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Notations and results from the last course
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Notations

K C K’ are ordered fields, R the real closure of K’ and C the algebraic closure of R. In
practice, we consider K = Q, R =R and C = C.

A semi-algebraic system will be denoted by
SZ{El =0,...6=0,F1 >0,...F >O},

where E;, F; € K[Y1,...,Yn]

The main ideal of K[Y7,...Y,] associatedto S :

I =< Eq,...Eg >

The main variety of S : Vo = V(1) C C™. We define also Vg = Vo () R™.
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Grobner bases : a minimal set of definitions

A Grébner basis G of I w.r.t. any admissible monomial ordering <, is a set of generators of
such that 3 a K-linear function (Normal Form) NF-(.,G) : K[Y1,...Yn] — KI[Y1,...Yy]
S.t.

NF-(p,G)=0<pel

An admissible monomial ordering is a total well-ordering (compatible with the multiplication)
on the monomials of K[Y1,..., Ys].

LM (p) (leading monomial) , LC'«(p) (leading coefficient), LT« (p) = LC<(p) LM< (p)
(leading term).

The N F- function "generalizes" the Euclidian division for univariate polynomials.
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Grobner bases : definition of monomial orderings

The main used monomial orderings are :
Lexicographic orderings

. Oé':ﬁz' Vi:1...’i0—1,
YOl Yo < VP Y & 35 <n : !
! " vl " 8 A < /Bio

Degree Reverse Lexicographic orderings
Ylal (T Y’I’LO{n <DRL Y]_Bl oL Y’I”/LBN p— Y((Zk ,8]{3),,8”,...,,81) <L€.’13 Y((Zk: Oék),()én,...,()[]_)
Block Orderings
Let <1 (resp. <2) be an admissible orderingon U = Y1,...,Yg (resp. X = Yg11,...,Yn),
we define < on [Y1,..., Y]

UnX! < UPX? < (X! <o XN or (X' = X9 and U™ < UP))
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Zero Dimensional Systems
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Dimension 0 : check !

Let G a Grobner basis of I for any admissible monomial ordering <.

Known result : §Ve < oo < C[Y]/I¢ is a finite dimensional C-vector space

(& K|Y]/Ik is a finite dimensional K-vector space < Ix has dimension
0 < I~ has dimension 0 )
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Dimension 0 : check !

Let G a Grobner basis of I for any admissible monomial ordering <.

Known result : §Ve < oo < C[Y]/I¢ is a finite dimensional C-vector space

(& K|Y]/Ik is a finite dimensional K-vector space < Ix has dimension
0 < I~ has dimension 0 )

I hasdimension 0iffVi=1...n,dg € G,3In; e N* : LM_(g) =Y™
= Since C[Y]/I¢ is a finite dimensional C-vector space,
Vi=1...n,3D; € N, 1,Y;,...,Y;” are C-linearly dependents in
ClY]/Ic. Also 3P; £ 0 € C[Y;]()I. In particular NF-(P;,G) = 0.
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Dimension 0 : check !

Let G a Grobner basis of I for any admissible monomial ordering <.

Known result : §Ve < oo < C[Y]/I¢ is a finite dimensional C-vector space

(& K|Y]/Ik is a finite dimensional K-vector space < Ix has dimension
0 < I~ has dimension 0 )

I hasdimension 0iffVi=1...n,dg € G,3In; e N* : LM_(g) =Y™

<lfVi=1...n,3g€ G,n; e N* : LM_(g) =Y"™,thenp e C[Y]/Ic is a
linear combination of monomials in the form Y;"* ... Y~ with m; < n;
and so C[Y]/I is a finite dimensional C-vector space.
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Dimension 0 : check !

Let G a Grobner basis of I for any admissible monomial ordering <.

Known result : §Ve < oo < C[Y]/I¢ is a finite dimensional C-vector space

(& K|Y]/Ik is a finite dimensional K-vector space < Ix has dimension
0 < I~ has dimension 0 )

I hasdimension 0iffVi=1...n,dg € G,3In; e N* : LM_(g) =Y™

If S C K[Y]then G € K|Y].

The dimension of the K-vector space (resp. C-vector space) K|Y|/Ix
(resp. C|Y]/I¢) is the number of complex zeroes of I
counted with multiplicities.
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Dimension 0 : computing K|Y|/I

A monomial basis of the K-vector space K[Y]/Ix can be read on a
Grobner basis G of Ik (for any monomial ordering) :

B<(Ix) = {m € M[Y] : NF<(m,G) = m}
This is the set of all the possible monomials m € K|Y| that can not be

reduced by NF_ (., G), or equivalently such that Ag € G such that LM _(g)

divides m.
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Dimension 0 : multiplication maps

Let h € K[Y]
mp: CY]/Ic — C[Y]/Ic

D — ph

(Stickelberger) The eigenvalues of mj, are exactly the h(a) , o € Vo with respective
multiplicities the multiplicity of o (dimension of (C[Y]/I¢)a).

Suppose G is a Grobner basis of I for < and that B« (G) = {w1,...wp}

If NF<(h,G) = 32 | a;w; with a; € K (uniquely defined if G is reduced), let denote

7 = la1,...ap], and by M}, the matrix of m, with respect to B« (G).

Then

—_—

Mh = [h_wl, .. .,th]T

can explicitly be computed.
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Dimension 0 : applications of Stickelberger theorem

The eigenvalues of my, are exactly the i-th coordinates of all the points of
Ve.

If I is radical and if Y1 («) # Y1(6)Va # (5 € Vi, then a GrObner basis for
any lexicographic ordering such that Y; < Y; ¢ = 1...n has always the
following shape :
( f(Y1) =0

Yy = fo(Y1)

X Y, = fn(Yl)

When a Grobner basis has this shape, the system is said to be in shape
position.

Computing the complex/real roots of the system is now equivalent to solve
f(Y1) =0
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Dimension 0 : shape lemma

Suppose I radical.

Let 7 = {Y; +iY,,...+i"71Y, , i=1...nD(D —1)/2}. There exists
teT st a#peVe=tla)#tPh).
Sickelberger = f(T') = CharPol(m;) is square-free.

Also, the system can be re-written :

[ f(T)=0
Yo = fo(T)

Computing the complex/real roots of the system is now equivalent to solve

fF(T)=0
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Dimension 0 : Hermite’s quadratic form

For h € K|Y], let define :

q: K[Y]/Ix — K

f —  T'race(mpy2)

o rank(qy) =#{y € Vo : p(y) # 0}
o sig(gy) =y eVr : ply) >0} —H{y € Vr : p(y) <0}

In particular, the rank (resp. signature) of ¢; give the number of distinct
complex (resp. real) roots of S.

Application : P separates V¢ iff degree(CharPol(m,)) = rank(q1)
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Dimension 0 : the general case - Lex. G. Basis

The general shape of the Lexicographic Grobner basis is the following :

f1(Y1)
f2(Y17Y2)

fkg (Yla YZ)
fro+1(Y1,Y2,Y3)

fre, 1 +1(Y1,...,Y,)

Sron (Y1, .. Y0)
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Dimension 0 : the general case - Lex. G. Basis

The general shape of the Lexicographic Grobner basis is the following :

f1(Y1)
fa(Y1,Y5)
: Proof : since Ix has dimension 0,
frey (Y1, Y2) then Ix YK[Y;] A0Vi=1...n.
frot1(Y1, Yo, Y3) It p = Ik ﬂK[Yz], then
NF_., (p,G) = 0 and in particu-
. lardg € Gs.t. LM,  (g9) =Y,*, and

fre, 1 +1(Y1,...,Y,) consequently g € K|Y1,...,Y,].

Sron (Y1, .. Y0)
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Dimension 0 : the general case - Lex. G. Basis

The general shape of the Lexicographic Grobner basis is the following :

f1(Y1)

fa(Y1,Y5)

: Proof : since Ix has dimension 0,

frey (Y1, Y2) then Ix YK[Y;] A0Vi=1...n.

frot1(Y1, Yo, Y3) It p = Ik ﬂK[Yz], then
NF_., (p,G) = 0 and in particu-

. lardg € Gs.t. LM,  (g9) =Y,*, and

fre, 1 +1(Y1,...,Y,) consequently g € K|Y1,...,Y,].

fre, Y1,...,Y,)
G K|[Xy,...,X;]isalex. G. Basis of G K[X1,...,X|]
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Dimension 0 : the general case - Lex. G. Basis

The general shape of the Lexicographic Grobner basis is the following :

f1(Y1)

fa(Y1,Y5)

: Proof : since Ix has dimension 0,

frey (Y1, Y2) then Ix YK[Y;] A0Vi=1...n.

frot1(Y1, Yo, Y3) It p = Ik ﬂK[Yz], then
NF_., (p,G) = 0 and in particu-

. lardg € Gs.t. LM,  (g9) =Y,*, and

fre, 1 +1(Y1,...,Y,) consequently g € K|Y1,...,Y,].

fre, Y1,...,Y,)
G K|[Xy,...,X;]isalex. G. Basis of G K[X1,...,X|]

Numerical "Solve" is difficult
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : consider all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

ICTP School - 2003 — p.14/17

F. Rouillier



Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : consider all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

compute 1, Yy,...,Yd and
stop when a linear depen-
dence is founded.
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : consider all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1(Y1)

ICTP School - 2003 — p.14/17

F. Rouillier



Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : consider all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1(Y1)
follow with
Ya,ViYs,..., Y3V, and
stop when a linear depen-
dence is founded.
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : consider all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1 (Y1)
f2(Y17Y2)
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : consider all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1(Y1)

f2(Y1,Y2) .
_ follow multiplying by Y5 up to

finding ¢ € G, such that
LM.,(g) = Y37
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : consider all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1 (Y1)
f2(Y17Y2)

f/fg (Yla YZ)
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : consider all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1(Y1)

f2(Y1,Y3)

' Apply the same process itera-
Tia (Y1, Y2) tively with Ys, ..., Y,
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Dimension 0 : FGLM Algorithm

Let G a G. Basis for any ordering <. One want to compute the G. Basis
of < G > for an ordering <o.

The basic principle is simple : consider all the possible monomials in
increasing order for <, as vectors w.r.t 5., (G.1), detect the linear
combinations (polynomials of the new G. Basis : G.,), stop when
Vi=1...ndn; € N*dg € G<2 : LM<2(g) = Y;nz

f1 (Y1)
f2(Y17Y2)

' Apply the same process itera-
Tia (Y1, Y2) tively with Ys, ..., Y,
frot1(Y1, Y2, Y3)

fre, (Y1,...,Yy,)
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Dimension 0 : the general case - RUR

Lett € 7T st. a # B € Vo = t(a) # t(0).
Let g.(T") = CharPol(m;) = [[ ey, (T — t(a)) @),

We denote by f the square-free part of f € K[T] and by H;(f) the i-th

1

Horner’s polynomial associated to f : H;(f)(T) = >_._yai—;T" if
f = Zf:O CLZCFZ

Forp € K|Y], if d = degree(f) and

9ep(T) = Y070 Trace(mye)Ha—i-1(90)(T), then p(a) = 22U2)),

"Proof" : since T'race(m;) = >, cy.. mla)p(a), then

grp(T) = > plepla) [] T -up)
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Dimension 0 : the general case - RUR

Lett € 7T st. a # B € Vo = t(a) # t(0).
Let g.(T") = CharPol(m;) = [[ ey, (T — t(a)) @),

We denote by f the square-free part of f € K[T] and by H;(f) the i-th

1

Horner’s polynomial associated to f : H;(f)(T) = >_._yai—;T" if
f = Zf:O CLZCFZ

Forp € K|Y], if d = degree(f) and
91.p(T) = Yoy Trace(my) Ha—i—1(g:)(T), then p(a) = 2ty

A one-to-one correspondence :

V(Ik) — V(gt)
O1tn)  — Ha,e o)
gt v, (B) gt, vy (B)
( gt,1(B) 77777 g¢,1(B) ) T 6
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Dimension 0 : the Rational Univariate Representation

{g9¢t,9t1,9t.v4,-- -5 gty, } IS the Rational Univariate Representation of V¢
associated to .

Note that g; ; = g;. In particular g; and g, ; are coprime.

Solving the system through the RUR means :
e solving the univariate polynomial g;
e evaluating/studying the rational functions g; v, /g:,1 at the roots of g;.

Since the RUR has coefficients in K, it preserves the real roots.

By construction, it “preserves” the multiplicities. In particular, a square-free
decomposition of g; would decompose the zeroes w.r.t. the multiplicities.

Remark : this costly computation can be avoid since

T N —
g 1) = Hle)
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RUR : a naive algorithm

e (1) compute d = rank(q:)

o (2)findteT ={Yi+iVe,...+i" 'Y, , i=1...nd(d—1)/2} such
that degree(PolChar(my)) = d

e (3) compute the Trace(mx ) fori=1...dandj=1...n

e construct the RUR

In practice, one guess a separating ¢t modulo p (steps (1) and (2)), and
check after the full computation that the computed set is a RUR :

e {91,9t1,9tv,,---,9tv, s aRURIff g,(t) € Ix and
hj = gt,l(t)Yj —gty; € V.
o h; € Ik iff rank(qp,) = 0iff Trace(mp,w,) =0, Vi=1...D.

Another trick is that Trace(m;:) is exactly the i-th Newton sum of g,
(Stickelberger) : all the polynomials of the RUR can be easily computed
once knowing the T'race(my,¢:)
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