




Topological properties of real algebraic varieties

Ilia Itenberg

1 Basic notions

The subject of the course is centered around Hilbert’s 16-th problem (see [16]). The

first part of this problem contains several questions concerning the topology of real

algebraic varieties, and more precisely, the topology of plane algebraic curves and

spatial algebraic surfaces. We will discuss only a few topics belonging to topology

of real algebraic varieties. An extensive information on the subject can be found in

the surveys [7, 68, 74, 12].

1.1 Definitions

Let us start with definitions. A real algebraic curve of degree m in the real pro-

jective plane RP 2 is a real homogeneous polynomial of degree m in three variables

considered up to a constant factor. Let A be such a polynomial. Then, the set of

points defined by the equation A(x0, x1, x2) = 0 in the real projective plane RP 2 is

called the real point set of the curve A and is denoted by RA.

In a similar way one defines a real algebraic hypersurface of degree m in a real

projective space RP n as a real homogeneous polynomial of degree m in n+1 variables

considered up to a constant factor. We consider only nonsingular hypersurfaces,

which means that corresponding polynomials do not have critical points in Cn+1\{0}.
The real point set RA of a nonsingular plane projective real algebraic curve A is

a union of disjoint circles smoothly embedded in RP 2. A circle can be positioned

in RP 2 either one-sidedly or two-sidedly. A two-sidedly positioned circle is called

an oval. An oval divides RP 2 into two parts. The part homeomorphic to a disk

is called the interior of the oval. All the connected components of the real point

set of a nonsingular curve of an even degree in RP 2 are ovals. The real point set

of a nonsingular curve of an odd degree in RP 2 contains exactly one one-sidedly

positioned connected component. The topological type of the pair (RP 2,RA) is
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Figure 1: Real schemes of nonsingular curves of degrees 1, 2 and 3 in RP 2

defined by the scheme of disposition of the connected components of RA. This

scheme is called the real scheme of the curve A.

1.2 Harnack theorem

Topology of real algebraic varieties, as a separated field, was founded in the XIX-th

century in works of A. Harnack and F. Klein. In 1876 A. Harnack [14] formulated the

problem of topological classification of nonsingular curves of a given degree in RP 2:

given a positive integer m, describe the real point sets of the nonsingular curves of

degree m in RP 2 up to homeomorphism. (Note that the topological type of RA,

where A is a nonsingular algebraic curve in RP 2 is determined by the number of

connected components of RA.) In the same paper Harnack gave a complete answer

to this problem.

Theorem 1.1 (Harnack theorem, [14]) Let m be a positive integer. Then

• the number of connected components of the real point set of a curve of degree m

in RP 2 is at most (m−1)(m−2)
2

+ 1;

• if m is even (resp., odd), then for any integer l verifying 0 ≤ l ≤ (m−1)(m−2)
2

+1

(resp., 1 ≤ l ≤ (m−1)(m−2)
2

+ 1) there exists a nonsingular curve of degree m in

RP 2 whose real point set has exactly l connected components.
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Figure 2: Real schemes of nonsingular curves of degree 4 in RP 2

The first statement in the Harnack theorem is called the Harnack inequality.

The nonsingular curves of degree m in RP 2 whose real point set has (m−1)(m−2)
2

+ 1

connected components are called maximal (or M-curves). We discuss the proof of

the Harnack theorem in Section 2 (for the Harnack inequality) and in Section 3 (for

the second statement).

The next natural question is to describe the real schemes of nonsingular curves

of a given degree in RP 2. This question was included in 1900 by D. Hilbert in the

16-th problem (see [16]). For small degrees (less than or equal to 5) the answer is

shown in Figures 1, 2 and 3. This answer was known to Hilbert and can be obtained

using the Harnack inequality and the fact that the number of intersection points of

a curve of degree m and a line is at most m (if this number of intersection points is

finite). The latter statement is a particular case of the Bézout theorem.

To prove that any real scheme of Figures 1-3 is realizable by a curve of the

corresponding degree one can take an appropriate collection of lines and ellipses

intersecting transversally and slightly perturb their union (i.e., slightly change the

coefficients of the product of the polynomials of degrees 1 and 2 defining these lines

and ellipses) in order to obtain the desired picture.

For example, to obtain a maximal curve of degree 4 in RP 2, we can take two

ellipses intersecting in 4 points and consider a polynomial E1 ·E2 + ε(x4
0 + x4

1 + x4
2),

where E1 and E2 are polynomials defining two ellipses, and ε is a sufficiently small

positive number. If the signs of E1 and E2 are appropriately chosen, then this

polynomial defines a curve whose real point set consists of 4 ovals (see Figure 4).

A classification of real schemes of nonsingular curves of degree 6 in RP 2 is more

difficult to obtain. This classification was completed by D. A. Gudkov (see [13]) in
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Figure 3: Real schemes of nonsingular curves of degree 5 in RP 2

Figure 4: Maximal curve of degree 4 in RP 2

1969. Only 3 real schemes are realizable by maximal curves of degree 6 in RP 2.

These schemes are shown in Figure 5.

In 1979 O. Viro [64] obtained a classification of real schemes of nonsingular curves

of degree 7 in RP 2. Despite of the efforts to classify the real schemes of nonsingular

curves of degree 8 (see, for example, [6, 33, 43, 47, 48, 54, 55, 56, 64, 66]), the

classification is still not completed.

A question similar to the first part of Hilbert’s 16-th problem concerns a classifi-

cation of real schemes realizable by real pseudo-holomorphic curves of a given degree.

A Riemann surface M embedded in CP 2 is a real pseudo-holomorphic curve, if it is

a J-holomorphic curve in some tame almost complex structure J on CP 2 (see [10])

such that Conj∗ ◦ J = J−1 ◦ Conj∗ and Conj(M) = M , where Conj : CP 2 → CP 2

is the involution of complex conjugation. The fixed point set RM ⊂ RP 2 of Conj

restricted to a real pseudo-holomorphic curve M is called the real point set of M .
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Gudkov’s curveHarnack’s curve Hilbert’s curve

Figure 5: Real schemes of maximal curves of degree 6 in RP 2

A real pseudo-holomorphic curve M in CP 2 is of degree m if M realizes the class

m[CP 1] ∈ H2(CP 2). It is interesting to compare isotopy classifications of real

point sets of real algebraic curves and of real pseudo-holomorphic curves of the

same degree. The classifications coincide for the curves of degree ≤ 7. Recently,

S. Orevkov [44] obtained an isotopy classification of the real point sets of maximal

real pseudo-holomorphic curves of degree 8 (exactly as in the algebraic case, a real

pseudo-holomorphic curve of degree m is called maximal if its real point set has
(m−1)(m−2)

2
+ 1 connected components). As it was already mentioned above, the

corresponding classification of real algebraic curves is not yet known.

The question on a topological classification (i.e., a classification of the real point

sets up to homeomorphism) of nonsingular surfaces of a given degree in RP 3 was

also included by Hilbert in the first part of the 16-th problem. At the end of the

XIX-th century the answer was known for surfaces of degrees ≤ 3. The topological

classification of surfaces of degree 4 in RP 3 was completed by V. Kharlamov [27] in

1976. Kharlamov also obtained finer classifications of surfaces of degree 4 (see [28]

and [29]). A topological classification of surfaces of degree ≥ 5 in RP 3 is unknown.

Several last decades were the years of an intensive progress in topology of real

algebraic varieties. Many important restrictions on the topology of real algebraic

varieties were obtained using the methods of modern topology of manifolds and

complex algebraic geometry (see [1, 51, 52, 53, 23, 24, 25, 26, 8, 42], and also the

surveys [12, 74, 2, 68, 7]). Some of the restrictions on the topology of real algebraic

curves are presented in Section 2.
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The above mentioned progress in topology of real algebraic varieties concerns also

the methods of constructions. We discuss them in Section 3.

Exercises

1. Using the Harnack inequality and the Bézout theorem show that all the real schemes of

nonsingular curves in RP 2 of degrees less than or equal to 5 are among the schemes represented

in Figures 1, 2, and 3.

2. Construct an M -curve of degree 5 in RP 2.

3. Construct a nonsingular surface A of degree 3 in RP 3 such that the real point set of A has

two connected components.

2 Restrictions on the topology of algebraic curves

in RP 2

2.1 Space of curves

A generic homogeneous polynomial of degree m in three variables has (m+1)(m+2)
2

coefficients. Since a curve of degree m in RP 2 is a real homogeneous polynomial of

degree m in three variables considered up to a constant factor, the space RCm of all

(not necessarily nonsingular) curves of degree m in RP 2 is naturally identified with

a real projectif space RPN , where N = (m+1)(m+2)
2

− 1 = m(m+3)
2

. Denote by D the

discriminant in RCm, i.e., the subset of RCm formed by the points corresponding

to singular curves. Two nonsingular curves of degree m in RP 2 such that the

corresponding points in RCm belong to the same connected component of RCm \ D
are called rigidly isotopic. Note that rigidly isotopic curves have the same real

scheme. One can ask for a classification of nonsingular curves of a given degree in

RP 2 up to rigid isotopy. The answer is known only for degrees less than or equal to

6 (for a rigid isotopy classification of nonsingular curves of degree 6 in RP 2 see [40]).

Pick a point (x0 : x1 : x2) in RP 2. The fact that a real homogenous polynomial

of degree m in three variables defines a curve passing through the point (x0 : x1 : x2)

imposes a linear condition on the coefficients of the polynomial. Thus, the curves of

degree m in RP 2 passing through (x0 : x1 : x2) form a hyperplane in RCm. Hence,

for any m(m+3)
2

points in RP 2 there exists a curve of degree m which passes through

these points. In addition, if m(m+3)
2

chosen points in RP 2 are in a general position,

there exists a unique curve of degree m passing through these points.
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2.2 Proof of the Harnack inequality

We present, first, original Harnack’s proof.

Proof of the Harnack inequality. Consider a nonsingular curve A of degree m

in RP 2, and suppose that the number of connected components of RA is greater

than or equal to (m−1)(m−2)
2

+ 2. Choose (m−1)(m−2)
2

+ 1 ovals among the connected

components of RA. Pick one point on each of the chosen ovals, and pick m−3 points

on some connected component of RA different from the chosen ovals. There exists a

curve B of degree m− 2 in RP 2 which passes through these (m−2)(m+1)
2

points. The

number of the intersection points of A and B is at least 2( (m−1)(m−2)
2

+1)+m− 3 =

m(m− 2) + 1 which contradicts to the Bézout theorem (note that A is nonsingular,

and hence, irreducible). 2

Another proof of the Harnack inequality was given in the same year 1876 by

F. Klein (see [30]). Klein’s proof uses the complex point set of a real curve.

If A is a real homogeneous polynomial in three variables, then the set of points

defined by the equation A(x0, x1, x2) = 0 in the complex projective plane CP 2

is called the complex point set of the curve A and is denoted by CA. If A is a

nonsingular curve of degree m, the complex point set CA of A is a topological

compact connected orientable (in fact, naturally oriented) surface of genus g =
(m−1)(m−2)

2
, i.e., is homeomorphic to a sphere with (m−1)(m−2)

2
handles.

Klein’s proof of the Harnack inequality. Denote by l the number of con-

nected components of RA. Let C̃A be the quotient of CA under the involution of

complex conjugation. Notice that C̃A is a connected surface whose boundary con-

sists of l circles. Glue a disc to C̃A along each of the boundary components, and

denote the resulting surface by S. The Euler characteristic χ(S) of S is equal to
1
2
χ(CA) + l = (1 − (m−1)(m−2)

2
) + l, where χ(CA) = 2 − 2 (m−1)(m−2)

2
is the Euler

characteristic of CA. Since S is a connected surface, its Euler characteristic is at

most 2. Thus, l ≤ (m−1)(m−2)
2

+ 1. 2

2.3 Further restrictions

We mention here several general restrictions on the topology of real algebraic curves

(an extensive list of restrictions can be found, for example, in the surveys [7, 68]).

To formulate the restrictions introduce additional definitions and notations. An oval

of a nonsingular curve of an even degree in RP 2 is called even (resp. odd), if it lies
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inside of even (resp. odd) number of other ovals of the curve. Denote by p (resp.,

n) the number of even (resp., odd) ovals of a nonsingular curve of an even degree in

RP 2.

Theorem 2.1 (Petrovsky inequalities, see [45, 46]) For a nonsingular curve of de-

gree 2k in RP 2, on has the inequalities

p− n ≤ 3k(k − 1)

2
+ 1, n− p ≤ 3k(k − 1)

2
.

A nonsingular algebraic curve A in RP 2 is said to be of type I if its real point

set RA divides the complex point set CA of A into two parts; otherwise, the curve

is of type II. This division of curves into types is due to Klein [30].

A nonsingular curve A of degree m in RP 2 is called an (M − i)-curve if the real

point set RA of A has (m−1)(m−2)
2

+ 1− i connected components.

Some restrictions on the topology of real algebraic curves have the form of con-

gruences. We mention three of them. The first one was proved by F. Klein (see [30]).

Theorem 2.2 (Klein congruence, see [30]) Let A be a nonsingular curve of type I

in RP 2. If A is an (M − i)-curve, then i ≡ 0 mod 2.

Proof. Let us consider again the quotient C̃A of CA under the involution of

complex conjugation (as in Klein’s proof of the Harnack inequality). Since A is of

type I, the quotient C̃A is an orientable surface. Assume that A is an (M − i)-

curve. Then the boundary of C̃A consists of (m−1)(m−2)
2

+ 1− i circles. Glue a disc

to C̃A along each of the boundary components to obtain a surface S. The Euler

characteristic χ(S) of S is equal to (1− (m−1)(m−2)
2

) + ( (m−1)(m−2)
2

+ 1− i) = 2 − i.

Since S is a compact orientable surface without boundary, its Euler characteristic

is even. Thus, i ≡ 0 mod 2. 2

The next congruence we would like to mention was proved by V. I. Arnold [1]

in 1971. The paper [1] opened a new period in the development of topology of real

algebraic varieties.

Theorem 2.3 (Arnold congruence, see [1]) For a nonsingular curve of degree 2k

and of type I in RP 2, on has the congruence

p− n ≡ k2 mod 4.
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The last congruence we mention is the Gudkov-Rokhlin congruence. It was con-

jectured by D. A. Gudkov [11] on the base of the classification of curves of de-

gree 6 and the available examples of curves of higher degrees, and was proved by

V. A. Rokhlin [51].

Theorem 2.4 (Gudkov-Rokhlin congruence, see [51]) For an M-curve of degree 2k

in RP 2, on has the congruence

p− n ≡ k2 mod 8.

Note that the Gudkov-Rokhlin congruence and the Bézout theorem show, in

particular, that an M -curve of degree 6 in RP 2 should have one of the real schemes

shown in Figure 5.

A lot of general restrictions on the topology of real algebraic varieties (in par-

ticular, generalizations to higher dimensions of theorems presented above; one can

mention, for example, the generalized Harnack inequality and its extremal prop-

erties) were obtained by I. G. Petrovsky and O. A. Oleinik [41], V. I. Arnold [1],

V. A. Rokhlin [51, 52] and V. Kharlamov [25, 26, 27].

We finish the section by a presentation of a restriction which, at the moment, is

not generalized to higher dimensions: the Rokhlin-Mishachev formulas for complex

orientations.

For a curve A of type I, the natural complex orientations of two halves of CA\RA

induce on RA two opposite orientations which are called complex orientations. They

were introduced by V. A. Rokhlin in [52].

Let A be a nonsingular algebraic curve in RP 2. A pair of ovals of RA is injective

if one of them is inside of the other one. A collection of ovals is called a nest if

any two of them form an injective pair. The number of ovals in the nest is called

the depth of the nest. Assume that A is of type I. An injective pair of ovals of

RA is positive (resp., negative) if the complex orientations of the ovals are induced

(resp., are not induced) from some orientation of the annulus bounded by the ovals.

Suppose that the degree of A is odd. Pick an oval of RA, and consider the Möbius

band which is the complement in RP 2 of the interior of the oval. The oval is called

positive (resp., negative) if the integer homology class realized in the Möbius band

by the oval equipped with a complex orientation differs in sign (resp., coincides)

with the class of the doubled one-sidedly positioned connected component.

Theorem 2.5 (Rokhlin-Mishachev formulas, see [52, 39, 53]) Let k be a positive

integer. Then
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• for a nonsingular curve of degree 2k and of type I in RP 2, on has the formula

2(Π+ − Π−) = l − k2,

where l is the number of ovals of RA, and Π+ and Π− are the numbers of

positive and negative injective pairs in RA, respectively;

• for a nonsingular curve of degree 2k − 1 and of type I in RP 2, one has the

formula

2(Π+ − Π−) + Λ+ − Λ− = l − k(k − 1),

where Λ+ and Λ− are the numbers of positive and negative ovals in RA, re-

spectively.

Exercises

1. Let A be a nonsingular curve of degree m in RP 2. Prove that

• the depth of any nest in RA does not exceed [m/2],

• the sum of the depths of any two disjoint nests in RA does not exceed [m/2],

• the sum of the depths of any five disjoint nests in RA does not exceed m if no oval of one

nest contains inside all the ovals of the other four nests.

2. Prove that an M -curve is always of type I.

3. Deduce the Arnold congruence from the Rokhlin-Mishachev formulas.

3 Combinatorial patchworking

Until the latest 1970-s, all the constructions of real algebraic curves were based

on the method of small perturbations of a product of curves which have smaller

degrees and intersect transversally. One can mention here the classical methods

of construction proposed by A. Harnack [14], D. Hilbert [15], L. Brusotti [4], and

A. Wiman [75]. To construct several curves of degree 6 in RP 2 Gudkov (see [13])

extended a little bit the classical scheme of construction of curves: he combined the

method of small perturbations with the use of quadratic transformations of RP 2.

In 1979, O. Viro proposed a principally new method of construction of real alge-

braic varieties (see [64, 65, 67, 69, 70] and also [50]). It provides a nice interaction of
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real algebraic geometry, toric geometry and combinatorics, and gives rise to various

generalizations and applications [3, 6, 20, 17, 21, 22, 43, 57, 58, 59, 60, 62]. Almost

all the constructions in topology of real algebraic varieties since 1979 use the Viro

method.

We discuss here a particular case of the Viro method: the combinatorial patch-

working. It is a powerful construction which gives a possibility to build real al-

gebraic hypersurfaces in a simple combinatorial fashion: one can patchwork them

from pieces which essentially are hyperplanes. One of the applications of the com-

binatorial patchworking is a construction of counter-examples (see [17, 18, 21]) to a

conjecture formulated by V. Ragsdale [49] in 1906.

Let m be a positive integer number, and T the triangle in R2 with vertices (0, 0),

(m, 0), and (0,m). Take a triangulation τ of T with integer vertices (i.e., vertices

having integer coordinates). Suppose that a distribution of signs at the vertices of

τ is given. The sign (plus or minus) at the vertex with coordinates (i, j) is denoted

by σi,j.

Take the copies

Tx = sx(T ), Ty = sy(T ), Txy = sx ◦ sy(T )

of T , where sx, sy are reflections with respect to the coordinate axes. Denote

by T∗ the square T ∪ Tx ∪ Ty ∪ Txy. Extend the triangulation τ to a symmetric

triangulation of T∗, and the distribution of signs σi,j to a distribution at the vertices

of the extended triangulation by the following rule: passing from a vertex to its

mirror image with respect to a coordinate axis we preserve its sign if the distance

from the vertex to the axis is even, and change the sign if the distance is odd.

If a triangle of the triangulation of T∗ has vertices of different signs, select a

midline joining the middle points of the edges having endpoints of opposite signs.

Denote by L the union of the selected segments. It is a piecewise-linear curve

contained in T∗. Glue by sx ◦ sy the opposite sides of T∗. The resulting quotient

space T̃ is homeomorphic to RP 2. Denote by L̃ the image of L in T̃ .

Let us introduce an additional assumption: the triangulation τ of T is convex.

This means that there exists a convex piecewise-linear function ν : T −→ R whose

domains of linearity coincide with the triangles of τ . Sometimes, such triangulations

are also called coherent (see [9]) or regular (see [76]).

Theorem 3.1 (O. Viro, see, for example, [70]) If the triangulation τ of T is convex,

then there exist a nonsingular real algebraic curve A of degree m in RP 2 and a

homeomorphism RP 2 → T̃ mapping the set of real points RA of A onto L̃.
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Figure 6: Combinatorial patchworking of a curve of degree 3 in RP 2

The described construction is called the combinatorial patchworking. An example

of a combinatorial patchworking of a curve of degree 3 in RP 2 is shown in Figure 6.

A curve A obtained by the combinatorial patchworking is called a T -curve. A

polynomial representing A can be written down explicitly: if t is positive and suf-

ficiently small, the polynomial
∑

(i,j)∈V σi,jx
i
0x

j
1x

m−i−j
2 tν(i,j) (where V is the set of

vertices of τ , and ν is a convex function certifying the convexity of τ) defines a curve

with the properties described in Theorem 3.1.

The combinatorial patchworking can be naturally generalized to higher dimen-

sions. The construction starts with the simplex T in Rn having the vertices

(0, 0, 0, . . . , 0, 0), (m, 0, 0, . . . , 0, 0), (0,m, 0, . . . , 0, 0), . . ., (0, 0, 0, . . . , 0,m). One

chooses a convex triangulation τ of T such that all the vertices of τ have integer

coordinates, and a distribution of signs σ : V → {+,−} at the set V of vertices of τ .

Take the union T∗ of 2n symmetric copies of T under the compositions of reflections

with respect to coordinate hyperplanes. Extend τ to a symmetric triangulation τ∗
of T∗, and σ to a distribution of signs at the vertices of τ∗ using the same rule as

above (replacing the words axis by the words hyperplane). If an n-simplex ξ of τ∗ has

vertices of different signs, select the convex hull of the middles of edges of ξ which

have vertices of opposite signs. Let L be the union of all the selected hyperplane

pieces, T̃ the quotient space (homeomorphic to RP n) of T∗ under the identification

of the points on the boundary which are symmetric with respect to the origin, and

L̃ the image of L in T̃ .
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Theorem 3.2 (O. Viro, see, for example, [70]) If the triangulation τ of T is convex,

then there exist a nonsingular hypersurface A of degree m in RP n and a homeomor-

phism RP n → T̃ mapping the set of real points RA of A onto L̃.

Such a hypersurface A in RP n is called a T -hypersurface.

3.1 Construction of Harnack’s curves

Using the combinatorial patchworking one can easily construct maximal curves of

any degree in RP 2. We present here a combinatorial patchworking of maximal

curves whose real schemes coincide with the real schemes of curves constructed by

Harnack in [14] (the maximal curves having these real schemes are sometimes called

the simplest Harnack curves).

Let m again be a positive integer number, and T the triangle in R2 with vertices

(0, 0), (m, 0), and (0,m).

A distribution of signs at the integer points of T is called a Harnack one if

• any two integer points (i1, j1) and (i2, j2) of T such that i1 ≡ i2 mod 2 and

j1 ≡ j2 mod 2 have the same sign;

• if m > 1, the product of signs at the points (0, 0), (1, 0), (0, 1) and (1, 1) is

negative.

A triangulation τ of T is called primitive if all the triangles of τ are of area 1/2.

(Notice that for any primitive triangulation τ of T all the integer points of T are

vertices of τ .)

Proposition 3.3 (see [17, 18]) If m = 2k is even (resp., m = 2k + 1 is odd), the

combinatorial patchworking applied to an arbitrary primitive convex triangulation

of T and a Harnack distribution of signs produces an M-curve with the real scheme

shown in Figure 7 (resp., Figure 8).

Proof. An integer point (i, j) of T is called interior if it lies strongly inside of

T , even if both i and j are even, and odd if at least one of the coordinates i and

j is odd. Permuting the quadrants and switching if necessary all the signs to the

opposite ones (pluses for minuses and minuses for pluses), we can suppose that the

distribution of signs is as follows:

all the even points get “−”, and all the odd points get “+”.
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3k(k - 1)

2 (k - 1)(k - 2)

2

Figure 7: Real scheme of the simplest Harnack curve of degree 2k in RP 2

. . .

k(2k - 1)

Figure 8: Real scheme of the simplest Harnack curve of degree 2k + 1 in RP 2

Any even interior point (i, j) of T gives rise to an oval of the curve L. This oval

encircles (i, j) and is contained in the star of (i, j). Any odd interior point (i, j) of T

also gives rise to an oval of L. This oval encircles the symmetric copy ϕ(i, j) of (i, j)

equipped with “+”, and is contained in the star of ϕ(i, j). We have found (m−1)(m−2)
2

ovals and, thus, the curve L can have only one connected component more. This

component does exist, because L intersects the coordinate axes. It finishes the proof

in the case of odd m. If m = 2k is even, it remains to notice that the union of the

segments

{i− j = −m, i ≤ 0, j ≥ 0} ∪
{−m ≤ i ≤ 0, j = 0} ∪ {i = 0, −m ≤ j ≤ 0}

contains only minuses, and its image in T̃ is not contractible. This means that
(k−1)(k−2)

2
ovals corresponding to the even interior points of T (and encircling mi-

nuses) are situated inside of the oval intersecting the coordinate axes. 2

The distribution of signs mentioned in the proof of Proposition 3.3 (all the even

points get “−”, and all the odd points get “+”) is called the standard Harnack

distribution.
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Now we are able to prove that for any positive integer m and for any integer l

verifying 1−(−1)m

2
≤ l ≤ (m−1)(m−2)

2
+ 1 there exists a nonsingular curve of degree m

in RP 2 whose real point set has exactly l connected components.

Proof of the second part of the Harnack theorem. Pick a maximal curve A0

of degree m in RP 2 (the existence of such a curve is proved in Proposition 3.3). It is

easy to find a nonsingular curve A1 of degree m in RP 2 such that RA is empty (resp.,

is connected) in the case of even m (resp., odd m). (For example, one can take the

curve given by the polynomial xm
0 + xm

1 + xm
2 .) Let a0 and a1 be the points in RCm

corresponding to A0 and A1. One can choose a smooth path γ : [0, 1] → RCm such

that γ(0) = a0 and γ(1) = a1 which intersects the discriminant D transversally at

nonsingular points of D. For any t ∈ [0, 1] denote by At the curve corresponding to

the point γ(t). Near any point of intersection of the chosen path and D the numbers

of connected components of the real point sets of curves At differ at most by 1.

Thus, any intermediate integer value between (m−1)(m−2)
2

+ 1 and 1−(−1)m

2
is realized

by the number of connected components of the real point set of certain nonsingular

curve of degree m in RP 2. 2

Exercises

1. Let ABCD be a square. Find a convex triangulation of ABD and a convex triangulation of

BCD such that the union of these triangulations produces a non-convex triangulation of ABCD.

2. Let k be a positive integer. Construct a T-curve A of degree 2k (resp., 2k − 1) in RP 2

such that RA is empty (resp., is connected).

3. Using the combinatorial patchworking construct nonsingular curves of degree 6 in RP 2

whose real schemes are shown in Figure 5.

4 Tropical geometry

4.1 Dequantization of positive real numbers

As it was noticed by O. Viro [71] the combinatorial patchworking is directly related

to Maslov’s dequantization of positive real numbers.

Consider a family of semi-rings {Sh}, h ∈ [0, +∞). As a set any semi-ring Sh

coincides with R. The addition and multiplication operations in Sh are defined by
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the following formulas:

a⊕h b =

{
h log(ea/h + eb/h), si h > 0,

max{a, b}, si h = 0 ;

a¯h b = a + b.

These operations depend continuously on h. Each semi-ring Sh, h > 0 is isomorphic

to the semi-ring R+ of positive real numbers equipped with the ordinary operations

of addition and multiplication: the map x 7→ h log x is an isomorphism between

R+ and Sh. However, S0 is not isomorphic to R+. It is an idempotent semi-ring

which is called (max, +)-semi-ring. It is one of the so-called tropical semi-rings. The

operations in S0 are called the tropical addition and the tropical multiplication.

The passage from the positive values of h to h = 0 in the family Sh is called

Maslov’s dequantization of the positive real numbers (see [34, 35]). This deforma-

tion (as well as the combinatorial patchworking) gives rise to an important relation

between algebraic geometry and piecewise-linear geometry.

4.2 Tropical curves

Let I be a finite collection of integer points in R2. Consider a tropical polynomial

P (x, y) =
∑

(i,j)∈I ai,jx
iyj, where ai,j are real numbers, and the operations of ad-

dition and multiplication are tropical. By the definition of the tropical operations,

P (x, y) is the maximum of the linear functions ix + jy + ai,j, where this time the

operations are standard.

The tropical curve T (P ) defined by P is the corner locus of P , i.e., the subset of

R2 where the maximum of the functions ix + jy + ai,j is realized by at least two of

them (cf., for example, [36] and [63]). The tropical curve T (P ) is determined by the

set I and the function ν : I → R, ν(i, j) = ai,j. We say that T (P ) is associated with

(I, ν). The definition of tropical curves can be generalized to higher dimensions.

Here, we restrict ourselves by the case of tropical curves in R2.

A tropical curve in R2 is a union of segments and rays which are called edges.

The common points of different edges are called vertices. Notice that any edge of a

tropical curve has a rational slope. Let T be a tropical curve in R2. Equip each edge

of T with a positive integer weight in the following way. Any connected component

of the complement of T in R2 corresponds to a point of I. The weight of an edge

separating two connected components of the complement of T is the (integer) length

of the segment joining the corresponding two integer points of I. For any vertex

v of T one has λ1s1 + . . . + λksk = 0, where s1, . . . , sk are the primitive integer
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Figure 9: Tropical line

vectors pointed outside of v along the edges of T , and λi is the weight of the edge

corresponding to si.

The convex hull ∆(I) of I is called the Newton polygon of P . Let m be a positive

integer. If the Newton polygon of P coincides with the triangle T having the vertices

(0, 0), (m, 0) and (0,m), then we say that the tropical curve T (P ) defined by P is

plane projective of degree m. A tropical line, i.e., a plane projective tropical curve

of degree 1, is represented on Figure 9.

Let T be the tropical curve associated with a pair (I, ν). The function ν defines

a subdivision of ∆(I) in the following way. Consider the overgraph Υν of ν, i.e., the

convex hull of the set {(i, j, k) ∈ R3 : (i, j) ∈ I , k ≥ ν(i, j)}. The polyhedron Υν

is naturally projected onto ∆(I). The faces of Υν which project injectively, define

a subdivision of ∆(I). Denote this subdivision by S(I, ν). The tropical curve T
does not determine uniquely the pair (I, ν) (and even the polygon ∆(I)). However,

once the polygon ∆(I) is fixed, the tropical curve T , whose edges are equipped

with the weights, determines uniquely the subdivision S(I, ν). A plane projective

tropical curve of degree m is called nonsingular if the corresponding subdivision of

the triangle T with the vertices (0, 0), (m, 0) and (0,m) is primitive. Notice that all

the weights at the edges of a nonsingular tropical curve are equal to 1.

Tropical curves have many properties in common with algebraic curves. For ex-

ample, one can prove the following analog of the Bézout theorem (see, e.g. [63]):

let T1 and T2 be two plane projective tropical curves of degrees m1 and m2, respec-

tively, such that T1 and T2 are in a general position with respect to each other; then

the number of intersection points (counted with certain multiplicities) of T1 and T2

is equal to m1m2. The multiplicities of intersection points are defined as follows.
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Figure 10: Tropical curve of degree 2 and corresponding subdivision

Consider an intersection point of an edge e1 of T1 and an edge e2 of T2. Let (ai, bi)

be a primitive vector along ei, and λi be the weight of ei (i = 1, 2). Then the

multiplicity of the intersection point is equal to λ1λ2|a1b2 − a2b1|.
Observe also that for any two generic points in R2 there exists exactly one tropical

line passing through these points. This resemblance between tropical and algebraic

curves has an important generalization which is discussed in Section 5.

4.3 Combinatorial patchworking and real tropical curves

We will discuss a real version of definitions given in the previous section. Let I

again be a finite collection of integer points in R2, and P (x, y) =
∑

(i,j)∈I ai,jx
iyj a

tropical polynomial with real coefficients. Assume that we are given a distribution

of signs σ : I → {+,−} at the points of I. The polynomial P and the distribution σ

define a real tropical curve T (P, σ) in the following way. Let I+ (resp., I−) be the

subset of I formed by the points equipped with “+” (resp., “-”). Put P±(x, y) =∑
(i,j)∈I± ai,jx

iyj, and denote by Γ± the graph of the tropical polynomial P±. The real

tropical curve T (P, σ) is the projection of Γ+ ∩ Γ− to R2. Clearly, T (P, σ) ⊂ T (P ).

Choose now a collection I of integer points in such a way that ∆(I) coincides

with the triangle T having the vertices (0, 0), (m, 0) and (0,m). Pick such a tropical

polynomial P (x, y) =
∑

(i,j)∈I ai,jx
iyj that the corresponding function ν : I → R is

generic, i.e., the subdivision S(I, ν) is a triangulation. Assume again that we are

given a distribution of signs σ : I → {+,−} at the points of I. Notice that the

triangulation S(I, ν) of T and the restriction of σ to the vertices of S(I, ν) form

initial data for the combinatorial patchworking.

What is a relation between the piecewise-linear curve L produced by the com-

binatorial patchworking starting from these initial data and the real tropical curve
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T (P, σ)? Denote by Int(T ) the interior of T , and put L0 = L ∩ Int(T ). From

the definition of T (P, σ) it is easy to see that the topological pairs (IntT, L0) and

(R2, T (P, σ)) are homeomorphic. In fact, using Maslov’s dequantization one can

prove in this way Theorem 3.1 (see [71]).

Exercises

1. Let I be a finite collection of integer points in R2, and ν : I → R a function. Denote

by T the tropical curve associated with the pair (I, ν). Consider a collection I ′ such that I ′ =

I + (c1, c2), where (c1, c2) ∈ Z2 ⊂ R2. Define a function ν ′ : I ′ → R by ν ′(i, j) =

ν(i− c1, j − c2). Prove that the tropical curve associated with (I ′, ν ′) coincides with T .

2. Let ∆ be a convex polygon with integer vertices in R2, and I the collection of integer points

of ∆. Choose a function ν : ∆ → R defining a primitive triangulation of ∆. Prove that the

tropical curve associated with the pair (I, ν) is homotopically equivalent to a bouquet of k circles,

where k is the number of interior integer points of ∆.

3. Let I be the collection formed by four points (0, 0), (1, 0), (0, 1) and (1, 1). The tropical

curve associated with (I, ν), where ν : I → R is an arbitrary function, is said to be of bidegree

(1, 1). Prove that for any three generic points in R2 there exists exactly one tropical curve of

bidegree (1, 1) passing through these points.

5 Enumeration of curves

M. Kontsevich [32] proposed to use tropical curves in order to count algebraic curves

passing through a given collection of points on a complex surface. This program

was realized by G. Mikhalkin [37, 38].

5.1 Complex nodal curves

Let m be a positive integer. Pick an integer δ verifying 0 ≤ δ ≤ (m−1)(m−2)
2

, and

choose a collection U of m(m+3)
2

− δ points in the complex projective plane CP 2. If

δ = 0, then, under the condition that the collection U is sufficiently generic, there

exists exactly one nonsingular curve of degree m in CP 2 passing through all the

points of U (cf. Section 2.1). In general, consider curves of degree m in CP 2 which

pass through m(m+3)
2

− δ points of U and have δ nondegenerate double points. If U

is sufficiently generic, then the number of these curves is finite and does not depend

on U . Denote by Nm(δ) (resp., N irr
m (δ)) the number of curves (resp., of irreducible
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curves) of degree m in CP 2 which pass through m(m+3)
2

− δ given generic points in

CP 2 and have δ nondegenerate double points.

The numbers N irr
m (δ) determine the numbers Nm(δ) and vice versa (see, for exam-

ple, [5]). The numbers N irr
m (δ) are the Gromov-Witten invariants of CP 2 (see [31]).

A recursive formula for the numbers N irr
m (δ), where δ = (m−1)(m−2)

2
, was found by

M. Kontsevich (see [31]). L. Caporaso and J. Harris [5] gave an algorithm which

allows one to calculate the numbers Nm(g) for an arbitrary δ.

Mikhalkin proposed a new formula for the numbers Nm(δ) (see [37]). This formula

has an immediate generalization to the case of an arbitrary projective toric surface

(see [37]). Mikhalkin’s theorem is based on a reformulation of the enumerative

problem presented above into an enumerative problem concerning tropical curves.

5.2 Correspondence theorem

To formulate Mikhalkin’s correspondence theorem, introduce additional definitions.

Let m be a positive integer, and T a plane projective tropical curve of degree m.

The curve T is called nodal if the corresponding subdivision τ of the triangle T

having the vertices (0, 0), (m, 0), and (0,m) verifies the following properties:

• any polygon of τ is either triangle or a parallelogram,

• any integer point on the boundary of T is a vertex of τ .

Assume that T is nodal. Then, the rank of T is the difference diminished by 1

between the number of vertices of τ and the number of parallelograms in τ . The

multiplicity µ(T ) of T is the product of areas of all the triangles in τ (we normalize

the area in such a way that the area of a triangle whose only integer points are the

vertices is equal to 1).

Let n be a natural number, and U a generic set of n points in R2. Consider the

collection C(U) of nodal plane projective tropical curves of degree m and of rank n

which pass through all the points of U , and denote by Nn(U) the number of curves

in C(U) counted with their multiplicities.

Theorem 5.1 (G. Mikhalkin, [38]). Let U be a generic set of n = m(m−3)
2

−δ points

in R2, where 0 ≤ δ ≤ (m−1)(m−2)
2

is an integer. Then Nn(U) is equal to Nm(δ).
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Figure 11: Tropical curve of degree 3 and of rank 8

Theorem 5.1 is a particular case of Mikhalkin’s theorem which is valid in more

general setting of projective toric surfaces. Mikhalkin’s proof of Theorem 5.1 pro-

vides a bijection between the multi-set C(U) and the set of complex curves of de-

gree m which pass through n given generic points in CP 2 and have δ nondegenerate

double points. Another approach establishing such a bijection was proposed by

E. Shustin [61].

In addition, Mikhalkin [37] found a combinatorial algorithm which gives a possi-

bility to calculate the number of tropical curves in question.

5.3 Welschinger invariant

Mikhalkin’s correspondence also gives a possibility to enumerate real curves passing

through specific configurations of real points in RP 2 (as well as on other projective

toric surfaces). Of course, in the real case the result depends on the chosen point

configuration in RP 2. Fortunately, another important discovery was made recently

by J.-Y. Welschinger [72, 73]. He found a way of attributing weights to real rational

curves which makes the number of curves counted with the weights to be independent

of the configuration of points in RP 2 and produce lower bounds for the number of

real curves in question.

For given positive integer m and integer δ verifying 0 ≤ δ ≤ (m−1)(m−2)
2

, choose a
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collection U of m(m+3)
2

− δ generic points in RP 2. Denote by N irr, even
m (δ, U) (resp.,

N irr, odd
m (δ, U)) the number of real irreducible curves of degree m passing through all

the points of U and having even (resp., odd) number of solitary nodes (i.e., double

points locally given by x2 + y2 = 0) among δ nondegenerate double points. Define

the Welschinger number as Wm(δ, U) = N irr, even
m (δ, U)−N irr, odd

m (δ, U).

Theorem 5.2 (J.-Y. Welschinger [72, 73]). If δ = (m−1)(m−2)
2

(i.e., if the considered

curves are rational), then Wm(δ, U) does not depend on the choice of the (generic)

set U .

In fact, Theorem 5.2 is a particular case of Welschinger’s theorem which is for-

mulated in a symplectic setting. The general statement and the proof can be found

in [72, 73].

The number Wm( (m−1)(m−2)
2

, U) is called the Welschinger invariant and is denoted

by Wm. Clearly, N irr
m ( (m−1)(m−2)

2
, U) ≥ |Wm|.

Welschinger’s theorem gives rise to another type of applications of Mikhalkin’s

correspondence. This approach already gave some results, in particular, the exis-

tence of real rational curves passing through given points in RP 2 (see [19]).

Consider the following question: fix a positive integer m; whether for any generic

3m − 1 points in the real plane there always exists a real rational curve of degree

m which passes through these points ? (The number N irr
m ( (m−1)(m−2)

2
) of complex

rational curves (see [31]) is even for every m ≥ 3, so the existence of required real

curves does not immediately follow from the computation in the complex case.) It is

shown in [19] with the use of Mikhalkin’s theorem, that Welschinger’s bound implies

the following statement.

Proposition 5.3 (see [19])). For any positive integer m, through any 3m−1 generic

points in RP 2 there can be traced at least m!/2 real rational curves of degree m.

As a corollary, the aforementioned question is answered in the affirmative.

5.4 Hilbert-type inequalities

One of the exercises to Section 2 is, in fact, known as Hilbert’s theorem.

Theorem 5.4 (Hilbert’s theorem). Let A be a nonsingular curve of degree m in

RP 2. Then,

• the sum of the depths of any two disjoint nests in RA does not exceed [m/2],
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• the sum of the depths of any five disjoint nests in RA does not exceed m if no

oval of one nest contains inside all the ovals of the other four nests.

Proof. The statements of Theorem 5.4 are corollaries of the Bézout theorem. To

prove the first statement it suffices to choose one point inside of the most interior

oval of each nest, trace the line passing through the chosen two points, and notice

that this line intersects each oval of the union of two nests at least in two points.

On the other hand, according to the Bézout theorem, the line intersects RA at most

in m points.

To prove the second statement, we proceed in a similar way using an auxiliary

conic. Choose one generic point inside of the most interior oval of each nest, trace the

conic passing through the chosen five points, and notice that this conic intersects

each oval of the union of five nests at least in two points. On the other hand,

according to the Bézout theorem, the conic intersects RA at most in 2m points. 2

The proof of Hilbert’s theorem uses the facts that for any two points in RP 2 there

is a line passing through them, and for any five points in RP 2 there is a conic passing

through them. A natural question arises: is it possible to use auxiliary curves of

higher degrees and to generalize in this way Hilbert’s theorem for bigger numbers

of nests? If we try to perform this plan straightforwardly and consider nine nests

of a curve of degree m in RP 2, we meet a difficulty: the real point set of the cubic

passing through the chosen 9 points (we choose one generic point inside of the most

interior oval of each nest) does not need to be connected. Thus, we cannot affirm

that the auxiliary cubic intersects all the ovals of the union of nine nests.

To prove Hilbert-type inequalities, one can try to use auxiliary curves with con-

nected real point set, or can try to make sure that all the chosen points belong to

the same connected component of the auxiliary curve. One of the ways to assure the

latter condition is to use rational auxiliary curves (see [7] for a detailed discussion

of the related questions).

The following statement is a corollary of Proposition 5.3.

Proposition 5.5 For any nonsingular curve A of degree m in RP 2 and any positive

integer d, the sum of the depths of any 3d− 1 disjoint nests in RA does not exceed

md/2 if no oval of one nest contains inside all the ovals of the other 3d− 2 nests.

Proof. Choose one point inside of the most interior oval of each nest (in such a

way that the chosen 3d − 1 points are generic), and consider a real rational curve
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of degree d passing through the chosen points. The statement now follows from the

Bézout theorem. 2

Proposition 5.5 was known before Proposition 5.3 (see [7]). The proof of Proposi-

tion 5.5 presented in [7] is based on the possibility to trace a connected real cubic (of

genus 0) through 8 points in RP 2 and a connected real quartic (of genus 3) through

13 points in RP 2. The advantage of the proof of Proposition 5.5 via Welschinger’s

theorem and Proposition 5.3 consists in the fact that in this way Proposition 5.5 im-

mediately extends to the case of pseudo-holomorphic curves (it is not clear whether

a proof similar to that presented in [7] works in the symplectic category).

Exercises

1. Let r be a positive integer. Prove the following statement: if r points in R2 are sufficiently

generic, then the rank of any nodal tropical curve passing through these points is at least r.

2. Let m be a positive integer. Prove the following statement: if C is a sufficiently generic

collection of m(m+3)
2

points in R2, then there exists exactly one nonsingular plane projective

tropical curve of degree m which passes through all the points of C.

3. Calculate Welschinger’s invariant in the case of rational cubics in the projective plane.
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[14] A. Harnack, Über Vieltheiligkeit der ebenen algebraischen Curven, Math. Ann

10 (1876), 189-199.
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