Polynomial System Solving in the Real Case

(Solving Zero-dimensional Systems in practice)

F. Rouillier

Fabrice.Rouillier@inria.fr

SPACES Project - INRIA / University of Paris VI

RUR : a naive algorithm

- (1) compute $d = rank(q_1)$
- (2) find $t \in \mathcal{T} = \{Y_1 + iY_2, \ldots + i^{n-1}Y_n, i = 1 \ldots nd(d-1)/2\}$ such that $degree(\overline{PolChar(m_t)}) = d$
- (3) compute the $Trace(m_{X_it^i})$ for $i = 1 \dots d$ and $j = 1 \dots n$
- construct the RUR

In practice, one guess a separating t modulo p (steps (1) and (2)), and check after the full computation that the computed set is a RUR :

- $\{g_t, g_{t,1}, g_{t,Y_1}, \dots, g_{t,Y_n}\}$ is a RUR iff $g_t(t) \in I_K$ and $h_j = g_{t,1}(t)Y_j g_{t,Y_j} \in \sqrt{I_K}$.
- $h_j \in \sqrt{I_K}$ iff $rank(q_{h_j}) = 0$ iff $Trace(m_{h_j w_i}) = 0$, $\forall i = 1...D$.

Another trick is that $Trace(m_{t^i})$ is exactly the *i*-th Newton sum of g_t (Stickelberger) : all the polynomials of the RUR can be easily computed once knowing the $Trace(m_{Y_it^i})$

Dimension 0 : **back to the shape lemma**

When *I* is radical and Y_1 is separating V_C , one can compute the RUR associated with Y_1 , and we have an "equivalent" system :

 $g_{Y_1}(Y_1)$ $g_{Y_1,1}(Y_1)Y_2 - g_{Y_1,Y_2}(Y_1)$ \vdots $g_{Y_1,1}(Y_1)Y_n - g_{Y_n,Y_2}(Y_1)$

One can deduce a lexicographic Gröbner basis from a RUR

Dimension 0 : **back to the shape lemma**

When *I* is radical and Y_1 is separating V_C , one can compute the RUR associated with Y_1 , and we have an "equivalent" system :

$$g_{Y_1}(Y_1)$$

$$Y_2 - g_{Y_1,1}(Y_1)^{-1}g_{Y_1,Y_2}(Y_1) \mod g_{Y_1}(Y_1)$$

$$\vdots$$

$$Y_n - g_{Y_1,1}(Y_1)^{-1}g_{Y_n,Y_2}(Y_1) \mod g_{Y_1}(Y_1)$$

This computation induces, in general, a growth of coefficients such that the coefficients of the RUR are smaller than those of the lexicographic Gröbner basis

Consider the inequalities

Let $F_j \in K[Y_1, \ldots, Y_n]$.

What are the roots of V_C where $F_j > 0$?

$$g_{t,F_j}(T) = \sum_{i=0}^{d-1} Trace(m_{F_jt^i}) H_{d-i-1}(g_t)(T)$$
, then $F_j(\alpha) = \frac{g_{t,F_j}(t(\alpha))}{g_{t,1}(t(\alpha))}$

In particular the sign (also the value) of F_j at a zero of V_C can be computed by studying the value of $\frac{g_{t,F_j}}{g_{t,1}}$ at a zero of g_t .

If $F_j = \sum_{k=0}^{D} a_k \omega_k$ then $Trace(m_{F_jt^i}) = \sum_{k=0}^{D} a_k Trace(m_{t^i \omega_k})$ and the computation of g_{t,F_j} can be cone using $O(D^2)$ arithmetic operations.

The full simplification (reduction to univariate problems) of our system can be done using $O(D^3 + (n+l)D^2$ arithmetic operations.

Triangular sets

A triangular set is a set of polynomials with the following shape :

$$\begin{cases} t_1(X_1) \\ t_2(X_1, X_2) \\ \vdots \\ t_n(X_1, \dots, X_n) \end{cases}$$

(the t_i may be identically zero).

Triangular sets : basic definitions

For $p \in K[X_1, ..., X_n] \setminus K$, we denote by mvar(p) (and we call *main variable* of p) the greatest variable appearing in p w.r.t. a fixed lexicographic ordering.

Notations :

• h_i the leading coefficient of t_i (when $t_i \neq 0$ is seen as a univariate polynomial in its main variable), and $h = \prod_{i=1, t_i \neq 0}^n h_i$.

•
$$\operatorname{sat}(T) = \langle T \rangle : h^{\infty} = \{ p \in K[X_1, \dots, X_n] \mid \exists m \in \mathbb{N}, \ h^m p \in \langle T \rangle \};$$

• $\overline{\mathcal{V}(T) \setminus \mathcal{V}(h)} = \mathcal{V}(sat(T))$ (elementary property of localization).

A triangular set $T = (t_1, \ldots, t_n) \subset K[X_1, \ldots, X_n]$ is said to be *regular* if $\forall i \in \{1, \ldots, n\}$, such that $t_i \neq 0$, the initial h_i does not belong to any associated prime ideal of sat $(t_1, \ldots, t_{i-1}) \cap K[X_1, \ldots, X_{i-1}]$.

One may naturally "compute"

$$\overline{V(\langle T \rangle) \setminus V(h)} = V(sat(\langle T \rangle))$$

but the full study of $V(\langle T \rangle)$ requires additional computations.

If T is regular, then sat(T) is equidimensional (elementary property of localization).

It is always possible to represent an algebraic variety as the union of varieties defined as zeroes of regular triangular sets

$$V_C = \bigcup_i V(\operatorname{sat}(T_i))$$

but this do not give a straightforward representation (need to compute $sat(T_i)$).

Start from a Lexicographic Gröbner basis :

```
f_{1}(Y_{1}) 
f_{2}(Y_{1}, Y_{2}) 
\vdots 
f_{k_{2}}(Y_{1}, Y_{2}) 
f_{k_{2}+1}(Y_{1}, Y_{2}, Y_{3}) 
\vdots 
f_{k_{n-1}}(Y_{1}, \dots, Y_{n}) 
f_{k_{n-1}+1}(Y_{1}, \dots, Y_{n}) 
\vdots 
f_{k_{n}}(Y_{1}, \dots, Y_{n})
```

Start from a Lexicographic Gröbner basis :

 $f_1(Y_1) \\ f_2(Y_1, Y_2)$

 $f_{k_2}(Y_1, Y_2)$ $f_{k_2+1}(Y_1, Y_2, Y_3)$

 $f_{k_{n-1}}(Y_1, \dots, Y_n)$ $f_{k_{n-1}+1}(Y_1, \dots, Y_n)$

 $f_{k_n}(Y_1,\ldots,Y_n)$

The triangular set extracted from the Lex. G. basis is not necessarily regular.

- if $< LC(f_2, Y_2), f_1 > \neq < 1 >$, split into two systems : $< G, LC(f_2, Y_2) >$, and $G : LC(f_2, Y_2)$ and follow with the same strategy.
- other else, do the same with f_{k_2+1} and Y_3 .

and so on ...

Start from a Lexicographic Gröbner basis :

 $f_1(Y_1) \\ f_2(Y_1, Y_2)$

 $f_{k_2}(Y_1, Y_2)$ $f_{k_2+1}(Y_1, Y_2, Y_3)$

 $f_{k_{n-1}}(Y_1, \dots, Y_n)$ $f_{k_{n-1}+1}(Y_1, \dots, Y_n)$ The triangular set extracted from the Lex. G. basis is not necessarily regular.

• if $< LC(f_2, Y_2), f_1 > \neq < 1 >$, split into two systems : $< G, LC(f_2, Y_2) >$, and $G : LC(f_2, Y_2)$ and follow with the same strategy.

• other else, do the same with f_{k_2+1} and Y_3 .

and so on ...

 $f_{k_n}(Y_1,\ldots,Y_n)$

Due to the choice of the polynomials, the computed T_i are lexicographic Gröbner basis. In particular, $\langle G_i \rangle = sat(T_i)$.

Start from a Lexicographic Gröbner basis :

 $f_1(Y_1) \\ f_2(Y_1, Y_2)$

 $f_{k_2}(Y_1, Y_2)$ $f_{k_2+1}(Y_1, Y_2, Y_3)$

 $f_{k_{n-1}}(Y_1, \dots, Y_n)$ $f_{k_{n-1}+1}(Y_1, \dots, Y_n)$ The triangular set extracted from the Lex. G. basis is not necessarily regular.

• if $< LC(f_2, Y_2), f_1 > \neq < 1 >$, split into two systems : $< G, LC(f_2, Y_2) >$, and $G : LC(f_2, Y_2)$ and follow with the same strategy.

• other else, do the same with f_{k_2+1} and Y_3 .

and so on ...

 $f_{k_n}(Y_1,\ldots,Y_n)$

Due to the choice of the polynomials, the computed T_i are lexicographic Gröbner basis. In particular, $\langle G_i \rangle = sat(T_i)$.

Due to the equidimentionality of sat(T), when T is regular, this method can easily be generalized to the positive dimensional case (Safey El Din's thesis).

Let's try on some examples ...

Used Software :

- Maple 8 user interface
- Gb (J.C. Faugère) [external] Gröbner basis computations
- RS (F. Rouillier) [external] RUR Real Roots of zero-dimensional systems and univariate polynomials

Available at http;//spaces.lip6.fr

MuPAD versions in progress.

Empirical measures of performances :

- A means at least "average" compared with Gb implementation of algorithm F4 (Faugère) for computing DRL Gröbner bases;
- B means "slower" but may be reasonable;
- C means "very slow";
- Buchberger Algorithm for DRL G. Basis (Gb) :C;
- F4 Algorithm for Lex G. Basis (Gb) :C;
- FGLM on a DRL G. Basis (Gb) :B for low degree and small coefficients, otherelse C in shape lemma case, maybe B for some non shape lemma cases.
- RUR on any G. Basis (RS) : A in shape lemma case for reasonable degrees, B in non shape lemma case for reasonable degrees, C for high degrees;
- Lextriangular (Gb) : A
- Real Root isolation (RS) :A.