The Existence of Morse Functions on Sets Definable in O-minimal Structures

Ta Lê Loi Department of Mathematics University of Dalat Dalat - Vietnam

Abstract – In this note we present an application of the existence of Whitney stratification of sets definable in o-minimal structures to prove the existence of Morse functions on definable sets.

Morse theory is the study of the shape of a space via data given by Morse function defined on the space. For Morse theory of smooth manifolds we refer readers to the book by Milnor [M], for Morse theory of stratified spaces we refer to Goresky's and MacPherson's [GM]. [GM] proves the existence of Morse functions on closed Whitney stratified subanalytic sets. In this note we prove similar results for definable sets in o-minimal structures. Note that the spiral $\{(x, y) \in \mathbf{R}^2 : x = e^{-\varphi} \cos \varphi, y = e^{-\varphi} \sin \varphi, \varphi \ge 0\}$ or the oscillation $\{(x, y) \in \mathbf{R}^2 : y = x \sin \frac{1}{x}, x > 0\}$ has no Morse functions.

1. O-minimal structures. A *structure* on the real field $(\mathbf{R}, +, \cdot)$ is a sequence $\mathcal{D} = (\mathcal{D}_n)_{n \in \mathbf{N}}$ such that the following conditions are satisfied for all $n \in \mathbf{N}$:

- \mathcal{D}_n is a Boolean algebra of subsets of \mathbf{R}^n .
- If $A \in \mathcal{D}_n$, then $A \times \mathbf{R}$ and $\mathbf{R} \times A \in \mathcal{D}_{n+1}$.
- If $A \in \mathcal{D}_{n+1}$, then $\pi(A) \in \mathcal{D}_n$, where $\pi : \mathbf{R}^{n+1} \to \mathbf{R}^n$ is the projection on the first *n* coordinates.
- \mathcal{D}_n contains $\{x \in \mathbf{R}^n : P(x) = 0\}$, for every polynomial $P \in \mathbf{R}[X_1, \cdots, X_n]$.

Structure \mathcal{D} is said to be *o-minimal* if

• Each set in \mathcal{D}_1 is a finite union of intervals and points.

A set belonging to \mathcal{D} is said to be *definable* (in that structure). *Definable maps* in structure \mathcal{D} are maps whose graphs are definable sets in \mathcal{D} .

The theory of o-minimal structures is a generalization of semialgebraic and subanalytic geometry. For the details we refer readers to surveys [D] and [DM]. In this note we fix an o-minimal structure on $(\mathbf{R}, +, \cdot)$. "Definable" means definable in this structure. Let p be a positive integer $p \ge 2$.

2. Stratifications. A definable C^p Whitney stratification of $X \subset \mathbf{R}^n$ is a partition \mathcal{S} of X into finitely many subsets, called strata, such that:

- Each stratum is a C^p submanifold of \mathbf{R}^n and also a definable set.
- For every $S \in \mathcal{S}, \overline{S} \setminus S$ is a union of some of the strata.
- For every $S, R \in \mathcal{S}$, if $S \subset \overline{R} \setminus R$, then (S, R) satisfies Whitney's conditions A and B (defined in [W]).

We say that stratification S is *compatible with* a class A of subsets of \mathbb{R}^n , if for each $S \in S$ and $A \in A$, $S \subset A$ or $S \cap A = \emptyset$.

The following theorem is proved in [L]

Theorem 1. Given a finite collection \mathcal{A} of definable sets in \mathbb{R}^n , there exists a definable C^p Whitney stratification of \mathbb{R}^n compatible with \mathcal{A} .

3. Tangents to definable sets. Let X be a definable subset of \mathbb{R}^n . Let \mathcal{S} be a C^p Whitney stratification of X.

For $S \in \mathcal{S}$, the *conormal bundle* of S in \mathbb{R}^n is defined by

$$T_S^* \mathbf{R}^n = \bigcup_{p \in S} \{ \xi_p \in T_p^* \mathbf{R}^n : \xi_p |_{T_p S} = 0 \}$$

Note that $T_S^* \mathbf{R}^n$ is a closed definable submanifold of $T^* \mathbf{R}^n$ and of dimension n. A generalized tangent space Q at $p \in S$ is any plane of the form

$$Q = \lim_{x \to p} T_x R$$

where $R \in \mathcal{S}$ and $S \subset \overline{R}$.

The cotangent vector ξ_p is *degenerate* if there exists a generalized tangent space Q at $p, Q \neq T_p S$ such that $\xi_p|_Q = 0$.

Proposition 1. The set of degenerate cotangent vectors which are conormal to S is a conical definable set of dimension $\leq n-1$.

Proof. Let R be a stratum in S with $S \subset \overline{R} \setminus R$, and dim R = r. Consider the mapping

 $g: R \to G_r(\mathbf{R}^n)$, defined by $g(x) = (x, T_x R)$

The graph g of this mapping is a definable set of dimension r. So its closure \overline{g} in $\mathbf{R}^n \times G_r(\mathbf{R}^n)$ is a definable set, and hence $\dim(\overline{g} \setminus g) \leq r - 1$. Let

$$A_R = \{ (\xi, p, Q) \in T_S^* \mathbf{R}^n \times R \times G_r(\mathbf{R}^n) : (p, Q) \in \overline{g} \setminus g, \xi_p |_Q = 0 \}$$

Then A_R is definable. For each $(p, Q) \in \overline{g} \setminus g$ the fiber $A_R \cap T_p^* \mathbf{R}^n \times (p, Q)$ has dimension $\leq n - r$. Hence, dim $A_r \leq \dim(\overline{g} \setminus g) + (n - r) = n - 1$.

Since there is a finite number of strata R in S such that $S \subset \overline{R} \setminus R$, the set of degenerate cotangent vectors which are conormal to S is of dimension $\leq n-1$

4. Morse functions on definable sets. Let X be a definable subset of \mathbb{R}^n . Fix a definable C^p Whitney stratification \mathcal{S} of X.

A Morse function $f: X \to \mathbf{R}$ is the restriction of a C^p function $f: \mathbf{R}^n \to \mathbf{R}$ such that

- For each $S \in \mathcal{S}$, the critical points of $f|_S$ are nondegenerate, i.e. if dim $S \ge 1$, the Hessian of $f|_S$ at each critical point is nonsingular.
- For every critical $p \in S$ of $f|_S$, and for each generalized tangent space Q at p such that $Q \neq T_p S$, $d\tilde{f}(p)|_Q \neq 0$, i.e. $d\tilde{f}(p)$ is a nondegenerate cotangent vector.

Note that the definition depends on the stratification of X.

Let T be a definable C^p manifold. Let $F: T \times \mathbf{R}^n \to \mathbf{R}$, $F(t, x) = f_t(x)$ be a definable C^p function. Define $\Phi: T \times \mathbf{R}^n \to T^*\mathbf{R}^n$ by $\Phi(t, x) = d(f_t)(x)$. Consider the set of ' Morse parameters' $M(F, X) = \{t \in T : f_t|_X \text{ is a Morse function }\}$ Note that M(F, X) is a definable set.

Theorem 2. If Φ is a submersion, then $\dim(T \setminus M(F, X)) < \dim T$

Proof. For each $S \in \mathcal{S}$, consider the following sets

 $M_1 = M_1(S) = \{t \in T : f_t|_S \text{ has nondegenerate critical points}\}, \text{ and}$ $M_2 = M_2(S) = \{t \in T : df_t(p) \text{ is a nondegenerate covector for each } p \in S\}.$

It is easy to check that M_1 and M_2 are definable sets. Since the collection S is finite, it is sufficient to prove that $\dim(T \setminus M_2 \cap M_2) < \dim T$. Let

 $D = D(S) = \{\xi \in T_S^* \mathbf{R}^n : \exists p \in S, \xi_p \text{ is a degenerate cotangent vector } \}$

Then D is a definable set. Let $\Phi_S : T \times S \to T^*S$, $\Phi_S(t,x) = (df_t|S)(x)$, and $\pi : T \times \mathbf{R}^n \to T$ be the natural projection. Since Φ is submersive, Φ_S is transverse to the zero section S of T^*S . So the set $V_1 = \Phi_S^{-1}(S)$ is a definable submanifold of $T \times S$. Furthermore, $t \in M_1$ if and only if t is not a critical value of $\pi|_{V_1}$. By Sard's theorem, $\dim(T \setminus M_1) < \dim T$.

On the other hands, Φ is transverse to each stratum of any Whitney stratification of D, and by Proposition 1, dim $D \leq n-1$, the set $V_2 = \Phi^{-1}(D)$ is a definable set of dimension $\leq \dim T - 1$. So dim $(T \setminus M_2) = \dim \pi(V_2) \leq \dim T - 1$. The theorem follows. \Box Corollary 1. Consider the square of distance function

$$F: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}, \quad F(t, x) = \|t - x\|^2$$

Let $M = \{t \in \mathbf{R}^n : F(t, .) \text{ is a Morse function on } X\}$. Then M is a definable set and dim $(\mathbf{R}^n \setminus M) < n$

Corollary 2. Let $f : \mathbf{R}^n \to \mathbf{R}$ be a definable C^p function. Consider the linear deformations of f: f + l, where l is a linear form of \mathbf{R}^n . Let

 $M = \{ l \in \mathbf{R}^{n*} : f + l \text{ is a Morse function on } X \}.$

Then M is a definable set and $\dim(\mathbf{R}^{n*} \setminus M) < n$.

Remark. Using the same arguments as in the proof of Theorem 2, we have the following Propositon:

Proposition 2. Let \mathcal{A} be a finite collection of definable submanifold of T^*S . If Φ is submersive, then the set

$$M(S, \mathcal{A}) = \{t \in T : df_t|_S \text{ is transverse to } \mathcal{A} \text{ in } T^*S\}$$

is a definable set and $\dim(T \setminus M(S, \mathcal{A})) < \dim T$.

To apply Morse theory to definable sets, one needs the following existence theorem:

Theorem 3. Suppose that X is closed. Then there exists a definable C^p Morse function on X which is proper and has distinct critical values.

Proof. By Corollary 1, there exists a definable C^p Morse function f on X which is proper. For each $S \in \mathcal{S}$, the set of critical points of $f|_S$ is finite, because it is definable and discrete. Let x_1, \dots, x_p be the critical points of $f|_S$, of all S in \mathcal{S} . Let $\varepsilon > 0$ such that the balls of radius $\varepsilon \ B(x_i, \varepsilon)$ and $B(x_j, \varepsilon)$ are disjoint when $i \neq j$. Let $\delta > 0$ such that for all $S \in \mathcal{S}$, $||d(f|_S)(x)|| > \delta$, when x in $S \cap \bigcup_{i=1}^p \left(B(x_i, \varepsilon) \setminus B(x_i, \frac{\varepsilon}{2}) \right)$. Choose a definable C^p function $\lambda : \mathbb{R}^n \to \mathbb{R}$, such that

 $\lambda \text{ is vanishing on } \mathbf{R}^n \setminus \bigcup_{i=1}^p B(x_i, \varepsilon), \\ \|d\lambda(x)\| < \delta, \text{ when } x \in \bigcup_{i=1}^p B(x_i, \varepsilon), \\ \lambda|_{B(x_i, \frac{\varepsilon}{2})} = c_i, \text{ with } c_1, \cdots, c_p \text{ satisfying: } f(x_i) + c_i \neq f(x_j) + c_j, \text{ for } i \neq j.$

It is easy to check that $f + \lambda$ satisfies the required properties of the theorem. \Box

References

- [D] L.van den Dries, Tame Topology and O-minimal Structures, LMS Lecture Notes, Cambridge University Press, 1997.
- [DM]L.van den Dries and C.Miller, Geometric Categories and O-minimal Structures, Duke Math. J. 84, No 2(1996), 497-540.
- [GM]M.Goresky and R.MacPherson, Stratified Morse Theory, Springer-Verlag, 1988.
- [L] T.L.Loi, Verdier Stratifications and Thom Stratifications in O-minimal Structures, Illinois J. Math. 42, No 2 (1998), 347-356.
- [M] J.Milnor, Morse Theory, Princeton University Press, 1963
- [W] H.Whitney, Tangents to an Analytic Variety, Ann. of Math. 81 (1965), 496-549.

e-mail: taleloi@hotmail.com