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F. Rouillier

RUR : a naive algorithm

• (1) compute d = rank(q1)

• (2) find t ∈ T = {Y1 + iY2, . . . + in−1Yn , i = 1 . . . nd(d − 1)/2} such that
degree(PolChar(mt)) = d

• (3) compute the Trace(mXjti ) for i = 1 . . . d and j = 1 . . . n

• construct the RUR

In practice, one guess a separating t modulo p (steps (1) and (2)), and check after the full
computation that the computed set is a RUR :

• {gt, gt,1, gt,Y1 , . . . , gt,Yn
} is a RUR iff gt(t) ∈ IK and hj = gt,1(t)Yj − gt,Yj

∈
√

IK .

• hj ∈
√

IK iff rank(qhj
) = 0 iff Trace(mhjwi

) = 0 , ∀i = 1 . . . D.

Another trick is that Trace(mti ) is exactly the i-th Newton sum of gt (Stickelberger) : all the
polynomials of the RUR can be easily computed once knowing the Trace(mYjti )
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Dimension 0 : back to the shape lemma

When I is radical and Y1 is separating VC , one can compute the RUR
associated with Y1, and we have an “equivalent” system :

gY1
(Y1)

gY1,1(Y1)Y2 − gY1,Y2
(Y1)

Y2 − gY1,1(Y1)
−1gY1,Y2(Y1) mod gY1(Y1)

...
gY1,1(Y1)Yn − gYn,Y2

(Y1)

Yn − gY1,1(Y1)
−1gYn,Y2

(Y1) mod gY1
(Y1)

One can deduce a lexicographic Gröbner basis from a RUR

This computation induces, in general, a growth of coefficients such that the

coefficients of the RUR are smaller than those of the lexicographic Gröbner

basis

ICTP School - 2003 – p.3/10



F. Rouillier

Dimension 0 : back to the shape lemma

When I is radical and Y1 is separating VC , one can compute the RUR
associated with Y1, and we have an “equivalent” system :

gY1
(Y1)

Y2 − gY1,1(Y1)
−1gY1,Y2

(Y1) mod gY1
(Y1)

...
Yn − gY1,1(Y1)

−1gYn,Y2
(Y1) mod gY1

(Y1)

This computation induces, in general, a growth of coefficients such that the

coefficients of the RUR are smaller than those of the lexicographic Gröbner

basis

ICTP School - 2003 – p.3/10



F. Rouillier

Consider the inequalities

Let Fj ∈ K[Y1, . . . , Yn].

What are the roots of VC where Fj > 0 ?

gt,Fj
(T ) =

∑d−1
i=0 Trace(mFjti)Hd−i−1(gt)(T ), then Fj(α) =

gt,Fj
(t(α))

gt,1(t(α)) .

In particular the sign (also the value) of Fj at a zero of VC can be
computed by studying the value of

gt,Fj

gt,1
at a zero of gt.

If Fj =
∑D

k=0 akωk then Trace(mFjti) =
∑D

k=0 akTrace(mtiωk
) and the

computation of gt,Fj
can be cone using O(D2) arithmetic operations.

The full simplification (reduction to univariate problems) of our system can
be done using O(D3 + (n + l)D2 arithmetic operations.
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Triangular sets

A triangular set is a set of polynomials with the following shape :























t1(X1)

t2(X1, X2)
...
tn(X1, . . . , Xn)

(the ti may be identically zero ).
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Triangular sets : basic definitions

For p ∈ K[X1, . . . , Xn] \ K, we denote by mvar(p) (and we call main
variable of p) the greatest variable appearing in p w.r.t. a fixed
lexicographic ordering.

Notations :

• hi the leading coefficient of ti (when ti 6= 0 is seen as a univariate
polynomial in its main variable), and h = Πn

i=1,ti 6=0hi.

• sat(T ) =< T >: h∞ = {p ∈ K[X1, . . . , Xn] | ∃m ∈ N, hmp ∈ 〈T 〉};

• V(T ) \ V(h) = V(sat(T )) (elementary property of localization).

A triangular set T = (t1, . . . , tn) ⊂ K[X1, . . . , Xn] is said to be regular if

∀i ∈ {1, . . . , n}, such that ti 6= 0, the initial hi does not belong to any

associated prime ideal of sat(t1, . . . , ti−1)
⋂

K[X1, . . . , Xi−1].
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Triangular sets : representation of a variety

One may naturally "compute"

V (< T >) \ V (h) = V (sat(< T >))

but the full study of V (< T >) requires additional computations.

If T is regular, then sat(T ) is equidimensional (elementary property of
localization).

It is always possible to represent an algebraic variety as the union of
varieties defined as zeroes of regular triangular sets

VC =
⋃

i

V (sat(Ti))

but this do not give a straightforward representation (need to compute
sat(Ti)).

ICTP School - 2003 – p.7/10



F. Rouillier

Triangular sets in the zero-dimensional case : lextriangular

Start from a Lexicographic Gröbner basis :

f1(Y1)

f2(Y1, Y2)

...
fk2

(Y1, Y2)

fk2+1(Y1, Y2, Y3)

...
fkn−1

(Y1, . . . , Yn)

fkn−1+1(Y1, . . . , Yn)

...
fkn

(Y1, . . . , Yn)

The triangular set extracted from the Lex. G. basis
is not necessarily regular.

• if < LC(f2, Y2), f1 >6=< 1 >, split into two
systems : < G, LC(f2, Y2) >, and
G : LC(f2, Y2) and follow with the same
strategy.

• other else, do the same with fk2+1 and Y3.

and so on ...

Due to the choice of the polynomials, the computed Ti are lexicographic Gröbner basis. In
particular, < Gi >= sat(Ti).
Due to the equidimentionality of sat(T ), when T is regular, this method can easily be
generalized to the positive dimensional case (Safey El Din’s thesis).
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Computational Strategies

Let’s try on some examples ...

Used Software :

• Maple 8 user interface

• Gb (J.C. Faugère) [external] - Gröbner basis computations

• RS (F. Rouillier) [external] - RUR - Real Roots of zero-dimensional systems and
univariate polynomials

Available at http;//spaces.lip6.fr

MuPAD versions in progress.
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Algorithms performances

Empirical measures of performances :

• A means at least "average" compared with Gb implementation of algorithm F4
(Faugère) for computing DRL Gröbner bases;

• B means "slower" but may be reasonable;

• C means "very slow";

• Buchberger Algorithm for DRL G. Basis (Gb) :C;

• F4 Algorithm for Lex G. Basis (Gb) :C;

• FGLM on a DRL G. Basis (Gb) :B for low degree and small coefficients, otherelse C
in shape lemma case, maybe B for some non shape lemma cases.

• RUR on any G. Basis (RS) : A in shape lemma case for reasonable degrees, B in non
shape lemma case for reasonable degrees, C for high degrees;

• Lextriangular (Gb) : A

• Real Root isolation (RS) :A.
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