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Abstract. Let X ⊂ C
n be a smooth affine variety of dimension n − r and let f =

(f1, ..., fm) : X → C
m be a polynomial dominant mapping. We prove that the set K(f)

of generalized critical values of f (which always contains the bifurcation set B(f) of f)
is a proper algebraic subset of C

m. We give an explicit upper bound for the degree of
a hypersurface containing K(f). If I(X) -the ideal of X is generated by polynomials of
degree at most D and deg fi ≤ d, then K(f) is contained in an algebraic hypersurface of
degree at most (d+(m−1)(d−1)+(D−1)r)n−rDr. In particular if X is a hypersurface of
degree D and f : X → C is a polynomial of degree d, then f has at most (d+D−1)n−1D

generalized critical values. This bound is asymptotically optimal for f linear. We give
an algorithm to compute the set K(f) effectively. Moreover, we obtain similar results in
the real case.

1. Introduction.

There is a quite abundant literature about singularities at infinity of polynomials f :
C

n → C. This subject was initiated by R. Thom who proved, some 30 years ago, that
there is a finite set B ∈ C such that f is a locally trivial fibration over the complement of
B. The smallest such a set, denoted by B(f), is called the set of atypical values of f . An
effective (asymptotically sharp) bound for the number of points in B(f) was given only
recently by the authors [10]. In the paper we propose a study of a much more general
situation.

Let X be a smooth affine variety over k = R or C, of dimension n−r, and let f : X → km

be a polynomial dominant mapping. In seventies Wallace [18], Varchenko [16] and Verdier
[17] proved, that there exists a proper algebraic (or semi-algebraic in the real case) set
B ⊂ km such that

f : X \ f−1(B) → km \ B
is a locally trivial C∞ fibration. We call the smallest such B the bifurcation set of f and
we denote it by B(f). In the natural way appears a question how to describe this set.

Since f may be nonproper, in general the set B(f) is larger than K0(f) - the set of
critical values of f . It contains also the set B∞(f) of bifurcations points at infinity. Briefly
speaking the set B∞(f) consists of points at which f is not a locally trivial fibration at
infinity (i.e., outside a compact set). The main difficulty is to understand the set B∞(f).
Usual way is to apply stratification theory to the projective closure of the graph of f .
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However by this method it is very difficult to give an explicit equation for B∞(f) or even
for a hypersurface which contains B∞(f).

We follow another approach which in fact goes back to Ehresemann, Palais and Mal-
grange and was developed by P. Rabier [15]. To control the set B∞(f) we use the set of
asymptotic critical values at infinity of f [15]:

K∞(f) = {y ∈ km : ∃xl∈X, |xl|→∞ s.t. f(xl) → y and |xl|ν(dxl
f) → 0},

where ν stands for the distance of dxl
f to the space of degenerate linear maps on the

tangent space to X at xl. We explain in the next section different ways to compute ν.

We say that K(f) = K0(f) ∪ K∞(f) is the set of generalized critical values of f . It
follows from a general result of P. Rabier [15] (see also [9]) that B∞(f) ⊂ K∞(f). Hence
B(f) ⊂ K(f) which means that f is a locally trivial fibration over the complement of
K(f).

In section 3 we prove that K(f) is a semi-algebraic subset of km of measure 0. This
generalizes the result from [12], where the case of polynomial mappings from C

n to C
m

was studied.

In section 4 we prove that in the complex case K(f) is actually a proper algebraic subset
of C

m. In fact we give an explicit description of K(f) which allows us to estimate from
above the degree of a hypersurface containing K(f).

More precisely let X ⊂ C
n be a smooth affine variety of dimension n − r. Let f =

(f1, ..., fm) : X → C
m be a polynomial dominant mapping. Assume that I(X) - the ideal

of X is generated by polynomials of degree at most D and deg fi ≤ d.

Our main result Theorem 4.1 claims that K(f) is contained in an algebraic hypersurface
of degree at most (d+ (m− 1)(d− 1) + (D− 1)r)n−r(degX) ≤ (d+ (m− 1)(d− 1) + (D−
1)r)n−rDr. In particular if X is a hypersurface of degree D and f : X → C is a polynomial
of degree d, then f has at most (d+D− 1)n−1D generalized critical values. Hence in this
case we have that all fibers of f are smooth and diffeomorphic one to each other, with at
most (d+D−1)n−1D exceptions. This generalizes (and slightly improves) the result from
[7], where the case of polynomial mappings from C

n to C
m was studied.

In a particular interesting case of linear mapping (projections on line) this gives a bound
Dn for the number of generalized critical values hence for the number of atypical values.
We give an example which shows this bound is asymptotically optimal. Moreover, we
obtain similar results in the real case.

In section 5 we give an algorithm to compute the set K(f) effectively. All necessary
results from linear algebra are given in section 2 . In particular we explain geometrically
and analytically how to compute ν - the distance to singular operators, moreover we give
several equivalent expressions for ν.

We based here on ideas from [7] and [12].

Acknowledgements. The first author would like to thank the Instiute of Mathematics
of Université de Savoie and the Max-Planck-Institut für Mathematik in Bonn for warm
hospitality, while this work was carried out.

2. Preliminaries.

Let k = R or k = C. Let X ∼= kn, Y ∼= km be finite dimensional vector spaces (over k).
We consider those space equipped with the canonical scalar (hermitian) products. Let us
denote by L(X,Y ) the set of linear mappings from X to Y and by Σ = Σ(X,Y ) ⊂ L(X,Y )



GENERALIZED BERTINI-SARD THEOREM 3

the set of non-surjective mappings. In this section we give several different expressions for
a distance of an A ∈ L(X,Y ) to the space Σ of singular operators. Let us recall the first
following ([15]):

Definition 2.1. Let A ∈ L(X,Y ). Set

ν(A) = inf ||φ||=1||A∗(φ)||,
where A∗ : L(Y ∗, X∗) is adjoint operator and φ ∈ Y ∗.

Remark 2.1. Recall (cf. [15]) that if A ∈ GL(X,Y ), then ν(A) = ||A−1||−1.

Moreover in [12] we have a following useful characterizations of ν(A):

Proposition 2.1. Let A ∈ L(X,Y ). Denote BX(0, 1) = {x ∈ X; |x| ≤ 1} and BY (0, r) =
{y ∈ Y ; |y| ≤ r}. Then

a) ν(A) = sup{r > 0 : BY (0, r) ⊂ A(BX(0, 1))}.

b) ν(A) = dist(A,Σ) = infB∈Σ||A−B||.

Let α, β : L(X,Y ) → R+ be two non-negative functions. We shall say that α and β are
equivalent (we write α ∼ β) if there are constants c, d > 0 such that

cα(A) ≤ β(A) ≤ dα(A)

for any A ∈ L(X,Y ). We shall give below several functions equivalent to ν. Let A =
(A1, ..., Am) ∈ L(X,Y ) and let Ai = grad Ai. Denote by < (Aj)j 6=i > the linear space

generated by vectors (Aj), j 6= i. Let

κ(A) = min1≤i≤mdist(Ai, < (Aj)j 6=i >),

be the Kuo number of A.

Proposition 2.2 ([12]). The Kuo function κ is equivalent to ν of Rabier. More precisely

ν(A) ≤ κ(A) ≤ √
mν(A).

Definition 2.2. Let A ∈ L(X,Y ) and let H ⊂ X be a linear subspace. We set

ν(A,H) = ν(A|H), κ(A,H) = κ(A|H),

where A|H denotes the restriction of A to H.

From Proposition 2.2 we get immediately:

Corollary 2.1. We have ν(A,H) ∼ κ(A,H).

In fact we have also an explicit expression for κ(A,H):

Proposition 2.3. Let A = (A1, ..., Am) ∈ L(X,Y ) and let H ⊂ X be a linear subspace.
Assume that H is given by a system of linear equations Bj = 0, j = 1, ..., r. Then

κ(A,H) = min1≤i≤mdist(Ai, < (Aj)j 6=i; (Bj)j=1,...,r >),

where Ai = grad Ai and Bj = grad Bj .

Proof. The space B =< Bj)j=1,...,r > is the orthogonal supplement to H. Hence every

vector Ai can be written as ai + bi, where ai ∈ H, bi ∈ B. Thus dist(Ai, < (Aj)j 6=i;B) =
dist(ai, < (aj)j 6=i >) and since grad(Ai|H) = ai the proof is finished. �

Finally we introduce we function g′ which will be useful in the explicit description of
the set of generalized critical values:
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Definition 2.3. Let A ∈ L(kn, km), where n ≥ m + r, and let H ⊂ kn be a linear
subspace given by a system of independent linear equation Bl =

∑
blkxk, l = 1, ..., r. By

abuse of notation we denote by A the matrix (in the canonical bases in kn and km) of
the mapping A. Let C = be a (m + r) × n matrix given by rows A1, ..., Am;B1, ..., Br

(we identify Ai =
∑
aikxk with the vector (aj1, ..., ajn), similarly for Bl). Let MI , where

I = (i1, ..., im+r), denote a ((m+ r)× (m+ r)) minor of C given by columns indexed by I.
Let MJ(j) denote a (m+ r − 1)× (m+ r − 1) minor given by columns indexed by J and
by deleting the jth row , where 1 ≤ j ≤ m. Note that we delete only Aj rows ! We set

g′(A,H) = maxI{min{J⊂I, 1≤j≤m}
|MI |
|MJ(j)| },

(where we consider only numbers with MJ(j) 6= 0, if all numbers MJ(j) are zero, we put
g′(A) = 0).

In particular we get the following:

Proposition 2.4. We have g′(A,H) ∼ ν(A,H).

We begin with

Lemma 2.1. Let H be a linear subspace of kn, dimH = p, then there exists a coordinate
linear subspace E, dimE = p, such that

ν(π|H) ≥
(
n

p

)−1/2

,

where π|H is the orthogonal projection on E restricted to H.

Proof. Recall that the canonical scalar (Hermitian) product on kn induces a scalar (Her-
mitian) product on

∧p kn, see eg. [4]. If x = x1 ∧ · · · ∧ xp, and y = y1 ∧ · · · ∧ yp, then we
put

(x|y) = det(xi|yj)i,j=1,... ,n.

Let e1, . . . , , en be the canonical basis of kn and let I = (i1, . . . , ip) be an multindex
such that 1 ≤ i1 < . . . < ip ≤ n. Denote eI = ei1 ∧ . . . ∧ eip , then all eI form an
orthonormal basis of

∧p kn. Let us choose some orthonormal basis f1, . . . , , fp of H and
put f = f1 ∧ · · · ∧ fp. Clearly f =

∑
aIeI , but ‖f‖ = 1, so

1 =
∑

I

|aI |2.

We have
(n

p

)
positive summands, hence there is at least one I0 such that |aI0 | ≥

(n
p

)−1/2
.

We take as E the vector space generated by ei, i ∈ I0. Note that the Jacobian of the
orthogonal projection (π|H) of H on E is exactly aI0 . Let B be the unit ball in H, its
image is an ellipsoid with semi-axes 0 < b1 ≤ b2 · · · ≤ bp ≤ 1. By the classical change of
variables formula we see that the volume of π(B) equals |aI0 | times volume of B. Hence

b1b2 . . . bp = |aI0 |,
and consequently b1 ≥ |aI0 |. It is an immediate consequence of Proposition 2.1 that b1 =
ν(π|H). Hence the lemma follows. �

Suppose that ν(A,H) > 0. Let us fix I = (i1, ..., im+r) and assume that MJ(j) 6= 0 for
all {J ⊂ I, 1 ≤ j ≤ m}. Note that by Lemma 2.1 such a I exists. Let E be the subspace
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generated by ei, i ∈ I and π the orthogonal projection on E. By Lemma 2.1 we may

assume that ν(π|H) ≥ δ, where δ =
( n
m+r

)−1/2
. Let g = ν(π|H)−1, note that

‖g‖ν(A|H ) ≥ ν((A|H) ◦ g) ≥ ν(A|H) ν(g)

and recall that ν(π|H) = ‖g‖−1. So it is enough to study (A|H) ◦ g i.e the matrix obtained
from A by deleting columns which are not in I. Thus we may assume that n = m + r.
By Remark 2.1, ν(A,H) = ‖h‖−1, where h = (A|H∩ker⊥)−1. Again by Lemma 2.1 we
may consider the composition of h with the orthogonal projection on some coordinate
m-plane, say generated by first m coordinates. Recall that the mapping C : kn → km+r

is invertible. By the formula for the inverse matrix (or directly by Cramer’s rule) we can
see that there are constants α, β > 0 such that

α‖h‖−1 ≤ (max{J⊂I, 1≤j≤m}
|MJ(i)|
|MI |

) ≤ β‖h‖−1

which proves Proposition 2.4.

We end this section by giving another equivalent expression for ν (which will be useful
in the proof of Theorem 4.1).

Definition 2.4. Let us take notation as in Definition 2.3. Put

q(A,H) =
maxI |MI |

maxI,J⊂I,j|MJ(j)| ,

(where we consider only numbers with MJ(j) 6= 0, if all numbers MJ(j) are zero, we put
q(A) = 0).

We have the following:

Proposition 2.5. The function q(A,H) is equivalent to ν(A,H).

We leave the proof as an exercise (for details of the proof see [9], Corollary 2.2):

3. Rabier’s Fibration Theorem and Sard Theorem for K(f)

Definition 3.1. Let k = C or k = R and let X be a smooth affine variety over k. Let
f : X → km be a k−smooth mapping. Recall that we define the set of generalized critical
values as:

K∞(f) = {y ∈ km : ∃xl∈X, |xl|→∞ s.t. f(xl) → y and |xl|νdf(xl)) → 0}.
Remark 3.1. Note, that by virtue of results of section 2 we can replace the function ν
by arbitrary function among κ, g, g′.

We have also an easy but important observation:

Remark 3.2. Recall that we define by K0(f) the set of critical values of f . Let k = C

or k = R and let X be a smooth affine variety over k. Let f : X → km be a k−smooth
mapping. Then the set K(f) = K0(f) ∪K∞(f) is closed.

Now we state the basic theorem which follows from the main result of Rabier [15]:

Theorem 3.1. Let k = C or k = R and let X be a smooth affine variety over k of
dimension n− r ≥ m. Let f : X → km be a k−smooth mapping. Then

f : X \ f−1(K(f)) → km \K(f)

is a locally trivial fibration.
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Recall that a value y of the map f is called typical if f is a C∞ fibration over a
neighborhood of y and atypical otherwise. Note that a typical value is not necessarily a
value of f ! The set B(f) is called the bifurcation set of f . Rabier’s theorem [15] states
that

B(f) ⊂ K(f) = K0(f) ∪K∞(f).

A short, direct proof of the finite dimensional case of the Rabier Theorem (which is this
what we actually need) is contained also in Jelonek note [9].

It is crucial to know that the set K(f) is small, in particular that this set is nowhere
dense. In [12] it was proven that for a polynomial mapping f : kn → km the set K(f)
is semialgebraic of dimension less than m in the case k = R, and algebraic of complex
dimension less than m in the case k = C. We give below a proof of this fact in the case
of mapping f : X → km, where X is smooth algebraic. We follow the idea from [12]
simplifying it at some points.

Before we state the main result of this section we need some additional results. We
need the fact, due to K. Kurdyka ([11]), that any semialgebraic set A ⊂ R

n is a finite
union A = ∪iL

i, where each Li has the Whitney property with constant M : any two
points x, y ∈ Li can be joined in Li by a piecewise smooth arc of length ≤ M |x− y|.
What we need actually is a uniform version of the above decomposition, for families
parameterized by finite dimensional spaces : if B ⊂ R

n × R
p and t ∈ R

p, we write
Bt = {x ∈ R

n : (x, t) ∈ B}. Then from the method of [11], we obtain the following
theorem

Theorem 3.2. There exists M = M(n) > 0 such that any semialgebraic set A ⊂ R
n×R

p

can be decomposed into a finite (and disjoint) union A = ∪i∈IL
i, such that for each t ∈ R

p,
every set Li

t has the Whitney property with constant M . So, in particular At = ∪i∈IL
i
t for

each t ∈ R
p. (Clearly, for a fixed t ∈ R

p some of Li
t may be empty.)

Further we shall use the following version of the curve selection lemma for semialgebraic
sets (it can be easily obtained using a semialgebraic compactification of R

n and the classical
curve selection lemma, see [2], [1]).

Lemma 3.1. [Curve selection at infinity] Let A ⊂ R
n and let φ : A→ R

q be a semialge-
braic map. Assume that there exists a sequence xl ∈ A such that |xl| → ∞ and φ(xl) → y,
for some y ∈ R

q. Then there exists a semialgebraic arc γ : [α, β) → R
n such that γ(t) ∈ A,

lim
t→β

|γ(t)| = +∞ and lim
t→β

φ(γ(t)) = y.

Now consider such a semialgebraic arc γ : (α, β) → R
n. Since |γ ′(t)| > 0 for t close

to β, we may reparametrize γ in such a way that β = +∞ and |γ(r)| = r. Under this
assumption we have:

Lemma 3.2. lim
r→∞

|γ′(r)| = 1; in particular, γ ′(r) is bounded for r > 0 large enough.

Proof. Since γ is semialgebraic, lim
r→∞

γ(r)

|γ(r)| and lim
r→∞

γ′(r)

|γ′(r)| exist. Hence, it is easily seen

that these limits are equal. In other words cosα(r) → 1, as r →∞, where α(r) is the angle

between
γ(r)

|γ(r)| =
γ(r)

|r| and
γ′(r)

|γ′(r)| . Differentiation of |γ(r)|2 = r2 yields |γ ′(r)| =
1

cosα(r)
.

This implies the lemma. �

In order to prove our Sard theorem, we also shall use the fact that for a fixed mapping
f , the convergence of ν(df(xl)) in the definition of K∞(f) is actually faster than |xl|−1.
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To make this precise, for a differentiable function f : R
n → R

m and any N ∈ N
∗ we define

KN
∞(f) = {y ∈ R

k : ∃xl ∈ R
n, |xl| → ∞ s.t. f(xl) → y and |xl|1+

1

N ν(df(xl)) → 0}.
We have

Lemma 3.3. Let f : X → R
m be a differentiable semialgebraic function. Then

K∞(f) =
∞⋃

N=1

KN
∞(f).

Proof. Let y ∈ K∞(f). By Lemma 3.1 there is a semialgebraic arc γ : [α, β) → X, such
that lim

t→β
|γ(t)| = +∞, lim

t→β
|γ(t)|ν(df(γ(t)) = 0 and lim

t→β
φ(γ(t)) = y. Let us consider

semialgebraic functions A(t) = |γ(t)|ν(df(γ(t)) and B(t) = 1/|γ(t)| defined on [α, β]. We
can assume that zeros(B) = zeros(A) = {β}, hence by the  Lojasiewicz inequality (see

[1], 2.3.11, p. 63), there is a constant c > 0 and the integer n > 0 such that A ≤ cB 1/n.

Consequently, for N > n we have lim
t→β

|γ(t)|1+1/Nν(df(γ(t)) = 0. Thus y ∈ KN
∞(f). �

The aim of this section is to prove the following:

Theorem 3.3. Let X ⊂ kn be an affine variety of dimension n − r. Let f : X → km be
a polynomial map. Then K(f) is a closed semialgebraic set of a Lebesgue measure 0. In
particular it is of dimension less than m.

Proof. We can assume that k = R. Clearly K∞(f) is a semialgebraic subset of R
m. By

Lemma 3.3 and basic properties of the Lebesgue measure it is enough to prove that KN
∞(f)

is of measure 0 for any integer N > 0.

Let I(X) denote the ideal of functions vanishing on X, assume that I(X) is generated
by polynomials b1, . . . , bw. Since the variety X can be covered by at most p =

(w
r

)
Zariski-

open subsets in which it is a complete intersection, we can assume that X is a complete
intersection, that is w = r. So in particular, if x ∈ X, then TxX =

⋂r
j=1{dxbj = 0}. Let

us write f = (f1, . . . , fm) for components of f , where fi : R
n → R is a polynomial.

By Proposition 2.2, we may replace the distance ν of Rabier by the distance κ(dxf, TxX)
of Kuo. For each i ∈ {1, . . . ,m}, we define

Di = {x ∈ X : κ(df(x), TX ) = dist(∇fi(x), Vi(x))}
where Vi(x) is the vector space generated by ∇fj(x), j = 1, . . . ,m j 6= i and by ∇bj(x), j =
1, . . . , r. Clearly each Di is semialgebraic in R

n and X =
⋃m

i=1Di, so

K∞(f) =
m⋃

i=1

K∞(f|Di
)

where

K∞(f|Di
) = {y ∈ R

m : ∃xl ∈ Di, |xl|1+1/N →∞, f(xl) → y and |xl|ν(df(xl)) → 0}.

We shall prove the following

Lemma 3.4. volm(K∞(f|Di
)) = 0 for each i ∈ {1, . . . , k}. In particular dimK∞(f) < m.

Proof. We will give the proof for i = 1, we write D = D1, f = (f2, . . . , fm).
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Let us fix B an open ball in R
m−1 and (α, β) an open bounded interval in R. The

lemma is clearly a consequence of

(3.1) volm(K∞(f|D) ∩ (α, β) ×B) = 0.

In order to prove equality 3.1, we construct a family of sets ∆r such that

∆r ⊃ K∞(f|D) ∩ (α, β) ×B and volm(∆r) → 0 as r →∞.

We first define

Σ̃r = {x ∈ D : |x| ≥ r, f1(x) ∈ (α, β), f (x) ∈ B and |x|1+ 1

N κ(df(x)) ≤ 1}
where r > 0, and put

∆r = f(Σ̃r) and finally ∆ =
⋂

r>0

∆r.

Every ∆r is semialgebraic, hence we have volm(∆r) = volm(∆r) and consequently

volm(∆) = lim
r→∞

volm(∆r)

since the family (∆r)r>0 is decreasing with respect to r→∞.

It is clear that

K∞(f|D) ∩ (α, β) ×B ⊂ ∆,

so it is enough to prove that volm(∆) = 0. First, using Fubini’s theorem we write

volm(∆r) =

∫

B
µr(b)db

where db stands for the Lebesgue measure on R
m−1, and

µr(b) = vol1({y1 ∈ R : (y1, b) ∈ ∆r}).

Clearly, each µr is measurable. Moreover, for fixed b ∈ B, the function r 7→ µr(b) ≥ 0
is decreasing. Let

µ(b) = lim
r→∞

µr(b).

By Lebesgue’s theorem on bounded convergence, we obtain

volm(∆) =

∫

B
µ(b)db.

Now the final point in the proof of equality (3.1) is the fact that m ≡ 0, which follows
from the next lemma. �

Lemma 3.5. There exists a constant c > 0 such that, for r large enough

µr(b) ≤ cr−
1

N .

Proof. To prove Lemma 3.5, we introduce the semialgebraic family

Σr,b = Σ̃r ∩ f−1
(b) ∩ S(r),

where b ∈ B, r > 0, and next we write

Σ̃r,b = Σ̃r ∩ f−1
(b) =

⋃

s≥r

Σs,b.

Note that

µr(b) = vol1(f1(Σ̃r,b)).
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It follows from Theorem 3.2 that there exists a finite family Li ⊂ X × R× R
m−1, i ∈ I of

semialgebraic sets such that

Σr,b =
⋃

i∈I

Li
r,b.

Each Li
r,b has the Whitney property with constant M (some of Li

r,b may be empty).

Recall that the condition |x|1+ 1

N κ(df(x)) ≤ 1 for x ∈ f−1
(b) = Wb means that

(3.2) |∇f1|Wb
(x)| ≤ |x|−(1+ 1

N
)

Hence, by the mean value theorem f1(Li
r,b) is a segment of length d(r) where

(3.3) d(r) ≤ 2Mr sup
Li

r,b

|∇f1|Wb
| ≤ 2Mr−

1

N .

Fix b ∈ B, i ∈ I and assume that Li
r,b 6= ∅ for any r large enough. Applying the curve

selection lemma at infinity, we obtain a semialgebraic arc γ : [r,+∞) → R
n such that

γ(ζ) ∈ Li
ζ,b. In particular, γ(ζ) ∈ f−1

(b) = Wb and |γ(ζ)| = ζ.

By Lemma 3.2, we may suppose that |γ ′(ζ)| ≤ 2. So we can easily compute length of
f1 ◦ γ([r,+∞)); namely, by (3.2) we have

(3.4)

∫ +∞

r
|(f1 ◦ γ)′(ζ)|dζ ≤ 2

∫ +∞

r
ζ−(1+ 1

N
)dζ = 2Nr−

1

N .

Thus, by (3.3) and (3.4), f1(
⋃

ζ≥r L
i
ζ,b) is contained in a segment of length

(4M + 2N)r−
1

N .

Therefore f1(Σ̃r,b) is contained in #I segments of this length. Put c = (#I)(4M + 2N);
we have

µr(b) ≤ cr−
1

N

and Lemma 3.5 follows. �

Finally from Lemma 3.4 and the usual semialgebraic Sard’s theorem (see [1]) it follows
that dimK(f) < m. �

4. Estimation of the degree

In the proof of our next theorem we need following technical lemmas.

Lemma 4.1. Let A be algebraic subsets of C
N , dimA = n. Let L,M be linear subspaces

of C
N , and L ⊂ M. Let dimM = n + 1. Assume that L 6⊂ A. Then there exists a linear

projection p : C
N →M, such that p restricted to A is finite and L 6⊂ p(A).

Proof. Take a point a ∈ L \ A. Let Λ be the Zariski closure of the cone
⋃
ax, x ∈ A. It

is easy to see that dim Λ ≤ n + 1. Let H∞ be the hyperplane at infinity of C× C
N . For

any Z ⊂ C× C
N denote by Z̃ the projective closure of Z. Observe that

dimH∞ ∩ (Λ̃ ∪ Γ̃ ∩ M̃) ≤ n.

Thus, there is a projective subspace Q ⊂ H∞ of dimension N − n − 2, which is disjoint
with (Λ̃ ∪ Ã ∩ M̃). Denote by pQ : P

N \ Q → M̃ the linear projection determined by the
subspace Q.

Now, let p : A → M be the restriction of pQ to A. It is easily seen that p has desired
properties, i.e., p : A→M is a finite mapping and a 6∈ L ∩ p(A). �
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Lemma 4.2. Let F = (f1, ..., fn, fn+1) : X− → C
n+1 be a rational mapping. Assume

that Γ := cl(F (Cn)) is a hypersurface. Let fi = Pi/G, where deg Pi = di and deg G = d0.
Take d = max0≤i≤n+1{di}. Then

deg Γ ≤ dndegX/µ(F ),

where µ(F ) = (C(X) : C(f1, ..., fn+1)).

Proof. We can estimate the degree of Γ using the Bezout Theorem. Indeed, the number
(deg Γ)µ(F ) is estimated by the number of solution of a generic system of equations:

n+1∑

j=1

aijfj(x) = ci, i = 1, ..., n, x ∈ X.

This system is equivalent to the system

n+1∑

j=1

aijPj(x) = ciG(x), i = 1, ..., n, x ∈ X,

and by the Bezout Theorem we have µ(F ) deg Γ ≤ dndegX. �

Theorem 4.1. Let X ⊂ C
n be a smooth affine variety of dimension n− r ≥ m. Assume

that I(X) = {b1, ..., bw}, where deg bi ≤ D. Let f = (f1, ..., fm) : X → C
m be a polynomial

dominant mapping and let deg fi ≤ d. Then the set K(f) is a proper algebraic subset of
C

m and it is contained in a hypersurface of degree at most

(d+ (m− 1)(d− 1) + (D − 1)r)n−rdeg X ≤ (d+ (m− 1)(d− 1) + (D − 1)r)n−rDr.

Proof. Since X is smooth it means that there exists an open dense subset U ⊂ X, on
which X is a complete intersection. As it will follows from the rest of the proof, we can
assume, without loss of generality that X = U, i.e., that X is a complete intersection.

Let us recall notation of Definition 2.3. For x ∈ C let A = dxf , and Bl = dxbl,
l = 1, . . . , r. Let A ∈ L(kn, km), where n ≥ m + r, and let TxX = H ⊂ kn be a linear
subspace given by a system of independent linear equation Bl =

∑
blkxk, l = 1, ..., r. By

abuse of notation we denote by A the matrix (in the canonical bases in kn and km) of the
mapping A. Let C = be a (m + r) × n matrix given by rows A1, ..., Am;B1, ..., Br (we
identify Ai =

∑
aikxk with the vector (aj1, ..., ajn), similarly for Bl).

For an index I = (i1, ..., im+r) ⊂ {1, ..., n} let MI(x) denote the ((m + r) × (m + r))
minor of C given by columns indexed by I. For integers j ∈ I, 1 ≤ k ≤ m we denote by
MI(k,j)(x) the (m + r − 1)× (m+ r − 1) minor obtained by deleting jth column and kth
row. Note that we delete only Ak, 1 ≤ k ≤ m rows !

Hence MI and MI(k,j) are regular (restriction of polynomials) functions on X. We define
now a family of rational functions on X:

WI(k,j)(x) = MI(x)/MI(k,j)(x)

where for MI(k,j) ≡ 0, we put WI(k,j) ≡ 0. We write b = (b1, . . . , br) and (f, b) : C
n →

C
m × C

r, here we consider f1, . . . , fm, and b1, . . . , br as polynomials on C
n.

Let s =
(

n
m+r

)
and let MI1 , ...,MIs be all possible main minors of a matrix of dx(f, b).

For every index Il take a pair (kl, jl) which determine a (m + r − 1) × (m+ r − 1) minor
of MIl

. We denote a sequence (k1, j1), ..., (ks, js) by (k, j) ∈ N
s × N

s and we consider a
rational function:

Φ(k,j) = Φ((k1, j1), ..., (ks, js)) : X → C
m × C

N
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where the first component of Φ(k,j) is f and next components are WIi(ki,ji), i = 1, . . . , s
and all products xlWIi(ki,ji), i = 1, . . . , s; l = 1, . . . ,m.

We can assume that for some choice of l we have WIl(kl,jl) 6≡ 0, and consequently dim
cl(Φ(k,j)(X)) = dim X = n− r. Here cl(Y ) stands for the closure of Y in the strong (or
which is the same, in the Zariski topology). Let Γ(k, j) = cl(Φ(k,j)(X)).

Let us recall that y ∈ K∞(f) if there exists a sequence x→∞ such that

f(x) → y and |x|g′(x) → 0,

were g′(x) = g′(dxf, TxX) We have

Lemma 4.3.

K(f) = K0(f) ∪K∞(f) = C
m ∩

⋃

(k,j)

Γ(k, j),

where we identify C
m with C

m × (0, ..., 0).

Proof. Indeed, if y ∈ K0(f) then there is a critical point x0 ∈ X, such that y = f(x0).
Since dx0

f is singular on Tx0
X, we have g′(x0) = 0 consequently for any sequence

x → x0, we have g′(x) → 0. In particular for every index Ii, there are integers (ki, ji),
such that MIi

/MIr(ki,ji)(x) → 0. This means that y ∈ Γ(k, j) ∩ C
m where (k, j) =

((k1, j1), ..., (ks, js)).

Similarly, if y ∈ K∞(f), then there is a sequence x → ∞, such that for every Ii there
are integers (ki, ji), such that |x|MIi

/MIr(ki,ji)(x) → 0. This also gives y ∈ Γ(k, j) ∩ C
m

with (k, j) = ((k1, j1), ..., (ks, js)).

Conversely, if y ∈ Γ(k, j) ∩ C
m, then we can choose a sequence x → a, where a ∈ C

n

or a = ∞, such that MIr/MIr(kr ,jr)(x) → 0 and |x|MIr/MIr(kr ,jr)(xn) → 0. If a ∈ C
n,

this implies that all MI(a) = 0, i.e. a is a critical point of f , hence y = f(a) ∈ K0(f).
Otherwise we have that |x||g′(x) → 0 and f(x) → y, i.e. y ∈ K∞(f). By Theorem 3.3 we
have that K(f) 6= C

m hence C
m ∩⋃

(k,j) Γ(k, j) 6= C
m. �

In particular we have proved that the set K(f) is algebraic. For an index J =
(i1, ..., im) ⊂ {1, ..., n} and numbers k ∈ I j ∈ {1, ...,m} let αJ(k,j) denote a complex
number. For every index I take

WI(x) = MI/(
∑

J,k,j

αJ(k,j)MJ(k,j)),

where MJ(k,j) denotes the (m− 1)× (m− 1) minor which is created from MJ by deleting
the jth row and kth column (recall that we delete only Aj rows!).

Now consider the rational mapping Φ : X 3 x− → (f(x),WI1(x), x1WI1(x)

, ..., xnWI1(x), ...,WIs(x), x1WIs(x), ..., xnWIs(x)) ∈ C
m × C

N . Let Γ = Φ(X).

Lemma 4.4. For sufficiently general numbers αJ(k,j) we have

K(f) = K0(f) ∪K∞(f) = Γ ∩ C
m,

where we identify C
m with C

m × (0, ..., 0).

Proof. Let us take a dense countable subset E = {y1, y2, y3, ....} of K(f). By our previous
consideration and by Proposition 2.5 for every yk there is a sequence xkj; j = 1, 2, ....,
where xkj ∈ X and xkj → ak, where ak ∈ X or ak = ∞, such that

a) f(xkj) → yk,
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b) if |MJkj(akj ,bkj)(xkj)| denotes appropriate maximal minors, then for every index I we

have: |MI(xkj)|/|MJkj (akj ,bkj)(xkj)| → 0 and |xkj||MI(xkj)|/|MJkj(akj ,bkj)(xkj)| → 0 (the

first limit is important for ak ∈ C
n only).

Let us fix k. We assume that ak = ∞, the other case can be done similarly. By the
Dirichlet box principle we can assume that there exist J, a, b such that |MJ(a,b)|(xkj)| are
maximal among others minors of this type (if it is necessary we can pass to a subsequence
of the sequence {xkj ; j = 1, 2, ....}).

In particular we can assume that all ratios |MJ ′(c,d)(xkj)|/|MJ(a,b)(xkj)| are (defined
and) bounded by 1. Thus (again after passing to a subsequence) we can assume that all
this limits exists. Let γ(k, J ′, c, d) = limj→∞MJ ′(c,d)(xkj)/MJ(a,b)(xkj).

Since a countable family of hyperplanes can not fill the whole of affine space, we can
find numbers AJ ′,c,d such that for all k = 1, 2, .... we have:

∑

J ′,c,d

AJ ′,c,dγ(k, J ′, c, d) = εk 6= 0.

Now take αI(c,d) = AI,c,d as our general coefficients. Note that E ⊂ Γ. Indeed for big j
we have:

|
∑

αI(c,d)MI(c,d)| ≥ |MJ(a,b)(xkj)||εk/2|
and consequently for every index I

|xkj||MI(xkj)|/(|
∑

αJ ′(k,j)MJ ′(k,j)(xkj)|) ≤ |2/εk||xkj||MI(xkj)|/|MJ(a,b)(xkj| → 0.

Thus we have lim Φ(xkj) = yk, hence E ⊂ Γ∩C
m. Since Γ∩C

m is a closed set, we obtain
K(f) ⊂ Γ ∩ C

m.

Now take y ∈ Γ ∩ C
m. this means that there is a sequence xj → a, where a ∈ Cn or

a = ∞, such that y = limf(xj) and

|xj ||MI(xj)|/|
∑

αJ ′(k,j)MJ ′(k,j)(xj)| → 0.

As before we can assume that a = ∞ and that the minor |MJ (a, b)(xj)| is maximal (and
non-zero) for every j and that all limits

γ(J ′, c, d) = limj→∞MJ ′(c,d)(xj)/MJ(a,b)(xj)

exist. Let

ε =
∑

J ′,c,d

AJ ′,c,dγ(J ′, c, d).

If ε 6= 0, then

|xj ||MI(xj)|/|
∑

αJ ′(k,j)MJ ′(k,j)(xj)| ≥ |1/(2ε)||xj ||MI(xj)|/|MJ(a,b)(xj)|

and since the first term tends to zero, we have also |xj||MI(xj)|/|MJ(a,b)(xj)| → 0,
what means that y ∈ K(f). If ε = 0 we can modify sequence xj in this way that
εj :=

∑
J ′,c,dAJ ′,c,dM(J ′, c, d)/M(J, a, b) 6= 0 (note that by the construction the func-

tion
∑

J ′,c,dAJ ′,c,dM(J ′, c, d)(x) 6≡ 0). Of course lim εj = ε = 0. We have

|εj ||xj ||MI(xj)|/|
∑

αJ ′(k,j)MJ ′(k,j)(xj)| ≥ |xj||MI(xj)|/|MJ(a,b)(xj)|

and again we have |xj||MI(xj)|/|MJ(a,b)(xj)| → 0. Hence y ∈ K(f) and Γ ∩ Cm ⊂ K(f).
Finally we have K(f) = Γ ∩ C

m. �



GENERALIZED BERTINI-SARD THEOREM 13

Proof of the Theorem 4.1 Thus it is enough to estimate a degree of a hypersurface
in which is contained the set Γ∩C

m. Let M ⊂ C
m×C

N be a linear subspace of dimension
n − r + 1, which contains the subspace L = C

m = C
m × (0, ..., 0). By Lemma 4.1 there

is a projection p : Γ → M , such that p(Γ) ∩ C
m 6= C

m. Hence it is enough to estimate
the degree of a hypersurface p(Γ) ⊂M. To do this we use Lemma 4.2. In fact we have to
estimate the degree of the image of the rational function p ◦ Φ : X− → M ∼= C

n−r+1. In
particular p ◦ Φ = (P1/Q, ..., Pn−r+1/Q), where

degPi ≤ d + ((m− 1)(d − 1) + r(D − 1))

and

degQ ≤ (m− 1)(d − 1) + r(D − 1).

Finally by Lemma 4.2 we have

deg p(Γ) ≤ (d + (m− 1)(d − 1) + r(D − 1))n−rdegX,

which proves the first estimate in the Theorem 4.1. To get the second one it is enough to
apply the Bezout theorem. �

We deduce immediately an analogous statement in the real case:

Corollary 4.1. Let X ⊂ R
n be a smooth affine variety of dimension n− r ≥ m. Assume

that I(X) = {b1, ..., bw}, where deg bi ≤ D. Let f = (f1, ..., fm) : X → R
m be a polynomial

dominant mapping and let deg fi ≤ d. The set K(f) is a closed semi-algebraic subset of
R

m and it is contained in a real hypersurface of degree at most (d+ (m− 1)(d− 1) + (D−
1)r)n−rDr.

In a particularly interesting case where f is a polynomial function on hypersurface we
have:

Corollary 4.2. If X is a smooth hypersurface of degree D in C
n and f : X → C is a

polynomial of degree d, then the set K(f) has at most (d+D−1)n−1D points. In particular
f may have at most (d +D − 1)n−1D atypical fibers.

The following example shows that the estimate in Corollary 4.2 is asymptotically sharp.

Example 4.1. Let X ⊂ P
n be a smooth projective hypersurface of degree D. It is well-

known that the degree of the dual hypersurface to X is D(D − 1)n−1 - see e.g., [3]. This
means in particular that there is a projective subspace W ⊂ P

n of codimension 2, such
that there is exactly D(D−1)n−1 tangent hyperplanes to X which contain W. Let us take
an affine system of coordinates in P

n in this way that W is contained in the hyperplane at
infinity, and all these tangent spaces which contain W are different from the hyperplane
at infinity. Let f be a homogeneous linear function which describe a subspace W. Then
f considered as polynomial on the affine part of X has at least D(D − 1)n−1 generalized
critical values, because it has at least D(D − 1)n−1 singular fibers. This means that our
estimation is nearly sharp.

Clearly Corollary 4.1 yields in the real case:

Corollary 4.3. If X is a smooth hypersurface of degree D in R
n and f : X → R is

a polynomial of degree d, then the set K(f) has at most (d + D − 1)n−1D points. In
particular f has at most (d +D − 1)n−1D non-generic fibers and consequently there is at
most (d +D − 1)n−1D + 1 types of generic fibers of f .
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Let us note that from the proof of Theorem 4.1 follows, that to give an estimation
of degree of K(f) it is not necesarry to know the system of generators of I(X) (what
in general is difficult). It is enough if we will find any polynomials {h1, ..., hr} ⊂ I(X)
(r =codim X) such that Jac(h1, ..., hr) does not vanish identically on X and then we can
put D = max { deg hi}. Below we show that in this way we can always take D = deg X.

Theorem 4.2. Let X ⊂ C
n be a smooth affine variety of dimension n − r ≥ m. Let

f = (f1, ..., fm) : X → C
m be a polynomial dominant mapping and let deg fi ≤ d. Assume

that deg X = D. Then the set K(f) is a proper algebraic subset of C
m and it is contained

in a hypersurface of degree at most

(d+ (m− 1)(d− 1) + (D − 1)r)n−rD.

Proof. It is enough to construct polynomials h1, ..., hr of degree D = deg X, which vanish
on X and for which Jac(h1, ..., hr) does not vanish identically on X.

Let us take a point x ∈ X. Let S be the closure of the union of all secants xy, where
y ∈ X is another point of X. It is easy to see that dim S ≤ n− r + 1 and the projective
closure S of S contains the projective closure of X.

Now on the hyperplane at infinity H∞ let us choose a system of homogeneous coor-
dinates x1, ..., xn−r, xn−r+1, ..., xn in this way that for every j > n − r we have {x1 =
0, ...., xn−r = 0, xj = 0}∩S = ∅. Of course every sufficiently general system of coordinates
has this property. The coordinate system on H∞ we can extend in an obvious way to a
coordinate system on the whole of P

n (by adding new variable x0).

Now for every j > n− r let us consider the projection πj : X 3 x→ (x1, ..., xn−r, xj) ∈
C

n−r+1. By the construction the mapping πj is proper and birational (the last property
follows from the fact that (πj)−1(πj(x)) = {x} and that πj is smooth at x). The image
Xj := πj(X) is a hypersurface in C

n−r+1. Let hs be a reduced equation of Xn−r+s. Then

hs vanishes on X and ∂hs

∂xn−r+s
does not vanish identically on X. Now it is easy to check

that polynomials h1, ..., hr (of degree D = deg X) vanish on X and Jac(h1, ..., hr) does
not vanish identically on X. �

Corollary 4.4. Let X be a smooth algebraic variety of dimension k and degree D in
C

n and let f : X → C be a polynomial of degree d. Then the set K(f) has at most
(d+ (D− 1)(n− k))kD points. In particular f may have at most (d+ (D− 1)(n− k))kD
atypical fibers.

Corollary 4.5. Let X be a smooth algebraic variety of dimension k and degree D in
R

n and let f : X → R be a polynomial of degree d. Then the set K(f) has at most
(d+ (D− 1)(n− k))kD points. In particular f may have at most (d+ (D− 1)(n− k))kD
atypical fibers and consequently there is at most (d+(D−1)(n−k))kD+1 types of generic
fibers of f .

We can also apply our results to rational functions f : C
n → C

m. For simplicity we
formulate the result for a rational function f : C

n → C (we live to formulate all obvious
definition to the reader). The general case can be done similarly.

Corollary 4.6. If f = P/Q : C
n → C is a rational function of degree d (i.e., max

degP,degQ = d), then the set K(f) has at most (2d + 1)n(d + 1) points. In particular f
may have at most (2d + 1)n(d + 1) atypical fibers.

Proof. Let us consider the hypersurface X = {(x, z) ∈ C
n × C : zQ(x) = 1}. Thus the

function f can be considered as polynomial function F = zP (x) on the hypersurface X.
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Since this hypersurface and the function F have degrees at most d + 1, we have that the
set K(f) has at most (2d + 1)n(d + 1) points. �

Now let us consider the special case n = m. Let us recall that a mapping f : X → kn

is not proper at a point y ∈ km if there is no neighborhood U of y such that f−1(U)) is
compact. In other words, f is not proper at y if there is a sequence xl → ∞ such that
f(xl) → y. Let Sf denote the set of points at which the mapping f is not proper. It is
well-known (see [5], [6]) that in the case (k = C) the set Sf is either an empty set or it is
a hypersurface. We can repeat word by word the proof of Proposition 4.1 in [7] to obtain:

Proposition 4.1. Let f = (f1, ..., fn) : X → C
n be a dominant polynomial mapping.

Then the set K(f) of generalized critical values is either the empty set (and then f is an
automorphism) or it is a hypersurface. Moreover, K(f) = K0(f)∪Sf = B(f). In particular
the bifurcation set B(f) is either the empty set (and then f is an automorphism) or it is
a hypersurface.

In the real case K(f) need not be a hypersurface, in particular K∞(f) may be of
codimension at least 2 (see [8]). However arguing as in the proof of Proposition 3.1 in [12]
we can easily prove the following.

Proposition 4.2. Assume that X is smooth and algebraic of dimension n and let f =
(f1, ..., fn) : X → R

n be a polynomial mapping (or more generally C1 with semialgebraic
graph). Then K∞(f) = Sf and consequently B(f) = K0(f) ∪ Sf .

5. Computations

In this section we use Gröbner basis to compute the set K(f) effectively. Let us recall
the definition of Gröbner basis. Assume that in the set of monomials in C[x1, ..., xn]
we have the ordering induced by the lexicographic ordering in N

n, i.e., aαxα > aβx
β, if

α > β (in this paper we consider only this ordering). By inP = adx
d we will denote the

initial form of a polynomial P =
∑
aαx

α1

1 · · · xαn
n ∈ C[x1, . . . , xn], where d = max{α =

(α1, . . . , αn); ad 6= 0}. We have the following basic definition (see [14]):

Definition 5.1. A finite subset B ⊂ I ⊂ C[x1, ..., xn] of an ideal I is called a Gröbner
basis of this ideal, if the set {inP ; P ∈ B} generates the ideal generated by all initial forms
of the ideal I.

The Gröbner basis of the ideal I is a basis of this ideal, moreover it can be easily
computed by arithmetical operations only. We have the following basic fact (see [14]):

Theorem 5.1. Consider the ring C[x1, ..., xn; y1, ..., ym]. Let V ⊂ C
n×C

m be an algebraic
set and let p : C

n×C
m → C

m denote the projection. Assume that B is a Gröbner basis of
the ideal I(V ). Then B∩C[y1, ..., ym] is a Gröbner basis of the ideal I(p(V )) = I(cl(p(V ))).

Proof. Observe that I(p(V )) = I(V ) ∩ C[y1, ..., ym] and then to use [14], Proposition 4.3.
�

Theorem 5.2. Let X be a smooth affine variety of dimension n − r and let I(X) =
{b1, . . . , bw}. Let f = (f1, ..., fm) : X → C

m be a polynomial dominant mapping. Then the
set K(f) can be computed effectively.

Proof. Let I(X) = {b1, ..., bw}. Let b1, ..., br ∈ I(X) be polynomials such that rank
{grad b1, ..., grad br} = r on some non-empty open subset of X. Let us consider the
rational mapping:
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Φ((k1, j1), ..., (ks, js)) : X 3 x−→ (f(x),WI1(k1,j1)(x), x1WI1(k1,j1)(x), ..., xnWI1(k1,j1)(x),

...,WIs(ks,js)(x), x1WIs(ks,js)(x), ..., xnWIs(ks,js)(x)) ∈ C
m × C

N ,

which are constructed exactly as in the proof of Theorem 4.1. Recall that

Γ((k1, j1), ..., (ks, js)) = cl(Φ((k1, j1), ..., (ks, js))(Cn)).

We know also that

K(f) = (
⋃

((k1,j1),...,(ks,js))

Γ((k1, j1), ..., (ks, js)) ) ∩ L,

where L = C
m × (0, ..., 0). First we compute the ideal of the set Γ((k1, j1), ..., (ks, js)).

To do this we can restrict the mpping Φ(k, j) to any open dense subset U on which this
mapping is regular. In particular we can choose the set U = X \ ⋃s

r=1{MIr(kr ,jr) = 0}.
The set U can be identified with the set

V ((k1, j1), ..., (ks, js)) := {(x, z1, ..., zs) ∈ C
n×C

s : bj = 0, j = 1, ..., w;MIr(kr ,jr)zr = 1; r = 1, ..., s}.
Now we can consider a morphism

Ψ((k1, j1), ..., (ks, js)) : V ((k1, j1), ..., (ks, js)) 3 (x, z) → (f(x), z1MI1(k1,j1)(x), x1z1MI1(k1,j1)(x),

..., xnz1MI1(k1,j1)(x), ..., zsMIs(ks,js)(x), x1zsMIs(ks,js)(x), ..., xnzsMIs(ks,js)(x)) ∈ C
m×C

N .

Denote Ψ((k1, j1), ..., (ks, js)) := (ψ1(x, z), ..., ψm+N (x, z)). It is easy to see that

Γ((k1, j1), ..., (ks, js)) = cl(Ψ((k1, j1), ..., (ks, js))(V ((k1, j1), ..., (ks, js)))).

Let G((k1, j1), ..., (ks, js)) = graph(Ψ((k1, j1), ..., (ks, js))). The basis of the ideal I of the
set G((k1, j1), ..., (ks, js)) in the ring C[x, z, y] is given by polynomials

{zrMIr(kr ,jr)(x)− 1}r=1,...,s ∪ {yi − ψi(x, z)}i=1,...,m+N .

Thus by Theorem 5.1 to compute a basis B((k1, j1), ..., (ks, js)) of the ideal of the set
cl(Γ((k1, j1), ..., (ks, js)), it is enough to compute a Gröbner basis A((k1, j1), ..., (ks, js)) of
the ideal I in C[x1, ..., xn, z1, ..., zs; y1, ..., ym+N ] and then to take

B((k1, j1), ..., (ks, js)) = A((k1, j1), ..., (ks, js)) ∩ C[y1, ..., ym+N ].

Consequently, K(f) =
⋃

((k1 ,j1),...,(ks,js))
{y ∈ C

m : h(y, 0, ..., 0) = 0 for every h ∈
B((k1, j1), ..., (ks, js))}. �

Corollary 5.1. Let X be a smooth affine variety and let I(X) = {b1, . . . , bw}. Let f =
(f1, ..., fm) : X → C

m be a dominant polynomial mapping. Let σ be a subfield of C

generated by all coefficients of polynomials fi and bj. Then there exists a finite family
{g1, ..., gs} of polynomials from σ[y1, ..., ym], such that

K(f) = {y ∈ C
m : gi(y) = 0, i = 1, ..., s}.
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