,—1,—1)}. There is
only one sign condition which is partitioned into exactly two sign con-
ditions by sign conditions on Ps, thus A = {(0,0,0),(1,0,0),(0,0,1)}.

Proof of correctness of Algorithm 3.2.11: It follows from Corol-
lary 3.2.6 and from Proposition 3.2.9. O

In order to study the complexity of the Algorithm 3.2.11 (Sign De-
termination) we need the following proposition.

Proposition 3.2.14 Let Z be a finite subset of R andr = #(Z). Con-
sider As(Z) € {0,1,2}7 computed by Algorithm 3.2.11 (Sign Determi-
nation). For every a € Ay(Z), the number #£({P € P | a(P) # 0}) is
at most logy(r).
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We need the following definition. TLet o and /S be elements of
{0,1,2}7. We say that 3 precedes « if for every P € P, 3(P) # 0
implies 5(P) = a(P). Note that if g precedes «, then f <jex .

Proof of Proposition 3.2.14 : Let « be such that #({P € P | «(P) #
0}) = k. Since the number of elements 3 of {0,1,2}” preceding « is
2% and the total number of polynomials in A, is at most r, we have
2F <'r and k < logy(r). So, the proposition follows immediately from
the next lemma. O

Lemma 3.2.15 If 3 precedes o and o € A4(7) then 3 € As(7)

Proof: We prove by induction on i that, for every finite set 7, if 3 ¢
Ai(Z) then o ¢ A;(Z). The claim is obvious for i = 1. If o« € {0, 1,2}
we denote by o' the element of {0,1,2}7~! such that o/(P;) = a(FP)),
J < 1. Note that, by definition of A4;(Z), if o/ ¢ A;_1(Z), o ¢ A;(Z).

Suppose that § precedes o and that 5 ¢ A;(7). There are several
cases to consider:

If a(P;) =0, then S(FP;) =0 and 8’ ¢ A;_1(Z) by definition of A;. By
the induction hypothesis, o' ¢ A;,_1(Z) and @ = o/ x 0 ¢ A;(Z)
by the definition of A;(Z).

If a(P;) = 1 (respectively 2), and S(F;) = 0, thus o/ ¢ A,_1(Z) by
induction hypothesis, and o ¢ A;(7).

If a(P;) =1 (respectively 2), and B(P;) = «(P;), then ' ¢ A, 1(Z')
(respectively A; 1(Z")). Thus, the row of signs of 735’1 on Sign(P;_1, Z);
(respectively Sign(P;_1, Z)s) is a linear combination of rows of
signs of P | on Sign(P;_1, Z); (respectively Sign(P;_y, Z)s), with
A <jex A in the lexicographical order. Denoting by « the element
in {0,1,2}71 such that P* P}, = P¥,, the row of signs of
P, on Sign(P;_1, Z); (respectively Sign(P;_;,Z),) is a linear

combination of rows of signs of PP, on Sign(P; 1, Z); (re-

spectively Sign(P;_1, Z)2). Defining X' by N(P;) = AM(P;) + v(F;)

modulo 2, the row of signs of P ;P ; on Sign(P;_y, Z); (respec-

tively Sign(P;_1, Z)s) coincides with the row of signs of P, on

Sign(P;_1, Z)1 (respectively Sign(P;_1, Z)2). Since it is clear that

A <jex ¢ in the lexicographical order, o/ ¢ A; 1(Z') (respectively

A, 1(Z")). Thus o ¢ A(Z).



144 CHAPTER 3. COMPLEMENTS

O

Complexity analysis: There are s steps in Algorithm 3.2.11 (Sign
Determination). In each step, the number of calls to the Sturm-query
black box is bounded by 2r. Indeed, in Step 7, there are at most 3r;
Sturm-queries to compute and 7;_; of these Sturm-queries have been
determined in Step ¢ — 1. So, in Step 4, there are at most 2r;,_; Sturm-
queries to determine. The total number of calls to the to the Sturm-
query black box is bounded by 1 4 2sr. The calls to the Sturm-query
black box are done for polynomials which are product of at most log,(r)
products of polynomials of the form P or P?, P € P by Proposition
3.2.14. a

Note that we did not count the complexity of performing the lin-
ear algebra involved in the algorithm. This is because when we con-
sider particular ways of realization the Sturm-query black box later, we
bound only the number of arithmetic operations in the ring. Since the
complexity of linear algebra is polynomial in the size of the matrix, the
maximum size of the matrices is 3r, and their entries are 0,1 or —1,
taking into account the linear algebra part of the algorithm would not
change the linearity in s and the polynomial time in r character of the
algorithm.

We can now describe in a more specific way how the Sturm-query
black box can be implemented in the univariate case.

Algorithm 3.2.16 (Univariate Sign Determination) Structure:
an ordered integral domain D, contained in a real closed field R.

Input: a non-zero univariate polynomial (Q and a list P of univariate
polynomials with coefficients in D. The degree of Q) is bounded by
p, its number of real roots is bounded by r. The degree of P € P
s bounded by q and the number of polynomials in P is bounded

by s. Let Z =7(Q,R).

Output: the list of sign conditions realized by P on Z, Sign(P, Z), and
a list A of elements in {0,1,2}7 adapted to sign determination
for P on Z.
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Procedure: Perform Algorithm 3.2.11 (Sign Determination), using
as Sturm-query black box Algorithm 1.4.48 (Univariate Sturm-

query).

Complexity analysis: According to the complexity of Algorithm 3.2.11
(Sign Determination), the number of calls to the Sturm-query black box
is bounded by 1+ 2sp, since r < p. The calls to the Sturm-query black
box are done for P and polynomials of degree at most glog,(p). The
complexity is thus O(sp?(p + glog,(p))), using the complexity of Algo-
rithm 1.4.48 (Univariate Sturm-query). O

The basic idea of the sign determination algorithm appears in [2].
The algorithm presented here appears in [7].
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