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Ta Lê Loi
Department of Mathematics

University of Dalat
Dalat - Vietnam

Abstract – In this note we present an application of the existence of Whitney stratifi-
cation of sets definable in o-minimal structures to prove the existence of Morse functions
on definable sets.

Morse theory is the study of the shape of a space via data given by Morse
function defined on the space. For Morse theory of smooth manifolds we re-
fer readers to the book by Milnor [M], for Morse theory of stratified spaces
we refer to Goresky’s and MacPherson’s [GM]. [GM] proves the existence of
Morse functions on closed Whitney stratified subanalytic sets. In this note we
prove similar results for definable sets in o-minimal structures. Note that the
spiral {(x, y) ∈ R2 : x = e−ϕ cos ϕ, y = e−ϕ sin ϕ, ϕ ≥ 0} or the oscillation

{(x, y) ∈ R2 : y = x sin
1

x
, x > 0} has no Morse fucntions.

1. O-minimal structures. A structure on the real field (R, +, ·) is a sequence
D = (Dn)n∈N such that the following conditions are satisfied for all n ∈ N:

• Dn is a Boolean algebra of subsets of Rn.

• If A ∈ Dn, then A × R and R× A ∈ Dn+1.

• If A ∈ Dn+1, then π(A) ∈ Dn, where π : Rn+1 → Rn is the projection on
the first n coordinates.

• Dn contains {x ∈ Rn : P (x) = 0}, for every polynomial P ∈ R[X1, · · · , Xn].

Structure D is said to be o-minimal if

• Each set in D1 is a finite union of intervals and points.

A set belonging to D is said to be definable (in that structure). Definable maps
in structure D are maps whose graphs are definable sets in D.

The theory of o-minimal structures is a generalization of semialgebraic and sub-
analytic geometry. For the details we refer readers to surveys [D] and [DM].
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In this note we fix an o-minimal structure on (R, +, ·). “Definable” means defin-
able in this structure. Let p be a positive integer p ≥ 2.

2. Stratifications. A definable Cp Whitney stratification of X ⊂ Rn is a
partition S of X into finitely many subsets, called strata, such that:

• Each stratum is a Cp submanifold of Rn and also a definable set.
• For every S ∈ S, S \ S is a union of some of the strata.
• For every S, R ∈ S, if S ⊂ R \R, then (S, R) satisfies Whitney’s conditions

A and B (defined in [W]).

We say that stratification S is compatible with a class A of subsets of Rn, if for
each S ∈ S and A ∈ A, S ⊂ A or S ∩ A = ∅.

The following theorem is proved in [L]

Theorem 1. Given a finite collection A of definable sets in Rn, there exists
a definable Cp Whitney stratification of Rn compatible with A.

3. Tangents to definable sets. Let X be a definable subset of Rn. Let
S be a Cp Whitney stratification of X.
For S ∈ S, the conormal bundle of S in Rn is defined by

T ∗
SRn =

⋃
p∈S

{ξp ∈ T ∗
p Rn : ξp|TpS = 0}

Note that T ∗
SRn is a closed definable submanifold of T ∗Rn and of dimension n.

A generalized tangent space Q at p ∈ S is any plane of the form

Q = lim
x→p

TxR

where R ∈ S and S ⊂ R.
The cotangent vector ξp is degenerate if there exists a generalized tangent space
Q at p, Q �= TpS such that ξp|Q = 0.

Proposition 1. The set of degenerate cotangent vectors which are conormal
to S is a conical definable set of dimension ≤ n − 1 .

Proof. Let R be a stratum in S with S ⊂ R \ R, and dim R = r. Consider
the mapping

g : R → Gr(R
n), defined by g(x) = (x, TxR)

The graph g of this mapping is a definable set of dimension r. So its closure g in
Rn × Gr(R

n) is a definable set, and hence dim(g \ g) ≤ r − 1.
Let

AR = {(ξ, p, Q) ∈ T ∗
SRn × R × Gr(R

n) : (p, Q) ∈ g \ g, ξp|Q = 0}
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Then AR is definable. For each (p, Q) ∈ g \ g the fiber AR ∩ T ∗
p Rn × (p, Q) has

dimension ≤ n − r. Hence, dim Ar ≤ dim(g \ g) + (n − r) = n − 1.
Since there is a finite number of strata R in S such that S ⊂ R \ R, the set of
degenerate cotangent vectors which are conormal to S is of dimension ≤ n− 1 �

4. Morse functions on definable sets. Let X be a definable subset of Rn.
Fix a definable Cp Whitney stratification S of X.
A Morse function f : X → R is the restriction of a Cp function f̃ : Rn → R
such that

• For each S ∈ S, the critical points of f |S are nondegenerate, i.e. if dim S ≥ 1,
the Hessian of f |S at each critical point is nonsingular.

• For every critical p ∈ S of f |S, and for each generalized tangent space Q at
p such that Q �= TpS, df̃(p)|Q �= 0, i.e. df̃(p) is a nondegenerate cotangent
vector.

Note that the definition depends on the stratification of X.

Let T be a definable Cp manifold. Let F : T ×Rn → R, F (t, x) = ft(x) be a de-
finable Cp function. Define Φ : T × Rn → T ∗Rn by Φ(t, x) = d(ft)(x). Consider
the set of ‘ Morse parameters’ M(F, X) = {t ∈ T : ft|X is a Morse function }
Note that M(F, X) is a definable set.

Theorem 2. If Φ is a submersion, then dim(T \ M(F, X)) < dim T

Proof. For each S ∈ S, consider the following sets

M1 = M1(S) = {t ∈ T : ft|S has nondegenerate critical points}, and

M2 = M2(S) = {t ∈ T : dft(p) is a nondegenerate covector for each p ∈ S}.
It is easy to check that M1 and M2 are definable sets. Since the collection S is
finite, it is sufficient to prove that dim(T \ M2 ∩ M2) < dim T .
Let

D = D(S) = {ξ ∈ T ∗
SRn : ∃p ∈ S, ξp is a degenerate cotangent vector }

Then D is a definable set. Let ΦS : T × S → T ∗S, ΦS(t, x) = (dft|S)(x), and
π : T×Rn → T be the natural projection. Since Φ is submersive, ΦS is transverse
to the zero section S of T ∗S. So the set V1 = Φ−1

S (S) is a definable submanifold
of T × S. Furthermore, t ∈ M1 if and only if t is not a critical value of π|V1 . By
Sard’s theorem, dim(T \ M1) < dim T .
On the other hands, Φ is transverse to each stratum of any Whitney stratification
of D, and by Proposition 1, dimD ≤ n − 1, the set V2 = Φ−1(D) is a definable
set of dimension ≤ dim T − 1. So dim(T \ M2) = dim π(V2) ≤ dim T − 1. The
theorem follows. �
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Corollary 1. Consider the square of distance function

F : Rn × Rn → R, F (t, x) = ‖t − x‖2

Let M = {t ∈ Rn : F (t, .) is a Morse function on X}. Then M is a definable set
and dim(Rn \ M) < n

Corollary 2. Let f : Rn → R be a definable Cp function. Consider the linear
deformations of f : f + l, where l is a linear form of Rn. Let

M = {l ∈ Rn∗ : f + l is a Morse function on X}.
Then M is a definable set and dim(Rn∗ \ M) < n.

Remark. Using the same arguments as in the proof of Theorem 2, we have the
following Propositon:

Proposition 2. Let A be a finite collection of definable submanifold of T ∗S.
If Φ is submersive, then the set

M(S,A) = {t ∈ T : dft|S is transverse to A in T ∗S}
is a definable set and dim(T \ M(S,A)) < dim T .

To apply Morse theory to definable sets, one needs the following existence theo-
rem:

Theorem 3. Suppose that X is closed. Then there exists a definable Cp Morse
function on X which is proper and has distinct critical values.

Proof. By Corollary 1, there exists a definable Cp Morse function f on X which
is proper. For each S ∈ S, the set of critical points of f |S is finite, because it
is definable and discrete. Let x1, · · · , xp be the critical points of f |S, of all S in
S. Let ε > 0 such that the balls of radius ε B(xi, ε) and B(xj , ε) are disjoint
when i �= j. Let δ > 0 such that for all S ∈ S, ‖d(f |S)(x)‖ > δ, when x in

S ∩∪p
i=1

(
B(xi, ε) \ B(xi,

ε

2
)
)
. Choose a definable Cp function λ : Rn → R, such

that

λ is vanishing on Rn \ ∪p
i=1B(xi, ε),

‖dλ(x)‖ < δ, when x ∈ ∪p
i=1B(xi, ε),

λ|B(xi,
ε
2
) = ci, with c1, · · · , cp satisfying: f(xi) + ci �= f(xj) + cj , for i �= j.

It is easy to check that f + λ satisfies the required properties of the theorem. �
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