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e Solving ?
e A general (universal) method : the CAD;
e Powerfull (in practice) tools : Grobner bases;
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Plan

Part 1 : General Introduction and motivations
Part 2 : Zero-dimensional systems

e Checking the hypothesis (Zero-dimensional);
e Switching to linear algebra;
e Counting Real Roots;

e Variable’s elimination;
Lexicographic Grobner bases;
Triangular sets;
Rational Univariate Representation;

e |solating Real Roots of algebraic systems;
e Adding inequalities;
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Plan

Part 1 : General Introduction and motivations
Part 2 : Zero-dimensional systems
Part 3 : Parametric Zero-dimensional Systems

e (Checking the hypothesis;

e (Generic Solutions ?
Cool Solutions
Sympa Sotutions

e Adding Inequalities;
e Parameter’'s space decompositions
e Variety’s decomposition w.r.t. inequalities;
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Plan

Part 1 : General Introduction and motivations
Part 2 : Zero-dimensional systems

Part 3 : Parametric Zero-dimensional Systems
(small) Part 4 : Positive dimensional systems

e switch to the parametric case
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Motivations

The goals
e Solving systems of polynomial equalities and inequalities;

e Exact results : a real root is not a complex root with a small
Imaginary part, a cluster is not a singularity, etc.

e Algorithms : always terminates (only a question of time or memory),
checkable restrictions (ex. : zero-dimensional)

e Software solutions and algorithms : can solve more than academic
applications.
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Computations - Algorithms

e Define a minimal set of usefull mathematical objects that can be
computed efficiently.
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Computations - Algorithms

e Define a minimal set of usefull mathematical objects that can be
computed efficiently.

e Propose several computational solutions.

e Adaptative strategies (depending on mathematical properties
checked before or during the computations)
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Computations - Algorithms

e Define a minimal set of usefull mathematical objects that can be
computed efficiently.

e Propose several computational solutions.

e Adaptative strategies (depending on mathematical properties
checked before or during the computations)

Build your own "Solve" function depending on the problem you want to

solve
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Solving "Semi-Algebraic” Systems

Academic challenge :

Deciding if a first order formula with equalities and inequalities is true or
not.

Tarski-Seidenberg = conjonctions and disjonctions of equalities and
inequalities.

Applications’ challenges : Many critical "sub"-problems

e equalities, inequalities in one variable : number of solutions
solutions, numerical approximations, numerically stable solutions;

e zero-dimensional systems (with or without inequalities) : number of
solutions solutions, numerical approximations, numerically stable
solutions;

e systems with parameters : existence of solutions, properties’
discussions w.r.t. parameter’s values (ex : number of real roots);

e general positive dimensional sytems : existence of solutions,
decomposition of the ambiant space in sign-invariant cells, etc.
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Notations

K C K’ are ordered fields, R the real closure of K’ and C the algebraic
closure of R. In practice, we consider K = Q, R=R and C = C.

A semi-algebraic system will be denoted by
S:{El =0,...E,=0,F1 >0,...F >O},

where E;, F; € K[Y1,...,Y,]

The main ideal of K|Y1,...Y,,] associatedto S :

I =< El,...ES >

The main variety of S : Vo = V(1) € C™. We define also Vg = Vo [ R™.
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The Cylindrical Algebraic Decomposition (CAD)

Since the 70’s, there exists a universal "black-box", the Cylindrical
Algebraic Decomposition. Theoretically, it solves all the listed problems.

Description
e Input = a set of polynomials (F3);
e Output = a partition of R™ such that sign(F;) = ct

The CAD is defined recursively.
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CAD - Projection Step

At level k, we have a set P, of polynomial of K[ X, ..., X, ]. We construct
P11 = Proj(Py) as being the smallest set such that :

o Ifpe Py, degy, (p) =d > 2, Proj(P;) contains all the sr;(p, 88—)&)
(non-constant) for y =0, ... ,d.

o Ifpe Py, qec P, Proj(Py) contains sr;(p, q) (non-constant) for
7=0,... ,min(degxk (p), deng (q))-

o lfpe Py, degy, (p) > 1andlicx, (p) non constant, Proj(P) contains
lex,, (p) and Proj(Py \ {p}t U{p —lex, (p)}).

o Ifpe Py, degy, (p) = 0 and p non constant, Proj(Py), contains p.
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CAD - lifting step

e (1) compute real roots of all polynomials of P, and sort them;
e (2) take one point on each interval between roots of (1);
e (3) specialize X, to(1)and (2)in P,_...P;.

Excepted for £ = n step (1) lead to isolate the real roots of polynomial with
real algebraic numbers as coefficients which is, in practice, a difficult task.

Also, the basic CAD algorithm can be easily described and implemented
using exclusively operations with univariate polynomials.

Computations and size of the output : O(d®(?™)).

The exponential behavior of the method is mainly due to the projection
step and in particular the increase of polynomial degrees due to
sub-resultant computations.
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Why working on alternatives ?

e "Solving" first order formulas : known to be doubly exponential.

e One point / semi-algebraically connected component for an
algebraic : known to be simply exponential (see M.F. Roy’s lecture)

e eftc.
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Grobner bases : some motivations

Simplification of polynomial systems : are two systems (ideals)
"equivalent" ?
Zero-dimensional ideals :
o CY1,...Y,]/Ic =C®k K|Y1,...,Y,]/IKk is a finite dimensional
C'-vector space,
o K[Y1,....Y,]NK[Y;]#0,Vi=1...n
[

This requires to have a good (computable) representation of I and a
function to (at least) decide if p € 1.
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Grobner bases : a minimal set of definitions

A Grobner basis G of I w.r.t. any admissible monomial ordering <, is a set
of generators of I such that 4 a K-linear function (Normal Form)
NF.(.,G): K|Yy,...Y,] — K[Y1,...Y,] s.t.

NF.(p,G)=0=pel

An admissible monomial ordering is a total well-ordering (compatible with
the multiplication) on the monomials of K[Y7,...,Y,].

LM_(p) (leading monomial) , LC-(p) (leading coefficient),
LT.(p) = LC-(p)LM_(p) (leading term).

The N F_ function "generalizes" the Euclidian division for univariate poly-

nomials.
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Grobner bases : caracterization and properties

A Grobner basis can be computed adding to the set of generators
polynomials in the form :

LT(f2)
ged(LM<(f1), LM< (f2))

B LT-(f1)
ged(LM<(f1), LM< (f2))

S(flva): fl f2

A set GG is a Grobner basis iff
NF<(S(91792)7G) =0 ) \V/gl,QQ cG

Monomial ideals :< LT-(I) >=< LT-(G) >
A reduced Grobner basis G of I for < is a Grobner basis such that

NF.(g—LT-(9,G)) =9g—LT-(9,G) Vg€ G

A (reduced) Grobner basis is unique (for <).
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Grobner bases : definition of monomial orderings

The main used monomial orderings are :
Lexicographic orderings

. Oé':ﬁz' Vi:1...’i0—1,
YOl Yo < VP Y & 35 <n : !
! " vl " 8 A < /Bio

Degree Reverse Lexicographic orderings
Ylal (T Y’I’LO{n <DRL Y]_Bl oL Y’I”/LBN p— Y((Zk ,8]{3),,8”,...,,81) <L€.’13 Y((Zk: Oék),()én,...,()[]_)
Block Orderings
Let <1 (resp. <2) be an admissible orderingon U = Y1,...,Yg (resp. X = Yg11,...,Yn),
we define < on [Y1,..., Y]

UnX! < UPX? < (X! <o XN or (X' = X9 and U™ < UP))
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Grobner basis : computations

e The computation time of a GrObner basis depends on the used
monomial ordering.

e In general, a lexicographic Grobner basis is difficult to compute
direclty;

e In general, Grobner bases for a Degree orderings (including block
orderings) a much more easy to compute than lexicographic
Grobner basis;

e In general, a Degree Reverse Lexicographic Grobner basis is the
fastest for computations;

e The variants of algorithms used for computing Grobner basis differs
by the criterion used to avoid unusefull computations (S-polynomials
that reduces to 0), the strategies used for selecting critical pairs, and
the internal representations;

e The initial version is due to Buchberger, the fastest one is due to
J.C. Faugere : Algorithm F5 uses selection strategies such that no
S-polynomials reduce to 0 during the computations.
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Zero Dimensional Systems
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Dimension 0 : check !

Let G a Grobner basis of I for any admissible monomial ordering <.

Known result : §Ve < oo < C[Y]/I¢ is a finite dimensional C-vector space

(& K|Y]/Ik is a finite dimensional K-vector space < Ix has dimension
0 < I~ has dimension 0 )
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Dimension 0 : check !

Let G a Grobner basis of I for any admissible monomial ordering <.

Known result : §Ve < oo < C[Y]/I¢ is a finite dimensional C-vector space

(& K|Y]/Ik is a finite dimensional K-vector space < Ix has dimension
0 < I~ has dimension 0 )

I hasdimension 0iffVi=1...n,dg € G,3In; e N* : LM_(g) =Y™
= Since C[Y]/I¢ is a finite dimensional C-vector space,
Vi=1...n,3D; € N, 1,Y;,...,Y;” are C-lineary dependants in
ClY]/Ic. Also 3P; £ 0 € C[Y;]()I. In particular NF-(P;,G) = 0.
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Dimension 0 : check !

Let G a Grobner basis of I for any admissible monomial ordering <.

Known result : §Ve < oo < C[Y]/I¢ is a finite dimensional C-vector space

(& K|Y]/Ik is a finite dimensional K-vector space < Ix has dimension
0 < I~ has dimension 0 )

I hasdimension 0iffVi=1...n,dg € G,3In; e N* : LM_(g) =Y™

<lfVi=1...n,3g€ G,n; e N* : LM_(g) =Y"™,thenp e C[Y]/Ic is a
linear combination of monomials in the form Y;"* ... Y~ with m; < n;
and so C[Y]/I is a finite dimensional C-vector space.
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Dimension 0 : check !

Let G a Grobner basis of I for any admissible monomial ordering <.

Known result : §Ve < oo < C[Y]/I¢ is a finite dimensional C-vector space

(& K|Y]/Ik is a finite dimensional K-vector space < Ix has dimension
0 < I~ has dimension 0 )

I hasdimension 0iffVi=1...n,dg € G,3In; e N* : LM_(g) =Y™

If S C K[Y]then G € K|Y].

The dimension of the K-vector space (resp. C-vector space) K|Y|/Ix
(resp. C|Y]/I¢) is the number of complex zeroes of I
counted with multiplicities.
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Dimension 0 : computing K|Y|/I

A monomial basis of the K-vector space K[Y]/Ix can be read on a
Grobner basis G of Ik (for any monomial ordering) :

B<(Ix) = {m € M[Y] : NF<(m,G) = m}
This is the set of all the possible monomials m € K|Y| that can not be

reduced by NF_ (., G), or equivalently such that Ag € G such that LM _(g)

divides m.
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Dimension 0 : multiplication maps

Let h € K[Y]
my . CY]/Ic — C[Y]/I¢

D —s ph

(Stickelberger) The eigenvalues of m;, are exactly the h(a) , o € Vi with
respective multiplicities the multiplicity of a (dimension of (C|Y]/I¢)a).

Suppose G is a Grobner basis of I for < and that B (G) = {w1,...wp}

f NF_(h,G) = .7, a;w; with a; € K (uniquely defined if G is reduced),

let denote 7 = a1, ...ap|, and by M} the matrix of m; with respect to
B(G).

Then

—

Mh — [fﬁl, .o .,th]T

lcitel |

F. Rouillier
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Dimension 0 : applications of Stickelberger theorem

The eigenvalues of my, are exctly the i-th coordinates of all the points of
Ve.

If I is radical and if Y1 («) # Y1(6)Va # (5 € Vi, then a GrObner basis for
any lexicographic ordering such that Y; < Y; ¢ = 1...n has always the
following shape :
( f(Y1) =0

Yy = fo(Y1)

X Y, = fn(Yl)

When a Grobner basis has this shape, the system is said to be in shape
position.

Computing the complex/real roots of the system is now equivalent to solve
f(Y1) =0
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Dimension 0 : shape lemma

Suppose I radical.

Let 7 = {Y; +iY,,...+i"71Y, , i=1...nD(D —1)/2}. There exists
teT st a#peVe=tla)#tPh).
Sickelberger = f(T') = CharPol(m.) is squarefree.

Also, the system can be re-written :

[ f(T)=0
Yo = fo(T)

Computing the complex/real roots of the system is now equivalent to solve

fF(T)=0
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Dimension 0 : Hermite’s quadratic form

For h € K|Y], let define :

q: K[Y]/Ix — K

f —  T'race(mpy2)

o rank(qy) =#{y € Vo : p(y) # 0}
o sig(gy) =y eVr : ply) >0} —H{y € Vr : p(y) <0}

In particular, the rank (resp. signature) of ¢; give the number of distinct
complex (resp. real) roots of S.

Application : P separates V¢ iff degree(CharPol(m,)) = rank(q1)
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Dimension 0 : the general case - Lex. G. Basis

The general shape of the Lexicographic Grobner basis is the following :

f1(Y1)
f2(Y17Y2)

fkg (Yla YZ)
fro+1(Y1,Y2,Y3)

fre, 1 +1(Y1,...,Y,)

Sron (Y1, .. Y0)
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Dimension 0 : the general case - Lex. G. Basis

The general shape of the Lexicographic Grobner basis is the following :

f1(Y1)
fa(Y1,Y5)
: Proof : since Ix has dimension 0,
frey (Y1, Y2) then Ix YK[Y;] A0Vi=1...n.
frot1(Y1, Yo, Y3) It p = Ik ﬂK[Yz], then
NF_., (p,G) = 0 and in particu-
. lardg € Gs.t. LM,  (g9) =Y,*, and

fre, 1 +1(Y1,...,Y,) consequently g € K|Y1,...,Y,].

Sron (Y1, .. Y0)
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Dimension 0 : the general case - Lex. G. Basis

The general shape of the Lexicographic Grobner basis is the following :

f1(Y1)

fa(Y1,Y5)

: Proof : since Ix has dimension 0,

frey (Y1, Y2) then Ix YK[Y;] A0Vi=1...n.

frot1(Y1, Yo, Y3) It p = Ik ﬂK[Yz], then
NF_., (p,G) = 0 and in particu-

. lardg € Gs.t. LM,  (g9) =Y,*, and

fre, 1 +1(Y1,...,Y,) consequently g € K|Y1,...,Y,].

fre, Y1,...,Y,)
G K|[Xy,...,X;]isalex. G. Basis of G K[X1,...,X|]
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Dimension 0 : the general case - Lex. G. Basis

The general shape of the Lexicographic Grobner basis is the following :

f1(Y1)

fa(Y1,Y5)

: Proof : since Ix has dimension 0,

frey (Y1, Y2) then Ix YK[Y;] A0Vi=1...n.

frot1(Y1, Yo, Y3) It p = Ik ﬂK[Yz], then
NF_., (p,G) = 0 and in particu-

. lardg € Gs.t. LM,  (g9) =Y,*, and

fre, 1 +1(Y1,...,Y,) consequently g € K|Y1,...,Y,].

fre, Y1,...,Y,)
G K|[Xy,...,X;]isalex. G. Basis of G K[X1,...,X|]

Numerical "Solve" is difficult
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : considere all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : considere all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

compute 1, Yy,...,Yd and
stop when a linear depen-
dance is founded.
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : considere all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1(Y1)

ICTP School - 2003 — p.26/38

F. Rouillier



Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : considere all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1(Y1)
follow with
Ya,ViYs,..., Y3V, and
stop when a linear depen-
dance is founded.
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : considere all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1 (Y1)
f2(Y17Y2)
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : considere all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1(Y1)

f2(Y1,Y2) .
_ follow multiplying by Y5 up to

finding ¢ € G, such that
LM.,(g) = Y37
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : considere all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1 (Y1)
f2(Y17Y2)

f/fg (Yla YZ)
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : considere all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1(Y1)

f2(Y1,Y3)

' Apply the same process itera-
Tia (Y1, Y2) tively with Ys, ..., Y,
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : considere all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1 (Y1)
f2(Y17Y2)

' Apply the same process itera-
Tia (Y1, Y2) tively with Ys, ..., Y,
frot1(Y1, Y2, Y3)

fre, (Y1,...,Yy,)
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Dimension 0 : the general case - RUR

Lett € 7T st. a # B € Vo = t(a) # t(0).
Let g.(T") = CharPol(m;) = [[ ey, (T — t(a)) @),

We denote by f the square-free part of f € K[T] and by H;(f) the i-th

1

Horner’s polynomial associated to f : H;(f)(T) = >_._yai—;T" if
f = Zf:O CLZCFZ

Forp € K|Y], if d = degree(f) and

9ep(T) = Y070 Trace(mye)Ha—i-1(90)(T), then p(a) = 22U2)),

"Proof" : since T'race(m;) = >, cy.. mla)p(a), then

grp(T) = > plepla) [] T -up)
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Dimension 0 : the general case - RUR

Lett € 7T st. a # B € Vo = t(a) # t(0).
Let g.(T") = CharPol(m;) = [[ ey, (T — t(a)) @),

We denote by f the square-free part of f € K[T] and by H;(f) the i-th

1

Horner’s polynomial associated to f : H;(f)(T) = >_._yai—;T" if
f = Zf:O CLZCFZ

Forp € K|Y], if d = degree(f) and
91.p(T) = Yoy Trace(my) Ha—i—1(g:)(T), then p(a) = 2ty

A one-to-one correspondance :

V(Ik) — V(gt)
O1tn)  — Ha,e o)
gt v, (B) gt, vy (B)
( gt,1(B) 77777 g¢,1(B) ) T 6
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Dimension 0 : the Rational Univariate Representation

{g9¢t,9t1,9t.v4,-- -5 gty, } IS the Rational Univariate Representation of V¢
associated to .

Note that g, ; = ¢/ s.t. g; and g,., are coprime.

Solving the system through the RUR means :
e solving the univariate polynomial g;
e evaluating/studying the rational funtions g¢; v, /g1 at the roots of g,.

Since the RUR has coefficients in K, it preserves the real roots.

By construction, it “preserves” the multiplicities. In particular, a squarefree
decomposition of g; would decompose the zeroes w.r.t. the multiplicities.

Remark : this costly computation can be avoid since

T N —
g 1) = Hle)

ey ICTP Sch 1 - 2003 — p.28/38
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RUR : a naive algorithm

e (1) compute d = rank(q:)

o (2)findteT ={Yi+iVe,...+i" 'Y, , i=1...nd(d—1)/2} such
that degree(PolChar(my)) = d

e (3) compute the Trace(mx ) fori=1...dandj=1...n

e construct the RUR

In practice, one guess a separating ¢t modulo p (steps (1) and (2)), and
check after the full computation that the computed set is a RUR :

e {91,9t1,9tv,,---,9tv, s aRURIff g,(t) € Ix and
hj = gt,l(t)Yj —gty; € V.
o h; € Ik iff rank(qp,) = 0iff Trace(mp,w,) =0, Vi=1...D.

Another trick is that Trace(m;:) is exactly the i-th Newton sum of g,
(Stickelberger) : all the polynomials of the RUR can be easily computed
once knowing the T'race(my,¢:)
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Dimension 0 : back to the shape lemma

When I is radical and Y; is separating V-, one can compute the RUR
associated with Y7, and we have an “equivalent” system :

9y, (Y1)
9y, 1(Y1)Ya — gv, v, (Y1)

9y, 1 (Y1)Yn — gv,,.v, (Y1)

One can deduce a lexicographic Grdébner basis from a RUR
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Dimension 0 : back to the shape lemma

When [ is radical and Y7 is separating V-, one can compute the RUR
associated with Y7, and we have an “equivalent” system :

gy, (Y1)
Yo — 9Y1,1(Y1)_19Y1,Y2 (Y1) mod gy, (Y1)

Y — 9vi 1 (Y1) gy, v, (Y1) mod gy, (Y1)

This computation induces, in general, a growth of coefficients such that the
coefficients of the RUR are smaller than those of the lexicographic Grobner

basis

eq1. ICTP Sch 1 - 2003 - p.30/38
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Triangular sets

A triangular set is a set of polynomials with the following shape :

[ t(X1)
to(X1, X2)

tn (X1, ..., Xn)

\

(the t; may be identically zero ).
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Triangular sets : basic definitions

Forp e K[X4,...,X,]\ K, we denote by mvar(p) (and we call main
variable of p) the greatest variable appearing in p w.r.t. a fixed
lexicographic ordering.

Notations :

e h,; the leading coefficient of ¢; (when t; = 0 is seen as a univariate
polynomial in its main variable), and h = II}L, , _hi.

o sat(T)=<T > h*={pe K[Xq,...,X,] | ImeN, hp e (T)};

e V(T)\V(h) =V(sat(T)) (elementary property of localization).

A triangular set T' = (t1,...,t,) C K[X1,...,X,] is said to be regular if
Vi € {1,...,n}, such that ¢; # 0, the initial h; does not belong to any

associated prime ideal of sat(t1,...,t;1) (VK[ X1,..., X;_1].
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Triangular sets : representation of a variety

One may naturally "compute"

V(<T >)\V(h) =V(sat(< T >))

but the full study of V(< T >) requires additional computations.

If T is reqgular, then sat(T') is equidimensional (elementary property of
localization).

It is always possible to represent an algebraic variety as the union of
varieties defined as zeroes of regular triangular sets

Vo = U V (sat(T}))

but this do not give a straightforward representation (need to compute
sat(T;)).
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Triangular sets in the zero-dimensional case : lextriangular

Start from a Lexicographic Grébner basis :

f1(Y1)
f2(Y17Y2)

fkg (Y17 YQ)
Jrot+1(Y1,Y2,Y3)

fkn—l(Y:L’ . o 7Yn)
fkn_1+1<Y17 . :Yn>

Je, Y1,...,Yn)
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Triangular sets in the zero-dimensional case : lextriangular

Start from a Lexicographic Grébner basis :

f1(Y1)

J2 (Y17 YQ)

: The triangular set extracted from the Lex. G. basis

: is not necessarily regular.

fro (Y1, Y2) o if < LO(f2,Y2), f1 >£< 1>, splitinto two

Sro+1(Y1,Y2,Y3) systems : < G, LC(f2,Y2) >, and

; G : LC( f2,Y2) and follow with the same
strategy.

e otherelse, do the same with f, 1 and Y3.

and so on ...
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Triangular sets in the zero-dimensional case : lextriangular

Start from a Lexicographic Grébner basis :

f1(Y1)
J2 (Y17 YQ)

The triangular set extracted from the Lex. G. basis
: is not necessarily regular.
fro (Y1, Y2) o if < LO(f2,Y2), f1 >£< 1>, splitinto two
fra+1(Y1,Y2,Y3) systems : < G, LC(f2,Y2) >, and
; G : LC( f2,Y2) and follow with the same

strategy.

Je, _(Y1,...,Y5)

otherelse, do the same with and Y3.
fre, 141(Y1,...,Yn) ¢ Jho+1 3

and so on ...

Je, Y1,...,Yn)

Due to the choice of the polynomials, the computed T; are lexicographic Grobner basis. In
particular, < G; >= sat(T3).
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Triangular sets in the zero-dimensional case : lextriangular

Start from a Lexicographic Grébner basis :

f1(Y1)
J2 (Y17 YQ)

The triangular set extracted from the Lex. G. basis
: is not necessarily regular.
fro (Y1, Y2) o if < LO(f2,Y2), f1 >£< 1>, splitinto two
fra+1(Y1,Y2,Y3) systems : < G, LC(f2,Y2) >, and
; G : LC( f2,Y2) and follow with the same

strategy.

Je, _(Y1,...,Y5)

otherelse, do the same with and Y.
fry 141V, Y5) * fro+1 3

and so on ...

Je, Y1,...,Yn)

Due to the choice of the polynomials, the computed T; are lexicographic Grobner basis. In
particular, < G; >= sat(T3).

Since sat(T) is equidimensional when T' is regular, this method can easily be generalized to
the positive dimensional case (Safey El Din’s thesis).
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Adding Inequalities

Solutions of a zero dimensional system where F; > 0 ?

For each F;, compute

d—1

g7, (T) = Z Trace(mp, s ) Ha—i—1(9:)(T)

gr. 7, (+(a))

Then Fj(o) = =7

Also, it is sufficient to compute the sign of g; r, g; 1 at the real roots of g;.
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Computational Strategies

Computational strategies and tricks will be studied in the practical session.

Examples of Software that can be used :

e Maple 8 user interface
e Gb (J.C. Faugere) [external] - Grobner basis computations

e RS (F. Rouillier) [external] - RUR - Real Roots of zero-dimensional
systems and univariate polynomials

Available at http;//spaces.lip6.fr

MuPAD versions in progress.
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Algorithms performances

Empirical measures of performances :

e A means at least "average" compared with Gb implementation of
algorithm F4 (Faugere) for computing DRL Grobner bases;

e B means "slower" but may be reasonable;
e C means "very slow";

e Buchberger’s Algorithm for DRL G. Basis (Gb) :C;
e F4 Algorithm for Lex G. Basis (Gb) :C;

e FGLM on a DRL G. Basis (Gb) :5 for low degree and small
coefficients, otherelse C in shape lemma case, maybe B for some
non shape lemma cases.

e RUR on any G. Basis (RS) : A in shape lemma case for reasonable
degrees, B in non shape lemma case for reasonable degrees, C for
high degrees;

o Lextriangular (Gb) : A

F RouimeIReal Root isolation (RS) :A. ICTP School - 2003 — p.37/38



Examples

Fabrice : Start your Maple session !
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