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Abstract

Let X ⊂ (IRn, 0) be a germ of a set at the origin. We suppose X is described by a
subalgebra, Cn(M), of the algebra of germs of C∞ functions at the origin (see 2.1). This
algebra is quasianalytic. We show that the germ X has almost all the properties of germs
of semianalytic sets. In the end we study the projection of such germs and prove a version
of Gabrielov’s theorem.

Introduction

The aim of this paper is to study germs, at the origin in IRn, of some sets defined as finite
union of sets of the form:

{x / ϕ0(x) = 0, ϕ1(x) > 0, . . . , ϕq(x) > 0 },

where ϕ0, . . . , ϕq, are elements of a subalgebra, say Cn(M), of the algebra of C∞ germs at
the origin. We will call those germs: quasi semianalytic germs and their projections quasi
subanalytic. We suppose that our algebra contains the germs of real analytic functions at the
origin and it is quasianalytic, that is, if f ∈ Cn(M) such that its Taylor’s series at the origin,
say T0f , is zero, then the germ f is null. It ’s well know, [3], that the Weierstrass division
theorem does not hold in Cn(M), and we don’t know if this algebra is noetherian or not; so we
can’t completely follow the methods used in the classical case, i.e when Cn(M) is the algebra
of analytic germs, to study quasi semi analytic germs and their projections.

By using an elementary blowings up of IRn with smooth center, we can prove that, after
a finite number of blowings up, we can transform any f ∈ Cn(M), modulo a product by an
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invertible element in Cn(M), to a monomial (proposition 7). This implies that Cn(M) is topo-
logically noetherian that is, every decreasing sequence of germs is stationary. This property is
enough for us to extend some well know properties of semianalytic germs ( stratification, locally
finite number of connected components,...) to the quasi semianalytic germs. We prove also that
the closure and each connected component of a quasi semianalytic germ is quasi semianalytic.
Tarski-Seidenberg theorem is not true in this class of germs, so in section 8 we study the quasi
subanalytic germs. The main results are theorem 7 which gives a uniform bound of the number
of connected components of the fibers of a projection restricted to a bounded quasi subanalytic
set and lemma 7 which shows that the dimension of quasi semianalytic germ is well behaved.
At the end we prove the complement theorem for quasi subanalytic germs.

There is a priprint of J.P. Rolin, P. Speissegger and A.J. Wilkie entitled ”Quasianalytic
Denjoy-Carleman class and o-minimality” where is proved also the complement theorem. Our
approach is different:
The reader can see that the normalization algorithm used in this priprint in section 2 is more
complicate than the proof of our proposition 7. The way that we use for introducing the class
of functions is more conveniently and we can have almost all properties, that we use, of such
functions by this way. We have also all the theory of quasi semi analytic germs (theorem 5,
theorem 6). We prove also the £ojasiewicz inequalities for functions in this class by the same
way that used in [10] for the Gevrey class.

The author thanks Professor A.J. Wilkie for his comments.

1 background .

Let n be a positive integer, α = (α1, . . . , αn) ∈ INn, x = (x1, . . . , xn) the canonical coordinates

on IRn. We use the standard notations: | α |= α1 + . . .+ αn, α! = α1! . . . αn!, Dα = ∂|α|

∂x
α1
1

...∂x
αn
1

,

and the preorder on INn is define by α = (α1, . . . , αn) ≤ β = (β1, . . . , βn) ⇐⇒ αi ≤ βi , ∀i =
1, . . . , n.
We say that a real function, m, of one real variable is C∞ for t� 0, if there is b > 0 such that
m is C∞ in the interval [b,∞[.
In all the following; m will be a C∞ function for t� 0; m, m′, m′′ > 0, limt→∞m

′(t) = ∞ and
there is δ > 0 such that m′′(t) ≤ δ for t � 0. We put M(t) = em(t). If U ⊂ IRn is an open
subset, recall that E(U) denotes the algebra of C∞ on U .

2 Functions of the class M

Definition 1 A function f ∈ E(U) is said to be in the class M , if for each compact K ⊂ U ,
there are CK > 0, ρK > 0, such that, ∀x ∈ K:

| Dαf(x) |≤ CKρ
|α|
K M(| α |), for | α |� 0.

We let CU(M) be the collection of all C∞ functions on U which are in the class M .
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Remark 1 Let M1(t) = crtM(t), where c > 0, r > 0; we easily see that a function f ∈ E(U) is
in the class M if and only if f is in the class M1; hence the class does not change when m(t) is
replaced by m(t) + at+ b, a, b ∈ IR; so we will suppose, in the following, that m(0) = 0 without
changing the class.

In the following, if m : [b,∞[→ IR, m(b) = 0, b ≥ 0 and m, m′, m′′ > 0 in the interval [b,∞[;
we still denote by m the extension of m to [0,∞[ by sitting m(t) = 0 if t ≤ b. We see that this
extension is convex

Lemma 1 For all j ∈ IN , j � 0, there exists Cj > 0, ρj > 0, with:

M(p + j) ≤ Cjρ
p
jM(p), , ∀p ∈ IN, p� 0.

Proof.
There exists θ ∈]p, p+j[ such that m(p+j)−m(p) = jm′(θ). Since m′′ ≤ δ; there exists C > 0,
with m′(t) ≤ δt+C. We have m′(θ) ≤ m′(p+ j) ≤ δp+ (C + δj). Put ρj = ejδ, Cj = ej(δj+C);
then we have M(p + j) ≤ Cjρ

p
jM(p).

Lemma 2 CU(M) is an algebra, closed under differentiation.

Since m is convex and m(0) = 0; we have, if 0 ≤ j ≤ n, m(n−j) ≤ n−j
n
m(n) andm(j) ≤ j

n
m(n),

hence m(j) +m(n− j) ≤ m(n) i.e M(n− j)M(j) ≤ M(n). Using this inequality and Leibnitz
formula, we deduct the first statement of the lemma.
The second statement follows immediately from lemma 1.

The following theorem gives a one-dimensional characterization of functions of the class M
and can be considered as an extension of a result in [4].
Let Ω be an open subset of the sphere Sn−1 ⊂ IRn ( n > 1) and f ∈ E(U). We suppose that
the following condition, on f , is satisfied :
For each ξ ∈ Ω and each compact subset K ⊂ U , there exists a constant CK,ξ > 0 such that:

|
dm

dtm
f(x + tξ)|t=0 |≤ CK,ξM(m) ∀x ∈ K and ∀m ∈ IN.

Theorem 1 Let f ∈ E(U) and suppose that the last condition is satisfied; then f ∈ CU(M).

Proof.
Let K ⊂ U be a fixed compact. For each ξ ∈ Ω, we put:

θm(ξ) = Sup
x∈IK

| dm

dtm
f(x+ tξ)|t=0 |

M(m)
, m ∈ IN,

and
θ(ξ) = Sup

m∈IN
θm(ξ)

θ is a lower semicontinuous function; by Baire’s theorem, there exist Ω1 ⊂ Ω an open subset
and a constant C1 > 0 such that:

∀ξ ∈ Ω1, θ(ξ) ≤ C1.
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We have:
∂mf

∂ξm
(x) :=

dm

dtm
f(x+ tξ)|t=0 =

∑

|ω|=m

Dωf(x)
m!

ω1! . . . ωn!
ξω1

1 . . . ξωn
n .

Since Ω1 is open in Sn−1, by a result in [5], there exists a constant C2 > 0, such that:

Sup
|ξ|=1

|
∂mf

∂ξm
(x) |≤ Cm

2 Sup
ξ∈Ω1

|
∂mf

∂ξm
(x) | .

In view of Bernstein’s inequality; there exists a constant C3 > 0, such that:

Cm
3 Sup

|ω|=m

| Dωf(x) |≤ Sup
|ξ|=1

|
∂mf

∂ξm
(x) | .

Put ρ = C2

C3
, we have:

Supm Sup
x∈K

|ω|=m

| Dωf(x) |

M(m)ρm
<∞,

hence f ∈ CU(M).

Remark 2 If M(t) = tt i.e m(t) = tlogt; we have the analytic class. In the following we will
consider M such that the class CU(M) contains strictly the analytic class. We take then m of
the form:

m(t) = tlogt+ tµ(t),

where µ is increasing and limt→∞µ(t) = ∞. In order to have m′′(t) ≤ δ, we must suppose that
µ(t) ≤ at for t� 0 (a > 0). We suppose also that µ is in a Hardy field.

Proposition 1 CU(M) is closed under composition.

Proof.
Since t → tµ(t) is convex; the proposition follows from [3]. Proposition 1 shows that we can
define CX(M) by means of local coordinate system when X is a real analytic manifold.

Let t→M(t) as above and for s ∈ IR+, put:

Λ(s) = inft≥t0M(t)s−t

where t0 is a fixed positive real.
The infimum is reached at a point t where m′(t) = logs, and this point is unique since m′ is
increasing and limt→∞m

′(t) = ∞.
we define s→ ω(s) by Λ(s) = e−ω(s), we have:

{

s = em′(t)

ω(s) = tm′(t) −m(t)
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or
{

s = eteµ(t)+tµ′(t)

ω(s) = t + t2µ′(t)

Since µ′ > 0, then ω > 0 and limt→∞ω(s) = ∞; we can easily inverse the last system; we have
then:

{

t = sω′(s)
m(t) = sω′(s)logs− ω(s)

Since m(t) = tlogt+ tµ(t), we have

{

t = sω′(s)

µ(t) = −logω′(s) − ω(s)
sω′(s)

We see that ω is increasing and when t → ∞, sω′(s) → ∞ and −logω′(s) − ω(s)
sω′(s)

→ ∞, so ω′

is decreasing and when s→ ∞, ω′(s) → 0.
For s > 0 let λ(s) = infn∈IN , n≥t0M(n)s−n

Lemma 3 For s� 0, we have:

e−δλ(s) ≤ Λ(s) ≤ λ(s)

Proof.
Put α(t) = m(t) − tlogs; we have Λ(s) = eα(t0) where α′(t0) = 0; then λ(s) = eα(n0) with
| n0 − t0 |< 1. Note that α(n0) − α(t0) = α′((1 − θ)n0 + θt0), 0 < θ < 1, since m′′ ≤ δ and
| α′((1 − θ)n0 + θt0) − α(t0) |≤ δ, we have e−δλ(s) ≤ Λ(s), the second inequality is trivial.

Proposition 2 The following three statements are equivalent:

(i)
∑

n
M(n)

M(n+1)
= ∞,

(ii)
∫ ∞
s0

ω(s)
s2 ds = ∞ , for some s0 > 0,

(iii)
∫ ∞
s0

Logλ(s)
s2 ds = −∞ , for some s0 > 0,

Proof
We have m′(n) ≤ m(n+ 1)−m(n) ≤ m′(n+ 1), hence

∑

n
M(n)

M(n+1)
= ∞ ⇐⇒

∫ ∞
t0
e−m′(t)dt = ∞.

Recall that by above,
∫ ∞
t0
e−m′(t)dt =

∫ ∞
s0

d(sω′(s))
s

ds. Since ω′(s) → 0 when s → ∞ and it is

decreasing then
∫ ∞
s0

d(sω′(s))
s

ds = ∞ ⇐⇒
∫ ∞
s0

ω(s)
s2 ds = ∞, which proves (i) ⇔ (ii). By lemma 3,

we have −ω(s)
s2 ≤ Logλ(s)

s2 , hence (ii) ⇔ (iii).

Definition 2 We said that CU(M) is quasianalytic, if for any f ∈ CU(M) and any x ∈ U the
Taylor series Txf of f at x uniquely determines f around x.
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By a well know result of Donjoy-Carleman, CU(M) is quasianalytic if and only if we have:

∑

n

M(n)

M(n + 1)
= ∞.

If the class is quasianalytic; proposition 2 tell us that the function ω(s) tend to ∞, when
s→ ∞, rapidly as sq, for all q < 1. Probably the converse of this statement is true.
In the case of the analytic class (m(t) = t log t), we have ω(s) = sω ′(s), hence ω(s) = Cs. The
converse is also true:

Proposition 3 If ω(s) ' s when s→ ∞; then any f ∈ CU(M) is analytic.

Proof.
By hypothesis, there exist c > 0 and A > 0, such that, ∀s ≥ A, we have ω(s) ≥ C.s; then:

∀m ∈ IN, ∀s ≥ A, e−ω(s) ≤
c−m

sm
m!.

Since m′(t) → ∞ when t → ∞; there exists N0 ∈ IN , such that em′(t) ≥ A, ∀t > N0 (we can

suppose N0 > t0). Let r > N0 and put s = em′(r); then s ≥ A and M(r)
sr ≤ inf

n≥t0

M(n)
sn . By

lemma 3, we have, ∀m > N0:

M(n)

sn
≤ eδe−ω(s) ≤ eδC

−m

sm
m!,

hence M(m) ≤ eδ

Cmm!. This proves the result.

Proposition 4 Let µ(t) = loglogt i.e m(t) = tlogt+ tloglogt; then the class CU(M) is quasi-
analytic (recall that M(t) = em(t)).

Proof .

We may show that
∫ ∞
s0

ω(s)
s2 ds = ∞. We have s = em′(t) = etlogte

1

logt ∼ etlogt, and ω(s) =

tm′(t)−m(t) = t+ t
logt

∼ t ∼ s
elogs

, then ω(s)
s2 ∼ 1

es(logs)
when s→ ∞, which shows the proposi-

tion.

From now on we take m(t) = tlogt + tµ(t), µ increasing, µ(t) ≤ at for t � 0, a > 0 ,
and limt→∞µ(t) = ∞.We suppose also that µ is in a Hardy field. Then the class CU(M) is
an algebra, closed under differentiation and composition. We take also µ such that CU(M) is
quasi analytic; for example, take µ(t) = loglogt.

2.1 The ring of germs of quasi analytic functions

Let r > 0, we use the notation ∆n(r) = {x ∈ IRn / | xi |< r, for, 1 ≤ i ≤ n}, if x ∈ IRn,
x = (x′, xn), x′ ∈ IRn−1, and we put Cn,r(M) = C∆n(r)(M). If f ∈ E(∆n(r)), we define, for
ρ > 0,

‖f‖ρ,r,M = Supm Sup
|α|=m

x∈∆n(r)

| Dαf(x) |

M(| α |)ρ|α|
∈ [0,∞]
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and we note Cn,ρ,r(M) = {f ∈ Cn,r(M) / ‖f‖ρ,r,M <∞}. Clearly Cn,ρ,r(M) is a Banach space,
let Cn(M) be the inductive limit of Cn,ρ,r(M) when r → 0, ρ→ ∞. We have an injection:

Cn(M) → IR[[X1, . . . , Xn]]

defined by f → T0f .
In general, we will not distinguish notationaly between the germ of a function and a represen-
tative of the germ.

Lemma 4 The algebra Cn(M) is local and its maximal ideal is generated by (x1, . . . , xn).

Proof.
Let f ∈ Cn(M) such that f(0) = a0 6= 0; put ρ =| a0 |> 0 and ϕ(ξ) = 1

ξ+a0
. The function

ϕ is analytic in {ξ ∈ IR/ | ξ |< ρ}. Put g = f − a0; g ∈ Cn(M) and g(0) = 0. There exists
η > 0 such that g([−η, η]n) ⊂ {ξ ∈ IR/ | ξ |< ρ}. By proposition 1, ϕ ◦ g ∈ Cn(M), hence
1
f
∈ Cn(M). The algebra is then local and its maximal ideal is M = {f ∈ Cn(M)/f(0) = 0}.

Let f ∈ M, then f(x) =
∑n

j=1 xjgj(x), where gj(x) =
∫ 1
0

∂f
∂xj

(tx)dt; we easily see that gj ∈

Cn(M), ∀j = 1, . . . , n.

Corollory 1 If xα = xα1

1 . . . xαn
n divides f ∈ Cn(M) in the ring of formal power series at

0 ∈ IRn, then xα divides f in Cn(M).

Proof.
It is an immediate consequence of the previous lemma.

Proposition 5 Let f ∈ Cn,ρ1,r1
(M) − {0} such that f(0) = 0. For each ε > 0, there exist

r′ > 0, ρ′ > 0, r′ < r1, ,ρ
′ > ρ1, such that, for all r < r′ and ρ > ρ′, we have ‖f‖ρ,r,M ≤ ε.

Proof.
By hypothesis, we have:

Supm Sup
|ω|=m

x∈∆n(r1)

| Dωf(x) |

M(| ω |)ρm
1

<∞.

Put

R = Supm6=0 Sup
|ω|=m

x∈∆n(r1)

| Dωf(x) |

M(| ω |)ρm
1

.

Since f(0) = 0 and f 6= 0, then R 6= 0. Let ε > 0 ( we can suppose ε < 1), there exists ρ′ > ρ1

such that for all ρ > ρ′, (ρ1

ρ
)m ≤ ε

R
, ∀m ∈ IN∗. We have then:

Supm6=0 Sup
|ω|=m

x∈∆n(r1)

| Dωf(x) |

M(| ω |)ρm
≤ ε.

Since f(0) = 0, there exists r′ < r1 such that for all r ≤ r′, | f(x) |≤ ε, ∀x ∈ ∆n(r), hence
‖f‖ρ,r,M ≤ ε.
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3 The implicit function theorem

It was proved in [7] that if the sequence M(n) = Mn satisfies the following conditions:

(1) (
Mq

q!
)

1

q−1 ≤ C(
Mp

p!
)

1

p−1 , 2 ≤ q ≤ p

and

(2) M0 = M1 = 1

where C > 0 is a constant; then the implicit function theorem holds in the ring Cn(M).
Recall that we have M(t) = em(t), m(t) = t log t+ tµ(t). We put g(t) = tµ(t). By remark 1, we
can suppose M(1) = 1; we see that the condition (1) is satisfied if

(∗) ∀p ≥ q ≥ 2, (p− 1)g(q) ≤ C(q − 1)g(p).

for a constant C > 0.
We remark that (µ is increasing):

∀p ≥ 1, pg(p− 1) ≤ (p− 1)g(p).

By repeating the processes, we prove (*). We deduct that the implicit function theorem holds
in Cn(M).

4 Algebraic Properties

It is well know that the Weierstrass preparation theorem does not hold in Cn(M) [3]. We don’t
know if Cn(M) is a noetherian ring ( n > 1). In this paragraph we will show that Cn(M)
has a weak noetherian property which we call topological noetherianity. This property will be
enough for us to extend some well know properties of semianalytic germs to the case where the
germs are defined by equations and inequations of elements in Cn(M).

We shall use a very elementary version of resolution of singularities consisting of blowings-up
of a neighborhood of 0 ∈ IRn, n > 1, say V , either with center an open subset, W ⊂ IRn−p, p <
n, such that {0} ×W ⊂ V , or with center {0} ⊂ IRn.

4.1 Blowings-up

For each positive integer r, let IP r−1(IR) denote the (r − 1) dimensional projective real space
of lines through the origin in IRr. Let σ : IRr − {0} → IP r−1(IR) be the canonical surjection
which associates to each t ∈ IRr − {0} the line, say σ(t), in IRr passing by 0 and t. For each
i = 1, . . . , r, let Vi = {x = (x1, . . . , xr) / xi 6= 0} and Ui = σ(Vi); Ui is a coordinate chart of
IP r−1(IR) with coordinates:

ϕi : Ui → IRr−1

given by ϕi(σ(t)) = ( t1
ti
, . . . , ti−1

ti
, tt+1

ti
, . . . , tr

ti
).
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Definition 3 Let V be an open neighborhood of 0 in IRr. Put

Z = {(x, σ(t)) ∈ V × IP r−1(IR) / x ∈ σ(t)}

and let π : Z → V denote the mapping π(x, σ(t)) = x. The mapping π is called the blowing-up
of V with center 0.

π is proper, π restricts to a homeomorphism on V − {0} and π−1(0) = IP r−1(IR).
We can cover Z with coordinate charts

Zi = Z ∩ V × σ(Ui)

with coordinates ψi : Zi → IRr given by:

ψi(x, σ(t)) = (
t1
ti
, . . . ,

ti−1

ti
, xi,

tt+1

ti
, . . . ,

tr
ti

).

In these local coordinates, π is given by:

π(y1, . . . , yr) = (y1yi, . . . , yi−1yi, yi, yi+1yi, . . . , yryi).

Let n > r be an integer and W an open subset of IRn−r = {x = (x1, . . . , xn) ∈ IRn / x1 =
. . . xr = 0}. Let w = (w1, . . . , wn−r) be the coordinates of a point in IRn−r. The mapping
π̃ = π × idW : Z̃ = Z ×W → V ×W is called the blowing-up of V ×W with center {0} ×W .
We can cover Z̃ with coordinate charts:

Z̃i = Z̃ ∩ V × σ(Ui) ×W

with coordinates ϕ̃i : Z̃i → V ×W given by:

ϕ̃i(x, σ(t), w) = (
t1
ti
, . . . ,

ti−1

ti
, xi,

ti+1

ti
, . . . ,

tr
ti
, w).

We put ϕ̃i = (y1, . . . , yr, w
′).

Recall that En is the ring of the germs at 0 ∈ IRn of C∞ functions. Let a ∈ π̃−1(0) ∩ Z̃i and
f ∈ En; then the Taylor expansion of f ◦ π̃ at a is given by formal substitution of w = w ′,
Xi = yi, and Xl = yi(yl(a) + yl), l 6= i, in the Taylor expansion of f at 0. In particular if
f̂ ∈ IR[[X,W ]] is a formal series, we will denote by f̂ ◦ π̂a the formal series obtained by formal
substitution of w = w′, Xi = yi, and Xl = yi(yl(a) + yl), l 6= i, in the formal series f̂ .
We need the following lemma proved in [10] but for completeness we will give the proof.

Lemma 5 Let Ω ⊂ INn, n > 1, be a finite set and put F = {Xα = Xα1

1 . . .Xαn
n / α =

(α1, . . . , αn) ∈ Ω }. Let V be an open neighborhood of 0 in IRn. Then there exist a real analytic
manifold Z, π : Z → V a proper real analytic surjective mapping such that:

a) For all a ∈ π−1(0) there is U a chart, a ∈ U , with coordinates y = (y1, . . . , yn) such that
the set {µα ∈ INn /Xα ◦ π̂a = yµα } is totally ordered by the product order on INn.

b) π|U : U → V is a composition of a finite sequence of blowings-up.
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Proof.
We proceed by induction on n ≥ 2. We can suppose that the cardinal of Ω is equal to 2. After
making a finite number of blowings-up of V with center the origin of IR2, we can easily see that
the lemma is true for n = 2. Suppose n ≥ 3, after dividing each monomial by the common
factors, we can also suppose that there is r ∈ IN , r ≤ n, such that the monomials are of the
form: Xα1

1 . . .Xαr
r and X

αr+1

r+1 . . .Xαn
n with αn = mini=1,...,nαi (after making a permutation on

(X1, . . . , Xn)).
We proceed by induction on αn; if αn = 0 we are done by the inductive hypothesis on n.
Suppose αn > 0 and consider the two monomials A = Xα1

1 . . .Xαr
r and B = X

αr+1

r+1 . . .X
αn−1

n−1 ; by
the induction hypothesis on n , if V ′ is a neighborhood of 0 ∈ IRn−1, there exist a real analytic
manifold M , π : M → V ′ a proper real analytic surjective mapping such the conditions a)
and b) of lemma are satisfied. Let a ∈ π−1(0), there is U ′ a chart, a ∈ U ′, with coordinates

y = (y1, . . . , yn−1) such that A◦π̂a = yβ1

1 . . . y
βn−1

n−1 and B◦π̂a = y
β′
1

1 . . . y
β′

n−1

n−1 with (β1, . . . , βn−1) ≤

(β ′
1, . . . , β

′
n−1) or (β ′

1, . . . , β
′
n−1) ≤ (β1, . . . , βn−1). Consider the two monomials yβ1

1 . . . y
βn−1

n−1 and

y
β′
1

1 . . . y
β′

n−1

n−1 X
αn
n on U ′ × IR. If (β1, . . . , βn−1) ≤ (β ′

1, . . . , β
′
n−1) we are done. We suppose

(β ′
1, . . . , β

′
n−1) < (β1, . . . , βn−1); after dividing by common factors, we are in the situation

:yγ1

1 . . . y
γn−1

n−1 and Xαn
n . If one of the γi < αn, then we use the second induction (induction on

αn). Suppose γi ≥ αn, ∀i = 1, . . . , n − 1. We will blow up U ′ × IR with center y1 = Xn = 0.
Let π̃ : Ũ → U ′ × IR this blowing-up. We can cover Ũ by two coordinate charts: Ũ1 and Ũ2,
with respect to these charts, π̃ is given, respectively, by

π̃(y1, . . . , yn) = (y1, y2, . . . , yn−1, yny1)

and
π̃(y1, . . . , yn) = (yny1, y2, . . . , yn−1, yn)

In the chart Ũ1 ours monomials where of the form:

yγ1−α
1 y2 . . . y

γn−1

n−1 , y
αn

n

By continuing, we will have γ1−αn < αn and the inductive hypothesis on infγi will proves the
lemma. In the second chart Ũ2, the result is true since (γ1, . . . , γn−1, γ1, ) ≥ (0, . . . , 0, αn).

Proposition 6 Let f̂ ∈ IR[[X1, . . . , Xn]] and V ⊂ IRn an open neighborhood of 0. There exist
Z a real analytic manifold, π : Z → V a proper real analytic surjective mapping with:
∀a ∈ π−1(0) admits a coordinate neighborhood U with coordinates y = (y1, . . . , yn), such that
f̂ ◦ π̂a = yα1

1 . . . yαn
n ĥ, where ĥ ∈ IR[[Y1, . . . , Yn]] a unit.

Proof.
Let us remark that we can write f̂ on the form:

f̂ =
∑

ω∈Ω⊂INn

f̂ωX
ω,

where Ω ⊂ INn is a finite set and f̂ω ∈ IR[[X1, . . . , Xn]] is a unit for each ω ∈ Ω. By lemma 5
there exist a real analytic manifold Z, π : Z → V a real analytic proper surjective mapping such
that: for all a ∈ π−1(0) admits a coordinate neighborhood U with coordinates y = (y1, . . . , yn)
and the set {µω /X

ω ◦ π̂a = yµω } is totally ordered. Let µω0
the least element. We have

f̂ ◦ π̂a =
∑

ω∈Ω⊂INn f̂ω ◦ π̂aX
ω ◦ π̂a = yµω0

∑

ω∈Ω⊂INn f̂ω ◦ π̂ay
µω−µω0 , this proves the result.
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Proposition 7 Let f ∈ Cn(M); then there exist V an open neighborhood of 0 ∈ IRn, Z a real
analytic manifold and π : Z → V a proper real analytic surjective mapping with:
∀a ∈ π−1(0) admits a coordinate neighborhood U , with coordinates y = (y1, . . . , yn), such that
f ◦ π|U(y) = yµϕ(y) where µ ∈ INn, ϕ ∈ CU(M) and ϕ(y) 6= 0, ∀y ∈ U .

Proof.
Choose V an open neighborhood of 0 ∈ IRn where f is defined and the proposition 6 can be
applied, there exist Z a real analytic manifold, π : Z → V a proper real analytic surjective
mapping, such that for each a ∈ π−1(0) admits a coordinate neighborhood U , with coordinates
y = (y1, . . . , yn) in which we have T0f ◦ π̂a = yµĥ where ĥ ∈ IR[[y1, . . . , yn]] a unit. Since
f ◦ π|U ∈ CU(M); then corollary 1 implies that f ◦ π|U = yµϕ(y), ϕ(0) 6= 0; which proves the
proposition.

5 Topological noetherianity

Lemma 6 Every decreasing sequence of germs: f−1
1 (0) ⊃ f−1

2 (0) ⊃ . . . f−1
q (0) ⊃ . . ., with

fj ∈ Cn(M) is stationary.

Proof.
By induction on n; the lemma is trivially true for n = 1. Suppose n > 1 and the result holds
for n− 1. According to the proposition 7, there exist V an open neighborhood of 0 ∈ IRn, Z a
real analytic manifold and π : Z → V a proper real analytic surjective mapping such that for
each a ∈ π−1(0) admits a coordinate neighborhood U , with coordinates system y = (y1, . . . , yn)
in which we have f1 ◦ π|U(y) = yµϕ(y) and ϕ(y) 6= 0, ∀y ∈ U . It is enough to prove that the
sequence (fj ◦ π)−1(0) is stationary in a neighborhood for every point a ∈ π−1(0). We can then
suppose that f1(y) = yµ1

1 . . . yµn
n ϕ(y), ϕ(y) 6= 0, ∀y ∈ U . Let J = {j = 1, . . . , n / µj 6= 0}. For

each j ∈ J the sequence (f−1
l (0)∩{y ∈ U / yj = 0 })l is stationary by the inductive hypothesis;

so then our sequence is stationary near a, which proves the lemma.

5.1 M-manifold

Definition 4 An n-dimensional manifold is a hausdorff space with countable basis in which
each point has a neighborhood homeomorph to an open set in IRn. A M-structure on a manifold
Z is a family F = {(Ui, ϕi) / i ∈ I} of homeomorphism ϕi, called local coordinate system, of
open set Ui ⊂ Z on open set Ũi ⊂ IRn such that:

a) If (Ui, ϕi), (Uj, ϕj) ∈ F , then each cartesian component of the map: ϕj◦ϕ
−1
i : ϕi(Ui∩Uj) ⊂

IRn → ϕj(Ui ∩ Uj) ⊂ IRn is in Cϕi(Ui∩Uj)(M).

b) Z = ∪i∈IUi.

A manifold with M-structure is called a M-manifold.
Let Z be a M-manifold and U ⊂ Z an open set. A function ϕ defined in U will be said to be in
CU(M) if for every coordinate system, (Ui, ϕi), the composite function ϕ ◦ϕ−1

i ∈ Cϕi(Ui∩U)(M).
We shall some what denote ϕ ◦ ϕ−1

i by ϕ|Ui∩U .
Let us remark that every real analytic manifold is a M-manifold.

11



Let Y ⊂ Z, we said that Y is a smooth M-submanifold if Y is covered by coordinate charts
U of M , each of which has local coordinates z = (x, y); x = (x1, . . . , xm) , y = (y1, . . . , yp) in
which Y ∩ U = {y1 = . . . = yp = 0}.

Let Z be a M-manifold and Y a closed M-submanifold of Z, we define the blowing-up
π : Z ′ → Z with center Y : Z ′ is a M-manifold and π is a proper map in the class M such that:

1) π restricts to an isomorphism in the class M : Z ′ − π−1(Y ) → Z − Y .

2) Let U ⊂ Z be a coordinate chart with local coordinates in U defined by ϕ : U →
V × W , where U , W are open neighborhoods of the origin in IRp , IRn−p, respectively,
and ϕ(U ∩ Y ) = {0} ×W . Let π0 : V ′ → V be the blowing-up of V with center {0}.
Then there is a isomorphism in the class M : ϕ′ : π−1(U) → V ′ ×W such that:

π0 × idW ◦ ϕ′ = ϕ ◦ π|π−1(U).

Definition 5 Let Z be a M-manifold. Let U be an open subset of Z and let Y be a closed
M-submanifold of U . Let π : Z ′ → Z denote the composition of the blowing-up Z ′ → U of U
with center Y and the inclusion U → Z. We call π a local blowing-up of Z with center Y .

We will consider mappings, π : Z ′ → Z obtained as the composition of a finite sequence
of local blowings-up; i.e. π = π1 ◦ π2 ◦ . . . πk, where, for each i = 1, . . . , k, πi : Zi+1 → Zi is a
local blowing-up of Zi, and Z1 = Z, Zk+1 = Z ′.

6 £ojasiewicz’s inequality

In the following, Z will be a M-manifold, dimZ = n and W an open subset of Z. As an
immediate consequence of proposition 7, we have:

Proposition 8 Let f ∈ CW (M); then each a ∈ W admits an open neighborhood, V , for which
there exist Z ′ a M-manifold, and π : Z ′ → V a proper surjective mapping in the class M , such
that:

i) ∀b ∈ π−1(a) admits a coordinate neighborhood U , with coordinates system y = (y1, . . . , yn)
in which f ◦ π(y) = yµϕ(y), ∀y ∈ U , where ϕ ∈ CU(M) and ϕ(y) 6= 0, ∀y ∈ U .

ii) π|U : U → V is a finite composition of local blowings-up.

Remark 3 We require that the mapping π : Z ′ → V satisfy the following additional condition:
∀b ∈ π−1(a) admits a coordinate neighborhood Ub for which there exist q ∈ IN , ϕ′ : Ub →
ϕ′(Ub) ⊂ V × IP q(IR) an isomorphism in the class M , such that ϕ′(Ub) is a M-submanifold
defined by homogeneous polynomial equations (in homogeneous coordinates of IP q(IR)) whose
coefficients are in CV (M).

A local blowing-up has this property. We can easily see that the composition of two local
blowings-up has also this property. By condition ii) of the last proposition, we see then that π
can be chosen as in the remark.

12



Theorem 2 Let f ∈ CW (M); let us denote by VW (f) = {x ∈ W /f(x) = 0 }. Let g be any
C∞ function on W such that g(x) = 0, ∀x ∈ VW (f). Then, for every compact subset K ⊂ W ,
there exist N > 0, C > 0, such that:

| g(x) |N≤ C | f(x) |, ∀x ∈ K

Proof.
We can suppose that | g(x) |≤ 1, ∀x ∈ K. The question is local W , we may prove:
∀a ∈ W admits a coordinate neighborhood, Va, for which there exist Na > 0, Ca > 0, such
that:

| g(x) |Na≤ Ca | f(x) |, ∀x ∈ Va.

Hence we can cover K by a finite Vai
, i = 1, . . . , l, and we take N = maxiNai

, C = maxiCai
.

Let a ∈ W , by proposition 8 , there exist Va a coordinate neighborhood of a, with coordi-
nates system x = (x1, . . . , xn), centred at a i.e xi(a) = 0, ∀i = 1, . . . , n, Z ′ a M-manifold and
π : Z ′ → Va a proper surjective mapping in the class M, such that:

(*) ∀b ∈ π−1(a) admits a coordinate neighborhood, Ub, with coordinates system y =
(y1, . . . , yn) centred at b in which f ◦ π(y) = yµϕ(y), ∀y ∈ Ub, where µ ∈ INn, ϕ ∈ CUb

(M)
and ϕ(y) 6= 0, ∀y ∈ Ub. Since π is proper, there exists a finite set Λ ⊂ IN such that

⋃

α∈Λ Ubα

is an open covering of π−1(a), bα ∈ π−1(a), ∀α ∈ Λ and f ◦ π(y) = yµαϕα(y), ∀y ∈ Ubα
,

ϕα(y) 6= 0, ∀y ∈ Ubα
and ϕα ∈ CUbα

(M).
Write µα = (µα1, . . . , µαn) and let ∆α be the set of those i where µαi > 0 (∆α may be empty for
some α). The assumption on g implies that g ◦π vanishes identically on each of the hyperplane
in Ubα

yi = 0 with i ∈ ∆α. Hence g◦π is divisible by the product of those yi with i ∈ ∆α. Then
g ◦π(y) = yβαhα(y), ∀y ∈ Ubα

, βα = (βα1, . . . , βαn) and hα is a C∞ function on Ubα
. Recall that

βαj > 0 if j ∈ ∆α.
Let ∆′

α = {j ∈ ∆α / βαj < µαj } and put qα = maxj∈∆′
α

µαj

βαj
. We see that (g ◦ π(y))qα =

ψα(y)(f ◦ π)(y), ∀y ∈ Ubα
. where ψα is a C∞ function on Ubα

.
If r > 0, we write Ubα

(r) := {y ∈ Ubα
/

∑n
i=1 y

2
i ≤ r }; since π is proper, there exists ρ > 0 such

that:

Va(ρ) = {x ∈ Va /
n

∑

i=1

x2
i ≤ ρ } ⊂ ∪α∈Λπ(Ubα

(ρ).

Let Cα = supy∈Ubα(ρ) | ψα(y) |, C = maxCα and N = maxqα. Then for all x ∈ Va(ρ), we have
| g(x) |N≤| f(x) |, which proves the theorem.

Let us remark, by the previous proof, that the infimum of λ > 0 such that there exists
C > 0 with: | g(x) |λ≤ C | f(x) |, ∀x ∈ K, is a rational number.

Theorem 3 Suppose that W ⊂ IRn is an open set and f ∈ CW (M). Then for each compact
subset K ⊂ W , we can find N > 0, C > 0, such that:

C | f(x) |≥ d(x, VW (f))N , ∀x ∈ K.
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Proof.
We may prove that, for all a ∈ W admits a neighborhood, Va, and constants Na > 0, Ca > 0,
such that:

Ca | f(x) |≥ d(x, VVa
(f))Na, ∀x ∈ Va.

Let a ∈ W , there exists π : Z ′ → Va having the same properties as the proof of the previous
theorem. We have then a finite covering of π−1(a) ⊂

⋃

α∈Λ Ubα
and ∀α ∈ Λ, f ◦ π(y) =

yµαϕα(y), ∀y ∈ Ubα
. Then VUbα

(f ◦ π) is equal to the union of those coordinate hyperplane Hαi

defined by yi with i ∈ ∆α. Let us define ψαi(y) = d(π(y), πγαi(y))
2, y ∈ Ubα

, where γαi(y)
denote the orthogonal projection from Ubα

' IRn to Hαi. We see that ψαi is a C∞ function on
Ubα

. Let ψα =
∏

i∈∆α
ψαi. Then:

- ψα is a C∞ function on Ubα
,

- ψα(y) ≥ d(π(y), VVa
(f))2nα, nα is the number of elements of ∆α.

We have VUbα
(f ◦ π) ⊂ VUbα

(ψα); by the previous theorem, there exist ρ > 0, Nα > 0, Cα > 0,
such that, ∀y ∈ Ubα

(ρ):
Cα | (f ◦ π)(y) |≥| ψα(y) |Nα .

Let N = maxα∈Λ
Nα

2nα
with nα 6= 0; then we have: ∀x ∈ Va(ρ), if C = maxα∈ΛCα, C | f(x) |≥

d(x, VVa(ρ))
N .

7 Quasi semi-analytic sets

Definition 6 Let A be a subset of a M-manifold Z. It is said to be quasi semi-analytic at
point a ∈ Z, if there exist an open neighborhood V of a in Z and a finite number of elements
of CV (M), gi and fij, such that:

A ∩ V =
⋃

i

{x ∈ V / gi(x) = 0, fij(x) > 0, ∀j }

If A is quasi semi-analytic at every point on Z, we say that A is quasi semi-analytic in Z.

Remark 4 i) The property ” quasi semi-analytic” is preserved by locally finite union, locally
finite intersection and the complement.

ii) If A ⊂ Z is quasi semi-analytic set it is easy to see that for all a ∈ Z, there exists V
an open neighbourhood of a in Z such that A ∩ V is a finite disjoint union of sets of the
form:

{x ∈ V / ϕ0(x) = 0, ϕ1(x) > 0, . . . , ϕr(x) > 0},

where ϕ0, ϕ1, . . . , ϕr are in CV (M).

Theorem 4 Let A be a quasi semi-analytic set in Z, then for each x ∈ Z admits a neighborhood
V such that A ∩ V has only a finite number of connected components.
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Proof.
We will use the notation of theorem 2 with f =

∏

i,j gifij. It is enough to prove that for each
α ∈ Λ, the number of connected components of Ubα

∩π−1(A) is finite. Since f ◦π(y) = yµαϕα(y)
and ϕα(y) 6= 0, ∀y ∈ Ubα

, we can easily see that :

gi ◦ π(y) = yµαiϕαi
(y) , fij ◦ π(y) = yµαijϕαij

(y), ∀y ∈ Ubα
,

where ϕαi
(y) 6= 0 , ϕαij

(y) 6= 0, ∀y ∈ Ubα
, ∀i , ∀j.

This proves that Ubα
∩π−1(A) has only a finite number of connected components, which proves

the theorem.
Let us give some notations and definitions. Let U be an open subset of Z, A ⊂ U ; we denote
by IU(A) := {f ∈ CU(M) / f(x) = 0 , ∀x ∈ A }; IU(A) is an ideal of CU(M). Let F ⊂ U ; we
say that F is a global quasi analytic set in U , if there exist h1, . . . , hq ∈ CU(M), such that
F = {x ∈ U /h1(x) = 0, . . . , hq(x) = 0 }. We suppose that U is a chart of Z, a ∈ U , with
coordinates x = (x1, . . . , xn) centered at a. If f ∈ CU(M) we denote by νa(f) the maximum
of q ∈ IN , such that the Taylor expansion of f at a, Taf , is in mq (m is the maximal ideal of
IR[[X1, . . . , Xn]]).

Proposition 9 Let F be a global quasi analytic set in U . Let k ∈ IN be the maximum of
integers such that there exist f1, . . . , fk ∈ IU(F ) and a jacobien ∆ = D(f1,...,fk)

D(xi1
,...,xik

)
/∈ IU(F ). Put

Γ = {x ∈ U / f1(x) = . . . = fk(x) = 0 , ∆(x) 6= 0 }. Then F − V (∆) := {x ∈ F /∆(x) 6= 0 },
is a submanifold of U , quasi semi-analytic; moreover F − V (∆) is a union of some connected
components of Γ.

Proof.
Clearly we have F − V (∆) ⊂ Γ, in order to prove the proposition, it is enough to prove that
for each x ∈ F − V (∆), the germs of Γ and F − V (∆) at x are the same. We may prove
that the germ of Γ at x, Γx, is contained in (F − V (∆))x. Suppose, for a contradiction, that
Γx 6⊂ (F − V (∆))x; then there exists g ∈ IU(F ) such that g|Γx

6= 0. By lemma 7, there exists

h ∈ {1, . . . , n} − {i1, . . . , ik} such that, if g1 = D(f1,...,fk,g)
D(xi1

,...,xik
,xh) |Γx

, then νx(g1) < νx(g|Γx
). By

definition of k, we have g1 ∈ IU(F ) and also g|Γx
6= 0. We continue with g1 in place of g and so

on. At the end we find gq ∈ IU(F ) and gq(x) 6= 0, which is a contradiction.

Lemma 7 Let U be an open neighborhood of 0 in IRn, put

S = {x ∈ U / f1(x) = . . . = fk(x) = 0 , ∆(x) =
D(f1, . . . , fk)

D(x1, . . . , xk)
(x) 6= 0 },

where f1, . . . , fk ∈ CU(F ). Suppose that 0 ∈ S. Let g ∈ CU(M) such that g|S 6= 0. Then there

exists h > k, h ≤ n, such that ν0(g|S) > ν0[
D(f1,...,fk,g)

D(x1,...,xk,xh) |S
].

Proof.
Since the mapping x = (x1, . . . , xn) → (f1(x), . . . , fk(x), xk+1, . . . , xn) is a local diffeomorphism
near 0, we can suppose that fi(x) = xi, ∀i = 1, . . . , k. The result is then abvious in this
situation.
In the following we call Γ = {x ∈ U / f1(x) = . . . = fk(x) = 0 , ∆(x) 6= 0 } a quasi analytic
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strate. Let B ⊂ U ; B is called quasi semi-analytic strate, if B is the intersection of a quasi
analytic strate with an open set of the form: {x ∈ U /ϕ1(x) > 0, . . . , ϕq(x) > 0 }, where
ϕ1, . . . , ϕq ∈ CU(M).
Let U ⊂ Z be a chart of Z with coordinates system y = (y1, . . . , yn). Let B ⊂ U , we say that
B is a quadrant if B is defined by a system of some equalities yi = 0 and some inequalities
εjyj > 0 with εj = ±1.

Theorem 5 Let A ⊂ Z be a quasi semi-analytic set; then for each a ∈ Z admits an open
neighborhood, V , such that: A ∩ V =

⋃s
j=1 Λj, where, for each j = 1, . . . s, Λj is a submanifold

of V , Λi ∩ Λj = ∅ if i 6= j, and Λj is a finite union of connected components of a quasi
semi-analytic strate.

Proof.
By remark 4, ii), it is enough to prove the theorem with a set of the form: A = {x ∈ U /ϕ0(x) =
0, ϕ1(x) > 0, . . . , ϕq(x) > 0 }, ϕ0, . . . , ϕq ∈ CU(M) and U an open neighborhood of a in Z. Let
F = {x ∈ U /ϕ0(x) = 0 }; by proposition 9, there exists f0 ∈ CU(M) , f0 /∈ IU(F ), such that the
set F−V (f0) = {x ∈ F / f0(x) 6= 0 } is a union of some connected components of a quasi analytic
strate. Put F1 = {x ∈ / ϕ2

0(x) + f 2
0 (x) = 0 }; F1 ⊂ F . We repeat the same thing with F1 in

place of F . Hence we construct a decreasing sequence F ⊃ F1 ⊃ . . ., Fj = V (fj) , fj ∈ CU(M),
such that for each j ∈ IN , Fj−Fj+1 is a union of some connected components of a quasi analytic
strate. By lemma 6, there exist s ∈ IN , and an open neighborhood of a, V , such that, ∀j > s,
Fj ∩ V = Fj+1 ∩ V . For j ≤ s, put Γ̃j = Fj − Fj+1, then V ∩ F =

⋃s
j=1 Γ̃j ∩ V . We see then

that:

A ∩ V =
s

⋃

j=1

Λj

where Λj = {x ∈ Γ̃j ∩V /ϕ1(x) > 0, . . . , ϕq(x) > 0 }. By shrinking, if necessary, V , we see that
Λj has a finite number of connected components (theorem 4), which proves the theorem.

By the previous theorem, we define the topological dimension of A at a ∈ Z, dimaA, by
the maximum of dimension of Λj, j = 1, . . . , s. This definition is independent of the family Λj:
dimaA = q if and only if A contains an open set homeomorph to an open ball in IRq, but not
an open set homeomorph to an open ball in IRl, l > q.

Theorem 6 Let A ⊂ Z be a quasi semi-analytic set; then each connected component of A is a
quasi semi-analytic set. The closure of A in Z, A, is also a quasi semi-analytic set.

Proof.
Let Γ ⊂ A be a connected component of A. Let a ∈ Z such that the germ of Γ at a is not
empty. There exists a neighborhood of a in Z, Va, such that A ∩ Va is a finite union of sets of
the form:

Λ = {x ∈ Va / ϕ0(x) = 0, ϕ1(x) > 0, . . . , ϕq(x) > 0 },

where ϕ0, ϕ1, . . . , ϕq ∈ CVa
(M).

Clearly we can suppose that A∩V = Λ. Let f = ϕ0.ϕ1. . . . ϕq; we keep the notation of the proof
of theorem 2. Since π−1(Γ) ∩ Ubα

is open and closed in π−1(A) ∩ Ubα
; π−1(Γ) ∩ Ubα

is a finite
union of quadrants in Ubα

. By remark 3, there exists q ∈ IN such that Ubα
is isomorphic to a M-

submanifold of Va × IP q(IR) defined by homogeneous polynomials with coefficients in CVa
(M).
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By lemma 8, π(π−1(Γ)∩Ubα
) is a quasi semi-analytic set. Since π is proper, there exists V ′

a ⊂ Va

a neighborhood of a such that π−1(V ′
a) ⊂

⋃

α∈Λ Ubα
; then π[

⋃

α∈Λ Ubα
] is a neighborhood of a (π

is surjective) and
⋃

α π(Ubα
) ∩ Γ =

⋃

α π(π−1(Γ) ∩ Ubα
), which proves the first statement.

We can choose, for each α ∈ Λ, a closed neighborhood of a, U ′
bα

⊂ Ubα
such that, π−1(a) ⊂

⋃

α U
′
bα

. Let

A1 =
⋃

α

π(U ′
bα

∩ π−1(A)).

We have A1 ⊂ Va ∩ A and V ′
a ∩ A ⊂ A1.

Now since U ′
bα

∩ π−1(A) = π−1(A) ∩ U ′
bα

, and π−1(A) ∩ U ′
bα

is a finite union of quadrants, by

lemma 8, π(U ′
bα
∩π−1(A)) is a quasi semi-analytic set, hence Va∩A is also a quasi semi-analytic

set since it coincide with A1 in a neighbourhood of a (V ′
a).

£ojasiewicz’s version of Tarski-Seidenberg theorem.

Lemma 8 [?] Let U ⊂ Z be an open set. Put:

A =
s

⋃

i=1

{(x, t1, . . . , tq) ∈ U×IRq / gi(x, t1, . . . , tq) = 0, fi,1(x, t1, . . . , tq) > 0, . . . , fi,r(x, t1, . . . , tq) > 0 },

where gi , fi,j ∈ CU(M)[t1, . . . , tq] , ∀i, ∀j. If π : U × IRq → U denote the projection; then π(A)
is a quasi semi-analytic set.

8 Quasi subanalytic sets

Let U ⊂ IR2 be an open neighborhood of the origin and ϕ : U ⊂ IR2 → IR3 a mapping
with components ϕ1, ϕ2, ϕ3 ∈ CU(M). We suppose that there is no nontrivial formal relations
between Taylor’s series, T0ϕ1, T0ϕ2, T0ϕ3, of ϕ1, ϕ2, ϕ3 at the origin. Let r > 0, such that the
set W = {(x, y) ∈ IR2 / x2 +y2 ≤ r} ⊂ U . Then A = ϕ(W ) ⊂ IR3 is not quasi semianalytic at
the origin in IR3, whereas A is the projection of the set {(x, y, t1, t2, t3) ∈ U × IR3 / x2 + y2 ≤
r, ti = ϕi(x, y), i = 1, 2, 3} which is a quasi semianalytic set relatively compact.

Thus the Tarski-Seidenberg theorem is false for quasi semianalytic sets.

Definition 7 Let Z be a M-manifold and A ⊂ Z. We say that A is quasi subanalytic in
Z, if for each a ∈ Z, there exist U an open neighborhood of a in Z, Z ′ a M-manifold and
A ⊂ Z × Z ′ a quasi semi-analytic set in Z × Z ′, relatively compact, such that π(A) = A ∩ U ,
where π : Z × Z ′ → Z is the projection.

From the properties of quasi semi-analytic sets, we can easily see that a locally finite union
and intersection of quasi subanalytic sets is quasi subanalytic. The closure and each connected
component of a quasi subanalytic set is quasi subnalytic; the projection of a relatively compact
quasi subanalytic set is quasi subanalytic.
We will prove that the complement (and thus the interior) of a quasi subanalytic set is quasi
subanalytic. Firstly we establish some measure properties of a quasi subanalytic set. By the
work of Charbonnel [2] and Wilkie [11], we will show, first, that we have an uniform bound
on the number of connected components of the fibers of a projection restricted to a relatively
compact quasi subanalytic set; more precisely:
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Theorem 7 Let Z and Z ′ two M-manifolds and A be a relatively compact quasi subanalytic
set in Z×Z ′. Let π : Z×Z ′ → Z be the projection. Then the number of connected components
of a fiber π−1(x) ∩ A is bounded, x ∈ Z.

Proof.
We proceed by induction on dimZ. If dimZ = 0, the result is true, since A is relatively compact.
Suppose that dimZ ≥ 1 and the result is true for n−1. We can assume that Z = IRn, Z ′ = IRp

and A relatively compact quasi semi-analytic in IRn × IRp. We argue by induction on the
maximum dimension of the fibers Ax = π−1(x) ∩A, x ∈ IRn. By lemma 6, it is enough to find
a quasi analytic set F ⊂ IRn × IRp such that theorem is true for A− F . By theorem 5, we can
suppose that A is a connected component of a quasi semi-analytic strate

S = {(x, y) ∈ IRn×IRp / f1(x, y) = . . . = fk(x, y) = 0, δ(x, y) 6= 0, g1(x, y) > 0, . . . , gq(x, y) > 0}

where δ(x, y) is a jacobien of (f1, . . . , fk). Let n− β, 0 ≤ β ≤ n, be the maximum rank of π|S,
then there exists a jacobien:

δ1(x, y) =
D(f1, . . . , fk)

D(xi1 , . . . , xiβ , yj1, . . . , yjα
)

with α + β = k, such that δ1 /∈ I(S). We take F = {(x, y) ∈ IRn × IRp / δ1(x, y) = 0} and
put S ′ = S − F . The rank of π|S′ : S ′ → IRn is constant and equal to n − β. For all x ∈ IRn,
S ′

x = π−1(x) ∩ S ′ is a submanifold of dimension p− α.

We can suppose, for the proof, that p− α = 0.
Indeed, if p − α ≥ 1, then each connected component, say C, of π−1(x) ∩ S ′ is such that
C − C 6= ∅ (the projection :π−1(x) ∩ S ′ → {y ∈ IRp / yj1 = . . . = yjα

= 0 } is open). Let
ψ(x, y) =

∑q
j=1 gj(x, y) + δ(x, y)2 + δ(x, y)2; then ψ(x, y) > 0 on C and ψ(x, y) = 0 if (x, y) ∈

C − C. Put S ′′ = {(x, y) / grad(ψ|π−1(x)∩S′)(x, y) = 0 }, S ′′ is a quasi semi-analytic set. Since
ψ is not constant on any connected component of π−1(x) ∩ S ′, we have then, for all x ∈ IRn,
dimS ′′

x < dimS ′
x (S ′′

x = S ′′ ∩ π−1(x)). We remark that ψ has a positive maximum on each
connected component of π−1(x)∩S ′ hence S ′′

x 6= ∅. By the inductive hypothesis on the dimension
of the fibers, the theorem is true for S ′′ which implies the result for S ′.
Suppose p− α = 0, then for all x ∈ IRn, S ′

x is a finite set. We consider two cases:
Case 1. n− β < n.

Let π1 : IRn → IRn−β = {x ∈ IRn / xi1 = . . . = xiβ = 0} be the projection. The inductive
hypothesis on n implies that the theorem is true for the mapping π1 ◦ π|S′, hence the theorem
is true for π|S′ : S ′ → IRn.

Case 2. n− β = n.
Let π′ : IRn → IRn−1 be the projection on xn = 0 and put π̃ = π′ ◦ π; π̃|S′ : S ′ → IRn−1 is a
submersion. For all x′ ∈ IRn−1, π̃−1(x′)∩S ′ is a disjointe union of a finite number of connected
curves of class M; by the inductive hypothesis, on n, this number of curves is bounded when
x′ ∈ IRn−1. In order to prove that the number of points in π−1(x)∩S ′ is bounded (x = (x′, xn)),
we will prove that each connected component of π̃−1(x′) ∩ S ′ does not contains two points of
π−1(x) ∩ S ′, which proves our result, since the number of connected component of π̃−1(x′) ∩ S ′
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is bounded when x′ ∈ IRn−1.
Suppose, for a contradiction, that there exists C a connected component of π̃−1(x′) ∩ S ′ such
that C contains a, b ∈ π−1(x) ∩ S ′, a 6= b. The curve C intersects π−1(x) in two points a, b.
By the generated Roll’s lemma [6], there exists ξ ∈ C such that the tangent space to C at ξ
contains a parallel vector to π−1(x) = IRn hence the tangent space to S ′ at ξ, TξS

′, contains a
parallel vector to π−1(x) = IRn, but this is a contradiction since TξS

′ is transverse to IRn.

Definition 8 Let Z be a M-manifold and A ⊂ Z. We say that A is Lebesgue measurable [resp.
A has measure null] if for any coordinate chart U with coordinates system ϕ = (x1, . . . , xn);
ϕ(U ∩ A) is Lebesgue measurable in IRn [resp. ϕ(U ∩ A) is of measure null].

Using the last theorem and properties of the class of quasi subanalytic sets cited above, we
prove:

Theorem 8 Let A be a quasi subanalytic set; the following conditions are equivalent:

1) A has non interior point.

2) A has non interior point.

3) A has measure null.

4) A has measure null.

Proof.
The proof use theorem 7 and it is the same as in [9].

Definition 9 Let Z ′ be a M-manifold. A mapping f : A ⊂ Z → Z ′ is quasi subanalytic if its
graph, Γf , is quasi subanalytic in Z × Z ′.

We will use the following result:

Proposition 10 [?] Let f : A ⊂ Z → Z ′ be a quasi subanalytic mapping, then the set of points
in A where f is not continuous has no interior points.

In the following we will show that the dimension of a quasi semi-analytic set is well behaved.

Lemma 9 Let A ⊂ Z be a non empty quasi semi-analytic set, then dim (A− A) < dimA.

Proof.
Recall that, by theorem 6, (A − A) is quasi semi-analytic. Suppose, for a contradiction, that
dim (A − A) := n − k ≥ dimA := n − l. We can suppose that Z = IRn and A is relatively
compact. Let Λ be a connected component of a quasi semi-analytic strate S ⊂ IRn such that
Λ ⊂ (A− A) and dimΛ = dim (A− A). We have:

S = {x ∈ IRn / f1(x) = . . . = fk(x) = 0, δ(x) =
D(f1, . . . , fk)

D(xi1 , . . . , xik)
(x) 6= 0, g1(x) > 0, . . . , gq(x) > 0 },

note that we have by hypothesis k ≤ l.
Let πn−k : IRn → IRn−k = {x ∈ IRn / xi1 = . . . = xik = 0} be the projection; πn−k|Λ : Λ → IRn−k
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is a local diffeomorphism. Let a ∈ Λ and put a′ = πn−k(a). There exist balls in IRn and IRn−k:
Bn(a, r), Bn−k(a

′, r) such that πn−k|Λ∩Bn(a,r) : Λ ∩ Bn(a, r) → Bn−k(a
′, r) is a diffeomorphism.

Let g : Bn−k(a
′, r) → Λ ∩ Bn(a, r) be the inverse mapping of πn−k|Λ∩Bn(a,r).

Let B = {x′ ∈ Bn−k(a
′, r) / ∃x ∈ A ∩ Bn(a, r), with πn−k(x) = x′ }; B is a quasi subanalytic

set. Clearly, we have Bn−k(a
′, r

2
) ⊂ B; hence, by theorem 8, int(B) 6= ∅, this implies that k = l.

Put πk : IRn → IRk = {x ∈ IRn / xj = 0, ∀j /∈ {i1, . . . , ik}}. For each p = 1, 2, . . . , let:

Bp = {x′ ∈ B / ∃y1, . . . , ∃yp ∈ IRk, yi 6= yj if i 6= j, yi ∈ πk[A ∩ π−1
n−k(x

′)]}.

We have
. . . Bν+1 ⊂ Bν ⊂ . . . ⊂ B2 ⊂ B1 = B.

By theorem 7, there exists µ ∈ IN ∗ such that int(Bµ) 6= ∅ and int(Bµ+1) = ∅; We have then
int(Bµ+1) = ∅, hence int(Bµ) ∩ B − Bµ+1 6= ∅. Then there exists a ball B ′ ⊂ Bµ − Bµ+1.
For each x′ ∈ B′, π−1

k (x′) ∩ A contains exactly µ elements; we can then construct µ functions
h1, . . . , hµ : B′ ⊂ IRn−k → IRk such that, ∀j = 1, . . . , µ, Γhj

is quasi subanalytic and ∀x′ ∈
B′, πk[A ∩ π−1

n−k(x
′)] = {h1(x

′), . . . , hµ(x
′)}. By construction, we have, ∀j = 1, . . . , µ, ∀x′ ∈

B′, ,hj(x
′) 6= πk ◦ g(x

′).
By proposition 10, there is a ball B” ⊂ B such that the restriction of all h1, . . . , hµ is continuous
on B” and there exists c > 0 such that ∀x′ ∈ B”, | hj(x

′) − πk(g(x
′)) |> c,, ∀j = 1, . . . , µ;

but this is a contradiction with the fact that for all x′ ∈ B”, g(x′) ∈ Λ ⊂ (A − A); hence the
lemma.

9 Theorem of the complement

Theorem 9 Let Z be a M-manifold and let B ⊂ Z be a quasi subanalytic set. Then Z − B is
quasi subanalytic.

Proof.
We can assume that Z = IRn and B is relatively compact. We argue by induction on n.
There exists A ⊂ IRn × IRp a relatively compact semianalytic set such that π(A) = B, where
π : IRn × IRp → IRn is the projection. By theorem 5, we can assume that A is a connected
component of a quasi semianalytic strate:

S = {(x, y) ∈ IRn×IRp / f1(x, y) = . . . = fk(x, y) = 0, δ(x, y) 6= 0, g1(x, y) > 0, . . . , gq(x, y) > 0}

As in the proof of the theorem 7 (which we keep its notations), it is enough to find a quasi
analytic set F ⊂ IRn × IRp such that A − F 6= ∅ and the theorem is true for π(A − F ).
We take F as in the proof of theorem 7 and put A′ = A − F ⊂ S ′ = S − F . We pro-
ceed by induction on the maximum dimension of the fibers π−1(x) ∩ A′. Recall that we have
dim(π−1(x) ∩ S ′) = p− α, ∀x ∈ IRn.
Suppose that p− α = 0, then dimS ′ = n− β ≤ n. We consider two situations:

Case 1. β > 0.
Let π1 : IRn → IRn−β = {x ∈ IRn / xi1 = . . . = xiβ = 0} be the projection. The inductive
hypothesis shows that the theorem is true in IRn−β. Put π′ = π1 ◦ π; the number of points in
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S ′ ∩ π′−1(u) is bounded when u ∈ IRn−β. Therefore the number of points in π(A′) ∩ π−1
1 (u) is

bounded. By lemma 10 , the complement of π(A′) in IRn is quasi subanalytic.

Case 2. β = 0.
We have then dimS ′ = n. Let Q = A′ − A′; by lemma 9, dimQ < n, hence, by the first case,
IRn − π(Q) is quasi subanalytic. We have IRn − π(A′) = (IRn − π(A′)∪ (π(Q)− π(A′)∩ π(Q)).
By case 1, IRn − π(A′) ∩ π(Q) is quasi subanalytic, hence IRn − π(A′) is quasi subanalytic.

If p−α > 0, we have see that there exists S ′′ ⊂ S ′, dimS ′′ < dimS ′, S ′′ is quasi semianalytic
such that π(S ′′) = π(S ′), by using the inductive hypothesis on the maximum dimension of the
fibers π−1(x) ∩ A′, we deduce that IRn − π(A′) is quasi subanalytic.

Lemma 10 Suppose that, in IRn, the complement of every quasi subanalytic set is quasi ana-
lytic. Let A ⊂ IRn × IRp be a relatively compact quasi subanalytic set. Suppose that the number
of points in the fibers A ∩ π−1(x), x ∈ IRn, is bounded, where π : IRn × IRp → IRn is the
projection. Then IRn × IRp − A is quasi subanalytic.

Proof.
The proof is the same as in [1, lemma 3.9].
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