Polynomial System Solving in the Real Case

(Zero-dimensional Systems)

F. Rouillier

Fabrice.Rouillier@inria.fr

SPACES Project - INRIA / University of Paris VI

Notations and results from the last course

Notations

 $K \subset K'$ are ordered fields, R the real closure of K' and C the algebraic closure of R. In practice, we consider $K = \mathbb{Q}$, $R = \mathbb{R}$ and $C = \mathbb{C}$.

A semi-algebraic system will be denoted by

$$S = \{E_1 = 0, \dots E_s = 0, F_1 > 0, \dots F_l > 0\},\$$

where $E_i, F_i \in K[Y_1, \dots, Y_n]$

The main ideal of $K[Y_1, \ldots Y_n]$ associated to S:

$$I_K = \langle E_1, \dots E_s \rangle$$

The main variety of $S: V_C = \mathcal{V}(I_C) \subset C^n$. We define also $V_R = V_C \cap R^n$.

Gröbner bases: a minimal set of definitions

A Gröbner basis G of I w.r.t. any admissible monomial ordering <, is a set of generators of I such that \exists a K-linear function (Normal Form) $NF_{<}(.,G):K[Y_1,\ldots Y_n]\longrightarrow K[Y_1,\ldots Y_n]$ s.t.

$$NF_{\leq}(p,G) = 0 \Leftrightarrow p \in I$$

An admissible monomial ordering is a total well-ordering (compatible with the multiplication) on the monomials of $K[Y_1, \ldots, Y_n]$.

 $LM_{<}(p)$ (leading monomial) , $LC_{<}(p)$ (leading coefficient), $LT_{<}(p) = LC_{<}(p)LM_{<}(p)$ (leading term).

The NF< function "generalizes" the Euclidian division for univariate polynomials.

Gröbner bases : definition of monomial orderings

The main used monomial orderings are:

Lexicographic orderings

$$Y_1^{\alpha_1} \cdot \ldots \cdot Y_n^{\alpha_n} <_{Lex} Y_1^{\beta_1} \cdot \ldots \cdot Y_n^{\beta_n} \Leftrightarrow \exists i_0 \leq n , \begin{cases} \alpha_i = \beta_i , \forall i = 1 \ldots i_0 - 1, \\ \alpha_{i_0} < \beta_{i_0} \end{cases}$$

Degree Reverse Lexicographic orderings

$$Y_1^{\alpha_1} \cdot \ldots \cdot Y_n^{\alpha_n} <_{DRL} Y_1^{\beta_1} \cdot \ldots \cdot Y_n^{\beta_N} \Leftrightarrow Y^{\left((\sum_k \beta_k), \beta_n, \ldots, \beta_1\right)} <_{Lex} Y^{\left((\sum_k \alpha_k), \alpha_n, \ldots, \alpha_1\right)}$$

Block Orderings

Let $<_1$ (resp. $<_2$) be an admissible ordering on $U=Y_1,\ldots,Y_d$ (resp. $X=Y_{d+1},\ldots,Y_n$), we define < on $[Y_1,\ldots,Y_n]$

$$U^m X^l < U^p X^q \Leftrightarrow ((X^l <_2 X^q) \text{ or } (X^l = X^q \text{ and } U^m <_1 U^p))$$

Zero Dimensional Systems

Let G a Gröbner basis of I for any admissible monomial ordering <.

Known result : $\sharp V_C < \infty \Leftrightarrow C[Y]/I_C$ is a finite dimensional C-vector space $(\Leftrightarrow K[Y]/I_K$ is a finite dimensional K-vector space $\Leftrightarrow I_K$ has dimension $0 \Leftrightarrow I_C$ has dimension 0)

Let G a Gröbner basis of I for any admissible monomial ordering <.

Known result : $\sharp V_C < \infty \Leftrightarrow C[Y]/I_C$ is a finite dimensional C-vector space $(\Leftrightarrow K[Y]/I_K$ is a finite dimensional K-vector space $\Leftrightarrow I_K$ has dimension $0 \Leftrightarrow I_C$ has dimension 0)

I has dimension 0 iff $\forall i=1\ldots n, \exists g\in G, \exists n_i\in\mathbb{N}^* : LM_{<}(g)=Y^{n_i}$

Let G a Gröbner basis of I for any admissible monomial ordering <.

Known result : $\sharp V_C < \infty \Leftrightarrow C[Y]/I_C$ is a finite dimensional C-vector space $(\Leftrightarrow K[Y]/I_K$ is a finite dimensional K-vector space $\Leftrightarrow I_K$ has dimension $0 \Leftrightarrow I_C$ has dimension 0)

I has dimension 0 iff $\forall i=1\dots n, \exists g\in G, \exists n_i\in\mathbb{N}^*\ :\ LM_{<}(g)=Y^{n_i}$

 \Rightarrow Since $C[Y]/I_C$ is a finite dimensional C-vector space,

 $\forall i=1\ldots n, \exists D_i\in\mathbb{N}\;,\; 1,Y_i,\ldots,Y_i^{D_i}$ are C-linearly dependents in $C[Y]/I_C$. Also $\exists P_i\neq 0\in C[Y_i]\cap I$. In particular $NF_<(P_i,G)=0$.

Let G a Gröbner basis of I for any admissible monomial ordering <.

Known result : $\sharp V_C < \infty \Leftrightarrow C[Y]/I_C$ is a finite dimensional C-vector space $(\Leftrightarrow K[Y]/I_K$ is a finite dimensional K-vector space $\Leftrightarrow I_K$ has dimension $0 \Leftrightarrow I_C$ has dimension 0)

I has dimension 0 iff $\forall i=1\dots n, \exists g\in G, \exists n_i\in\mathbb{N}^*: LM_{<}(g)=Y^{n_i}$ \Leftarrow If $\forall i=1\dots n, \exists g\in G, n_i\in\mathbb{N}^*: LM_{<}(g)=Y^{n_i}$, then $p\in C[Y]/I_C$ is a linear combination of monomials in the form $Y_1^{m_1}\dots Y_n^{m_n}$ with $m_i< n_i$ and so $C[Y]/I_C$ is a finite dimensional C-vector space.

Let G a Gröbner basis of I for any admissible monomial ordering <.

Known result : $\sharp V_C < \infty \Leftrightarrow C[Y]/I_C$ is a finite dimensional C-vector space $(\Leftrightarrow K[Y]/I_K$ is a finite dimensional K-vector space $\Leftrightarrow I_K$ has dimension $0 \Leftrightarrow I_C$ has dimension 0)

$$I$$
 has dimension 0 iff $\forall i=1\dots n, \exists g\in G, \exists n_i\in\mathbb{N}^* \ : \ LM_{<}(g)=Y^{n_i}$

If $S \subset K[Y]$ then $G \in K[Y]$.

The dimension of the K-vector space (resp. C-vector space) $K[Y]/I_K$ (resp. $C[Y]/I_C$) is the number of complex zeroes of I_C counted with multiplicities.

Dimension 0: computing $K[Y]/I_K$

A monomial basis of the K-vector space $K[Y]/I_K$ can be read on a Gröbner basis G of I_K (for any monomial ordering) :

$$\mathcal{B}_{<}(I_K) = \{ m \in M[Y] : NF_{<}(m, G) = m \}$$

This is the set of all the possible monomials $m \in K[Y]$ that can not be reduced by $NF_{<}(.,G)$, or equivalently such that $\not\exists g \in G$ such that $LM_{<}(g)$ divides m.

Dimension 0 : multiplication maps

Let $h \in K[Y]$

$$m_h: C[Y]/I_C \longrightarrow C[Y]/I_C$$
 $\overline{p} \longmapsto \overline{ph}$

(Stickelberger) The eigenvalues of m_h are exactly the $h(\alpha)$, $\alpha \in V_C$ with respective multiplicities the multiplicity of α (dimension of $(C[Y]/I_C)_{\alpha}$).

Suppose G is a Gröbner basis of I for < and that $\mathcal{B}_{<}(G) = \{w_1, \dots w_D\}$

If $NF_{<}(h,G) = \sum_{i=1}^{D} a_i w_i$ with $a_i \in K$ (uniquely defined if G is reduced), let denote $\overrightarrow{h} = [a_1, \dots a_D]$, and by M_h the matrix of m_h with respect to $\mathcal{B}_{<}(G)$.

Then

$$M_h = [\overrightarrow{hw_1}, \dots, \overrightarrow{hw_D}]^T$$

can explicitly be computed.

Dimension 0: applications of Stickelberger theorem

The eigenvalues of m_{Y_i} are exactly the i-th coordinates of all the points of V_C .

If I is radical and if $Y_1(\alpha) \neq Y_1(\beta) \forall \alpha \neq \beta \in V_C$, then a Gröbner basis for any lexicographic ordering such that $Y_1 < Y_i \ i = 1 \dots n$ has always the following shape :

$$\begin{cases} f(Y_1) = 0 \\ Y_2 = f_2(Y_1) \\ \vdots \\ Y_n = f_n(Y_1) \end{cases}$$

When a Gröbner basis has this shape, the system is said to be in shape position.

Computing the complex/real roots of the system is now equivalent to solve $f(Y_1)=0$

Dimension 0 : shape lemma

Suppose *I* radical.

Let
$$\mathcal{T} = \{Y_1 + iY_2, \ldots + i^{n-1}Y_n \ , \ i = 1 \ldots nD(D-1)/2\}$$
. There exists $t \in \mathcal{T}$ s.t. $\alpha \neq \beta \in V_C \Rightarrow t(\alpha) \neq t(\beta)$. Sickelberger $\Rightarrow f(T) = CharPol(m_t)$ is square-free.

Also, the system can be re-written:

$$\begin{cases} f(T) = 0 \\ Y_2 = f_2(T) \\ \vdots \\ Y_n = f_n(T) \end{cases}$$

Computing the complex/real roots of the system is now equivalent to solve f(T)=0

Dimension 0 : Hermite's quadratic form

For $h \in K[Y]$, let define :

$$q_p: K[Y]/I_K \longrightarrow K$$

$$f \longmapsto Trace(m_{hp^2})$$

- $rank(q_p) = \sharp \{y \in V_C : p(y) \neq 0\}$
- $sig(q_p) = \sharp \{y \in V_R : p(y) > 0\} \sharp \{y \in V_R : p(y) < 0\}.$

In particular, the rank (resp. signature) of q_1 give the number of distinct complex (resp. real) roots of S.

Application : P separates V_C iff $degree(\overline{CharPol(m_p)}) = rank(q_1)$

The general shape of the Lexicographic Gröbner basis is the following:

```
f_1(Y_1)
f_2(Y_1, Y_2)
f_{k_2}(Y_1, Y_2)
f_{k_2+1}(Y_1, Y_2, Y_3)
f_{k_{n-1}+1}(Y_1,\ldots,Y_n)
f_{k_n}(Y_1,\ldots,Y_n)
```

The general shape of the Lexicographic Gröbner basis is the following:

```
f_1(Y_1)
f_2(Y_1, Y_2)
                                                 Proof: since I_K has dimension 0,
                                                then I_K \cap K[Y_i] \neq \emptyset \ \forall i = 1 \dots n.
f_{k_2}(Y_1, Y_2)
                                                 If p \in I_K \cap K[Y_i], then
f_{k_2+1}(Y_1,Y_2,Y_3)
                                                 NF_{\leq_{lex}}(p,G) = 0 and in particu-
                                                \exists g \in G \text{ s.t. } LM_{\leq_{lex}}(g) = Y_i^{n_i}, \text{ and }
                                                 consequently g \in K[Y_1, \ldots, Y_i].
f_{k_{m-1}+1}(Y_1,\ldots,Y_n)
f_{k_m}(Y_1,\ldots,Y_n)
```

The general shape of the Lexicographic Gröbner basis is the following:

```
f_1(Y_1)
f_2(Y_1, Y_2)
                                               Proof: since I_K has dimension 0,
                                               then I_K \cap K[Y_i] \neq \emptyset \ \forall i = 1 \dots n.
f_{k_2}(Y_1, Y_2)
                                               If p \in I_K \cap K[Y_i], then
f_{k_2+1}(Y_1,Y_2,Y_3)
                                               NF_{\leq_{lex}}(p,G) = 0 and in particu-
                                               lar \exists g \in G s.t. LM_{\leq_{lex}}(g) = Y_i^{n_i}, and
                                               consequently g \in K[Y_1, \ldots, Y_i].
f_{k_{m-1}+1}(Y_1,\ldots,Y_n)
f_{k_n}(Y_1,\ldots,Y_n)
```

 $G \cap K[X_1, \dots, X_i]$ is a lex. G. Basis of $G \cap K[X_1, \dots, X_i]$

The general shape of the Lexicographic Gröbner basis is the following:

```
f_1(Y_1)
f_2(Y_1, Y_2)
                                                 Proof: since I_K has dimension 0,
                                                 then I_K \cap K[Y_i] \neq \emptyset \ \forall i = 1 \dots n.
f_{k_2}(Y_1, Y_2)
                                                 If p \in I_K \cap K[Y_i], then
f_{k_2+1}(Y_1,Y_2,Y_3)
                                                 NF_{\leq_{lex}}(p,G) = 0 and in particu-
                                                 \exists g \in G \text{ s.t. } LM_{\leq_{lex}}(g) = Y_i^{n_i}, \text{ and } f
                                                 consequently g \in K[Y_1, \ldots, Y_i].
f_{k_{m-1}+1}(Y_1,\ldots,Y_n)
f_{k_n}(Y_1,\ldots,Y_n)
```

$$G \cap K[X_1, \dots, X_i]$$
 is a lex. G. Basis of $G \cap K[X_1, \dots, X_i]$

Numerical "Solve" is difficult

Let G a G. Basis for any ordering $<_1$. One want to compute the G. Basis of < G > for an ordering $<_2$.

The basic principle is simple: consider all the possible monomials in increasing order for $<_2$ as vectors w.r.t $\mathcal{B}_{<_1}(G_{<1})$, detect the linear combinations (polynomials of the new G. Basis: $G_{<_2}$), stop when

$$\forall i = 1 \dots n \exists n_i \in \mathbb{N}^* \exists g \in G_{\leq_2} : LM_{\leq_2}(g) = Y_i^{n_i}$$

Let G a G. Basis for any ordering $<_1$. One want to compute the G. Basis of < G > for an ordering $<_2$.

The basic principle is simple: consider all the possible monomials in increasing order for $<_2$ as vectors w.r.t $\mathcal{B}_{<_1}(G_{<1})$, detect the linear combinations (polynomials of the new G. Basis: $G_{<_2}$), stop when $\forall i=1\dots n\exists n_i\in\mathbb{N}^*\exists g\in G_{<_2}: LM_{<2}(g)=Y_i^{n_i}$

compute $\overrightarrow{1}$, $\overrightarrow{Y_1}$, ..., $\overrightarrow{Y_1^d}$ and stop when a linear dependence is founded.

Let G a G. Basis for any ordering $<_1$. One want to compute the G. Basis of < G > for an ordering $<_2$.

The basic principle is simple: consider all the possible monomials in increasing order for $<_2$ as vectors w.r.t $\mathcal{B}_{<_1}(G_{<1})$, detect the linear combinations (polynomials of the new G. Basis: $G_{<_2}$), stop when $\forall i=1\dots n\exists n_i\in\mathbb{N}^*\exists g\in G_{<_2}: LM_{<2}(g)=Y_i^{n_i}$

 $f_1(Y_1)$

Let G a G. Basis for any ordering $<_1$. One want to compute the G. Basis of < G > for an ordering $<_2$.

The basic principle is simple: consider all the possible monomials in increasing order for $<_2$ as vectors w.r.t $\mathcal{B}_{<_1}(G_{<1})$, detect the linear combinations (polynomials of the new G. Basis: $G_{<_2}$), stop when $\forall i=1\dots n\exists n_i\in\mathbb{N}^*\exists g\in G_{<_2}: LM_{<2}(g)=Y_i^{n_i}$

$$f_1(Y_1)$$

follow with $\overrightarrow{Y_2}, \overrightarrow{Y_1Y_2}, \dots, \overrightarrow{Y_1^{d-1}Y_2}$ and stop when a linear dependence is founded.

Let G a G. Basis for any ordering $<_1$. One want to compute the G. Basis of < G > for an ordering $<_2$.

The basic principle is simple: consider all the possible monomials in increasing order for $<_2$ as vectors w.r.t $\mathcal{B}_{<_1}(G_{<1})$, detect the linear combinations (polynomials of the new G. Basis: $G_{<_2}$), stop when $\forall i=1\dots n\exists n_i\in\mathbb{N}^*\exists g\in G_{<_2}: LM_{<2}(g)=Y_i^{n_i}$

```
f_1(Y_1)
f_2(Y_1, Y_2)
\vdots
```

Let G a G. Basis for any ordering $<_1$. One want to compute the G. Basis of < G > for an ordering $<_2$.

The basic principle is simple: consider all the possible monomials in increasing order for $<_2$ as vectors w.r.t $\mathcal{B}_{<_1}(G_{<1})$, detect the linear combinations (polynomials of the new G. Basis: $G_{<_2}$), stop when $\forall i=1\dots n\exists n_i\in\mathbb{N}^*\exists g\in G_{<_2}: LM_{<2}(g)=Y_i^{n_i}$

```
f_1(Y_1)
f_2(Y_1, Y_2)
\vdots
```

follow multiplying by Y_2 up to finding $g \in G_{\leq_2}$ such that $LM_{\leq_2}(g) = Y_2^{n_2}$

Let G a G. Basis for any ordering $<_1$. One want to compute the G. Basis of < G > for an ordering $<_2$.

The basic principle is simple: consider all the possible monomials in increasing order for $<_2$ as vectors w.r.t $\mathcal{B}_{<_1}(G_{<1})$, detect the linear combinations (polynomials of the new G. Basis: $G_{<_2}$), stop when $\forall i=1\dots n\exists n_i\in\mathbb{N}^*\exists g\in G_{<_2}: LM_{<2}(g)=Y_i^{n_i}$

```
f_1(Y_1)

f_2(Y_1, Y_2)

\vdots

f_{k_2}(Y_1, Y_2)
```

Let G a G. Basis for any ordering $<_1$. One want to compute the G. Basis of < G > for an ordering $<_2$.

The basic principle is simple: consider all the possible monomials in increasing order for $<_2$ as vectors w.r.t $\mathcal{B}_{<_1}(G_{<1})$, detect the linear combinations (polynomials of the new G. Basis: $G_{<_2}$), stop when $\forall i=1\dots n\exists n_i\in\mathbb{N}^*\exists g\in G_{<_2}: LM_{<2}(g)=Y_i^{n_i}$

```
f_1(Y_1)

f_2(Y_1, Y_2)

\vdots

f_{k_2}(Y_1, Y_2)
```

Apply the same process iteratively with Y_3, \ldots, Y_n

Let G a G. Basis for any ordering $<_1$. One want to compute the G. Basis of < G > for an ordering $<_2$.

The basic principle is simple: consider all the possible monomials in increasing order for $<_2$ as vectors w.r.t $\mathcal{B}_{<_1}(G_{<1})$, detect the linear combinations (polynomials of the new G. Basis: $G_{<_2}$), stop when $\forall i=1\dots n\exists n_i\in\mathbb{N}^*\exists g\in G_{<_2}: LM_{<2}(g)=Y_i^{n_i}$

```
f_1(Y_1)
f_2(Y_1, Y_2)
\vdots
f_{k_2}(Y_1, Y_2)
f_{k_2+1}(Y_1, Y_2, Y_3)
\vdots
f_{k_n}(Y_1, \dots, Y_n)
```

Apply the same process iteratively with Y_3, \ldots, Y_n

Dimension 0 : the general case - RUR

Let
$$t \in \mathcal{T}$$
 s.t. $\alpha \neq \beta \in V_C \Rightarrow t(\alpha) \neq t(\beta)$.
Let $g_t(T) = CharPol(m_t) = \prod_{\alpha \in V_C} (T - t(\alpha))^{\mu(\alpha)}$.

We denote by \overline{f} the square-free part of $f \in K[T]$ and by $H_i(f)$ the i-th Horner's polynomial associated to $f: H_i(f)(T) = \sum_{j=0}^i a_{i-j} T^i$ if $f = \sum_{j=0}^D a_i T^j$.

For
$$p \in K[Y]$$
, if $d = degree(\overline{f})$ and $g_{t,p}(T) = \sum_{i=0}^{d-1} Trace(m_{pt^i}) H_{d-i-1}(g_t)(T)$, then $p(\alpha) = \frac{g_{t,p}(t(\alpha))}{g_{t,1}(t(\alpha))}$.

"Proof" : since $Trace(m_p) = \sum_{\alpha \in V_C} \mu(\alpha) p(\alpha)$, then

$$g_{t,p}(T) = \sum_{\alpha \in V_C} \mu(\alpha) p(\alpha) \prod_{\beta \in V_C, \beta \neq \alpha} (T - t(\beta))$$

Dimension 0 : the general case - RUR

Let
$$t \in \mathcal{T}$$
 s.t. $\alpha \neq \beta \in V_C \Rightarrow t(\alpha) \neq t(\beta)$.
Let $g_t(T) = CharPol(m_t) = \prod_{\alpha \in V_C} (T - t(\alpha))^{\mu(\alpha)}$.

We denote by \overline{f} the square-free part of $f \in K[T]$ and by $H_i(f)$ the i-th Horner's polynomial associated to $f: H_i(f)(T) = \sum_{j=0}^i a_{i-j} T^i$ if $f = \sum_{j=0}^D a_i T^j$.

For
$$p \in K[Y]$$
, if $d = degree(\overline{f})$ and $g_{t,p}(T) = \sum_{i=0}^{d-1} Trace(m_{pt^i}) H_{d-i-1}(g_t)(T)$, then $p(\alpha) = \frac{g_{t,p}(t(\alpha))}{g_{t,1}(t(\alpha))}$.

A one-to-one correspondence :

$$\begin{array}{ccc}
\mathcal{V}(I_K) & \longrightarrow & \mathcal{V}(g_t) \\
(\alpha_1, \dots, \alpha_n) & \longrightarrow & t(\alpha_1, \dots, \alpha_n) \\
\left(\frac{g_{t, Y_1}(\beta)}{g_{t, 1}(\beta)}, \dots, \frac{g_{t, Y_n}(\beta)}{g_{t, 1}(\beta)}\right) & \longleftarrow & \beta
\end{array}$$

Dimension 0: the Rational Univariate Representation

 $\{g_t, g_{t,1}, g_{t,Y_1}, \dots, g_{t,Y_n}\}$ is the Rational Univariate Representation of V_C associated to t.

Note that $g_{t,1} = \overline{g'_t}$. In particular g_t and $g_{t,1}$ are coprime.

Solving the system through the RUR means:

- solving the univariate polynomial g_t
- evaluating/studying the rational functions $g_{t,Y_i}/g_{t,1}$ at the roots of g_t .

Since the RUR has coefficients in K, it preserves the real roots.

By construction, it "preserves" the multiplicities. In particular, a square-free decomposition of g_t would decompose the zeroes w.r.t. the multiplicities.

Remark: this costly computation can be avoid since

$$\frac{\overline{g_t}'}{g_{t,1}}(t(\alpha)) = \mu(\alpha)$$

RUR: a naive algorithm

- (1) compute $d = rank(q_1)$
- (2) find $t \in \mathcal{T} = \{Y_1 + iY_2, \ldots + i^{n-1}Y_n , i = 1 \ldots nd(d-1)/2\}$ such that $degree(\overline{PolChar(m_t)}) = d$
- (3) compute the $Trace(m_{X_it^i})$ for $i=1\ldots d$ and $j=1\ldots n$
- construct the RUR

In practice, one guess a separating t modulo p (steps (1) and (2)), and check after the full computation that the computed set is a RUR :

- $\{g_t,g_{t,1},g_{t,Y_1},\ldots,g_{t,Y_n}\}$ is a RUR iff $g_t(t)\in I_K$ and $h_j=g_{t,1}(t)Y_j-g_{t,Y_j}\in \sqrt{I_K}$.
- $h_j \in \sqrt{I_K}$ iff $rank(q_{h_j}) = 0$ iff $Trace(m_{h_j w_i}) = 0$, $\forall i = 1 \dots D$.

Another trick is that $Trace(m_{t^i})$ is exactly the i-th Newton sum of g_t (Stickelberger) : all the polynomials of the RUR can be easily computed once knowing the $Trace(m_{Y_it^i})$