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Abstract. Let f : Cn → C be a polynomial of degree d. We prove that the set of
asymptotic critical values of f (i.e. values for which Malgrange’s Condition fails ) has
at most dn−1 − 1 points. We give an asymptotically sharp bound for the number of
bifurcation points of f . We give also an algorithm to compute this set.

1. Introduction.

Let f : Cn → C be a polynomial. Over thirty years ago R. Thom proved that f is a
C∞−fibration outside a finite set, the smallest such set is called the bifurcation set of f ,
we denote it by B(f). In the natural way appears two fundamental questions: how to
determine the set B(f) and how to estimate the number of points of this set.

Let us recall that in general the set B(f) is bigger than K0(f) - the set of critical values
of f . It contains also the set B∞(f) of bifurcations points at infinity. Briefly speaking the
set B∞(f) consists of points at which f is not a locally trivial fibration at infinity (i.e.,
outside a large ball). To control the set B∞(f) one can use the set of asymptotic critical
values of f

K∞(f) = {y ∈ C : there is a sequence xl →∞ s.t. f(xl) → y and ‖xl‖‖df(xl)‖ → 0}.
If c /∈ K∞(f), then it is usual to say that f satisfies Malgrange’s condition at c. It is
proved ([12], [13] ), that B∞(f) ⊂ K∞(f). Put K(f) = K0(f) ∪ K∞(f). Thus we have
that in general B(f) ⊂ K(f), a simple proof of this fact is also given in the last section.
Moreover, A. Parusiński ([12]) proved that B(f) = K(f), if f has isolated singularities
at infinity (in particular this holds for n = 2). The set of asymptotic critical values is
always finite (we show this in the last section). The simplest case n = 2 was studied
intensively (see e.g., [4], [5], [6], [11]) and it is rather well understood; the set K∞(f)
can be computed effectively and we have estimate #K∞(f) ≤ deg f − 1. In this paper
we consider the general case. We computed the set K0(f) ∪ K∞(f) effectively and we
estimated the number of asymptotic critical values. This problem was stated explicitly by
P. Rabier [15] p. 689.

Usually bifurcation points of a polynomial were studied using stratification theory ap-
plied to the projective closure of the graph. Our approach is different. The main new
argument in our paper is based on the idea that asymptotic critical values of a polynomial
f : Cn → C can be detected by studying the set of non properness of the polynomial
mapping Φ = (f, ∂f

∂x1
, ..., ∂f

∂xn
, h11, h12, ..., hnn), where hij = xi

∂f
∂xj

, i, j = 1, . . . , n. The set
of non properness of a polynomial mapping was studied by the first author (see [7], [8]).
In particular for mappings Cn → Cn there is a sharp estimate for its degree. This allows
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us to bound the number of points in K(f), hence in B(f). Note that for n = 1 the set
#K∞(f) is empty, hence B(f) = K0(f).

Actually we found a relation between deg f , #K(f) and #K∞(f). Our results are
following:

Theorem 1.1. Let f : Cn → C be a polynomial of degree d > 0. Let a = #K∞(f),
b = #K(f). Then

da + b ≤ dn − 1.

Corollary 1.1. Let f : Cn → C, n ≥ 2, be a polynomial of degree d > 0. Then

#K∞(f) ≤ (dn − 1)/(d + 1) ≤ dn−1 − 1.

In particular, #B∞(f) ≤ dn−1 − 1.

Proof. Indeed, we have a ≤ b, hence (d + 1)a ≤ dn − 1 and a ≤ (dn − 1)/(d + 1) ≤
dn−1 − 1. �

In particular, for n = 2 we recover a well-known fact [4], [11] that #B∞(f) ≤ d− 1.

Corollary 1.2. Let f : Rn → R, n ≥ 2, be a polynomial of degree d > 0. Then

#K∞(f) ≤ (dn − 1)/(d + 1) ≤ dn−1 − 1.

In particular, #B∞(f) ≤ dn−1 − 1.

Proof. Indeed, if fC is a complexification of f , then K∞(f) ⊂ K∞(fC). �

So, in the real case this gives a better estimate than those given in [10]: #K∞(f) ≤
(2d + 1)(4d− 3)n.

Corollary 1.3. Let k = C or k = R. Let f : kn → k be a polynomial of degree d. Let B(f)
denote the bifurcation set of the polynomial f . Then #B(f) ≤ #K(f) < (d−1)n +ndn−2.

Proof. We have B(f) ⊂ K0(f) ∪K∞(f) = K(f). Put b = #K(f). Thus b = a + e, where
e ≤ #K0(f). We know that #K0(f) ≤ (d− 1)n (see e.g. [1]), consequently e ≤ (d− 1)n.
By Theorem 1.1 it follows that it is enough to estimate the maximum of the linear function
h(s, t) = s + t on the set W = {(s, t) : (d + 1)s + t ≤ dn − 1; t ≤ (d− 1)n}.

It is easy to check that the function h attains its maximum at the point (s0, t0) =
((dn − 1− (d− 1)n)/(d + 1), (d− 1)n) and this maximum is equal to m = (d− 1)n + (dn −
1 − (d − 1)n)/(d + 1). By the mean value theorem we have dn − (d − 1)n ≤ ndn−1 and
consequently b ≤ m < (d− 1)n + ndn−2. �

In section 2 we give a sequence of examples which shows that for fixed n and d → ∞
the above estimate is asymptotically sharp. In the case of nonisolated critical values we
have:

Corollary 1.4. Let f : Cn → C be a polynomial of degree d > 0. Assume that f has no
isolated critical points. Then f has at most dn−1 − 1 critical values.

Proof. Indeed, since the polynomial f has no isolated critical points, we have that K0(f) ⊂
K∞(f), consequently #K0(f) ≤ dn−1 − 1. �

In the third section we show:

Theorem 1.2. Let f : Cn → C be a polynomial of degree d > 0. Then the set K(f) =
K0(f) ∪K∞(f) can be computed effectively.
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Here effectively means that we give an algorithm (based on Gröbner basis) which works
actually on a computer. We tested it on some classical examples of polynomials. To our
knowledge, up to now, there were no methods to compute asymptotic critical values (or
bifurcation points) of a polynomial in more than 2 variables.

2. Estimates

Let us recall that a mapping f : Cn → Cm is not proper at a point y ∈ Cm if there is
no neighborhood U of y such that f−1(U)) is compact. In other words, f is not proper at
y if there is a sequence xl → ∞ such that f(xl) → y. Let Sf denote the set of points at
which the mapping f is not proper. We have the following characterization of the set Sf

(see [7], [8]):

Theorem 2.1. Let F = (F1, ..., Fm) : Cn → Cm be a generically-finite polynomial map-
ping. Then the set SF is an algebraic subset of Cm and it is either empty or it has pure
dimension n− 1. Moreover, if n = m then

deg SF ≤
(
∏n

i=1 deg Fi)− µ(F )
min1≤i≤n deg Fi

,

where µ(F ) denotes the geometric degree of F (i.e., it is a number of points in a generic
fiber of F ).

Recall that if X ⊂ Cn is an algebraic set of pure dimension r then by deg X (degree of
X) we mean the number of points in the intersection of X with sufficiently general affine
subspace of codimension r. In particular, if X is a hypersurface, then deg X is the degree
of any generater of the ideal I(X), which is simply the smallest degree of a (nonzero)
polynomial vanishing on X.

In the proof of Theorem 1.1 we need following technical lemmas.

Lemma 2.1. Let B ⊂ A be algebraic subsets of CN+1, dim B < dim A = n. Let L be
a line and M a linear subspace of CN+1, which contains L, dim M = n. Assume that
L 6⊂ B, then there exists a linear projection p : CN+1 → M such that p restricted to A is
finite and L 6⊂ p(B). In particular p is proper on A.

Proof. Take a point a ∈ L \ B. Let Λ be the Zariski closure of the cone
⋃

ax, x ∈ B. It
is easy to see that dim Λ ≤ n. Let H∞ be the hyperplane at infinity of C× CN . For any
Z ⊂ C× CN denote by Z̃ the projective closure of Z. Observe that

dim H∞ ∩ (Λ̃ ∪ Γ̃ ∩ M̃) ≤ n− 1.

Thus, there is a projective subspace Q ⊂ H∞ of dimension N − n, which is disjoint with
(Λ̃ ∪ Ã ∩ M̃). Denote by pQ : PN+1 \ Q → M̃ the linear projection determined by the
subspace Q.

Now, let p : CN+1 → M be the restriction of pQ to CN+1. It is easily seen that p has
desired properties, i.e., p : A → M is a finite mapping and a 6∈ L ∩ p(B). �

The following lemma follows from the Bezout theorem in the version of Vogel.

Lemma 2.2. Let A be irreducible algebraic subvariety of CN+1 and let H be a linear
subspace of CN+1. Assume that the set H ∩ A = {a1, ..., ak} is finite and that the germ
Aai of the set A at the point ai has ni branches, i = 1, ..., k. Then deg A ≥

∑k
i=1 ni.

To state our results in the full generality we need the following:
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Definition 2.1. Let ∇f = ( ∂f
∂x1

, ..., ∂f
∂xn

). A critical value c ∈ K0(f) is isolated, if the set
{∇f = 0} ∩ {f = c} is finite. The number kc = #{∇f = 0} ∩ {f = c} is the multiplicity
of the critical value c.

Now we can prove Theorem 1.1. In fact we prove a slightly more general result:

Theorem 2.2. Let f : Cn → C be a polynomial of degree d > 0. Assume that K0(f) =
{c1, ..., ck} and that values {c1, ..., cl} are isolated with multiplicities k1, ..., kl. Let a =
#K∞(f), b = #K(f). Then

da + b +
l∑

i=1

(ki − 1) ≤ dn − 1.

Proof. Let us define a polynomial mapping Φ : Cn → C× CN by

Φ = (f,
∂f

∂x1
, ...,

∂f

∂xn
, h11, h12, ..., hnn),

where hij = xi
∂f
∂xj

, i = 1, . . . , n, j = 1, . . . , n. Consider the line L := C × {(0, ..., 0)} ⊂
C × CN . In further we identify this line with a copy of C. Let us note that Φ is a
birational mapping (onto its image), in particular it is generically finite. Indeed, denote
Φ = (φ1, ..., φN+1). Since the polynomial f is not constant there exists j, such that
∂f
∂xj

6= 0. Thus the field C(φ1, ..., φN+1) contains all the functions

xi =
hij

∂f/∂xj
, i = 1, . . . , n,

and consequently the mapping Φ is birational (onto its image). By the definition of K∞(f)
and Φ we have

K∞(f) = L ∩ SΦ,

where SΦ denotes the set of point at which the mapping Φ is not proper. Recall that
K∞(f) is finite, hence also the set L∩ SΦ is finite. Choose a linear space M of dimension
n, which contains the line L. Denote Γ = Φ(Cn), and by Γ its Zariski closure. Lemma 2.1
applied to A = Γ and B = SΦ yields a projection p : CN+1 → M which is finite on Γ and
such that L 6⊂ p(SΦ).

Denote X = p(SΦ). Then K∞(f) ⊂ X and L 6⊂ X. Since p is proper on Γ, we obtain
that X = SF , where F = p ◦ Φ. Note that X is exactly the set of points at which the
mapping F is not proper. Moreover, if a projection p is sufficiently general, then we have
F = (F1, ..., Fn), where deg Fi = d for all i = 1, ..., n. Let us estimate the geometric degree
µ(F ) of F . Since the mapping Φ is birational we have µ(F ) = µ(p ◦Φ) = µ(p|Γ) = deg Γ,
where p|Γ stands for restriction of p to Γ. Hence it is enough to estimate the degree of
Γ. Let us consider a linear subspace H = Cn+1 × {0, ..., 0} ⊂ CN+1 and take A = Γ. Let
us compute the set H ∩ A. It is easy to see that H ∩ A = K(f) ∪ {Φ(0)}. Indeed, let
y ∈ H ∩A. We have two possibilities:

1) y ∈ Γ \ Γ,
2) y ∈ Γ.

In the case 1) we have that y ∈ K∞(f). In the case 2) we have y = Φ(x) for some x ∈ Cn

and either dxf = 0 and consequently y ∈ K0(f) or dxf 6= 0 and then x = 0. Finally
y ∈ K(f) ∪ {Φ(0)} and H ∩A ⊂ K(f) ∪ {Φ(0)}. The converse inclusion is obvious.

By a linear change of coordinates we can always assume that Φ(0) 6∈ K(f). Moreover,
if c ∈ K0(f) is an isolated critical value of multiplicity kc, then the germ Γc has at least kc
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branches. Indeed, since the mapping Φ : Cn → Γ is birational, we have that every critical
point bi, such that c = Φ(bi) gives one branch. In fact, there are small neighborhoods Ui

(in the strong topology) of points bi, i = 1, ..., kc, such that Φ(Ui) is a branch of Γc. By
Lemma 2.2 we have deg A ≥ b+

∑l
i=1(ki−1)+1, consequently µ(F ) ≥ b+

∑l
i=1(ki−1)+1.

Now Theorem 2.1 yields that the degree of the variety X ⊂ M is bounded by (dn − b−∑l
i=1(ki − 1)− 1)/d. So, the set X ∩ L has no more than (dn − b−

∑l
i=1(ki − 1)− 1)/d

points. Finally we obtain that #K∞(f) ≤ (dn − b −
∑l

i=1(ki − 1) − 1)/d and that da +
b +

∑l
u=1(ki − 1) ≤ dn − 1. This gives a proof of Theorem 2.2. �

In the case, when f has only isolated critical points, we can improve our result.

Theorem 2.3. Let f : Cn → C be a polynomial of degree d > 0. Assume that f has a
finite number, say e critical points. If a = #K∞(f), then

(d + 1)a + e ≤ dn − 1.

Proof. Since the mapping f has only isolated critical points, we have that the mapping Φ
has finite fibers. We show that if c ∈ K0(f)∩K∞(f) then the germ Γc has at least kc + 1
branches. Indeed, since the mapping Φ : Cn → Γ is birational, we have that every critical
point bi, such that c = Φ(bi) gives one branch. In fact, there are small neighborhoods Ui

(in the classical topology) of points bi, i = 1, ..., kc, such that Φ(Ui) is a branch of Γc.

By our assumption there is a sequence xl → ∞ such that Φ(xl) → c. It means that
there is another branch at the point c, which comes from infinity. Thus the germ Γc has
at least kc + 1 branches.

Now Lemma 2.2 gives deg Γ ≥ a+
∑b

i=1 ki +1 (as before we assume that Φ(0) 6∈ K(f)).
Thus µ(F ) ≥ a +

∑b
i=1 ki + 1 and Theorem 2.1 yields that the degree of the variety

X ⊂ M is bounded by (dn − a −
∑b

i=1 ki − 1)/d. So, the set X ∩ L has no more than
(dn − a−

∑b
i=1 ki − 1)/d points. Finally we obtain that a ≤ (dn − a−

∑b
i=1 ki − 1)/d and

that (d + 1)a +
∑b

i=1 ki ≤ dn − 1. This gives a proof of Theorem 2.3. �

Corollary 2.1. Let f : Cn → C be a polynomial of degree d > 0. Assume that f has only
a finite number of critical points. Let a = #K∞(f) and c = #K0(f). Then

(d + 1)a + c ≤ dn − 1.

Example 2.1. We show that our estimates are nearly sharp. More precisely, we have:

For every d > 0 there are polynomials gn ∈ C[x1, ..., xn]; n = 1, 2, ..., and fn ∈
C[x1, ..., xn]; n = 2, 3, ..., of degree d, such that:

1) #B(gn) = #K(gn) = (d− 1)n;
2) #B∞(fn) = #K∞(f) = (d− 1)n−1.

First we construct a polynomial gn. Let us consider a polynomial of one variable h(t) :=
td/d− t. We have h′(t) = td−1 − 1. The zeros of h′ are precisely all roots of degree d− 1
of unity. Now consider a polynomial

gn =
n∑

i=1

Aih(xi),

where numbers Ai are sufficiently general. It is easy to check that #K0(gn) = (d − 1)n

and that K0(f) = K(f) = B(f). Put fn(x1, ..., xn) := gn−1(x1, ..., xn−1). Of course,
K0(gn−1) = K∞(fn) = B∞(f) and consequently #B∞(fn) = (d− 1)n−1.
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Remark 2.1. As we know we have #B(f) < (d−1)n +ndn−2. Note that also #K∞(f) ≤
(dn−1)/(d+1) < (d−1)n−1 +ndn−2. Indeed, we have #K∞(f) ≤ (dn−1)/(d+1) = ((d−
1)n−1)/(d+1)+(dn−(d−1)n)/(d+1) < (d−1)n−1+(ndn−1)/(d+1) < (d−1)n−1+ndn−2.
Thus we can remark that our estimates are sharp up to O(dn−2).

3. Computations

In this section we use Gröbner basis to compute the set K0(f)∪K∞(f) effectively. Let us
recall the definition of Gröbner basis. Assume that in the set of monomials in C[x1, ..., xn]
we have the ordering induced by the lexicographic ordering in Nn, i.e., aαxα > aβxβ, if
α > β (in this paper we consider only this ordering). By inP = adx

d we will denote the
initial form of a polynomial P =

∑
aαxα1

1 · · ·xαn
n ∈ C[x1, . . . , xn], where d = max{α =

(α1, . . . , αn); ad 6= 0}. We have the following basic definition (see [14]):

Definition 3.1. A finite subset B ⊂ I ⊂ C[x1, ..., xn] of an ideal I is called a Gröbner
basis of this ideal, if the set {inP ; P ∈ B} generates the ideal generated by all initial forms
of the ideal I.

The Gröbner basis of the ideal I is a basis of this ideal, moreover it can be easily
computed by arithmetical operations only. We have the following basic fact (see [14]):

Theorem 3.1. Consider the ring C[x1, ..., xn; y1, ..., ym]. Let V ⊂ Cn×Cm be an algebraic
set and let p : Cn×Cm → Cm denote the projection. Assume that B is a Gröbner basis of
the ideal I(V ). Then B∩C[y1, ..., ym] is a Gröbner basis of the ideal I(p(V )) of polynomials
vanishing on p(V ).

Proof. Observe that I(p(V )) = I(V ) ∩ C[y1, ..., ym] and then to use [14], Proposition 4.3.
�

Take again the mapping Φ = (φ1, ..., φN+1) as in the proof of Theorem 2.2. Recall that
Γ = Φ(Cn) and Γ stands for the Zariski closure of Γ. We have the following:

Lemma 3.1. K0(f) ∪K∞(f) = L ∩ Γ.

Proof. It is easily seen that K0(f) ∪K∞(f) ⊂ L ∩ Γ. Now assume that y ∈ L ∩ Γ. Then
we have two possibilities: either y ∈ Γ or y ∈ Γ \ Γ. In the first case we easily obtain that
y ∈ K0(f). Now we pass to the second case. Since the Zariski closure of Γ coincide with
its closure in the strong topology, there is a sequence xl →∞, such that Φ(xn) → y. But
this means that ‖xl‖‖df(xl)‖ → 0, which is equivalent to y ∈ K∞(f). �

Proof of Theorem 1.2. First we compute the ideal of the set Γ. Let V = graph(Φ). The
basis of the ideal I(V ) of the set V is given by polynomials {yi − φi(x)}i=1,...,N+1. By
Theorem 3.1 to compute a basis B of the ideal of Γ it is enough to compute a Gröbner basis
A of the ideal I(V ) in C[x1, ..., xn; y1, ..., yN+1] and then to take B = A ∩ C[y1, ..., yN+1].
So Lemma 3.1 yields

K0(f) ∪K∞(f) = {y1 ∈ C : h(y1, 0, ..., 0) = 0, for every h ∈ B}.

Example 3.1. Let us compute the set K0(f) ∪ K∞(f) for polynomial f(x1, x2, x3) =
x1 +x1

2x2 +x1
4x2x3 given in [12]. Using SINGULAR we obtained (in a few seconds) that

the basis B after substituting y2 = ... = y13 = 0 reduces to one polynomial in variable y1,
namely to y1. Hence K0(f) ∪K∞(f) = {0}. Since the zero fiber of f is reducible and a
generic fiber is not, we have that 0 ∈ B(f). Hence finally B(f) = K∞(f) = {0}.
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Remark 3.1. a) The set K0(f) alone can be computed effectively, too. Indeed, let us
consider the ideal I = (f − Z, ∂f

∂x1
, ..., ∂f

∂xn
) ⊂ C[x1, ..., xn, Z]. Let us compute a Gröbner

basis A of the ideal I in C[x1, ..., xn, Z] and then take B = A ∩ C[Z]. Now K0(f) = {z ∈
C : h(z) = 0, for h ∈ B}.

b) The set K∞(f) = SΦ ∩ L can be also computed effectively. To this aim it is enough
to produce equations for SΦ, this can be done using Gröbner basis techniques as well (see
[16] and [7]).

Proposition 3.1. Let σ be a subfield of C generated by all coefficients of a polynomial
f : Cn → C. Then all bifurcations points of the polynomial f are algebraic over the field
σ. More precisely, if α ∈ B(f) then (σ[α] : σ) < dn − d.

Proof. It follows from the basic properties of Gröbner basis that equations for Γ also have
coefficients in σ. Now assume that K(f) = K0(f)∪K∞(f) 6= ∅. Thus all equations for the
set K(f) have coefficients in σ, too. Thus the GCD of these polynomials has coefficients
in σ. Hence the reduced polynomial h which has as roots all points of K0(f) ∪ K∞(f)
belongs to σ[Y ]. Now it is easy to see that (for d > 1) we have b ≤ dn − d− 1. Indeed, we
can apply inequality da + b ≤ dn − 1. If a = 0, then b = #K0(f) ≤ (d− 1)n ≤ dn − d− 1,
otherwise b ≤ dn− 1− da ≤ dn− d− 1. Thus deg h ≤ dn− d− 1 (note that d > 1, because
K(f) 6= ∅). Finally: if α ∈ B(f), then (σ[α] : σ) < dn − d. �

Remark 3.2. In fact (σ[α] : σ) ≤ max {(d−1)n, dn−1−1}. Indeed, by Remark 3.1 the sets
K0(f) and K∞(f) are also described by polynomials from σ[X], consequently h = h1h2,
where deg h1 ≤ (d− 1)n, and deg h2 ≤ dn−1 − 1.

Corollary 3.1. Let f ∈ Q[x1, . . . , xn] and deg f = d. If y ∈ C and a degree of y over Q
is at least dn − d, then y is not a bifurcation point of f .

Corollary 3.2. If f ∈ Q[x1, . . . , xn] and y, y′ ∈ C are transcendental over Q, then f−1(y)
and f−1(y′) are diffeomorphic.

4. Complementary Results

In order to make the paper self-contained we sketch now proofs of two facts: that
B(f) ⊂ K(f) and that the set K(f) is finite if f is a polynomial.

Proposition 4.1. Let f : Cn → C be a polynomial. Then B(f) ⊂ K(f).

Proof. Let a 6∈ K(f). Without loss of a generality we can assume that a = 0. There is
ε > 0, such that ‖x‖‖∇f(x)‖ > ε for any x ∈ Cn satisfying ‖x‖ ≥ R and |f(x)| < η,
where R < +∞ is large enough, η > 0 is sufficiently small. Moreover, ‖∇xf‖ 6= 0 for x;
|f(x)| < η. Fix α ∈ C with |α| < η and consider a vector field

Vα(x) = α∇f(x)/‖∇f‖2.

Let x(y, α, t) be a solution of the differential equation

x(t)′ = Vα(x), with x(0) = y,

where y ∈ f−1(0). Let us note that x(y, α, t) is defined for t ∈ [0, 1]. Indeed, to see this it
is enough to prove that the trajectory x(y, α, t), t ∈ [0, 1] does not escape to the infinity
in a finite time. By our assumption we have ‖Vα(x)‖ < (|α|/ε)‖x‖ for sufficiently big ‖x‖.
Let r(t) = ‖x(y, α, t)‖2. We show that the function r is bounded. Assume that conversely
r(t) →∞ as t → t0 ∈ [0, 1]. Take t1 < t0 sufficiently close to t0. For t1 < t < t0 we have

r(t)′ ≤ 2‖x‖‖Vα(x)‖ < 2(|η|/ε)‖x‖2 = Mr(t),
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where M = 2(|η|/ε). It means that ln(r(t))′ ≤ M and consequently r(t) ≤ r(t1)exp(M(t−
t1)), but this implies that the set r(t), t1 ≤ t ≤ t0 is bounded, a contradiction.

It is easy to see that f(x(y, α, t)) = αt, i.e., the flow x(y, α, t), t ∈ [0, 1] maps f−1(0)
into f−1(α). Now let Dη = {α ∈ C : |α| < η} and let (y, α) ∈ f−1(0)×Dη we put

h(y, α) = x(y, α, 1)

It is easy to see that h : f−1(0)×Dη → f−1(Dη) is a diffeomorphism. Thus 0 6∈ B(f). �

Now we sketch a proof (extracted from [10]) of the fact that the set K∞(f) is finite if f
is a polynomial. In the real case a simple proof (based on the existence of stratifications
satisfying (w) condition of Verdier) is given in [9], however it can not be extended to the
complex case in an obvious way.

Proposition 4.2. Let f : Cn → C be a polynomial mapping. Then the set K(f) is finite.

Proof. Let f : Cn → C be a polynomial mapping. Of course, it is enough to prove that
the set K∞(f) is finite. Using  Lojasiewicz’s inequality at infinity we may find an integer
N , depending on f , such that
(4.1)
K∞(f) = {y ∈ C : there is a sequence xl →∞ s.t. f(xl) → y and ‖df(xl)‖ ≤ ‖xl‖−(1+ 1

N
)}.

We consider a family

Σ̃r = {x ∈ Cn : ‖x‖ ≥ r, ‖df(x)‖ ≤ ‖x‖−(1+ 1
N

)},

where r > 0, and we put ∆r = f(Σ̃r). Clearly, by (4.1)

(4.2) K∞(f) =
⋂
r>0

∆r.

Let Σr = Σ̃r ∩ {‖x‖ = r}. For r large enough Σr has the same number (say k) of
connected components. By a result of B. Teissier [17] (adapted to the semialgebraic case
by Y. Yomdin [18], see also S. K. Donaldson [3]), there exists M > 0 such that any two
points in a connected component of Σr can be joint, in Σr, by a piecewise smooth curve
of length at most Mr. So, by the mean value theorem; if Lr is a connected component of
Σr, then its image lies in a ball (in C) of radius Mr−

1
N . By the semialgebraic triviality

theorem of Hardt (see [1]), there exists a semialgebraic C1 arc γ : (a,∞) → Cn, such that

γ(r) ∈ Σr, ‖γ(r)‖ = r.

Since γ is semialgebraic, the angle between γ(r) and γ′(r) tends to 0 as r → ∞. Hence
‖γ′(r)‖ → 1 as r → ∞. Thus we may assume that ‖γ′(r)‖ ≤ 2. Let us compute now the
length of f ◦ γ

(4.3)
∫ +∞

r
|(f ◦ γ)′(ζ)|dζ ≤ 2

∫ +∞

r
ζ−(1+ 1

N
)dζ = 2Nr−

1
N .

Let Lr be a connected component of Σr such that γ(r) ∈ Lr and let L̃r =
⋃

ζ>r Lζ . Again
by the semialgebraic triviality theorem L̃r is a connected component of Σ̃r, for r large
enough. By (4.3) and the estimate for diameter of f(Lr) we deduce that f(L̃r) lies in a
ball of radius (M + 2N)r−

1
N . So the set⋂

r>0

f(L̃r)
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consists of only one point which is an asymptotic critical value, by (4.2). Hence K∞(f)
has at most k points, where k is the number of connected components of Σ̃r, for r large
enough. �

Remark 4.1. Note that k can be effectively estimated by the classical Thom-Milnor
bounds for the number of connected components of a semialgebraic set (see [1]). But the
estimate for #K∞(f) obtained in Corollary 1.1 is essentially better.
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[14] F. Pauer, M. Pfeifhofer, The theory of Gröbner basis, L’Enseignement Mathematique, 34, 215-
232, 1988.

[15] P. J. Rabier, Ehresmann’s fibrations and Palais-Smale conditions for morphisms of Finsler manifolds,
Annals of Math., 146 (1997), 647-691.

[16] A. Stasica, An effective description of the Jelonek set, Journal of Pure & Appl. Algebra, to
appear.

[17] B. Teissier, Sur trois questions de finitude en géométrie analytique réelle, appendix to F. Tréves, on
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Kraków, Poland

E-mail address: najelone@cyf-kr.edu.pl



10 ZBIGNIEW JELONEK AND KRZYSZTOF KURDYKA
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