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DESCRIPTION OF BASIC SEMIALGEBRAIC SETS

C. ANDRADAS

1. Introduction

Semialgebraic sets are rather ubiquitous in mathematics and nature.
The reason is that since they are described by polynomials on one hand
they are “easy” to manipulate and on the other hand they are adequate
to model almost any geometric object since polynomials are dense in
compact ambiences.

Let V ⊂ Rn be an algebraic set, that is, the set of solutions of a finite
system of polynomial equations. (Although most of results appearing
below hold true over any real closed field for simplicity we will work over
the real numbers) Recall that a subset S ⊂ V is called semialgebraic if
it is of the form

S =
t⋃
i=1

{x ∈ V | fi(x) = 0, gi1 > 0, . . . , gini
> 0}

for some polynomial functions fi, gij on V . The pieces {x ∈ V | gi1 >
0, . . . , gini

> 0}, i.e., the solution set of a system of strict inequali-
ties are called open basic semialgebraic. Open basic semialgebraic are,
somehow, the building stones of semialgebraic sets, so that they have
deserved some attention in the last years. In particular we have the
following two main questions:
(P1): Recognize whether a given open semialgebraic set is basic.
(P2): Given a basic open semialgebraic set find a minimal (in the sense
of shorter) description.

Both questions have precise answers, mainly due to the work of L.
Bröcker in the 80’s, and also C. Scheiderer by means of the theory of
spaces of orderings, cf. [AnBrRz]. To be more precise, we denote by
A := R[V ] the ring of polynomials function on V . We will assume that
V is irreducible so that A is a domain and we will denote by K := R(V )
its field of fractions. In particular K is a finitely generated extension
of R of transcendence degree d = dimV . we have:

Theorem 1.1. ([Br1]) An open semialgebraic set S is basic if and only
if for any 4-element fan F ⊂ SpecrA we have #(F ∩ S) 6= 3.
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Theorem 1.2. ([Br1]) Set d = dim(V ). Any basic open semialgebraic
set can be written with s(d) inequalities.

All the above results share several characteristics: they are beautiful
and they are non constructive. In the late 90’s, Acquistapace et al,
[AcBgVe], showed that question P1 is indeed algorithmically decidable
and produce a theoretical algorithm to decide it. However it is very
unpractical. Their work is inspired in previous work of [AAB] and
[AnRz1,2,3]. Concerning question P2, not many attempts have been
taken toward giving explicit algorithms for finding explicit inequations
of minimal length. Only some work of A. Bernig in the 2 dimensional
case gave explicit construction of the 2 inequalities to describe open,
convex, basic semialgebraic sets, and recently [AnVe] have given an
algorithm for basic semilinear sets (i.e. described by linear inequalities),
showing that in this case basicness and convexity are equivalent. The
main attempt toward finding a constructive minimal description was
given by Buresi and Mahé, [BuMa,] but they only could find explicit
upper bounds for the degrees of the polynomials appearing in it.

For simplicity we will assume that V is nonsingular. The reader may
even think of semialgebraic subsets of the affine space Rd. In this case
A = R[X1, . . . , Xd].

2. Changing inequalities

Suppose that we want to manipulate a system of strict inequalities in
a similar way to what we made in Linear Algebra to transform a linear
system in a triangular one, that is, defining some admissible operations
to transform the initial system into an equivalent one and hoping that
the latter is simpler (in some way) than the older.

Here is the first ”rule of thumb”, that can be checked by direct
inspection: the systems

h1 > 0
h2 > 0

}
h1 + h2 > 0
h1h2 > 0

}
are equivalent.

The second rule states that the system does not change when equa-
tions are multiplied by polynomials of precise positivity point sets.
Again a direct inspection shows that the systems

h1 > 0
h2 > 0
· · ·

hn−1 > 0
hn > 0


h1u0 > 0
h2u1 > 0
· · ·

hn−1un−2 > 0
hnun−1 > 0


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are equivalent, where u0 > 0 everywhere and {uj > 0} ⊃ {h1 >
0, . . . , hj > 0}.

Combining these two operations we get the following one which col-
lect both at once (the uj’s are as above): the systems

h1 > 0
h2 > 0
· · ·

hn−2 > 0
hn−1 > 0
hn > 0



h1 > 0
h2 > 0
· · ·

hn−2 > 0
hn−1un−2 + hnun−1 > 0

hn−1hnun−1 > 0


are equivalent.

Repeating the rule with the rows n− 1 and n− 2 and so on, we get
that the initial system of inequalities is equivalent to

h1u0 + h2u1 + · · ·+ hnun−1 > 0
h1(h2u1 + · · ·+ hnun−1) > 0

· · ·
hn−2(hn−1un−2 + hnun−1) > 0

hn−1hnun−1 > 0

 (∗)

Now, if u0, u1, . . . , un−1 can be chosen such that h1u0 + h2u1 + · · ·+
hnun−1 > 0 is trivial, for instance 1 = h1u0 +h2u1 + · · ·+hnun−1, then
we get that our system is equivalent to one with one less equation,
namely {g1 > 0, . . . , gn−1 > 0} with gk = hk(hk+1uk + · · ·+ hnun−1).

This will be the strategy to shorten the system of inequalities: try
to find u0, u1, . . . , un−1 such that h1u0 +h2u1 + · · ·+hnun−1 becomes a
strict positive function (for instance 1). Of course the hard point is to
choose the ui’s and for that we need to know how the polynomials which
are positive on a certain basic semialgebraic set look like. The tool for
that will be the use of Pfister forms and the elements represented by
them.

3. Pfister’s form attached to a semialgebraic set

Let K be any field of characteristic different from 2. A quadratic
form of dimension n, over K is a homogeneous polynomial of degree 2
in n variables:

ϕ =
∑

1≤i≤j≤n

aijYiYj

The value of ϕ in the vector w = (w1, . . . , wn) is just ϕ(w) =
∑

1≤i≤j≤n aijwiwj.

We can write ϕ in matrix form in a unique way ϕ(Y ) = Y tMϕY ,
where Y t = (Y1, . . . , Yn) and M is a symmetric n×n matrix with mii =
aii and mij = mji = (1/2)aij. Two forms (of the same dimension) ϕ
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and ψ are said equivalent or congruent and we will write ϕ ≡ ψ if there
is change of variable, given say by the matrix P , such that ψ(Y ) =
ϕ(PY ). In terms of the matrices that means that Mψ = P tMϕP for a
nonsingular matrix P . Any quadratic form is equivalent to a diagonal
one, that is one of the form

ψ(Y ) =
∑
i

aiY
2
i

, whose matrix diagonal with entries a1, . . . , an. Therefore we will
assume always that we are dealing with diagonal forms and we just
denote ϕ =< a1, . . . , an >. The form is called degenerated if its de-
terminant is zero. Finally, if K is an ordered field the signature of
ϕ =< a1, . . . , an > is defined as the difference between the number of
positive elements minus the number of negative elements. If two forms
ϕ and ξ are equivalent they have the same rank and signature.

Given ϕ =< a1, . . . , an > and ψ =< b1, . . . , bm >, We consider two
operations. The addition

ϕ ⊥ ψ =< a1, . . . , an, b1, . . . , bm >

which is defined on the vector space Kn ×Km, and the product

ϕ⊗ ψ = a1ψ ⊥ · · · ⊥ anψ

which is defined over the space Km × · · · ×Km (n times).
A Pfister form ϕ is one of type

ϕ =< 1, f1 > ⊗ · · ·⊗ < 1, fn >

and will be represented in sort as ϕ =� f1, . . . , fn �. Notice that it
has dimension 2n and that ϕ =< 1 >⊥ ϕ′ for a 2n − 1 dimensional
form ϕ′ which is called the pure part of ϕ. If we denote by ϕi =�
f1, . . . , fi � we have

ϕ = ϕn = ϕn−1⊗ < 1, an >= · · · =< 1 >⊥< a1 >⊥ a2ϕ1 ⊥ · · · ⊥ anϕn=1

Let us illustrate the relationship between forms and semialgebraic
sets with an example. Consider V = Rd and let K = R(X1, . . . , Xd) be
the field of fractions of the polynomial ring. Let ϕ =< f1, . . . , fn > be
a form over K, i.e. fi = gi/hi with gi, hi ∈ R[X1, . . . , Xd], and take a
point x ∈ Rd at which f1, . . . , fn can be evaluated. Then, specializing
at x we get the form ϕx =< f1(x), . . . , fn(x), now defined over R.
Then it is easy to see that the set of points x at which the form ϕx
has a prescribed rank and signature is a semialgebraic subset of Rd

described as boolean combination of equalities and inequalities of the
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polynomials gi and hi. For instance the set S of points such that the
form ϕ =< 1− x2 − y2, x, y > has rank 2 and signature 1 is the set

S = {x ∈ R2 | 1−x2−y2 > 0, xy < 0, }∪{x ∈ R2 | 1−x2−y2 < 0, x > 0, y > 0}.
Conversely, given a semialgebraic set we can construct a form which
defines it in terms of rank and signature. The most important example
is the following.

Let S = {f1 > 0, . . . , fn > 0} ⊂ Rd be a basic open semialgebraic
set, with fi ∈ A. Consider the Pfister form

ϕ =� f1, . . . , fn �:=< 1, f1 > ⊗ · · ·⊗ < 1, fn >

For any x ∈ Rd with f1(x) · · · fn(x) 6= 0 we have

signature(ϕ(x)) =

{
2n if x ∈ S
0 otherwise

Therefore

S = {x ∈ Rd | rank(ϕ(x) = signature(ϕ(x)) = 2n}
so that the form ϕ acts as a characteristic function for the set S up to
the set of zeros of the fi’s.

A word of warning is needed in this relationship between forms and
sets: let ϕ =< f1, . . . , fn > be as above and set Sϕ = {x ∈ Rd |
rank(ϕ(x)) = r, signature(ϕ(x)) = s}. Assume that ϕ ≡ ψ =<
g1, . . . , gn > (as forms over K). Then there is a nonsingular n × n
matrix P with entries in K such that Mϕ = P tMψP . Thus, for any
point x ∈ Rd outside the set H of zeros of the denominators of the
entries of ϕ, ψ, and P and the determinant of P , by specialization at
x we get and equation of matrices over R:

Mϕx = (Px)
tMψxPx

which shows that ϕ(x) and ψ(x) have the same rank and signature. In
particular Sϕ and Sψ coincide up to the hypersurface H. We denote this
phenomena saying that Sϕ and Sψ are generically equal. More precisely,
we say that two semialgebraic subsets S, T ⊂ V are generically equal if
there is a proper algebraic subset H ⊂ V (hence of smaller dimension
sinve we are assuming V irreducible) such that S\H = T \H. Therefore
we may summarize the argument above by saying that equivalent forms
give rise to generically equal semialgebraic sets.

In particular if � f1, . . . , fn �≡� g1, . . . , gn � the sets {f1 >
0, . . . , fn > 0} and {g1 > 0 . . . , gn} are generically equal, and if �
f1, . . . , fn �≡� 1, g2, . . . , gn �, the set {f1 > 0, . . . , fn > 0} is gener-
ically equal to {g2 > 0 . . . , gn}, reducing in one the number of inequal-
ities. To advance in this situation we need some algebra of forms.
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4. A little algebra of forms

In this section we collect some properties of forms. Proofs of them
can be found for instance in [Lm]. We start by tha follwing elementary
but fundamental Witt’s cancellation theorem

Theorem 4.1. Assume that ϕ ⊥ ψ ≡ ϕ ⊥ ρ. Then ψ ≡ ρ.

Definition 4.2. An element b ∈ K∗ is represented by the form ρ =<
a1, . . . , an > if there is a vector v ∈ Kn such that b = ρ(v) =

∑
aiv

2
i .

We denote by Gρ the set of elements represented by ρ. The form is
called isotropic if 0 is represented by ρ, that is, 0 =

∑
aiv

2
i for some

v ∈ Kn, v 6= 0. The form is called anisotropic if it is not isotropic.

Obviuosly, if b =
∑
aiv

2
i ∈ Gρ and c ∈ K∗ we get bc2 =

∑
ai(vic)

2 ∈
Gρ. Here is a list of elementary properties:

Proposition 4.3. a) For any b ∈ K∗ we have that b ∈ Gρ iff
ρ =< b >⊥ ψ for some ψ of dimension n− 1.

b) ρ is isotropic iff there is some a such that ρ =< a,−a >⊥ ψ
for some ψ of dimension n− 2.

c) for any a ∈ K∗ we have < a,−a >=< 1,−1 >. In particular,
any isotropic form is universal, i.e., represents all the elements
of K.

d) If c ∈ K∗ is represented by < a, b > then < a, b >= c < 1, ab >
e) In particular, if c ∈ K∗ is represented by < 1, a > then <

1, a >= c < 1, a >

Property e) is taken as motivation of the following important notion:

Definition 4.4. A form ρ is called multiplicative if for any b ∈ Gρ,
ρ ≡ bρ.

In particular e) above shows that 2 dimensional Pfister forms are
multiplicative. In fact we have the following fundamental property

Proposition 4.5. Assume that ρ is multiplicative. Then ρ⊗ � 1, a�
is also multiplicative. In particular Pfister forms are multiplicative.

As a consequence we get that if ρ is a Pfister form, Gρ is a mul-
tiplicative subgroup of K∗. Indeed, the proposition shows that Gρ is
multiplicatively closed. On the other hand, 1

ρ(v)
= ρ( v

ρ(v)
), showing that

inverse of elements of Gρ are again in Gρ.
The rules to manipulate systems of inequalities mentioned in section

1 have a well translation in terms of Pfister forms. Indeed, notice that
if ϕ =�, f1, . . . , fn � is a form over R(V ) and g ∈ R[V ] is represented
by ϕ then g ≥ 0 over the semialgebraic set S = {x ∈ V | f1(x) ≥
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0, . . . , fn(x) ≥ 0}. The converse, however, is not true: if a polynomial
g ∈ R[V ] is nonnegative on S then by the positivstellensatz we get that
g is represented by some multiple ϕ ⊥ · · · ⊥ ϕ of ϕ.

Proposition 4.6. (1) � a, b�=� a+ b, ab�
(2) Let ϕ be a Pfister form and b ∈ Gϕ. Then ϕ⊗ � a�= ϕ⊗ �

ab�.

Proof. a) � a, b �=< 1, a, b, ab >=< 1, a + b, (a + b)ab, ab >=�
a+ b, ab�, where the first equality follows from d) above.

b) Since ϕ is multiplicative and b is represented by ϕ we have ϕ⊗ �
a�= ϕ ⊥ aϕ = bϕ ⊥ abϕ = ϕ ⊥ abϕ = ϕ⊗ � ab�

�

Combining these two operations we get the translation of the system
(∗) above to Pfister forms, cf. [BCR, Lemma 6.4.14]:

Proposition 4.7. Assume that u1 is a square in K∗ and that for i =
2, . . . , n, ui ∈ K is represented by the form ϕi−1 =� a1, . . . , ai−1 �.
For i = 1, . . . , n, set bi = fiui + fi+1ui+1 + · · ·+ fnun and assume that
these are nonzero, bi ∈ K∗. Then

ϕ =� a1, . . . , an �=� b1, a1b2 . . . , an−1bn �

Notice that an element of K∗ has the shape of b1 above if and only
if it is represented by the pure form ϕ′ of ϕ. Thus we have:

Corollary 4.8. Let ϕ =� a1, a2, . . . , an � and assume that b is rep-
resented by the pure part ϕ′ of ϕ. Then ϕ =� b, c2, . . . , cn � for some
c2, . . . , cn ∈ K.

Thinking in terms of systems of inequalities we are saying that we
can always replace our original system f1 > 0, . . . , fn > 0} by a new one
which generically equivalent to it that contains the inequality g1 > 0
where g1 is any polynomial represented by ϕ′. In particular, if 1 is
represented by ϕ′ we get an spurious inequality and therefore, after
clearing denominators, a new system of inequalities, generically equiv-
alent to the former, and with one less inequality. This is exactly the
content of the following result.

5. d inequalities suffice

The following theorem due to Tsen and Lang is crucial for our pur-
poses. For a proof see [BCR, chapter 6].

Theorem 5.1. Let K be an extendion of transcendence degree d over
an algebraically closed field F . Then any homogeneous polynomial of
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degre k in more than kd variables has a non trivial zero. In particular
any quadratic form over K of dimension greater than d is isotropic.

Let us come back to our geometrical setting. Let V ⊂ Rm be a
non-singular real algebraic variety of dimension d. In particular the
function field K = R(V ) has transcendence degree d over R.

Theorem 5.2. Given ϕ =� f1, . . . , fd+1 � then 1 = ϕ′(x) for some

vector x ∈ K2d+1−1.

Proof. Assume that ϕ is anisotropic over K. By Tsen/Lang Theorem
ϕ is isotropic over K(i). Now, consider two new variables T1, T2 over
K and consider the form ϕ over the field F = K(i)(T1, T2). Obviously
it is also isotropic, whence universal over this field. In particular the
element β = T1 + iT2 is represented by some element z ∈ F . Since F
has degree 2 over K(T1, T2) we have that F = K(T1, T2)[β], so that we
write β = u+ iv with u, v ∈ K(T1, T2). Thus, we have

β = ϕ(u+ βv) = ϕ(u) + β2ϕ(v) + 2βBϕ(u, v),

where Bϕ stands for the symmetric bilinear form associated to ϕ. Thus
we get the equation

β2ϕ(v) + (2Bϕ(u, v)− 1)β + ϕ(u) = 0.

On the other hand, the irreducible polynomial of β over K(T1, T2) is

β2 + 2T1β + (T 2
1 + T 2

2 ) = 0.

so that we get
ϕ(u) = ϕ(v)(T 2

1 + T 2
2 ).

Thus we have

(T 2
1 + T 2

2 ) =
ϕ(u)

ϕ(v)

and since Gϕ is multiplicative we get that T 2
1 + T 2

2 is represented by
ϕ. By the lemma above this means that the ϕ =< 1, 1 >⊥ ψ for some
form ψ, and by Witt’s cancellation theorem we get ϕ′ =< 1 >⊥ ψ, so
that 1 is represented by ϕ′ as claimed.

In case ϕ is isotropic we have ϕ =< 1,−1 >⊥ ψ and by the cancella-
tion theorem we get that ϕ′ =< −1 >⊥ ψ so that −1 is represented by
ϕ′. By the proposition above we have that ϕ =� −1, c2, . . . , cn �=<
1,−1 > ⊗ � c2, . . . , cn �. It follows that ϕ′ contains the subform
< ci,−ci > for all i, and therefore ϕ′ is isotropic. In particular it is
universal and 1 ∈ Gϕ′ as claimed. �

Theorem 5.3. Any basic open semialgebraic subset S = {f1 > 0, . . . , fn >
0} ⊂ V can be described generically by d inequalities.
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Remark 5.4 The above theorem holds not only generically but also as
a true equality of sets. The proof is essentially the same, but working
with forms over rings with many units, that is, rings in which any
function with no zeros is a unit, as for instance the ring of regular
functions on V . In this settings the arithmetic of Pfister forms behaves
as in teh case of fields and proposition ?? also holds. Proofs are however
more involved and technical and we have preferred to keep ourselves at
the level of fields.

The following example shows that the bound of d inequalities is
optimal:

Example 5.5 Set V = Rd. The semialgebraic set S = {x1 > 0, x2 >
0, . . . , xd > 0} is not generically equal to any open semialgebraic set
described with less than d inequalities. We proof this assertion by
induction on d. Assume that {x1 > 0, x2 > 0} is generically equal
to {f > 0}, f ∈ R[x1, x2]. Evaluating f in the lines x2 = tx1 with
t > 0 we get that f has different sign at x1 = −∞ and x1 = ∞,
so that must be of odd degree. But along the lines x2 = tx1 with
t < 0, f has equal sign at x1 = −∞ and x1 = ∞, and so it has even
degree, contradiction. Assume by induction the result for d − 1, and
suppose that {x1 > 0, x2 > 0, . . . , xd > 0} coincides generically with
{f1 > 0, . . . , fd−1 > 0}. For each j = 1, . . . , d − 1 we have fj = x

mj

d gj
for some exponent mj (possibly zero). Since the hyperplane {xd = 0} is
part of the boundary of S, not all these exponent can be even. Reorder
the fj’s so that f1, f2, . . . , fr−1 have exponent odd and fr, . . . , fd−1 have
exponent even. Then, consider the set

S ′ = {(x1, . . . , xd−1) ∈ Rd−1 | g1(x1, . . . , xn−1, 0)g2(x1, . . . , xn−1, 0) > 0, . . . , g1(x1, . . . , xn−1, 0)gr−1(x1, . . . , xn−1, 0) > 0, gr(x1, . . . , xn−1, 0) > 0, . . . , gd(x1, . . . , xn−1, 0) > 0}
It is easy to check that S ′ is generically equal to {x1 > 0, . . . , xd−1 >
0} ⊂ Rd−1, and by induction we get a contradiction.

6. Some considerations about the effectiveness

What can be said about the degrees of the shorter description? It
is well known that they may increase (and in fact must): for instance,
take the regular n-polygon described by the n linear inequalities of
its sides. Then the product of all these linear factors must divide the
product of the two equations of the shorter generic description. Thus
one of them must have degree al least n/2. On the other hand, Buresi
and Mahé [ BuMa] proved that there exists an upper bound for the
degrees of a generic minimal description in terms of the dimension d
and degrees and number of the initial description.
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His approach is to keep track as close as possible of the construction
of the vector z ∈ K2n−1 that gives the representation of 1 by ϕ′. By a
simple consideration on the degrees, that the solution z ∈ K(i)2d+1

to
the equation ∑

ε=0,1

f ε11 · · · f εd+1

d+1 X
2
(ε1,...,εd+1

= 0,

guaranteed by Tsen-Lang theorem can be taken in A[i] = A ⊗R R[i]
of degree (i.e. in all its components) ≤ dα, where α is the sum of
the degrees of the fi’s. The construction of vectors representing the
product of two represented elements (i.e. the propoerty of Pfister forms
of being multiplicative) can be done effectively by means of a Pfister
construction, that allow to track up the polynomials appearing in the
process, so that in the end we get

Theorem 6.1. Given f1, . . . , fd+1 as above, we can construct g1, . . . , gd
such that {f1 > 0, . . . , fd+1 > 0} and {g1 > 0, . . . , gd > 0} are generi-
cally equal and deg(gi) ≤ (3d + 1)dα

A. Bernig gave, in his diplomarbeit [Be], a constructive procedure
for finding the two polynomials of the shortest description for open,
convex, basic semialgebraic subsets of the plane R2. Very recently
M. Groetschel and M. Henk have given an algorithm to find a shorter
representation of polyhedra in Rd starting from a linear representation,
but that is still far from being optimal (that is with d polynomials.

7. Fans and basicness

Let us pass to the question of deciding when a given semialgebraic
set is basic. As pointed out above the main result in this direction is
Bröcker’s theorem, using fans. So, Let us try to understand what fans
are. We start with an example. Consider a line H in R2 and two points
a1, a2 ∈ H. Now, at each point take one of the two half branches of
H at it, say ξ1 at the point a1 and ξ2 at a2. Again at each ai consider
the two ultrafilters αk of open semialgebraic sets of R2 “adherent” to
ξi, i.e., those whose elements contain ξi in its closure. This way we
obtain four ultrafilters α1, α2, α3, α4 with the property that we cannot
separate one of them from the other three, that is, if a polynomial is
positive in three of them, it is also positive in the fourth. Here, of
course, we say that a f ∈ R[X, Y ] is positive in the ultrafilter α if is
positive in some S ∈ α. In this situation we say that α1, α2, α3, α4 are
a fan of R(X,Y ). The following picture summarizes the situation:
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-

(a1) (a2)
r rα1

α3

α2

α4

Of course the same construction can be made in Rd starting with
any algebraic hypersurface H ⊂ Rd, two points a1, a2 ∈ H and two
ultrafilters ξ1, ξ2 of open semialgebraic subsets of H with a1 and a2 in
its closure. Again the resulting α1, α2, α3, α4 are “inseparable” in the
sense above and build a fan of R(X1, . . . , Xd).

Let’s make this definition more precise. By Artin-Lang Theorem,
ultrafilters of open semialgebraic subsets of an irreducible algebraic set
V correspond to orderings of the function field R(V ) of this set, and it
is in this context of orderings of a field, where the original definition of
fans takes place.

Definition 7.1. We say that four orderings α1, α2, α3, α4 are a 4-
element fan of K if any element of K which is positive in three of
them is also positive in the fourth. Thinking in the orderings of K as
mappings assigning a sign +1 or −1 to the elements of K, this property
is stated by saying that the product of three of the α′s is the fourth:

α1α2α3 = α4.

More generally, a finite subset F of orderings of K are a fan if for
any three α1, α2, α3 ∈ F their product is also an ordering of F . Thus,
4-element fans are the simplest (non-trivial) examples of fans. Since we
are interested in the geometric situation, the field K will always be the
field R(W ) of rational functions of an algebraic subvariety W ⊂ V . In
this situation we will say that the orderings (resp. fans) are supported
in the subvariety W or simply, when no confusion is possible that they
are orderings in W .

The set of all orderings in all possible subvarieties of V is the real
spectrum SpecrR[V ] of the ring of polynomial functions on V , or simply

the real spectrum of V , and will be also denoted by Ṽ . In particular,

Ṽ contains the orderings supported at the points x ∈ V which are
identified with the points, so that it contains V . Also it contains the

orderings (ultrafilters) centered at infinity, so that Ṽ results a com-
pactification of V . The set of all fans in all subvarieties of V constitutes
the family of fans of SpecrR[V ]. Notice in particular, that a fan F is
always a set of orderings supported in the same subvariety W ⊂ V .

Given any ordering α ∈ Ṽ and a polynomial f ∈ R[V ] we say that
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α ∈ {f > 0} if f |W is positive in α, and analogously for f < 0. In case
f vanishes on W we say that α ∈ {f = 0}. Translating this back to the
geometric language, if we identify α with its corresponding ultrafilter,
we are just saying that α ∈ {f > 0} if and only if {f > 0} is in the
ultrafilter α.

In general fans have remarkable combinatorial properties:

Proposition 7.2. Let F be a fan in Ṽ .

a) for any f ∈ R[V ] then {f > 0} ∩ F is either trivial (i.e. , or
F ) or contains exactly half of the elements of F .

b) #F = 2k for some k.
c) If S = {f1 > 0, . . . , fn > 0}, then either #(F ∩ S) ≥ 2k−n or

(F ∩ S) = ∅. In particular if there is a fan f with 2n elements
such that #(F ∩S) = 1, then S cannot be written with less than
n inequalities.

Fans are a very important class of families of sets of orderings since
they are like building stones for more general subspaces and also serve
as a testing family for some properties like for instance the property
of a semialgebraic set to be basic as we will see in the next section.
Although combinatorially they are very simple, from the point of view
of its geometric translation, arbitrary fans can be very weird. However,
there is an easy way to produce a special type of fans in the spirit
of the example quoted at the beginning of the section: take a flag of
subvarieties Wk ⊂ Wk−1 ⊂ · · · ⊂ W1 ⊂ W0 = V , where dimWj = d−j,
1 ≤ k ≤ d − 1, and take two orderings (i.e. two ultrafilters) in Wk.
Then pulling back these ultrafilters along the flag of subvarieties as in
the example above,i.e., considering in Wj all the ultrafilters adherent
to the ultrafilters in Wj+1, we get a fan with 2k+1 elements. In the
example at the beginning of the section we have done this for the case
k = 1 to produce 4-element fans. From the algebraic point of view we
are considering a discrete valuation ring B of R(V ) of rank k and lifting
through it two fixed orderings of its residue field by giving all possible
signs to the regular parameters of B. With this valuation point of view
is immediate to check that the set of orderings obtained is indeed a fan.
We call such fans geometric because of its obvious geometric meaning.
The nice fact is that when the ground field is the field of real numbers
R, geometric fans are enough to check most properties of semialgebraic
sets since they are dense in the set of all fans , cf. [AnRz1].
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8. Characterization of Basicness

Let’s go back to the characterization of basic semialgebraic sets. We
denote by ∂ZS the Zariski closure of the boundary, S \ S, of S. A
necessary condition for an open semialgebraic set to be basic is that
S ∩ ∂ZS = ∅. Indeed, if S = {f1 > 0, . . . , fn > 0} then ∂ZS ⊂ {

∏
fi =

0}. Therefore we assume from now on that S verifies this topological
condition, which in particular implies that it is open. We have the
following celebrated theorem of Bröcker:

Theorem 8.1. [Br1]) Assume that S ∩ ∂ZS = ∅. Then S is basic if

and only if for any 4-elements fan F of Ṽ , #(S ∩ F ) 6= 3.

One of the directions of the if and only if condition in the theorem is
immediate from the properties of fans enumerated above: if S is basic
its intersection with F must have cardinality 20 = 1, 21 = 2 or 22 = 4.
However the converse is not at all obvious although intuitively we are

saying that if S fails to be basic this failure can be detected in Ṽ in the
minimal possible spot where basicness is not trivial: 4-elements fans.
Remark that in the Theorem we are considering all fans in all possible
subvarieties W of V . If instead the statement holds only for fans in
V , i.e., supported in the whole ambient variety V that is consisting of
orderings in R(V ), we get that S is basic as a subset of the space of
orderings of R(V ), or, again by applying Artin-Lang theorem, up to
a subset of codimension 1. In this case we say that S is generically
basic. Therefore Bröcker’s theorem asserts that S ⊂ V is basic if and
only S ∩W is generically basic for any subvariety W ⊂ V (including
V itself). Therefore, to check basicness we only need to check generic
basicness although apparently we need to do it over an infinite family
of subvarieties. However, only a finite family is required:

Proposition 8.2. If S fails to be basic either it fails to be generically
basic (in V ) or S∩W is not basic for one of the irreducible components
W of the set ∂ZS ∪ SingX.

Proof. (Sketch) Assume that S is not basic but S ∩W is basic for any
irreducible component of ∂ZS ∪SingX. In particular S ∩Y is basic for
any subvariety Y of this set. Thus, our assumption on S implies that
there is a subvariety Y not contained in ∂ZS∪SingX such that S∩Y is
not generically basic, i.e. there is a fan F in Y such that #(S∩F ) = 3.
But, since Y 6⊂ Sing(X), the localization of R[V ] at the ideal of Y is a
discrete valuation ring B, and we can pull back F to a 4-elements fan
in V by assigning suitable signs to the regular parameters of B in such
a way that #(S ∩ F ) = 3. Therefore S is not generically basic. �
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This proposition shows that the first (and main) step in proving
basicness is to show generic basicness for V . Then we have to prove
basicness for S ∩W in the irreducible components W of ∂ZS ∪ SingX
which again yields to check generic basicness on S ∩W and basicness
on some smaller subvarieties. This way we produce a finite cascade of
subvarieties so that generic basicness of S on them implies basicness of
S.

So, let us concentrate on showing generic basicness. Suppose now
that the ground field is R, the field of real numbers, what we assume
from now on. Then, using the density of geometric fans, we get

Theorem 8.3. S is generically basic if and only if #(S ∩ F ) 6= 3 for
any 4–elements geometric fan F in V .

Now remember that geometric 4-elements fans appear attached to
a hypersurface W and that, by the proposition above, after resolving
singularities, W must be a component of ∂ZS. Then, the condition
that S contains only three of the elements of the fan means that W
enters into S. We make this idea more precise: set S∗ = Int(S). The

set ∂ZS
∗ = (S∗ \ S∗)

Z

is called the generic Zariski boundary of S, and
any irreducible component of codimension 1 of it is called a wall of S.
We will say that ∂ZS

∗ crosses S if they intersect in a piece of dimension
d − 1, or equivalently if S contains some regular point of some wall.
Then,

Theorem 8.4. (Universal obstruction to basicness, [AnRz2]) S is ge-
nerically basic if and only if in any birational model of V the generic
Zariski boundary ∂ZS

∗ does not cross S.

Here is the paradigmatic example of a non basic semialgebraic set.
Consider the set S of the picture below. Notice that the 4-element fan
constructed over the horizontal axis at the beginnng of section 5 has
three elements in S and therefore it follows from Bröcker’s theorem that
S is not basic. On the other hand, the axis itself (that is, the subvariety
to which the fan is attached) produces a wall of S that enters into S.

-
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The above result shows that these is always the situation: an irre-
ducible component of ∂ZS

∗ must enter into S although this component
may appear only after blowing-up V . However this result can be im-
proved yielding to a decision method to check basicness if we impose
some extra condition on the walls of S.

9. Geometric decision method

Given a subvariety W of V . We define the shadow of S in W as
SW := S∩W . We assume that V is compact (which is not a restriction
since any real algebraic variety can be easily compactified).

Theorem 9.1. ([AcBgVe]) Assume that V is non-singular and that the
Zariski boundary of S is at normal crossings. Then S is not generically
basic if and only if there is a wall W of S such that either W crosses
S or the shadow of S into W is not generically basic.

Proof. (Sketch) If S is not generically basic there is a 4-elements geo-
metric fan F in V such that #(F ∩ S) 6= 3. Let B be the rank 1
discrete valuation ring attached to F . If B is centered at a hypersur-
face in V then it must be a wall W of S and we get that W crosses
S. If the center Z of B in V has codimension greater than 1 then it is
contained in the intersection of at least two walls, say W1,W2, whose
local equations x1 = 0, x2 = 0 are part of a system of parameters of Z.
Then, we can lift the orderings induced by F in Z first to W2 giving
different signs to x2 and then to W1 keeping fix the sign of x1 so that
we get a 4-elements fan which can be read also in W1 and produces an
obstruction for the shadow of S in W1 to be basic. �

The above result can be generalized to check s–basicness. A gener-
ically basic semialgebraic set S is called generically s–basic if it co-
incides, up to a proper algebraic set, with a set of the form {f1 >
0, . . . , fs > 0}. Then we have:

Theorem 9.2. ([AcBgVe]) Assume that M is non-singular and that
the Zariski boundary of S is at normal crossings. Then S is generically
s–basic if and only if for any wall N of S, the shadow SN is (s − 1)–
basic.

Example 9.3 In the following picture the union of any two cubes is a
basic set, while the union of the three is not generically basic, since its
shadow on the wall W is not generically basic, as one can easily see.
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The simplest example for Theorem 3.5 is the n-ant = {x ∈ Rn | x1 >
0, . . . , xn > 0} ⊂ Rn. The theorem shows that it is n-basic and for each
wall xi = 0 its shadow on it is a n− 1-ant which is n− 1 basic.

10. A concrete example

We finish this note with a concrete example: showing that the set S
of quartic polynomials with no real roots is not basic, cf. [Dz]. So,

S = {(a1, . . . , a4) | t4 + a1t
3 + · · ·+ a4 has no real root } ⊂ R4.

We will check that the intersection with the plane H = {a1 = a3 =
0} of biquadratic polynomials is not basic. Indeed, the polynomial
t4 + a2t

2 + a4 has no real root if and only if s2 + a2s + a4 has either
no real roots or its two roots negative. So that S ∩H = {a2

2 − 4a4 <
0} ∪ {a2 > 0, a4 > 0}. This set is not basic: consider the two half-
branches ξ1, ξ2 of the parabola a2

2 − 4a4 = 0 at the origin, and let F
be the 4-elements fan {α1, α2, α3, α4} of ultrafilters of R2 adherent to
these half branches. We have that #(F ∩ (S ∩H)) = 3.
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