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1. Lectures Program

Lecture 1

- Introduction to Image Processing and Compression ([2,3], [1], pp. 1-9)
- An overview of the Geometric Image representation (VIM) ([1], Section 2 below)

Lecture 2

- Singularities, Normal Forms, Flexible High Order Representation ([4], [5,6],
- [1], pp. 9-11)
- Singularities of Images; VIM structure and rendering ([1], pp. 11-18, Section 2

below)

Lecture 3

- High order detection of Ridges ([1], pp. 18-25, Section 3 below)
- High order detection of Edges. Detection of Color Profiles ([1], pp. 18-25,

Sections 4, 5 below)
- Jet Algebra and Multi-order computations (Sections 3-5 below)

Lecture 4

- Coding of VIM data: general structure (Section 6 below)
- Coding of point-sets, of curves and of the Background color (Section 6 below)
- (Optional) A short computer demonstration of VIM
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2.VIM structure and rendering considerations

1.1. Characteristic Lines and their Color Cross-Sections

Below we use as equivalent the names “VIM” and “Synthesized Texture”.

Characteristic lines (Lines) are the lines (either visible or virtual) on the image along
which the image visual pattern is consistent.
’Lines’ are represented by their virtual “central lines” and “brightness cross-sections
(Color Profile”, or CP). The central  line captures in the most accurate way the geometric
shape of the Line, while the CP describes the brightness (color) behavior in the
orthogonal direction to the line.
The central line is given by a second or third order spline curve (preferably a second
order).
CPs are given by a small number of model shape types, each characterized by a small
number of parameters. CPs are stored at some predefined “CP control points” on the
central line, and interpolated between these control points. The line sections defined
between these control points are called Line Segments (LS).
Figure  shows an LS of a Line with a CP interpolated along it, at point ‘t’, which is used
to calculate point ‘u’ color.

Figure 1 – Color interpolation along a curve with color profiles at end points.

1.1.1. Parameters of Lines' Geometry

All the geometric parameters below are described in the coordinate system (x,y) in the
image plane, with the unit length taken to be the distance between two neighboring
pixels.

The endpoints of the Line and their crossings are called “Terminal Points”, or TP. Other
points on the lines are defined as Line Points (LP), and the in-between line sections are
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the Line Segments (LS). If a Line forms a simple closed curve, one of its points is chosen
to be a TP.
All the TPs and LPs on the Synthesized image are described (in a certain order) by their
coordinates (x,y) in the above coordinate system.
Lines are represented by special second order splines, that we call P-curves.
A P- curve is a chain of convex arcs Si, i = 1, 2, …, n, starting at the point z0 = (x0, y0)
and ending at the point zn = (xn, yn). The arcs Si and Si+1 have the common point
zi = (xi, yi), called a vertex, which is an LP. Each Arc is an LS. For a closed curve the
initial point z0 and the end point zn may coincide.
Being represented by an ordered list of consecutive points, each P-curve possesses a
natural orientation.
Either parabolic or circular arcs Si are used, in such a way that for each [zi-1, zi] the arc Si

is completely characterized by the height hi of its center over the segment [zi-1, zi]. This
height is taken with the sign plus, if the arc is curved to the left side of the P-curve, and
with the sign minus, if the arc is curved to the right.
In particular, if the parabolic arcs Si are chosen, they are taken to be symmetric with
respect to the line passing through the center of the straight segment [zi-1, zi] and
orthogonal to it. Thus for [zi-1, zi] given, the symmetric parabolic arc Si is completely
characterized by the height hi of its center over the segment [zi-1, zi].
Consequently, a P-spline curve is given by the following parameters:
The coordinates (xi, yi) of the vertices zi, i = 0, 1, …, n, and the heights hi, i = 1, …, n, of
the arcs Si. It may be more convenient to keep the coordinates  (x0, y0) of the starting
point z0, and the vector coordinates  (vi, wi) of the segments [zi-1, zi], i = 1, … , n, for the
rest, vi = xi - xi-1 , wi = yi - yi-1.
The arcs Si of the P-curves, representing poly-links, are called below “links”.
Notice, that for each P-curve, representing Line, its starting point and its endpoint are
known in advance, being the TPs.
To summarize, the central lines of the Lines of a Synthesized image are completely
described by the following parameters:

1.  The list of the TPs and LPs, with their coordinates. Notice that the information, given by TPs is
redundant and can be reconstructed from the rest of the data. TPs do not appear in the Nodes.

2. The list of LSs, specified by their vertices. Since the choice of one of two possible orientations of the
Line is important, each Line is given by an ordered list of its vertices zi (Line Point), starting at one of
the endpoints of Line and continuing following the natural order of the vertices, together with the
heights of the corresponding Line Segment. Alternatively, the vectors [zi-1, zi] and the heights can be
specified.

Parameters of Lines' Brightness Cross-Sections (Color Profiles)

In the basic Color Profile (CP) default configuration, described below, the CPs control
points coincide with the vertices (Line Points) of the P-curves, representing the Line. The
type of the CP (edge or ridge) does not change along the Line. Each ridge (i.e. a Line
with the ridge type CP) is marked either as a “separating” or as a “non-separating” one.
Any edge is separating.
The basic Synthesized images representation uses two types of cross-sections: edge CP
and ridge CP.
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1.1. Color profiles (CP)

1.1.1. Edge CP

EdgeCP, as shown on Figure 2, is completely described by the following parameters:

Figure 2 - Edge color profile.

- Left width WL
- Right width WR  (default assumption is that WL = WR)
- Left brightness LB1
- Left brightness LB2
- Right brightness RB1
- Right brightness RB2

**The reason for appearance of the “bumps” on both sides of the edge CPis that in most
of natural images, either scanned or taken by a video or a still digital camera, the actual
edges cross-sections usually contain such bumps. They are caused by the physics of the
light propagation, by specifics of scanning procedures and, on the other side, by the
human visual perception.
However, for different kind of images, such as synthetic computer-generated images
quite different shapes of the cross – sections might appear. This is true also for certain
types of scanners, and especially, for other sensors, like infra-red ones. In more advanced
profiles of Synthesized representation fairly general shape models of cross-sections can
be used, leading to more types of Color Profiles.
The “margin” parameters LB1 and RB1, being important cross-section features, are
stored  together with other cross-section parameters. However, they have another natural
visual interpretation as the background brightness along the edge on its different sides. It
is this interpretation, that is used in the recommended reconstruction (decoding)
algorithm: the margin cross-section parameters enter the background Area (in between
the Lines) reconstruction Procedure.
In most of applications, the “height” of the cross-section bump can be taken to be a
certain fixed fraction of the total height of the cross section. This fact is utilized in the
“aggregation” level of the Synthesized representation, by encoding of the actual heights
as the corrections to the default ones. In an ultimate implementation of this mode the
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parameters LB2 and RB2 can be eliminated and replaced by their default values,
computed through the rest of the parameters.**

1.1.2. Separating Ridge CP

Separating Ridge CP, as shown on Figure 3, is completely described by the following
parameters:

- Left width WL
- Right width WR
- Left brightness LB1
- Left brightness LB2
- Central brightness CB
- Right brightness RB1
- Right brightness RB2

Figure 3 – Separating ridge color profile.

**All the remarks above referring to edges, concerning the nature of the bumps and the
redundancy of the side brightness parameters, as well as the interpretation of the margin
brightness parameters LB1 and RB1 as the Background values, remain valid also for
ridges.**

1.1.3. Non-Separating Ridge CP
This type of CP has the same parameters as the separating one, besides the margin
parameters LB1 and RB1, which are not defined; see Figure 4.
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Figure 4 – Non-separating ridge color profile.

**On a higher aggregation level various default configurations can be adopted,
simplifying data representation. For example, the right and the left width of the ridge are
usually roughly equal, so a single width parameter can be used. The right and left
brightness values of a non-separating ridge can be identified with the background values
at the corresponding points, etc.**

If a color image is represented, all the brightness parameters are defined independently
for each color component, while the same width parameters are kept. These color
components can be R, G, B, CMYK, YUV or other formats. Below we use the word
“brightness” to denote any component of these color formats.
As it was stated above, the Color Profiles (cross-sections) are specified at each LP of the
Line.
To summarize, Color Profiles (cross-sections) of characteristic lines are specified by the
following parameters:

- Type of a cross-section (edge, ridge or separating ridge) on each LP.
- Width and brightness parameters of the cross-sections, as specified above, at

each of the vertices of the P-curves, representing LPs.
In case of a color image, the type and the width of the cross-sections are the same for
each color component, while the brightness parameters are specified independently for
each color.
Of course, on a higher aggregation level various known visual spatial-color correlations
can be used to reduce the data size.
A closed Line can be marked as a boundary contour of the Synthesized image or an
Object within it.

1.1.4. Patches

Patches capture fine scale details in the image. They are represented by Gaussian-shaped
or parabolic-shaped mathematical models, blended with the background along their
elliptic-form margins; see the Figure 5.
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Figure 5 – Patches definition.

Each patch is specified by the following parameters:

- The coordinates (Cx, Cy) of its center
- The sizes R1 and R2 a of the bigger and the smaller semi-axes of the base

ellipse
- The direction a (angle with the x-axis) of the main semi-axis of the base

ellipse
- The brightness value CB at the center
- The “margin” brightness value MB

In case of a color image the brightness values at the center of each patch are specified
independently for each color separation.
On the aggregation level various default configurations can be adopted, simplifying data
representation. For example, for patches smaller than a few pixels in size, the distinction
between the sizes of the two semi-axes of the elliptic base is hardly visually appreciated.
Consequently, a single size parameter can be used in this case, while the angle is omitted.
In most situations the margin brightness value MB of the patch can be identified with the
Background brightness at the patch center.

1.1.5. The Area Color AC (‘Background’)

 (This term is used in Imaging in many different situations. Below we use it to denote the
part of the Synthesized image, “complementary” to the Lines and patches. It can be called
also the “slow scale image component”. In the Synthesized Texture script the term “Area
Color” is used as equivalent to the “background” in the present informal text).
Background is determined by the following elements:

1. All the separating Lines are excluded from the background domain.
2. Some of the image subparts, completely bounded by separating characteristic

Lines or/and the image borders, are provided with their (single) global
background brightness value GB, or a Color Gradient. See the figure below.
(In fact, these subparts, called Synthesized Sub-Textures, play an important
role on higher representation and animation levels. They are specified by
Sub-Texture numbers, and the values GB are attached to the Sub-Textures).
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3. A certain number of “background representing points” (AC – Area Color
Points) is defined, each point carrying its brightness value.  These values are
further interpolated between the background representing points in such a
way that the interpolation does not “cross” the separating Lines. See the
figure below

4. The margin brightness values of the CPs of separating Lines are blended
with the background along the margins of these separating lines.

The following parameters participate in the calculation of the background brightness
values (as described in detail in the Procedure BB below):

- Geometric parameters of all the separating Lines.
- Margin brightness values (LB1 and RB1 above) of the CPs of all the

separating Lines.
- List of the “background representing points” (ACs), each one given by its

(x,y)   coordinates and its brightness value.
- Single background global brightness values GB (or a Color Gradient) for

some of the Sub-Textures. (In the parameters structure these values are
associated with the Sub-Texture numbers, which, in turn, are associated with
the Lines, bounding the Sub-Texture).

**On the aggregation level various default configurations can be adopted, simplifying
data representation. In particular, a regular grid of background representing points can be
used, to eliminate the need to store coordinates of these points. (Notice, however, that in
a general structure, allowing, in particular, for geometric transformations and animations
of the images, all the geometric parameters must be represented in a geometrically
invariant form, without reference to a fixed grid).**
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1.1.6. Crossings

Crossings of Lines are represented by crossings of their central lines and by blending of
their brightness values near the crossings (Figure 6).

Figure 6 – Crossings.

In the data structure described above, crossings are represented by TPs (Terminal Points).
At each TP, CPs are given for each of the Lines starting (or ending) at this TP. No
compatibility conditions between these CPs are assumed in the basic Synthesized profile.
**However, in most practical situations the side brightness (color) values on appropriate
sides of the adjacent characteristic lines at their crossing are roughly equal. This fact is
used on the higher aggregation level to reduce the data size (Figure 7)

Figure 7 – Same brightness at crossing of multiple characteristic lines.

Splitting is used on the higher aggregation level to reduce the data size and to preserve
the image visual continuity along the characteristic Lines. **
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1.1.7. Ranges and Resolutions

1.1.7.1. The Range of Synthesized Parameters

A typical range of all the above parameters depends on the type of the images to be
represented, on their resolution, on the specifications of the display and on visual
conditions. Below we refer to the usual PC screen applications.
For Synthesized representation of high resolution images of the real world a typical
range of parameters is as follows:

Length of a Line Segment 2 - 32 pixels
Height of a Line Segment not larger than its length
Width of an edge 1 - 8 pixels
Width of a ridge 1.5 - 16 pixels
Density of the background
representing points

between 1 per 4x4 pixels block to 1 per
32x32 pixels block

Color components between 1 and 256 gray levels

For Synthesized representation of synthetic images (in particular, in creation of
synthetic images using Synthesized authoring tools) the range of the Synthesized
parameters is not strongly limited. Wide characteristic Lines, up to tens of pixels in
width, can be used. Only a few of the background representing points (APs) may be
needed (or no such points at all).

1.1.7.2. Default Resolution

The default resolution of all the geometric parameters is 1/16 of a pixel size.
The default resolution for each color component is 256 gray levels.
On higher levels of aggregation and quantization much lower resolutions can be allowed,
according to a psycho-visual significance of each parameter. Also specifications of the
display and expected visual conditions are taken into account.

2. SynthesizedTexture Rendering Algorithm

2.1. Synthesized Rendering Overview

The reconstruction algorithm starts with the input parameters, described above, and
computes the brightness (color) value of the synthesized image at each of its pixels. It
consists of the following principal parts:

- Computing brightness of Lines
- Computing brightness of Patches
- Computing brightness of the background
- Blending the computed brightness values into the final image

In the case of a color image these computations are performed independently for each
color component.
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2.1.1. Computing brightness of characteristic Lines (Procedure BL below)

In order to compute the brightness values of the cross-sections (the CPs) along the
characteristic line, a coordinate system (u,t) is associated to its central line. Here u is the
distance from the central line (with the sign) and t is the coordinate (along the line) of the
projection on the central line.(Procedure DL). Using the coordinates (u,t) the brightness
of the cross-sections (computed in the Procedure CS) is interpolated between the control
points to a complete neighborhood of the characteristic line.

2.1.2. Computing brightness of patches (Procedure BP below)

The brightness of a patch is computed using a certain Gaussian – type brightness
function, with the basis (in the image plane) – the ellipse, defined by the input patch
parameters, and the height of the vertex equal to the input brightness parameter.  A
specific choice of the model Gaussian – type brightness function is influenced by the
same considerations as the choice of the cross-sections model shapes. In particular, it can
be taken to be a paraboloid with the elliptic basis and the vertex as specified by the input
parameters.

2.1.3. Computing brightness of the background (Procedure BB below)

Background brightness values are computed by an interpolation between the brightness
values of closed background components, the margin brightness values of the separating
characteristic Lines and the brightness values of the background Area Points. The
interpolation process is performed in such a way that the interpolation does not “cross”
separating Lines.
In particular, this can be achieved by a “signal expansion algorithm”, in which the
background representing points (and the margins of separating lines) transmit their
brightness value to the neighboring pixels, which in turn transmit it to their neighbors etc.
In this expansion the signal is transmitted only to the neighboring pixels, lying on the
same side of each of the separating characteristic lines. Finally the background brightness
value is computed at each pixel as a weighted average of the brightness values, received
by this pixel in the process of signal expansion. The weights reflect the distances to
corresponding background representing points.
The range of the signal expansion from each background representing point (AC) is
limited to a certain constant, reflecting the density of the background representing points.
Under a proper choice of this constant, the above algorithm is computationally very
efficient, since only a few operations are performed per each pixel.

2.1.4. Blending the computed brightness values into the final image (Procedure MAIN below)

The final brightness values of a synthesized image are computed as the values of the
characteristic lines, patches or the background at the interior pixels of the corresponding
parts of the image. At the margin areas of the characteristic lines and of the patches the
final brightness is computed by averaging their brightness values with the background
brightness, with the weights compute in the Procedures WL and WP, respectively.
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2.2. Detailed Description of the Reconstruction Algorithm

As it was described above, the reconstruction algorithm starts with the input parameters,
as above, and computes the brightness (color) value of the synthesized image at each
given point z in the image plane. It consists of the following principal parts:

- Computing brightness of characteristic lines (Procedure BL below)
- Computing brightness of patches (Procedure BP below)
- Computing brightness of the background (Procedure BB below)
- Blending the computed brightness values into the final image (The MAIN

Procedure below)
In the case of a color image these computations are performed for each color component.
In the description of each Procedure below, the names of the Procedures, called in the
process of computations, are stressed by bold face.

2.2.1. Block Diagram of the Reconstruction Algorithm

2.2.1.1. Procedure MAIN: Computing the Final Brightness Values

For any point z in the image plane the final brightness B(z) of the Synthesized image at
the point z is computed according to the following formula:

 (1)
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Here BB(z), BL(z) and BPs(z) are the brightness functions of the background, of the
characteristic lines and of the patches, computed in the Procedures BB, BL and BP,
respectively, and the sum ∑

s

runs over all the patches Ps.

The weight functions WL(z) and WPs(z) are computed in the Procedures WL and WP,
respectively, and

WB(z)  =  1 – max(WL(z), WPs(z)).

Division by the sum of all weight functions in formula (1) guarantees that their sum is
identically 1 and that formula (1) is a normalized averaging.
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2.2.1.2. Procedure BL: Brightness of characteristic Lines

This procedure computes for any point z on the image the brightness BL(z), as defined by
the cross-sections (CP) of the characteristic lines.
BL(z) needs to be computed only for those z which are "close enough" to at least one of
the characteristic lines in the texture, as expressed by the weight function WL.
**The most intuitive and natural way to define the brightness of a characteristic line is to
associate to it a coordinate system (uu, tt), with uu(z) the (signed) distance of the point z
to the line along the normal direction, and tt(z) the length parameter along the curve of
the orthogonal projection pp(z) of z onto the line.
Then the brightness cross-sections are computed according to the coordinate uu and
interpolated along the line with respect to the coordinate tt.
The corresponding algorithm can be constructed. However, it provides some serious
drawbacks:

1. Actual computing of the coordinates uu and tt is mathematically complicated
task

2. Even for smooth curves without corners the normal direction is correctly
defined only in a small neighborhood of the curve (of the size of a couple of
pixels in realistic situations). Outside this neighborhood no natural
mathematical solution exist for defining the normal, the projection etc.

3. For spline curves with corners between some of their links (which usually
appear in realistic situations) the normal is not defined even locally. Once
more, the situation can be corrected by using the mid of the corner angles,
but the global difficulties of (2) remain and algorithms become rather
complex.

Consequently, we show below an algorithm, which can be considered as an
approximation to the “ideal one” above. Its main advantage is that the “coordinates” uu
and tt (called below u and t) can be computed independently for each Line Segment (link)
of all the collection of characteristic Lines. Moreover, the computation can be ultimately
rendered as rather efficient (although the description below may look somewhat
complicated).**

Below for any point z,  u(z) is the “distance of z to characteristic lines”, S(z) is the closest
link to z (with respect to the distance u) in the collection of characteristic lines, and t(z) is
the parameter, measuring the projection of z onto S(z), rescaled to the segment [0, 1].
S(z), u(z) and t(z) are computed by the Procedure DL, described below.
The Procedure BL splits according to whether the link S(z) has a “free end” (i.e. an
endpoint, not belonging to any other link) or not.

1. S(z) does not have “free ends”.

Let C1 and C2 denote the equations of the two cross-sections (normalized to the unit
width, as described in the Procedure CS below) at the two endpoints of the link S(z). For
u(z) > 0 let W1 and W2 denote the respective right widths RW1 and RW2 of the cross-
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sections at these points. For u(z) < 0 let W1 and W2 denote the respective left widths LW1

and LW2 of the cross-sections at these points. Then in each case
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If for this “free end” the parameter t is zero, the brightness BL(z) is computed as above
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Here DE is a positive tuning parameter, defining the shape of the end of a characteristic
line. BM is half of the sum of the brightness parameters LB2 and RB2 of the cross-
section at the free end.
If for this “free end” the parameter t is one, t(z) is replaced by 1-t(z) in the above formula.

** The formula above provides one of possible choices of the shape of characteristic lines
near their ends. It assumes that the cross-section brightness gradually descends to the
“mid value” value BM inside the prescribed distance DE. Other shapes can be defined, by
properly computing the width and the brightness in the neighborhood of the end point.**

2.2.1.3.  Procedure CS: Color Profiles (Cross-Sections) of characteristic Lines

This procedure computes a brightness value of an edge or a ridge (unit width) cross-
section CS(u) for any given cross-section “interior” brightness parameters, as described
above, and for any value of u.
In the Procedure BL u is the distance u(z) to the line, normalized by the width W(z) of
the line, so the width parameter W is taken into account inside the BL, and it does not
appear below. Similarly, the margin brightness parameters LB1 and RB1 enter the
computations in the Background brightness Procedure BB.

Edge Cross-Section.

Normalized edge cross-section NEC(u) is defined as follows (Figure 8):
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**Thus the recommended edge cross-section is composed of two symmetric parabolic segments.**

For given brightness parameters LB2 and RB2, the value CS(u) is computed as

( ) )(222)( uNECLBRBLBuCS ⋅−+=

Figure 8 – Edge cross-section definition.

Ridge Cross-Section

As for edges, the width of the ridges is taken into account in the Procedure BL. Similarly, the margin
brightness parameters LB1 and RB1 enter the computations in the Background brightness Procedure BB.
Consequently the ridge cross-section computed in the current Procedure CS, is the same for separating and
non-separating ridges, and is defined by the parameters LB2, CB and RB2, as follows (Figure 9):

  ( ) ( ),1222)( +⋅−+= uNECLBCBLBuCS       for u < 0, and
( ) ( ),1222)( +−⋅−+= uNECRBCBRBuCS    for .0>u

Figure 9 – Ridge cross-section definition.



16

** Thus the recommended ridge cross-section is composed of two edge cross-sections, properly
aggregated.
In the process of the blending of these cross-sections with the background (which
incorporates the margin brightness values LB1 and RB1) we get back essentially the
same cross-section, as shown above (Fig. 10).**

Figure 10 – Blending two cross-sections with the background.

2.2.1.4. Procedure WL: Weight Function of characteristic Lines

**This block computes the weight function WL(z), which is used in a final blending of
the characteristic lines with the background. The function WL(z) is equal to one in a
certain neighborhood of the characteristic lines, and is zero outside of a certain larger
neighborhood.**

More accurately:

1 |u(z)| < UL2·W(z)

WL(z) = ( )21

1

)(

)()(

ULULzW

zuULzW

−⋅
−⋅

UL2·W(z) <| u(z)|< UL1·W(z)

0 |u(z)| > UL1·W(z)

The distance u(z) is computed in the Procedure DL.
UL1 and UL2 are tuning parameters; see the last section “Tuning Parameters”.
Fig. 11 shows a typical cross-section and a general shape of the weight function WL(z).
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Figure 11 – Typical cross-section and general shape of WL(z)

2.2.1.5. Procedure DL: Distance to characteristic Lines

This Procedure computes for any point z in the texture:

1. The point p(z) on the characteristic lines which is nearest to z, i.e. the “projection” p(z) of z onto the
set of characteristic lines.

2. The distance u(z) between z and p(z).
3. The link S(z) on which p(z) resides.
4. The proportion t(z) in which p(z) divides the link S(z).

Note u(z), p(z) and t(z) are NOT exactly the Euclidean distance, the corresponding
mathematical projection and proportion respectively; however, in most cases they give a
reasonable approximation for these mathematical entities.

These data are computed in the following steps:

1. For each link (Line Segment, LS) Si in the texture, the corresponding pi(z), ui(z), ti(z) are computed in
Procedure DDL (See the Synthesized-C figure below)

2. S(z) is defined as the link Sj,  for which the minimum of the absolute values |ui(z)| is attained (See the
figure Synthesized-D below)

3. u(z) is defined as the function uj(z) for the link Sj  = S(z)
4. t(z) is defined as tj(z) for the above link Sj    
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Figure  - Synthesized-C

Figure  - Synthesized-D

2.2.1.6. Procedure DDL: Distance to a Line Segment

This procedure computes for any point z its (signed) distance u(z) to a given link S (Line
Segment, LS), the projection p(z) of the point z onto the link S and the parameter t(z).
The Procedure is essentially represented on figure Synthesized-C above (which shows, in
particular, equidistant lines for the points z1 and z4.

The straight oriented segment [a, d], joining the end points of the link S is constructed,
with the orientation, induced from the orientation of the Line, containing S. l1 is the
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straight line, containing the segment [a, d]. l2 and l3 are the straight lines, orthogonal to l1

and passing through a and d, respectively.

Now, for any z in the image plane, the function u(z) is constructed as follows:

For z between l2 and l3, the absolute value |u(z)| is the length of the segment, joining z
and S and orthogonal to l1 .

For z left to l2 , |u(z)| is defined as follows:

[ ] 2/12
2

2
1 ),(),()( lzDdlzdzu += .

Here d(z, l1) and d(z, l2) are the distances from z to l1and

l2 respectively.  D is a tuning parameter, with a typical value D = 4.

For z right to l3 , |u(z)| is defined as

[ ] 2/12
3

2
1 ),(),()( lzDdlzdzu += .

Let ll be an oriented line, formed by the interval of the line l1 from infinity to a, then by
the link S from a to d, and then by the interval of the line l1 from d to infinity.

For z right to ll (with an orientation as above) the sign of u(z) is “+”. For z left to ll, the
sign of u(z) is “-“.

For z between l2 and l3, the projection p(z) is the intersection point of S and of the
segment, joining z and S and orthogonal to l1 . For z left to l2 , p(z) is a, and  for z right to
l3 , p(z) is d.

For any z,  t(z) is the proportion, in which the projection of z onto the line l1 subdivides
the segment [a, d]. For example, for the point z2 and z3 on Fig Synthesized-D above.  t(z2)
= (b-a)/(d-a), and t(z3) = (c-a)/(d-a), respectively.  For z left to l2 , t(z) < 0, and for z right
to l3 , t(z) > 1.

** The special form of the function u(z) above (for z outside the strip between l2 and l3) is
motivated by the following reason: when computing in the Procedure BL the brightness
of the line near a sharp corner, the form of the distance function u(z) determines which
link will be taken as the closest to the points in the sector stressed on the Figure below.
For the distance, computed as above, with the parameter D > 1, this choice is matched
with the sign of u(z), as defined above. If we would have chosen D < 1, for z in the sector
stressed on the Figure below, the choice of the nearest link, together with the proposed
computation of the sign of u(z), would produce a color from the incorrect side of the line.
See the figure below.**



20

2.2.1.7. Procedure BP: Brightness of Patches

Let Cx, Cy, R1, R2, a, CB and MB be the parameters of a certain patch Ps, as described
above.
Let M be the linear transformation of the plane, transforming the basis ellipse of the patch
to the unit circle. M is a product of the translation by (-Cx, -Cy), the rotation matrix to the
angle –a, and the rescaling 1/R1 and 1/R2 times along the x and y axes, respectively. If
we put for

),( yxz = ),(),())(),((, zMyxMzyzx ==′′
then the equation of the basis ellipse of the patch is given by

2)(zx ′ 2)(zy ′+ 1=  .
The brightness function BPs(z) of the patch is then given by

0)( =zBPs  for 2)(zx ′ 2)(zy ′+  > 21UP ,

MBzBPs =)( for  ,1)()(1 222 UPzyzx <′+′<  and

),)()(1()()( 22 zyzxMBCBMBzBPs ′−′−⋅−+=  for  .1)()( 22 <′+′ zyzx

Here UP1 > 1 is a parameter. See the Figure below.

2.2.1.8. Procedure WP: Weight Function of Patches

The weight function WPs(z) for a patch Ps as above is defined by
0)( =zWPs  for ,1)( UPzuu >
1)( =zWPs  for ,2)( UPzuu <   and

)21/())(1()( UPUPzuuUPzWPs −−=
for uu(z) between UP2 and UP1,
where uu(z) denotes the square root of 2)(zx ′ 2)(zy ′+ .
Here UP2,  1 < UP2 < UP1, is another tuning parameter.   See the figure below.
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2.2.1.9. Procedure BB: Brightness of Background

**This Procedure computes the brightness value of the background at any point z of the
image. This value is obtained as a result of interpolation between the “global”
background brightness values, the margin brightness values of the characteristic Lines
and the brightness values at the background representing points (ACs – Area Color
Points),.  The main difficulty is that the interpolation is not allowed to cross the
separating lines. To overcome this difficulty a special “distance” d between the points on
the image is introduced, which is the length of the shortest pass, joining these points, and
not crossing separating Lines, and which is computed in the Procedure SE below. Then
averaging weights are computed through the distance d.**
This block uses as an input a certain collection of the background representing points Zi,
(containing the input background representing points, as described above, and the margin
representing points, produced by the block “MRP’, described below). At each point Zi

the brightness value Bbi is given.
The background brightness value BB(z) is finally produces by the block BB as follows:
BB(z) is the weighted sum of the global brightness GB and of  the Local brightness
functions Bbi(z) over all the background representing points Zi :

( )2       ∑+=
i

ii zBbZzdWRBGzWGzSzBB )]()),(()())[(/1()( 1

          Here ∑+=
i

iZzdWRzWGzS )),,(()()(1

so the expression (2) is normalized to provide a true averaging of the corresponding
partial values.
The global brightness value BG is provided by the Procedure GB below, or by any of the
Gradient Nodes.
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The computation of the Local brightness functions Bbi(z) is performed in the Procedure
LB below.
The distance functions d(z, Zi) are computed in the Procedure SE below.
The computation of the weight functions WR(d(z, Zi)) is performed in the Procedure WB
below.
The weight GW(z) of the global background value GB is defined as

−=1)(zGW  imax ).,(( iZzdWR
GW(z) is zero at any z, where at least one of the weights of the representing points is 1, and GW(z) is
one at any z where all the weights of the background representing points vanish.

2.2.1.10. Procedure GB: Global Brightness of Background

This Procedure computes the global background value GB, which appears in the
expression (2) in the Procedure BB.

  By definition, if the point z is inside the background region of a Sub-Texture number r,
for which the global value GBr is defined, GB is equal to this global value GBr. If the
point z is inside the background region of a Sub-Texture, for which the global
background value is not defined, GB is equal to the default global value DGB. If DGB is
not defined, GB is equal to zero. Alternatively, Color Gradients can be used.

The current procedure consists in a signal expansion that transmits to each pixel its Sub-
Texture number. We describe it shortly, since it essentially belongs to a higher data
representation level.

First the procedure MRP is applied, which creates margin representing points, carrying
the corresponding Sub-Texture numbers. These numbers are taken from the
corresponding poly-links.

Second, the Signal Expansion Procedure is applied to the margin representing points,
essentially as in the block SE, with the following difference: only the marking and the
number of the Sub-Texture is transmitted between the pixels on each step of signal
expansion.

As this procedure is completed, each pixel in the image memorizes the number of the
Sub-Texture, to which it belongs.

2.2.1.11. Procedure LB: Local Brightness of the Background

Two types of the local brightness functions Bbi(z) are used. For the first type (zero order)
Bbi(z) is identically equal to the input brightness value Bbi at the point Zi .
For the second type (first order) Bbi(z) is equal to Li(z), where Li(z)  is the linear
function, such that
         Li(Zi) = Bbi
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and Li provides the best approximation of the input brightness values at the N nearest to
Zi background representing points. The choice of the type of the local brightness function
is determined by the flag LBF: LBF is zero for the zero order and LBF is one for the first
order of the functions Bbi(z). Here N is an integer valued tuning parameter.
** Typical value of N is 4 or 9: usually the background representing points form a regular
or an almost regular grid, and the nearest neighbors are taken at each point Zi to construct
the linear function Li(z).**

2.2.1.12. Procedure WB: Weights for the Background

As implied by the form of the expression, the weights WR(d(z, Zi)) depend only on the
distance d(z, Zi) from the point z to the background representing point Zi. The model
function of one variable WR is specified by three tuning parameters UB1 and UB2,
UB1 > UB2 > 0, and BVS (Background Weight smoothness), 0 < BVS < 1, and is
defined as follows:

0)( =tWR  for  ,1UBt >

1)( =tWR  for  ,2UBt <  and

,)1()23()( 32 vBVSvvBVStWR −+−=  for  ,12 UBtUB <<

where  ).21/()2( UBUBUBtv −−=

See the Figure below.

2.2.1.13. Procedure SE: Signal Expansion

Let D denote the domain of the Synthesized image, with “cuts” along all the separating
Lines  PLi. For any two points z1, z2 in D the distance dd(z1, z2) is defined as the
(Euclidean) length of the shortest path, joining z1 and z2 in D and avoiding all the cuts
PLi. See the figure below.
**It might be assumed that the influence of the color at z1 to the color at z2 decreases as
the distance dd(z1, z2) increases. However, a precise computation of the distance dd is a
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rather complicated geometric problem. Consequently, we use instead of the distance
dd(z1, z2) its approximation d(z1, z2), which is computed through a “signal expansion
algorithm”, as described below.**

The block SE computes the distance d(z1, z2) for any two points z1 and z2 in the image
plane. The algorithm is not symmetric with respect to z1 and z2: in fact, for a fixed point
z1, the distance d(z1, z2) is first computed for any pixel z2 of the image. Then an
additional routine computes d(z1, z2) for any given z2 (and not necessarily a pixel).
Below the notion of a “neighboring pixel” is used. It is defined as follows: for z not a
pixel, the four pixels at the corners of the pixel grid cell, containing z, are the neighbors
of z. For z a pixel, its neighbors are all the pixels, whose coordinates in the pixel grid
differ by at most one from the coordinates of z.
Below we assume that a certain data structure is organized, in which to any pixel p on the
image plane a substructure is associated, allowing to mark this pixel with certain flags
and to store some information, concerning this pixel, obtained in the process of
computation. We do not specify here this data structure, using instead expressions like
“the pixel p is marked”, “the pixel p memorizes…” etc.
Now for z1 and z2 given, the distance d(z1, z2) is computed in the following steps:
For any pixel p the distance u(p) to the separating  Line PLi is computed and stored at
this pixel. The computation of u(p) is performed by the procedure DL, described above,
applied only to separating poly-links PLi .
Those pixels p, for which u(p) < FU, are marked as “forbidden” pixels. The forbidden
pixels are excluded from all the rest of computations, and those pixels that are not
forbidden, are called below “free” ones. Here FU is a tuning parameter.
Now the proper “signal expansion” starts. In the first step each of the free neighbor pixels
of z1 is marked, and this pixel memorizes its Euclidean distance from z1 as the auxiliary
distance dd, to be computed. Generally, in the k-th step, any free unmarked pixel p, at
least one of whose free neighboring pixels was marked in the previous steps, is marked.
This pixel memorizes as its auxiliary distance dd(p) from z1, the minimum of dd at the
neighboring free pixels plus the Euclidean distance of p to the neighboring pixel, at
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which the minimum is attained. This process is continued the number of steps, equal to
the maximal dimension of the image (in pixels). After it is completed, each free pixel p
on the image plane memorizes its auxiliary distance dd(p) from z1.
Now for any given point z2 on the image plane, its distance d(z1, z2) from z1 is computed
as maximum of D1 and D2, where D1 is the Euclidean distance of z2 to z1 , and D2 is the
minimum over the free neighboring to z2 pixels p, of dd(p) + the Euclidean distance of z2

to p.
This completes the computation of the distance d(z1, z2).
See the Figure below.
** The tuning parameter FU determines the size of a neighborhood of the separating
Line, where all the pixels are marked as forbidden. Taking any value of FU, larger than
0.8, excludes a possibility of signal expansion crossing separating lines. Indeed, for any
two neighboring pixels, which are on different sides of a separating line, at least one is
closer to the line than 0.8 and hence is marked as forbidden. To provide stability of finite
accuracy computations a bigger value of U may be taken. However, in this case signal
expansion will not pass a “bottle-neck” between two separating lines, which are closer to
one another than 2FU. Normally such regions will be covered by the cross-sections of
these lines. However, a sub-pixel grid can be used to guarantee that signal expansion
passes thin “bottle-necks”

Various implementation issues.

Computation of the distance d(z1, z2) and its usage inside the background grid
interpolation form one of the central parts of the Synthesized image reconstruction.
Consequently, the efficiency of the implementation of these blocks is crucial for an
overall efficiency of the reconstruction.
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A straightforward implementation of the signal expansion algorithm, as described above,
is not optimal. However, a number of rather natural and simple modifications bring the
efficiency of the signal expansion to only few operations per pixel.

1. Multi-scale implementation. The image is subdivided into blocks in 2 – 3 scales (for example, blocks
of 16x16, 8x8 and 4x4 pixels). First signal expansion is performed between the highest scale blocks
(say, 16x16), exactly as described above. Forbidden are the blocks, crossed by separating characteristic
lines. In the second stage the forbidden blocks are subdivided into 8x8 sub-blocks, and the expansion is
performed for them. The new forbidden sub-blocks are subdivided into the 4x4 ones, and the
expansion is repeated. In the last stage the expansion is completed on the pixels level.

2. For an application to the background grid interpolation, the distance d(z1, z2) has to be computed only
till it riches the threshold UB1 (since for larger distances the weight functions vanish). This fact allows
one to restrict the number of steps in signal expansion to UB1 + 1.

3. Signal expansion and memorization of the distances at the free pixels can be implemented for all the
background representing points at once (especially since the above distance restriction usually makes
for any pixel only the information relevant, concerning a few neighboring background grid points).

4. In the process of signal expansion, all the mathematical data required in the interpolation block (like
Euclidean distances and weight functions) can be computed incrementally in a very efficient way.**

2.2.1.13. Procedure MRP: Margin Representing Points

This Procedure constructs a grid of representing points on the margins of all the
characteristic Lines together with the background brightness values (APs) at these points.
Later the constructed margin points are used (together with the original background
representing points) in the interpolation process in the block BB.
The margin representing points Mzj are produced in the following steps:

1. On each Line, the points wk are built with the distance UM1 from one another, starting with one of the
ends (the distance is measured along the Line). The last constructed point on each Line may be closer
to the end Terminal Point of this Line, than UM1.

2. At each wk the line lk orthogonal to the Line and intersecting it at wk is drown. If  wk turns out to be a
vertex of the Line with a nonzero angle between the adjacent Line Segments LS (links), or a crossing,
lk is taken to be the bissectrice of the corresponding angle.

3. On each line lk two points (one point in the case of the bissectrice of the crossing joint angle) are

chosen at the distance )(2 kwWUM ⋅ from the intersection point wk of lk with the Line (from the

crossing wk, respectively). All the chosen points, in a certain chosen order, form the output margin
representing points Mzj.

4.  At each margin representing point Mzj constructed, as described above, the corresponding margin
background brightness value Bbj is computed by

                  BttABbj )1( −+= ,

                  where A and B are the margin values (LB1 or RB1, respectively) of the cross-
sections at the ends of the Line Segment S(Mzj), nearest to the point Mzj, and t = t(Mzj).

                 S(Mzj) and t(Mzj) are computed by the Procedure DL.

In the current Procedure UM1 and UM2 are tuning parameters (the first one absolute and
the second relative to the width), satisfying UM1 < UB1,                 1 < UM2 < UL1.
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See the figure below.

The four figures below illustrate influence of different elements of the background for
different values of tuning parameters.
Figure AA shows an extrapolation of the margin values of the characteristic Line.
Figure BB illustrates the influence of the background representing points (APs).
Figure CC shows representing points with a larger parameter UB1.
Figure DD shows a patch.
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Figure Synthesized-AA Figure Synthesized-BB

Figure  Synthesized-CC Figure Synthesized-DD

2.3. SynthesizedTexture Rendering - Tuning Parameters

All the tuning parameters, listed below, are not changed in the process of sending and
playing of images and animations. However, their tuning for specific visual displays (and
for specific classes of images) may improve the visual quality and the player efficiency.
UL1 – the distance from the characteristic Lines (as a proportion to the width of the line),
within which the CP (cross-section) brightness BL(z) is computed. It coincides with the
exterior size of the lines averaging region.  Used in the Proceduress BL and WL.
UL2 – the interior size of the lines averaging region (as a proportion to the width of the
line). Used in the Procedure WL
UP1 and UP2 are the corresponding parameters for patches (referring to the relative
distance with respect to the patch size). Used in the Procedures BP and WP.
UB1 and UB2 are the (absolute) size parameters for the weight functions of the
background representing points, APs. The parameter BVS characterize the smoothness of
these weight functions. Used in the Procedure WB.
The flag LBF specifies the order (0 or 1) of the local brightness representation. Used in
the Procedure LB.
The integer parameter N is the number of neighboring background representing points
taken to define the local linear approximations of the brightness. Used in the Procedure
LB.
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FU is the distance of the separating lines at which pixels are marked as “forbidden”.
Used in the Procedure SE.
UM1 and UM2 are the absolute and the relative to the width parameters in construction
of margin representing point. Used in the Procedure MRP.
D > 1 is the parameter, defining the “asymmetry” of the distance to the Line Segment,
computed in its side areas. Used in the Procedure DDL.
DE > 0 is a parameter, defining the length of the end area of characteristic Lines. Used in
the Procedure BL

3. High Order Detection of Ridges

3.1. Visual specification of a ridge

Visually, ridges are specified as narrow strips, separated from the background by their
(locally uniform) brightness or color. The central line of the ridge is the line, which
represents in the most accurate way its geometric shape. It consists of the points, where
the brightness in each orthogonal direction attains its extremal value.

Ridges present one of the most important examples of uniform characteristic lines: the
visual pattern along the ridge qualitatively repeats itself. This pattern is represented by
the cross-section, having the brightness extremum at the central line of the ridge.

Within this basic pattern, quite different shapes may appear as ridge cross-sections.
Experiments show that human visual perception is highly sensitive to the ridge cross-
section shape. To guarantee a visually faithful reconstruction of a ridge the geometric
accuracy in the cross-sections identification has to be at least of order 0.1 pixel and the
brightness approximation accuracy has to be at least of order of a few gray levels.

As far as geometric accuracy of ridge identification is concerned, it also has to be at least
of order 0.1 pixel, to provide a visually faithful reconstruction of, for example, text
patterns in a scale of several pixels. The same accuracy is typically required at highly
curved regions of the ridge, its “corners” etc.

These very strict accuracy requirements make application of high order high accuracy
methods inevitable in ridge detection, which assumes as one of its goals a visually
faithful reconstruction of the image along the ridges. In particular, this fact justifies a
necessity of a very detailed mathematical analysis of ridges, as they are expressed in
properties of the brightness function.
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3.2. Mathematical description of ridges through curvatures; equivalence
of several definitions.

One of the difficulties with the mathematical treatment of ridges is that the definition of a
ridge in visual terms, given above (visually, ridges are specified as narrow strips,
separated from the background by their (locally uniform) brightness or color) can be
translated into mathematical terms in several apparently not equivalent ways.

Consider the brightness z = f(x,y) at each point (x,y) of the image as a continuous and
smooth function, represented by the surface of its graph in the three-dimensional space.
In this interpretation ridges appear as narrow elongated channels (for dark ridges) or clips
(for bright ones) on the brightness surface. It seems to be intuitively clear that at the
points of the ridge’s central line, this surface is maximally curved in the direction,
orthogonal to the ridge. In other words, the curvature of the brightness surface in the
direction, orthogonal to the ridge’s central line, is maximal among all the directions. In
differential-geometric terms this means that one of the principal curvature directions of
the surface (corresponding to the bigger main curvature) is orthogonal to the ridge, while
the other principal curvature direction (corresponding to the smaller main curvature) is
parallel to the ridge. This condition asserts that any ridge is a so-called “curvature line”
on the brightness surface; it can be expressed as a certain first order differential equation.
It is referred below as Condition A.

On the other hand, from the definition in visual terms it seems to be equally clear, that the
brightness function, restricted to any line, orthogonal to the ridge, must have an
extremum at the points of the ridge’s central line. This implies that the derivative of the
brightness function in this orthogonal direction is zero, or, equivalently, the gradient of
the brightness function is parallel to the ridge. This means that any ridge is a so-called
“gradient line” of the brightness function. Once more, this condition, referred below as
Condition C, can be expressed as a certain first order differential equation.

It is also very important to have a mathematical definition of the ridge by an “algebraic”
(and not differential) equation in terms of the brightness function f and its derivatives.
Indeed, solution of differential equations requires global data processing, while
“algebraic” equations can be solved locally. The last case is strongly preferable because
of stability and efficiency reasons.

Such an “algebraic” condition can be produced as follows: we combine two of the
“intuitive” observations above (that the orthogonal direction to the ridge is the bigger
principal curvature direction, and that the derivative of the brightness function in this
direction at the ridge point must be zero), but not insist that this principal curvature
direction is strictly orthogonal to the ridge.

As a result we get the following:
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Condition B.

At each point of the ridge’s central line the derivative of the brightness function in
the bigger principal curvature direction is zero.

This condition will be used below as the main working definition of the ridges. It can be
written explicitly as a certain “algebraic” (and not differential!) equation, involving the
brightness function f and its derivatives up to the second order. This equation is explicitly
given in the Addendum 1.

It turns out that this condition B, strictly speaking, is mathematically incompatible with
the conditions A and C: the bigger principal curvature directions in general are not
orthogonal to the lines, defined by the equation of the condition B (and the gradient
directions are not in general tangent to these lines). This incompatibility occurs as a result
of several rather subtle mathematical effects: interaction between the first and the third
order derivatives of the brightness function and the influence of the high curvature of the
ridges themselves. In particular, for the brightness function a quadratic polynomial (and
in a “second differential eigenvalues” setting, described below), ridges are straight lines,
satisfying all the conditions A, B and C.

The following basic mathematical fact justifies our choice of the mathematical
interpretation of visual ridge definition. It also explains, to a certain extent, why our
intuitive appreciation of ridges translates into different mathematically incompatible
conditions.

If the gradient of the brightness function is small along the ridge, then the curve,
defined by the Condition B, satisfies approximately also the conditions A and C.

A rigorous proof of this fact is given separately. It is obtained via the “jet formulae”,
presented below. In particular, the analysis of the deviation can be performed via jet
expression for the coefficient c1. In the same way certain geometric explanation of the
above fact can be given, the role of the third derivative and of curved ridges with a “big”
gradient can be clarified.

Using an “algebraic”, and not a differential equation to define ridges is advantageous in
several aspects.

First of all, solving differential equation of conditions A and C is basically unstable from
the point of view of our main purpose – ridge detection: starting at a certain point of a
ridge both curvature and gradient line can deviate far away from the ridge in a short time.

Secondly, the “algebraic” definition requires only local computations.
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The conditions above have been formulated in terms of the differential-geometric
curvature directions of the graph of the brightness function, considered as a surface in the
three-dimensional space.

Similar conditions can be given in terms of the eigenvalues and eigendirections of the
second differential of the brightness function f, without explicit referring to the
differential geometry of its graph. As far as the ridges are concerned, our intuition seams
to equally support each of the approaches.
Computationally the second one is much simpler.

It is not clear a priori that these two approaches are mathematically compatible, and if
not, to what extent they may disagree in practically important situations. Consequently,
mathematical comparison of the above conditions is important for a practical
implementation: it allows one to use a “correct” translation of the intuitive notion of the
ridge into mathematical terms, and to significantly simplify computations. This
comparison and analysis, is given below. It produces, in particular, the following
important fact:

Ridges, defined by the Condition C, are the same for “differential-geometric”
curvature directions and for the eigendirections of the second differential of the
brightness function f.

Consequently, all the specific computations below are performed within the second
approach.

The above mathematical description was given under a simplifying assumption that the
brightness function of the processed image was continuous and differentiable, and that all
the required derivatives of this function were readily available. In practice the brightness
function is given on a discrete grid of pixels, so to evaluate its derivatives a certain
continuous mathematical approximation of this function must be produced. For most of
real life images (except the synthetic ones) the brightness function is noisy. It is well
known that numerical computation of high order derivatives is very sensitive to noise.
This sensitivity must be taken into account in the processing.

There are many known methods of relatively stable computation of derivatives of discrete
functions. These methods are based on various forms of local or global approximation by
standard mathematical tools, like polynomials, trigonometric functions, wavelets etc.
Each of these methods can be successfully used. In particular, any required derivative of
the brightness function can be produced at each pixel of the image by a convolution of
the brightness with an appropriate convolution  mask. Usually a special case of
convolution is used, based on a weighted polynomial approximation of the brightness
function on square windows of different size. This method is described in detail below.

As a result, at each pixel of the image (and if necessary, at intermediate points) the
approximate values of the derivatives of the brightness function are produced. However,
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these derivatives values once more form a discrete set of data, and not the continuous
functions. Consequently, the formulae and equations of the Section 3.3 below are not
directly applicable. These formulae and equations have to be translated into a form,
where their input will be the set of derivatives values at discrete points. Their output will
represent (up to the prescribed order) the ridge elements, identified in the vicinity of these
given points.

The formulae and expressions of the required type are known in Mathematical Analysis,
more specifically, they are widely used in the so-called Jet Algebra computations,
appearing in Singularity theory. In each specific problem these expressions have to be
developed independently, but being developed, they can be applied to the whole class of
similar situations. Being usually rather complicated algebraically, these expressions have
to be specially arranged for efficient and robust numerical calculations. It is here that
multi-order considerations become especially important.

Below all the “Jet formulae” necessary for the second order ridge elements detection are
produced on the base of the global mathematical equations.

 3.3. Differential-Geometric description of Ridges

 3.3.1. Definitions and Mathematical Background

Definition 1   Let   f  be a brightness function, 21 , κκ – principal curvatures of the

surface   ),( yxfz =  and  ),( 21 dududu =  the direction of maximal curvature k1. The

curve L  is called a ridge, if the directional derivative fDu vanishes at each point

Lyx ∈),( :
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where      2
221

2
1 2 GduduFduEduI ++=    and     2

221
2

1 2 gdudufdueduII ++=  are
the  first and the second fundamental forms of the surface.

The equation (1.2) determines two directions 
1

2

du

du
 and  

1

2

dv

dv
, in which the normal

curvature κ  obtains its extreme values.

In the case of  ),( yxfz =  we obtain the following expressions of I  and II :

      
21 xfE +=   ,                  yx ffF =     ,                  21 yfG +=

      
221 yx

xx

ff

f
e

++
= ,        

221 yx

xy

ff

f
f

++
= ,         

221 yx

yy

ff

f
g

++
= .

Then the equation (1.2)  becomes

 (1.2’)                
[ ] [ ]

[ ] 0)1(

)1()1()1(

2

2222

=−++

+−+++−

xxyxxyx

xxyyyxxyyyyyx

fffff

fffffffff λ

Proposition 1.  If  the curve L  is a ridge, then it necessarily  satisfies  the equation

(1.4)                  ( ) 0)( 22 =−+− yyxxyxxyxy fffffff

Remark 1. If 
yf  vanishes identically, then the equation (1.2’) yields 0=λ .  This

means that one of the principal directions is  )0,1(=ud , and the condition (1.1) can

be re-written in the form 0=xf .  Similarly, in the case 0=xf  identically,   the

equation (1.1) becomes 0=yf . In both cases the surface ),( yxfz =  is  a cylinder,

and in both cases the equation (1.4) vanishes identically.  Hence the equation (1.4)
can be efficient only under the assumption that the surface ),( yxfz =  has a more
complicated form.

Example 1   Let  ( )22),( yxyxf −= .  Then ,44 3xxyf x +−=   2124 xyf xx +−= ,
)(2 2xyf y −= ,  2=yyf ,  xf xy 4−= .  By substituting into (1.4) , we get

0)(2 32 =− xy .  It is clear geometrically that the line { }02 =−= xyL  is the only
ridge in this case.
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Remark 2.  It should be stressed that the equation (1.4) has been derived from the
quadratic equation (1.2’), which includes both maximal and minimal curvature
directions.  Therefore equation  (1.4) is also satisfied on curves, where ),( yxfDv

vanishes in the direction v  of minimal curvature:

Example 2   Let  21
2

2
2

1 ,),( λλλλ >+= yxyxf . The equation (1.4) provides
0)22(4 2121 =− λλλλ xy . Hence the solutions are the lines 0=x  and  0=y , but

only the line 0=x  satisfies ridge definition.
The fact the equation (1.4) can generate two families of lines, corresponding to
maximal and minimal curvatures, while we are interested only in one of them, seems
to be its deficiency.  We easily get free of these difficulties owing to our central
concept of multigrid and multiorder:   We use the equation (1.4) only on the second
step of high order jet construction, providing the first order jet detection is
preliminary performed.

In what follows, we suppose that xf  and yf  do not vanish identically, hence the

equation (1.4) can be used to determine the principal curvature  directions.
We shall show now that lines defined by (1.4) have a few interesting geometric
properties.

1. It is well known that two directions, tangent to the surface ),( yxfz =
and corresponding to the principal curvature directions vu,   are orthogonal (as

directions in 3R ). It turns out that along ridges the principal directions
),( 21 duduud = and ),( 21 dvdvdv = are also orthogonal as directions in 2R .

             Indeed, for 
1

2
1 du

du
=λ  and 

1

2
2 dv

dv
=λ  we obtain from (1.2’) and (1.4):

                                  
( )

1
)1(

1
2

2

21 −=
+−

−+
=

xyyyyyx

xxyxxyx

fffff

fffff
λλ .

       2. We shall show now that ridge can be defined in three equivalent
              forms.

               Let 
yyxy

xyxx

ff

ff
H =   be a Hessian  of the brightness  function f and let

              ),( 21 ααα =   and ),( 21 βββ = be its eigenvectors, corresponding   to

              the eigenvalues  21 ,γγ  ,   21 γγ > .

Definition 1  -  as given above;

Definition 2 .  Curve L  is called a ridge, if the directional derivative
             ),( yxfDα  vanishes   at each Lyx ∈),( :   0),( =yxfDα .
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Definition 3. Curve L is called a ridge, if along L the gradient vector
              field is orthogonal to the eigenvector  field, corresponding to  1γ .

The equivalence of definitions (1) – (3) follows from the following two propositions.

 Proposition 2.  Curve L satisfies the equation (1.4) if and only if  ),( yxfDα

for each  Lyx ∈),( ,  where  α  is one of `eigenvectors of Hessian  H.

Proof.   Write the characteristic equation  of  f  : 0=
−

−
γ

γ

yyxy

xyxx

ff

ff
,  or

 (1.5)               0)()( 22 =−++− xyyyxxyyxx fffff γγ .

It can easily be seen that (1.4) can be written as

(1.6)                 ( ) ( ) 02

2

=−+
−

+−








 −
xyyyxx

y

xxyyxx
yyxx

y

xxyyxx
fff

f

ffff
ff

f

ffff

It follows immediately from (1.5) and (1.6)  that    
y

xxyyxx

f

ffff −
=1γ    is one of

eigenvalues of H .  Hence the vector  ),( 1γ−−= xxxy ffw   is an eigenvector.

Now we can find the derivative fDw  a t  the point Lyx ∈),( :

0)( =








 −
−+−=

y

xxyyxx
xxyxyxw f

ffff
fffffD .

Conversely, let L be a line such that LyxyxfD ∈= ),(,0),(α  , for the eigenvalue   γ

and the corresponding eigenvector   ),( γα −−= xxxy ff .

Then   0=fDα  yields 
y

xxyyxx

f

ffff −
=γ  ,  and substituting γ   in the characteristic

equation (1.5) we get the equation (1.6), which is equivalent to (1.4)

Proposition 3.   Let  α   be the eigenvector of  H  . Then  0),( =yxfDα for each

Lyx ∈),(    if and only if the gradient vector field  
yyxx ff ∂+∂ is also the eigenvector

field along L .

(The proof is evident).
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The equivalence of Def. (1) and  Def.2 is used efficiently in our algorithm.  One can see
in this equivalence the mathematical basis for our central concept of multigrid and
multiorder.

3.3.2. Local ridge element detection algorithm

The algorithm consists of two main shapes.  On the first one we perform the second order
analysis on 3x3 pixels cell (or 5x5 cells with appropriate choice of weights) to detect
possible ridge elements.

This stage of algorithm results in the list of linear ridge elements.  Each element consists
of a point ),( 00 yx , which is a center of ridge element and vector ),( 21 uu  which is

presumably tangent to the ridge.

On the second stage, the high order approximating polynomials, constructed on 5x5
pixels cells with more uniformly distributed weights, are used to detect curvilinear (high
outer) ridge elements.

In preferred embodiment we describe construction of the second order curvilinear ridge

elements, based on third order approximation jij

i

i

j

yxyxP −

= =
∑∑=

3

0 0
ij3 a),( of the brightness

function.  In the case of fourth order approximating polynomial the procedure is
essentially the same.

This stage of algorithm results in the list of second order curvilinear ridge elements.
Each element consists of a central point ),( 00 yx  which is the origin of local coordinate

system, the direction  ),( 21 uu   of the x -axis in this local system,  which is the

eigendirection of the second order form ∑
=

−
2

0

2
2

j

jj
j yxa , corresponding to biggest

eigenvalue, and the coefficients 210 ,, ccc  of the second order jet 2
210 xcxccy ++=  for

the curvilinear ridge element in this local coordinate system.

3.3.3. Jet formulae for ridges

In the step of computation of the derivatives, at each pixel of the image (and if necessary,
at intermediate points) the approximate values of the derivatives of the brightness
function have been produced. However, these derivatives values once more form a
discrete set of data, and not the continuous functions. Consequently, the formulae and
equations, given in the Section 3.3.1 above, are not directly applicable. Indeed, a direct
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substitution of the values of the brightness function and of its derivatives into any of
these expressions would produce not more than an indication of whether the pixel
considered belongs to the ridge, i.e. a zero order information. Instead we would like to
get a second order approximation of the ridge central line. Thus the formulae and
equations of the Section 3.3.1 have to be translated into a form, where their input will be
the set of derivatives values at a given point, while their output will represent (up to the
prescribed order) the ridge element, identified in the vicinity of this given point.

The formulae and expressions of the required type are known in Mathematical Analysis,
more specifically, they are widely used in the so called Jet Algebra computations,
appearing in Singularity theory. In each specific problem these expressions have to be
developed independently, but being developed, they can be applied to the whole class of
similar situations. Being usually rather complicated algebraically, these expressions have
to be specially arranged for efficient and robust numerical applications. It is here that
multi-order considerations become especially important.

Third order analysis. Identification of the second order ridge elements.

We look now   for a second order local approximation to a solution of (1.4).  Let
),,,( 2100 uuyxr  be the first order local ridge element ,  detected by the second order

analysis. This means that the second order  approximating polynomial, centered at
),( 00 yx  and  diagonalized , has the form

                                 2
2

2
110002

~~),( yxxaayxP λλ +++= ,

where 21

~~ λλ <<  and ),( 21 uu is the eigenvector of 1λ .

Let ),(3 yxP  be the third order approximating  polynomial on the 55× pixels cell and also

centered at  ),( 00 yx , with diagonalized  second order part:

          3
03

2
12

2
21

3
30

2
02

2
200110003 ),( ybxybyxbxbybxbybxbbyxP ++++++++= .

The coefficients of 3P  are different  from those of 2P  because of two reasons: pixels

weights in the approximation have been changed  and the first order approximation is
now influenced by the third order terms presence. Nethertheless, these coefficients
reflect the cylindrical form of the brightness function, hence, we can assume  that

0220 bb <<   and  01b  is small enough for the following inequality to  hold:

                             03 0301
2

02 ≥− bbb .

Then the origin  can be shifted  to the point ),0( 1δ , where 1δ   the  zero of

032 2
030201 =+− δδ bbb ,  satisfying  21 δδ <  .  Then 3P  can be written as
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 ( 2 .1)                      ∑
=

−
−++++=

3

0

3
3,

2
02

2
0210003 ),(

i

ii
ii yxayaxaxaayxP .

We look for a ridge as a solution of the equation  ( 1.4) with  ),(),( 3 yxPyxf = .

Substituting    for  yyxyxxyx fffff ,,,,   the corresponding expression,  we get the

following  equation:

( 2.2)

[ ]

0)662222(

)322)(232(

)322()232()22(

300321122002

2
0312

2
2102

2
1221

2
302010

22
0312

2
2102

22
1212

2
3020101212

=−+−+−
×++++++++

×+++−+++++

xayayaxaaa

yaxyaxayayaxyaxaxaa

yaxyaxayayaxyaxaxaayaxa

Let   i

i
i xcy ∑

∞

=

=
0

 be Taylor expansion for a solution.  By substituting  it in (2 .2)  and by

equating  to zero the coefficient of  mx ,  we get the following conditions:

(a)  for 1=m :

( 2.3)            
0)6222)(32)((

))32()((2

0030212002
2
003002

2
01210

22
003002

22
01210012

=+−−++

++−+

cacaaacacacaa

cacacaaca

This equation is satisfied  for 00 =c , so we can put 00 =c .

(b)  for  1=m :

( 2.4)                 0)(4)(2 120020210
2

1011221 =−++ caaaaacaa

If 010 ≠a ,  then we have

(2.5)         2
0220021210

2110
1

22 aaaaa

aa
c

+−
−=  .

The denominator in ( 2.5)  doesn’t vanish:   since   2002 aa >>   and  1002 aa >> , the

condition    022 2
0220021210 =+− aaaaa   means that  0212 aa >> .  The last condition is

impossible, because   2002 aa >>  holds  for the second order approximating polynomial,

centered at the same  point.

(c )  for  2=m :
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(2.6)   
0)(42

))(322(22)22(

1200202201022010

2002
2

1031122120210
2

10212201011221

=−+
+−++++++

caaaacaaa

aacacaacaaacaaacaa

If 010 ≠a   ,  then   (2.6)  provides

( 2.7)

[ +−+++++= ))(32(22)22( 2002
2

103112211010220102010112212 aacacaaacaaaaacaac

                                                                ] )22()(4 0210
2

1012120020220 aaaacaaaa +− ,

where the denominator  0210
2

1012 22 aaaa +   doesn’t  vanish for the same reason:

022012 aaa << .

Hence, in the case  010 ≠a  the second order jet 2
210 xcxcc ++  for a solution   of   (2.2)

is determined by   ( 2.5) , ( 2.7).

(d)  We can assume now that 010 =a .  Then by equating to zero the coefficient of  3x  in

( 2.2) , we have:

(2.8)

+−+++−+ )22)(23(2)44)(22( 2002
2

11212130102
2

1
2

02
2

2011221 aacacaacacaacaa

  +−+− )6622(4 301031211210220 acacaacaa

                                                  0)22)(322(2 2002
2

1031122120220 =−+++ aacacaacaa

If  020 ≠a ,  then  01 =c   by  ( 2.6)  and the equation  ( 2.8)  becomes

  0)22)(2(28 20022120220
2

2021 =−++ aaacaaaa .

 Therefore,  in the case  010 =a  , 020 ≠a   we have

                                         
)(2

)(

200202

022021
2 aaa

aaa
c

−
+

−= ,

and the second order is determined also in this case.

We assume now that    020 =a .    Then  (2.8)  becomes

                  04)23()4)(22( 02102
2
11212130

2
1

2
0211221 =+++−+ acacacaacacaa ,
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which is equivalent to

( 2.9)                   0)3( 2
112301 =− caac .

If    02
12

2
30 ≠+ aa  , then  01 =c  is one of solutions,  so we can put  01 =c .

If   02
12

2
30 =+ aa ,  then  ( 2.9) vanishes  identically.

(e)    By equating to zero the coefficient  of  4x ,  we have

( 2.10)   
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.

If 02
12

2
30 ≠+ aa ,  then  01 =c   by  (d)  and it follows from  ( 2.10)  that

( 2.11)                                     
02

21
2 2a

a
c −= .

If  02
12

2
30 =+ aa ,  then  ( 2.10) yields

(2 .12)                              0323 3
10321

3
1

2
211

2
21 =++ caacaca .

If  021 ≠a , then 01 =c is one of solutions of  ( 2 .12),  so we can put   01 =c .  If
021 =a , then  ( 2 .12)  vanishes identically.

(f)  We have now  012302010 ==== aaaa .  By equating to zero the coefficient of  5x
in  ( 2.2) , we have

   (  2.13)
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If  021 ≠a , then   01 =c   by  (e)  and  ( 2.13)  yields      024 3
21202

2
21 =−− acaa .  Hence

                                                 ,
2 02

21
2 a

a
c −=
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and the second order jet is determined also in the case
                                       0,0 2112302010 ≠==== aaaaa .

If  021 =a , then the third order approximating polynomial

                                       3
03202003 ),( yayaayxP ++=

is a cylinder, and obviously the second order jet for a ridge element is just  0=y .

   

4. High Order detection of Edges

4.1. Visual and mathematical description of edges. Comparison with
mathematical description of ridges.

Ridges and edges present one of the most important examples of uniform characteristic
lines. As it was described in detail above, visually ridges are specified as narrow strips,
separated from the background by their (locally uniform) brightness or color. Edge is
specified as boundaries between two regions with relatively different gray level
properties.
More formally, the definition of characteristic features can be made in terms of brightness
function.  Brightness function is understood as a function representing image intensity (in
particular it may be the intensity of one of the standard color separations, R, G and B).
We will call it also gray level of the image and denote by ),( yxf  its value at the point
with the coordinates (x, y).

Consider the brightness z = f(x,y) at each point (x,y) of the image as a continuous and
smooth function, represented by the surface of its graph in the three-dimensional space.
In this interpretation ridges appear as narrow elongated channels (for dark ridges) or clips
(for bright ones) on the brightness surface. It seems to be intuitively clear that at the
points of the ridge’s central line, this surface is maximally curved in the direction,
orthogonal to the ridge. In other words, the curvature of the brightness surface in the
direction, orthogonal to the ridge’s central line, is maximal among all the directions. In
the first part of the current Application two equivalent definitions of the ridge are
discussed, and their equivalence is proved. In each one of them, the ridge’s central line is
characterized by extremal property of curvature along it, which can be classified as a
“local” property of the brightness function. According to this “locality”, ridge’s central
line satisfies functional equations written in terms of brightness function derivatives.
Edges, on the contrary, can’t be characterized by “local” properties of brightness
function. They appear as steep slopes of the surface ),( yxfz = , and in the ),( yx -plane
they appear as strips possessing the following property: the gradient f∇  is big in the
central zone of the strip and drops to zero near the boundary lines of the strip, while the
brightness function is monotone in each transversal direction.
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In particular, the central line of the edge can be defined only with respect to the edge’s
boundary lines (for example, as a “middle” line of the two boundaries). The points of this
central line may be mathematically indistinguishable from the neighboring points: all the
derivatives of the brightness function may be virtually the same inside a certain “edge
strip”, much wider, than the desired central line.

Consequently, there exist no equation for the edge’s central line in terms of the values of
the brightness function and its derivatives. Therefore, edges have inherent “semi-local”
nature and can’t be described in the same way as ridges.

On the other hand, it is intuitively clear that edges are well-defined lines on the image,
and their central lines have an important visual meaning and can be identified with a high
accuracy.

The method, given below, is based on a “semi-local” definition of edges. It starts not with
an “ideal” brightness function, but with its polynomial approximations in certain
prescribed scales. An important feature of the method is that it uses not only the domains
where the polynomial approximation of the brightness function is accurate, but also the
domains, where this polynomial approximation starts to deviate from the original. This
stresses the semi-local character of the method: the approximating polynomials are
analyzed and processed not only near the window center (where the approximation is the
best) but on all the window.

Specifically, on the edges, the third order polynomial approximation of the brightness
function (on the scale slightly larger than the width of the edge) is usually accurate till the
edge boundary lines. Then it starts to deviate from the brightness function. In fact, such
polynomial approximation stresses the boundary lines, making them ridges. This happens
even in cases where the image itself does not have ridges at the edge boundary. The
details are given below.

Exactly as in the case of ridges, all the formulae and equations, which are used in edge
description, have to be translated into a form, where their input will be the set of
derivatives values at discrete points (at a given point). Their output will represent (up to
the prescribed order) the ridge elements, identified in the vicinity of this given point.

 In the case of ridges, the required Jet Algebra formulae are provided in Section 3.3.3
above.  The discribed edges detection algorithm is based on these formulae and on some
additional Jet expressions, provided in the text of the method description below.

Local Edge Descriptors

At the local level of edge detection the following local edge structures can be
consecutively identified by means of multi-scale and multi-order analyses (in the vicinity
of given point) :

1. Bilateral “gradient element” (or zero-order Local Edge Descriptor).



44

It consists of two endpoints 21 , EE  and brightness function values )(),( 21 EfEf  at
these points. Alternatively it can be described by the center C of the segment
[ ]21 , EE , the width h and the unit direction vector ),( 21 uu  orthogonal to the

segment [ ]., 21 EE  The geometric interpretation of bilateral “gradient element” is the
following: it represents a cylindrical surface ,which is parallel to the  spatial vector

)0,,( 21 uu  and has a cubic directrix (cross-section). The cross-section curve has

extrema at points 21 , EE  (See Fig.   ).

2.  Unilateral  “gradient element”.

If the edge under detection is wide enough with respect to the size of the coarse
scale cell, then the initial steps of the detection procedure can’t result in the
identification of bilateral “gradient element”: only one extreme point of the cross-
section can be caught within one cell. The received information is memorized in the
form of unilateral “gradient element”. It consists of one endpoint E , width h, the
direction vector ),( 21 uu  and the brightness function value )(Ef . The pair of
adjacent unilateral “gradient element” can be unified into bilateral “gradient
element” by means of special wide edge construction procedure. If unilateral
“gradient element” doesn’t have the adjacent counterpart, it is excluded from
further consideration.

3. First order (linear) Local Edge Descriptor (linear LED).

It consists of two endpoints 21 , EE , two unit direction vectors 2,1,),( 21 =iuu ii

(which don’t have to be parallel), and brightness function values )(),( 21 EfEf . The
corresponding surface is not in general cylindrical, but it has a cubic-like cross-
section along 21EE  with extrema at points 21 , EE , and in the vicinity of the

endpoint iE , 2,1=i , it has a form of a linear ridge element, centered at iE  and

directed along ),( 21 ii uu .

4. Second order Local Edge Descriptor.

It consists of two endpoints 2,1, =iEi , two unit direction vectors ),( 21 ii uu , two

second order jets 2
21 ξξ ii cc + , and brightness function values )( iEf . The

corresponding surface is characterized by the following features:
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- the cross-section along 21EE  has a cubic-like form with extrema at points

21 , EE ;

-  in the vicinity of the endpoint iE , 2,1=i , it has a form of second

    order ridge element, centered at iE   and represented by the jet

   2
21 ξξ ii cc + in a local coordinate system with ξ -axis in the

  direction of ),( 21 ii uu ;

- brightness function is monotone along each transversal section.

Example

The brightness function ),( yxf is given by

( ) ( )232 3),( xyxyyxf −−−=

In this example the edge forms a strip, bounded by two ridges:

12 += xy  and 12 −= xy .

The brightness function, restricted to “vertical” lines constx = , attains its extrema
exactly on these ridges.

The following typical visual patterns produce easily predictable detection results:

1. A regular edge.  This is a single edge, separating two regions with different
brightness function properties, with the width that doesn’t exceed 3-4 pixels. This
pattern produces a high value of the gradient on any 3x3 pixels window, centered
properly, and on a coarse scale passes the third order test for LED: the third order
polynomial, restricted to orthogonal section, has both minimum or maximum
points inside the chosen cell.
In this case the linear (or the first order) LED is generally identified with high
accuracy of both geometric and brightness parameters. The curvilinear (or the
second order) LED can be identified using fourth order procedure.

2. An imaginary edge. Assume that  the ridge is well delineated and has a width of
at least 2-3 pixels, and approximating polynomials of second and third order are
constructed  on 3x3 and 5x5 cells respectively, centered at the  middle of the
ridge slope. In this case LED will be identified, and the whole ridge’s slope will
be represented by a chain of LED.  The edges of this kind are classified as
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“imaginary “ ones. They should be incorporated into other characteristic lines and
eliminated from the final list of edges.  On the other hand, imaginary edges are
usually identified with high geometric and brightness accuracy, which makes
them the dominant tool in the detection of geometrically adherent characteristic
lines.

3. A “wide” edge. If the edge has a width of 4 pixels or more, the corresponding
“gradient element” can’t be caught by a single third order polynomial on 5x5 cell.
Depending on edge’s width and the location of the cell, there exist the following
possibilities : (a) the orthogonal section doesn’t have extremum points inside the
cell; (b) the orthogonal section has only one extremum point inside the cell . In
the first case the LED can’t be identified and the corresponding pattern is
represented by slow-scale (background) elements. In the second case the
unilateral “gradient element” is identified. Two adjacent unilateral “gradient
elements” will be unified in the regular bilateral LED, if the required adjacency
conditions are satisfied. The unilateral “gradient elements”, which don’t have
adjacent counterpart, are excluded from the further consideration.

5. High order detection of Color Cross-Sections

Generally the method proposed is a combination of a multi-scale and a multi-order
approaches, as described above. In the specific implementation of the algorithm the
fourth order approximation of the brightness function on a larger scale produces the
fourth order approximation of the ridge’s cross-section. The second order approximation
of the brightness function on a finer scale produces the second order (parabolic)
approximation of the ridge’s cross-section. The zero order approximation of the cross-
section is produces via the direct pixel values plotting. Finally, the output cross-section is
obtained as a fourth order curve, fitting in the best way all these three sets of data.

Roughly the same procedure is used for edges. It includes also the detection of local
geometric edge elements, described above, and the identification of their local Cross-
Sections.
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6. An Overview of the VIM Coding

6.1. Summary

The “raw” VIM Texture, as described in Section 2 above, can be realized in a form of a
computer memory structure, or can be stored as a file (textual or binary). While
transparent in its structure and convenient for processing, this file may be rather big in its
size. Although any standard loss-less statistic compression, like Zip, usually reduces this
size to a fraction of the original image, to get a compact VIM compression more
sophisticated tools are required. VIM structure provides such tools, allowing one to
utilize visual correlations between different spatially associated parameters, to eliminate
significant redundancy in raw data and to take into account specifics of human visual
perception.

This document provides an overview of general principles of VIM Coding and a general
description of the encoding of each of the parameters in the VIM Texture.

6.2. General Principles of VIM Coding

Organization of storage and encoding of VIM Data reflects general principles of VIM
data structure:

6.2.1. Simple Structure versus powerful Authoring Tools

The structure of VIM itself, in both its levels (raw and compressed) is kept simple and
transparent. On the other side, the authoring tools are assumed to be sophisticated.

One of manifestations of this VIM feature is, that the most natural way to explain and to
illustrate VIM representation is on cartoon-like images. All the structural aspects of can
be authentically represented by fairly simple such examples.

But VIM Authoring Tools allow one to produce as well VIM representations of
complicated high-resolution images of real world. The VIM structure remains the same
also here. However, VIM elements become much more dense, their visual role and visual
interaction between different elements become much more complicated.

Another manifestation of the above principle concerns VIM Coding. The structure of the
aggregated and quantized data streams (which are statistically encoded in the final stage)
remains simple and transparent. However, powerful Authoring Tools allow for an
adaptation of the VIM parameters to the specifics of the Aggregation and Coding and in
this way to a significant reduction of the data size.
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6.2.2. Elimination of redundancies via proper Data Aggregation

Most of Data Streams in RVIM present strong non-uniformity in their statistical
distribution, as well as strong inter-correlations. In the overall Coding organization one
can either leave removing these redundancies to the final statistical loss-less encoding
(Huffman Coding) or to eliminate them in earlier stage, by a proper Data Aggregation.

VIM structure provides a full control on all the geometric and the color features of the
image, and thus a possibility for a clever Data Aggregation on all the levels. Experiments
show, that this Aggregation provides a strongly better data compression, than a
straightforward application of the Huffman Coding, as well as a much better utilization of
the specifics of the Human visual perception.

Organization of virtually any of the Data Streams, described below, gives examples of
Data Aggregation.

6.2.3. Specifics of a human visual perception in VIM Coding

6.2.3.1. Y I Q instead of RGB

In the main mode, VIM coding uses Y I Q color components, rather than standard   RG B
ones (a common feature with JPEG format and others). The quantization of the I and Q
components is usually stronger than of the Y component.

6.2.3.2. Low color sensitivity for a small angular size

It is well known, that a human visual sensitivity to brightness of a visual pattern (and
especially to its color) strictly decreases with the angular size of the pattern. The angular
size of VIM Lines and especially Patches is usually rather small. Consequently, the Y and
especially the I and the Q components of the Lines Color Profiles are quantized much
stronger than the corresponding components of the Area Color. In one Coding mode the I
and the Q components of the Color Profiles and of the Patches are not stored at all. In an
advanced Coding mode the quantization thresholds for Y,  I and Q components of the
Color Profiles and of the Patches depend on their width (size).

6.2.3.3. Visual redundancy of Color Profiles

Our experiments have shown that a visual sensitivity to some elements of the Color
Profile is rather low. In particular, this concerns the interior brightness parameters RB2

and LB2. ( “Bump” parameters. See the document “VIM Texture: Technical
Specifications”).However, the presence of the typical Profile shape, described by these
parameters (margin “bumps”) is important for an overall image quality. Consequently,
we compute a prediction for these parameters on the base of the others (and of the global
image properties) and encode only the corrections to these predicted values. In one
Coding mode the parameters RB2 and LB2 are not stored at all.
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6.2.3.4. Different visual sensitivity to “near” and “non-near” geometry

It is well known that our visual sensitivity to the geometric shapes is much higher for
“geometrically near” visual patterns than for isolated ones. Rather strong geometric
distortions in a position of a line, passing far away from other patterns, will not be
perceived at all, while even a small distortion of one of a couple of closely neighboring
lines immediately “pops to the eyes”. This fact is taken into account in the VIM structure
already in the explicit definition of the Crossings and Splittings of the Lines. The
geometric parameters of the Terminal Points, representing Crossings and Splittings, are
stored with a higher accuracy than that of the usual Line Points. In Advanced Coding
mode the “Aggregated Crossing” and the “Aggregated Color Profile” are used, which
captur the most common cases of VIM elements visual aggregation. Also in Lines
quantization their mutual position can be taken into account.

6.3. Encoding of RVIM Parameters

The VIM Texture comprises various parameters with different mathematical meaning and
visual significance. The following main groups of parameters are encoded separately:

6.3.1. “Centers”.

This includes encoding coordinates of the Lines Terminal Points and coordinates of the
centers of Patches (and, in an “explicit” Coding mode, coordinated of the Area Color
Points), together with the data specifying the type of the encoded point. The main
aggregation tool here is the encoding of points with respect to a certain regular cell
partition of the image plane. This eliminates redundancy related with an explicit
memorizing of the order of the points and allows one to take into account expected points
density.

6.3.2. “Terminal Points”.

At Terminal Points the “topological” structure of the system of the Lines is stored. This is
achieved by storing the branching structure of these points and by associating the
adjacent Lines to the corresponding Terminal Points. Also the accurate coordinates of the
starting Line Points of the adjacent Lines are stored at Terminal Points.  In an Advanced
Coding mode, at a Terminal Point an accurate geometry of the corresponding Crossing of
the Lines is stored, together with a color data, allowing for a compact representation of
the Color Profiles of the adjacent Lines.
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6.3.3. “Lines”.

Basically, the encoding of Line Geometry is quite straightforward. After quantizing the
coordinates of the Line Points, the vector of the first Line Segment is stored, together
with the offsets of the subsequent Line Segment Vectors from the preceding ones.
However, aggregation with the Terminal Points is used, since the starting and the ending
Line Points are already stored at the corresponding Terminal Points.

6.3.4. “Area color”.

In the regular Coding mode, the coordinates of the Area Color Points (AC’s) are not
explicitly stored. Instead, their brightness (color) values are aggregated with respect to a
certain regular cell partition of the image plane. This eliminates redundancy related with
an explicit memorizing of the position of the Area Color Points (this precise position is
usually visually insignificant) and allows one to take into account expected points
density. A portion of the Area Color parameters is associated with Lines Color Profiles
(margin color or brightness). These color values at the Line margins are stored together
with other Color Profile parameters. Further aggregation of the Area Color data is
achieved in the “Two - Scale Area Color Coding”, where, in particular, a redundancy is
eliminated between the Area Color values at the AC’s and at the margins of Lines
Profiles.

6.3.5. “Color Profiles”.

The parameters of the Color Profiles allow for a natural aggregation, taking into account
their visual role and typical behavior. Thus, Profile “bumps” parameters, which normally
reflect the image origin and behave in a coherent way at all the parts of the image, are
represented as corrections to certain predicted values. The Central Color of non-
separating Ridges (and of Patches) is naturally stored relative to the Area Color at the
corresponding points.

In the next step Color Profiles are naturally aggregated along the Lines. Thus only the
Profile at the starting Line Point and the subsequent differences are stored. To further
eliminate data redundancy along the Lines, sub-sampling is applied to the Line Points, at
which the Color Profiles are stored. Finally, Color Profiles of different Lines at their
common Terminal Points (Interior Points, Crossing and Splittings) are naturally
aggregated between them.
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6.3.6.  “Patches”.

The coordinates of the centers of Patches are encoded as the “Centers”, as described
above. The rest of the geometric and the color parameters of the Patches are stored in a
straightforward way. Some of attributes of the human visual perception are taken into
account: as the size of the Patch decreases, its accurate shape (and color!) become
visually insignificant, and the corresponding data is quantized with a coarser step, or is
not stored at all.

6.3.7. “Depth”.

Depth data is stored in three main modes. In the “direct” mode the depth values are stored
as an “additional color component”, thus appearing as the part of the “Area Color”, the
“Color Profiles” and the “Patches”, exactly as the other color components. The only
difference is that the “Depth Profile” of Lines is very simple, comprising only one value
at the center. In the second mode, only analytic depth models are stored, one for each
Sub-Texture. In the decoding process the depth at each relevant point of a Sub-Texture is
computed through the stored model. In the third “mixed” mode the depth values are
stored as corrections to the “predictions” of the models.

6.3.8. “Multi-layer” Area Color Coding.

 In VIM Texture some Sub-Textures may occur “on-top” or “under” other Sub-Textures.
In raw form, where the Area Color Points are stored together with their coordinates,
depth & color values and the index of the Sub-Texture they belong to, no interpretation
problems appear. However, in a procedure of the Area Color Coding, described above,
where the brightness (color) and the depth values of the Area Color Points are aggregated
with respect to a certain regular cell partition of the image plane, the cell partition is to be
duplicated for each layer of Sub-Textures. Also a separate bounding rectangle is
memorized for each Sub-Texture, to avoid storing of irrelevant cells.

6.4. Multi-Scale Coding

The Coding scheme, as described above, is augmented by application of a Multi-Scale
approach. Essentially in each of the groups of the parameters it is possible first to encode
data on the coarse scale, and then to represent the fine-scale data as corrections to the
coarse-scale predictions. Multi-Scale approach is used in the encoding of the Lines
geometry, Lines Color Profiles and of the Area Color and Depth. The basic VIM
structure distinguishes right away fine scale details – patches and short ridges. These
elements are naturally excluded from the coarse-scale data.



52

6.4.1. Multi-Scale Coding of Line Geometry.

On the coarse scale Lines are approximated with a smaller number of Line Segments and
with a coarser quantization of the coordinates of the Line Points and Vectors and of the
Line Segments Heights. On the fine scale the coordinates of the new Line Points are
given in the coordinate system, associated with the coarse-scale curves, and hence appear
as “corrections” to the coarse-scale data. The size of these corrections should not exceed
the allowed error of the coarse-scale approximation.

6.4.2. Multi-Scale Coding of Area Color.

On the coarse scale a larger cell-size of the regular partition is chosen (usually, twice or
four times the original cell-size). The Area Color data are aggregated with respect to the
coarse partition, and the corresponding Area Color representation is formed. Later the
fine-scale Area Color is represented as corrections to the coarse scale. Here also the
encoding procedure can be built in such a way that the maximal possible size of the
corrections is known a priori. Exactly the same procedure can be applied to the Depth
values.

6.4.3. Multi-Scale Coding of Color Profiles.

In VIM Texture Color Profiles are stored at the Line Points (bounding the Line
Segments). On the coarse scale Color Profiles are stored only at a sparser sub-sampling
of the Line Points. The stored values are interpolated to the rest of the Line Points, thus
providing a coarse-scale prediction of the Profiles. At the fine-scale Profiles are stored as
corrections to these predictions.

6.5. VIM data streaming and error resiliency

The natural multi-scale structure of the compressed VIM data, as described above, is
important in two central problems of data transmission: data streaming and data error
resiliency. When streaming VIM data, the coarse VIM image is transmitted first,
providing a reasonable quality approximation to the original image (the lines geometry is
less accurate, the color values are somewhat “low-pass filtered” and certain fine scale
details disappear). Then the fine-scale corrections and elements (Patches and short
Ridges) are streamed, gradually enhancing the image visual quality.

As far as the error resilience is concerned, only the coarse-scale data (whose data size is
usually a fraction of the total size) is to be carefully error-protected in the transmission
process. Any error or even a total misinterpretation of the fine-scale data leads to only
limited (and usually local) degradation of the image quality. Indeed, as it was stressed
above, the maximal size of the corrections is known a priori. Consequently, any error in
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their transmission cannot lead to a larger discrepancy of the image than this a priori
bound.
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In the sections of General Image Processing, General Image Compression and Coding,
and general Singularity Theory there exists a huge literature. We give only one reference
in each of these areas just to help the reader to start.




