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2 CONTENTS

This course is based on the book Algorithms in Real Algebraic Ge-
ometry by S. Basu, R. Pollack and M.-F. Roy [1]. Whenever a proof is
ommitted in the notes, it can be found in [1]. Note that a quotation to
[1] does not mean that the result is new or the proof is original, it only
means that it appears there. The bibliography given in these notes is
very incomplete and better references appear in [1].

Since a real univariate polynomial does not always have real roots,
a very natural algorithmic problem, is to design a method to count the
number of real roots of a given polynomial (and thus decide whether it
has any). The “real root counting problem” plays a key role in nearly
all the “algorithms in real algebraic geometry” and is studied in the
first chapter of this course.

The second chapter is devoted to quantifier elimination. The ba-
sic geometric objects are the semi-algebraic sets. These are the sub-
sets of R™ that are defined by a finite number of polynomial equations
(P = 0) and inequalities (P > 0). We prove that the projection of
a semi-algebraic set is semi-algebraic. The proof is based on a para-
metric version of real root counting techniques explained in the first
chapter. The geometric statement “the projection of a semi-algebraic
set is semi-algebraic” yields, after introducing the necessary terminol-
ogy, the theorem of Tarski that “the theory of real closed fields admits
quantifier elimination”. A consequence of this last result is the decid-
ability of elementary algebra and geometry, which was Tarski’s initial
motivation.

Then we describe an algorithm for computing the cylindrical decom-
position. The basic idea of this algorithm is to successively eliminate
variables. Cylindrical decomposition has numerous applications among
which are: deciding the truth of a sentence, and eliminating quanti-
fiers. The huge degree bounds (doubly exponential in the number of
variables) output by the cylindrical decomposition method make it de-
sirable to improve these results.

We finallty present an algorithm for the existential theory of the re-
als whose complexity is singly exponential in the number of variables.
Using an algorithm for computing a point in every connected compo-
nent of an algebraic set and perturbation methods to obtain polynomi-
als in general position, we can compute the realizable sign conditions.



Chapter 1

Real roots

1.1 Descartes’s Law of Signs and the Budan-
Fourier Theorem

The first result in the direction of real root counting was found more
than 350 years ago by Descartes [4].

Notation 1.1.1 The number of sign changes, V(a), in a sequence,
a=ag,---,a, of elements in R\ {0} is defined by induction on p by:

V(Clo) =0

Viag, -,a,)+1 if agay <0
v(aov"'vap) =

Viag, -, ap,) if aga; >0

This definition extends to any finite sequence a of elements in R by
considering the finite sequence b obtained by dropping the zeros in a
and defining V(a) = V(b), stipulating that V of the empty sequence is
0.

Let P = Fy, P1,..., P; be a sequence of polynomials and let a be
an element of R U {—o00,4+00}. The number of sign changes of P
at a, denoted by V(P;a), is V(Fy(a),..., Pi(a)) (at —oo and +oo the
signs to consider are the signs of the leading monomials.

Given a and b in RU {—o0, +00}, we write V(P;a,b) for V(P;a) —
V(P;b).
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For example V(1,-1,2,0,0,3,4,—5,—2,0,3) = 4. If
P=XoX? 10, X2 —1,X 42,1,

V(P;1) = 0.

Let P = a,X? 4 ...+ ao be a univariate polynomial in R[X]. We
write V(P) for the number of sign changes in aq, ..., a, and pos(P) for
the number of positive real roots of P, counted with multiplicity.

Theorem 1.1.2 (Descartes’ law of signs) pos(P) < V(P),
V(P) — pos(P) is even.

We will prove the following generalization of Descartes’s law of signs
due to Budan and Fourier.

Notation 1.1.3 Let P be a univariate polynomial of degree p in R[.X].
We denote by Der(P) the list P, P',..., P(®),

We denote by n(P;(a,b]) for the number of roots of P in (a,b]

counted with multiplicities.

Theorem 1.1.4 (Budan-Fourier theorem) Let P be a univariate
polynomial of degree p in R[X]. Given a and b in R U {—o0, +o0}

n(P;(a,b]) < V(Der(P); a,b),
V(Der(P);a,b) — n(P;(a,b]) is even.

Descartes’s law of signs is a particular case of Budan-Fourier theo-
rem [2, 6], since the coeflicients of the polynomial have the same signs
as the derivatives evaluated at 0 and there are no sign changes in the
signs of the derivatives at +o00, so that

V(P) = V(Der(P);0,4c0).
The following lemma is the key to the proof of Theorem

Lemma 1.1.5 Let ¢ be a root of P of multiplicity 1 > 0. If no P,
0 <k <p, has a root in [d,c) U (¢,d'], then
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V(Der(P);d,c) — p is non-negative and even, and
V(Der(P);c,d') = 0.

Proof: We prove the claim by induction on the degree of P. The claim
is true if the degree of P is 1.

Suppose first that P(c¢) = 0, and hence g > 0. By induction hypothesis
applied to P,

V(Der(P');d,c) — p — 1 is non-negative and even
V(Der(P');e,d') = 0.

The sign of P at the left of ¢ is the opposite of the sign of P’ at the left
of ¢ and the sign of P at the right of ¢ is the sign of P’ at the right of
¢. Thus

V(Der(P);d) = V(Der(P');d) + 1,
V(Der(P);c) = V(Der(P'); ¢),
V(Der(P);d") = V(Der(P');d),

and the claim follows.
Suppose now that P(c¢) # 0, and hence i = 0. Let v be the multiplicity
of ¢ as a root of P’. By induction hypothesis applied to P’

V(Der(P’);d, c) — v is non-negative and even, and
V(Der(P');e,d') = 0.

There are four cases to consider.

If v is odd, and sign(P**(c)P(c)) > 0,
V(Der(P);d) = V(Der(P');d) + 1,
V(Der(P);c) = V(Der(P'); ¢),
V(Der(P);d") = V(Der(P');d").

If v is odd, and sign(P**(c)P(c)) < 0,



6 CHAPTER 1. REAL ROOTS

V(Der(P); d) = V(Der(P'); d),
V(Der(P); c) = V(Der(P'):¢) + 1,
V(Der(P); d') = V(Der(P'); d') + 1.

If v is even, and sign( P"+'(c)P(c)) > 0,
V(Der(P); d) = V(Der(P'); d),
V(Der(P); c) = V(Der(£'); c),
V(Der(P); d') = V(Der(P'); d').

If v is even, and sign(P"+(c)P(c)) < 0,
V(Der(P); d) = V(Der(P');d) + 1,
V(Der(P); c) = V(Der(P'):¢) + 1,
V(Der(P); d') = V(Der(P'); d') + 1.

The claim is true in each of these four cases. 0

Proof of Theorem 1.1.4: It is clear that, for every ¢ € (a,b),

(P (0, 8]) = (P (a,6]) 4 n(P; (e, 8]
V(Der(P);a,b) = V(Der(P);a,c) + V(Der(P); ¢, b).

Let ¢; < --- < ¢ be the roots of all the polynomials P, 0 < j < p—1,
in the interval (a,b) and let ¢ = ¢9,b = ¢,41, di € (¢, ¢41) so that
a=co<dp<ecr<---<e¢ <d <cqg1=b.

Since

-~

(P (a; b)) =} n(P;(ci, di]) + (P (di, cial),

V(Der(P);a,b) = V(Der(P); ¢, d;) + V(Der(P);d;, ¢iv1),

=0

the claim follows immediately from Lemma 1.1.5. O
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Remark 1.1.6 Let P € R[X] be of degree p, and let
cp<cp <...<cy <CN41,

with ¢ € RU{—o0}, eny1 € RU{+0o0}. The number of ¢ for which
V(Der(P); ¢, ¢iv1) is non-zero is bounded by V(Der(P); co, cn41). In-

deed,
N

ZV(Der(P); ¢i,¢iv1) = V(Der(P); co,eng1) < p.

=0

There are particular cases where the number of roots on an interval
can be obtained using only Theorem 1.1.4:

Exercise 1.1.7 Prove that
1. If V(Der(P);a,b) =0, then P has no root in (a,b.
2. If V(Der(P);a,b) =1, then P has exactly one root in (a,b].

In general it is not possible to conclude much about the number of
roots on an interval using only Theorem 1.1.4.

Remark 1.1.8 An important instance, where Descartes’s law of signs
permits a sharp conclusion is the following. When we know in advance
that all the roots of a polynomial are real, i.e. when

n(P; (=00, +00)) = p,

V(Der(P);a,b) is exactly the number of roots counted with multiplici-
ties in (a,b]. Indeed the number V(Der(P); —oco, +00), which is always
at most p, is here equal to p, hence

n(P;(—o00,al) < V(Der(P); —o0,a)
n(P;(a,b]) < V(Der(P); a,b)
n(P; (b, +00)) < V(Der(P); b, +o0)

imply n(P, (a,b]) = V(Der(P); a,

<

).

A last instance where Descartes’s law of sign permits a sharp con-
clusion is the following.
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Theorem 1.1.9 Let
. 1
D= {(a+iy) o< (e 417407 < 1)

be the part of the disk with center (—1,0) and radius 1 which is to the
1
left of the line x = —3 in R®* = R[i]. If P € R[X] has either no roots

or exactly one simple root in (0,400), and all its complex roots in D,

then V(P) =0 or V(P) =1 and
P has one root in (0,+00) if and only if V(P) =1,
P has no root in (0,+cc) if and only if V(P) = 0.
The proof of the theorem relies on the following lemmas.
Lemma 1.1.10 For A, B € R[X]
V(A)=0,V(B)=0= V(4AB) = 0.
Proof: Obvious. O
Lemma 1.1.11 For A, B € R[X]
V(A)=1,B=X+bb>0= V(AB) = 1.
Proof: If b=0, V(AB) = V(A) = 1. Now, let b > 0. Let
A=agX?+ ag1 X 4+ ao,

and suppose, without loss of generality, that ay = 1. Since V(A) = 1
and ag = 1, there exists k& such that

a; >0 ifi>k
{ak<0,
a; <0 ifi <k,

Letting ¢; be the coefficient of X' in AB and making the convention
that ag41 = a_; = 0, we have

¢ =a;_1 +ab>0 1fk—|—1<l§d,

cp = ap_1 + akb < 0,

ci:ai_l—l-aibg(), 1fl<k,

and ¢g41 = ag > 0. So, whatever the sign of ¢xy1, V(AB) = 1. a
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Lemma 1.1.12 [fV(A)=1,B = X?* 4+ bX 4+ c with b > 1,b > ¢ > 0,
then V(AB) = 1.

Proof: lLet
A=a; X% +a; (X' + ... + ao,

and suppose without loss of generality that ay = 1. Since V(P) =1
and ag = 1, there exists k& such that

ag < 0,

{aizo, if ¢ > k,
a; <0, ifi<k.

Letting ¢; be the coefficient of X* in AB and making the convention
that agyo = age1 = a_y = a_y =0, we have

¢ =aj_o+ ai_1b+a;c>0, fork+2<i1<d+2
Ck = Qj—3 + ap—1b+ are <0,
¢ = aj_o+ a;_1b+ a;c <0, fori < k.

The only way to have V(AB) > 1 would be to have ¢;41 > 0, ¢xy2 < 0,
but this is impossible since

Chta — Chp1 = Qg2 + apr1(b—¢) + ar(l —b) — agp—1 > 0.

Proof of Theorem 1.1.9: Notice first that
V(P) =1 implies P has one root in (0,+o00) and
V(P) = 0 implies P has no root in (0, +0o0),

using Theorem 1.1.2.
Decompose P into irreducible factors of degree 1 and 2 over R, and
note that

if X + a has its root in (0,4+00), then « < 0 and V(X +a) =1,

if X + b has its root in (—o0,0], then b > 0 and V(X +b) =0,
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if X? 4+ bX + ¢ has its roots in D, then b > 1,b > ¢ > 0 and V(X?* +
bX +¢) =0.

If P has one root @ in (0,4+00), V(X 4+ a) = 1. Starting from X 4+«
and multiplying successively by the other irreducible factors of P, we
get polynomials with sign variations equal to 1, using Lemma 1.1.11
and Lemma 1.1.12. Finally, V(P) = 1.

If P has no root in (0, 400), starting from 1 and multiplying suc-
cessively by the irreducible factors of P, we get polynomials with sign
variations equal to 0, using Lemma 1.1.10. Finally, V(P) = 0. O

1.2 Isolating Real Roots

Throughout this section, R is an archimedean real closed field. Let P
be a polynomial of degree p in R[X]. We are going to explain how to
perform exact computations for determining several properties of the
roots of P in R: characterization of a root, sign of another polynomial
at a root, and comparisons between roots of two polynomials.

We consider a polynomial

P=a,X?+---+a,X"p>q,a,a, #0,
with coefficients in an ordered field K, a real closed field R containing
K, and C = R]i].
Lemma 1.2.1 (Cauchy) The absolute value of any root of P in R is
smaller than
a;

cpP)= >

q<i<p

p
Proof: Let « € R be a root of P = a,X? +--- 4 a¢,X? p>g. Then
apt = — Z aixi_p"'l.
g<i<p—1
If |«| > 1 this gives

apllel < Y el < Y ail.

q<i<p—1 q<i<p—1
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Thus it is clear that |x| < C(P).
If |#| <1, we have |z| <1 < C(P), since C(P) > 1. O
The characterization of the roots of P in R will be performed by

finding intervals with rational end points. Our method will be based

on Descartes’s law of signs (Theorem 1.1.2) and the properties of the

Bernstein basis defined below.

Notation 1.2.2 Let P be a polynomial of degree < p. The Bernstein
polynomials of degree p for ¢, d are the

Bate.d) = (1)

fore=0,....,p.
Remark 1.2.3 Note that B, ;(c,d) = B, ,-i(d,c¢) and that

(X —9)p (d—=X) p
Bp,i(cv d) = d—c ; p—1,i—1(C7 d) = ﬁp — Z,Bp_u(c, d).

In order to prove that the Bernstein polynomials form a basis of
polynomials of degree < p, we are going to need three simple transfor-
mations of P.

Reciprocal polynomial in degree p: Rec,(P(X)) = X?P(1/X). The
non-zero roots of P are the inverses of the non-zero roots of

Rec(P).

Contraction by ratio A: for every non-zero A, C,(P(X)) = P(AX).
The roots of C,(P) are of the form ;, where x is a root of P.

Translation by c: for every ¢, T.(P(X)) = P(X — ¢). The roots of
T.(P(X)) are of the form x 4+ ¢ where x is a root of P.

These three transformations clearly define bijections from the set of
polynomials of degree at most p into itself.
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p
Proposition 1.2.4 Lel P = Zbin,i(dv ¢) € R[X] be of degree < p.
=0

Let

p

T_1 (Recy(Came( T_o(P)))) = > X',

=0
p
b, =c,_;.
(5=

Proof: Performing the contraction of ratio d —c after translating by —¢
X —¢e)(d—X)r » »
transforms p) ( o)'( ) into (p) X*(1 = X)P7". Translat-
i (d—c)r i

ing by —1 after taking the reciprocal polynomial in degree p transforms

(P ) Xi(1 - X)) into (P ) X, O
2 2

Corollary 1.2.5 The Bernstein polynomials for c,d form a basis of
the vector space of polynomials of degree < p.

Then

We denote as usual by V(b) the number of sign changes in a list b.

Proposition 1.2.6 Let P be of degree p. We denote by b = by, ...,b,
the coefficients of P in the Bernstein basis of ¢,d. Let n(P;(c,d)) be
the number of roots of P in (¢,d) counted with multiplicities. Then

V(b) = n(P;(c,d)),
V(b) — n(P; (e, d)) is even.

Proof: The claim follows immediately from Descartes’s law of signs
(Theorem 1.1.2), using Proposition 1.2.4. Indeed, the image of (¢, d)
under the translation by —e¢ followed by the contraction of ratio d — ¢
is (0,1). The image of (0,1) under the inversion z — 1/z is (1,400).
Finally, translating by —1 gives (0, +00). O

The coeflicients b = by, ..., b, of P in the Bernstein basis of ¢, d give
a rough idea of the shape of the polynomial P on the interval ¢, d. The
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control line of P on [c,d] is the union of the segments [M;, M;,,] for
1=0,....,p—1, with

M — (id—l— (p— i)cij) ‘
P
It is clear from the definitions that the graph of P goes through M, and
M, and that the line My, My (resp M,_1, M,) is tangent to the graph
of P at My (respectively M,).
The control polygon of P on [c,d] is the convex hull of the points
M; fori1=10,...,p.

Proposition 1.2.7 The graph of P on [c,d] is contained in the control
polygon of P on [c,d].

Proof: In order to prove the proposition, it is enough to prove that any
line L above (respectively under) all the points in the control polygon
of P on [¢,d] is above (respectively under) the graph of P on [e,d]. If
L is defined by Y = aX + b, let us express the polynomial ¢ X 4+ b in
the Bernstein basis. Since

| X—c_l_d—X P
- \d-c¢ d—rc ’

the binomial formula gives

S OEE) (B S

Since
X—c d— X X—c d—X\""
X:<d<d—c>+c<d—c>><d—c+d—c) ’
the binomial formula together with Remark 1.2.3 gives
p—1
X —c¢ d—X
X:Z(}(d(d_c>—|—c<7d_c>> B,_1.(c,d)

b (id—l— (p—1)c
o P

) B,i(c,d).

1=
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Thus,
P . .
d _
aX +b= Z (a <M> + b) B,i(c,d).
=0 p
It follows immediately that if L is above every M;, i.e. if

a<w>+bzbi

p

P

for every i, then L is above the graph of P on [¢, d], since P = Z b;B,i(c,d)
=0

and the Bernstein basis of ¢, d is non-negative on [¢,d]. A similar argu-

ment holds for L under every M;. a

The following remarkable algorithm due to De Casteljau [5] com-
putes the coefficients of P in the Bernstein bases of ¢, e and ¢, d from
the coefficients of P in the Bernstein basis of ¢, d.

Algorithm 1.2.8 (Bernstein Coefficients)

Input: a list b = by, ...,b, representing a polynomial P of degree < p
in the Bernstein basis of ¢, d, and a number ¢ € R.

Output: the list b = b, ..., b, representing P in the Bernstein basis
of c,e and the list b = by, ..., b representing P in the Bernstein

basis of e, d.
Procedure:
d — _
Define a = d_i,ﬁ: Z_Z.

Initialization: bgo) =0b;,7=0,...,p.
Fore=1,...p,
For j =0,...,p—1t, compute

b= abl ™ 4 gl
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Define
p(e) — 600)7 g 681)7 : bép)7 : b]()]2j7 , b;)o)7
and output
A I LN
and
B bép)7 ‘ 76;27—])7 ,b](f))

Algorithm 1.2.8 (Bernstein Coefficients) can be visualized with the
following triangle.

W)() (1) b
1 1
bO bp—l

bt .. Y.

bép—l) b(lp)
bép)
) e — C

with 87 := abl™" 4 gpl T a d_,@—d

The coefficients of P in the Bernstein basis of ¢, d appear in the top
side of the triangle and the coefficients of P in the Bernstein basis of
¢,e and e, d appear in the two other sides of the triangle.

Notation 1.2.9 We denote by a the list obtained by reversing the list
a.

Proof of correctness: It is enough to prove the part of the claim
concerning ¢, e. Indeed, by Remark 1.2.3, b represents P in the Bern-
stein basis of d, ¢, and the claim is obtamed by applying Algorithm
1.2.8 (Bernstein Coeﬂiaents) to b at e. The output is & and b and the
conclusion follows using again Remark 1.2.3.

Let d,; be the list of length p+ 1 consisting all zeroes except a 1 at
the ¢ + 1-th place. Note that d,, is the list of coefficients of B, ;(c,d)
in the Bernstein basis of ¢,d. We will prove that the coefficients of
B,i(e,d) in the Bernstein basis of ¢, e coincide with the result of Al-
gorithm 1.2.8 (Bernstein Coefficients) performed with input d,,. The
correctness of Algorithm 1.2.8 (Bernstein Coefficients) for ¢, e then fol-
lows by linearity.
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d—e e—c
d—c’gg_al—c7
X —c¢ X —c

First notice that, since a =

d—c e—c’
d—X X—c e—X
d—rc e—c e—c

Thus

d—X\"" S p=i\ (X =\ fe—x\TTF
d—rc _k:O k @ e—c e—c '

It follows that

Byi(c,d) = (f) 3 (J:z) =i

Since
OE-)-00)
1) \J—1 iJ\j)’
L AN X -\ fe— X\P
- $ 0o 0) (=) (22)”
Finally,

P .
I\ j—ingi
Bp,i(cv d) = Z (i)a] ﬁ BpJ(cv 6).
7=t

On the other hand, we prove by induction on p that Algorithm 1.2.8
(Bernstein Coefficients) with input &, ; outputs the list ¢, ; starting with
i zeroes and with (j 4 1)-th element (J)ozj_%” for j =1,...,p.

i

The result is clear for p = ¢ = 0. If Algorithm 1.2.8 (Bernstein
Coefficients) applied to d, 1,1 outputs 6, _; ;_,, the equality

(Z) i=igi = a(f ; 1) Qi1 4 ﬁ(i : i) e
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proves by induction on j that Algorithm 1.2.8 (Bernstein Coefficients)
applied to d,,; outputs 4, ;. So the coefficients of B, ;(c,d) in the Bern-
stein basis of e, d coincide with the output of Algorithm 1.2.8 (Bernstein
Coefficients) with input 4.

O

Algorithm 1.2.8 (Bernstein Coefficients) works both ways.

Corollary 1.2.10 Let b, V' and b" be the lists of coefficients of P in
the Bernstein basis of ¢,d, ¢, e, and e, d respectively.

Algorithm 1.2.8 (Bernstein Coefficients) applied to b with weights

d—e e—c

d—c¢

outputs b’ and b".
Algorithm 1.2.8 (Bernstein Coefficients) applied to b with weights

a,:e—d ﬁ,:d—c

’
€c—C €c—C

outputs b and b".
Algorithm 1.2.8 (Bernstein Coefficients) applied to b with weights

, d—c c—e

_ "_
@ _d—e76 d—e

outputs b’ and b.

Complexity analysis of Algorithm 1.2.8: The number of multipli-
pp+1) p(p+1)

cations in the algorithm is 2P , the number of additions is s
O

Algorithm 1.2.8 (Bernstein Coefficients) gives a geometric construc-
tion of the control polygon of P on [¢, ¢] and on [e, d] from the control
polygon of P on [¢,d]. The points of the new control polygons are con-
structed by taking iterated barycenters with weights o and j3.
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Example 1.2.11 We take p = 3, and consider the polynomial P with
coefficients 4, —6, 7,10 in the Bernstein basis for 0,1

(1—X)?,3X(1 — X)*,3X*(1 — X), X°,

Algorithm 1.2.8 (Bernstein Coefficients) gives the following results.
4 -6 7 10
-1 1/2 17/2
-1/4 9/2
17/8

We denote as usual by V(b) the number of sign changes in a list b.

Proposition 1.2.12 Let b, b and b" be the lists of coefficients of P in
the Bernstein basis of ¢,d, ¢, e, and e, d. If c < e < d,then

V(') + V(") < V(D).
Moreover V(b) — V(b') — V(V") is even.

Proof: The proof of the proposition is based on the following easy
observations:

Inserting in a list @ = ag,...,a, a value @ in [a;, a;41] if a1 > a;
(respectively in [a;41,a;] if a;11 < a;) between a; and a;1; does
not modify the number of sign variations.

Removing from a list @ = ay, . .., a, with first non-zero az, & > 0, and
last non-zero ay, k < ¢ < n, an element a;, ¢ # k,i # { decreases
the number of sign variation by an even (possibly zero) natural

number.
Indeed the lists
b= bEJO)v ” ” ” t 76570)
b(l) = bEJO)? bél)v ) ) ) ’ 6571—17 b;O)
R Y 7 Y PPN /)
b= = b T )
b(p) - béo), 9 9 9 9 9 bép) 9y 9 9 9 9 9 b;O)
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are suiccessively obtained by inserting intermediate values and removing
elements that are not end points, since when ¢ < e < d, by) is between

bgi_l) and by_l__ll), fori=1,...,p,j =0,...,p—i—1. Thus V(b»)) < V(b)

and the difference is even. It is clear that V(b(p)) = V(') + V().
O

Example 1.2.13 Continuing Example 1.2.11, we observe, denoting by
b, b’ and b, the lists of coefficients of P in the Bernstein basis of 0, 1,
0,1/2, and 1/2,1, that V(b) = 2. This is visible on the figure: the
control line for [0, 1] cuts twice the X-axis. Similarly, V(b') = 2. This
is visible on the figure: the control line for [0,1/2] also cuts twice the
X-axis. Similarly, it is easy to check that V(") = 0.

We cannot decide from this information whether P has two roots
on [0,1/2] or no root on [0,1/2].

Let b( P, ¢, d) be the list of coefficients of P in the Bernstein basis of
¢,d, d > c. The interval (¢, d) is active if V(b(P, ¢, d)) > 0.

Remark 1.2.14 [t is clear from Proposition 1.2.12 that if

co < ...<cpn,

the number of active intervals among (¢;, ¢;11) is at most p.

Let P € R[X] and let b be the list of coefficients of P in the Bernstein
basis of ¢,d. We now describe a special case where the number V(b)
coincides with the number of roots of P on (¢, d). Let d > ¢, let C(e,d)o
be the closed disk with center (¢,0) and radius d — ¢, and let C(¢,d);
be the closed disk with center (d,0) and radius d — c.

Theorem 1.2.15 (Theorem of two circles) If P has either no root
or exactly one simple root in (¢,d) and P has no complex root in

Cle,d)oUC(e,d)1, then
P has one root in (c,d) if and only if V(b) =1,

P has no root in (¢,d) if and only if V(b) = 0.
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Proof: We identify R* with C = R[i]. The image of the complement
of C(e,d)o (resp C(e,d); ) under the translation by —c followed by the
contraction by ratio d — ¢ is the complement of C(0, 1)¢ (resp C(0,1); ).
The image of the complement of C(0, 1)y under the inversion z — 1/z
is

{(z+iy) e R[] |0 < 2+ y* < 1}.

The image of the complement of C(0,1); under the inversion z — 1/z
is

{(a+iy) € Rli] | < 5}

The image of the complement of C(0,1)o UC(0,1); under the inversion
z1/z1s

1
{(x+iy) R[] |0<® +y* <1,z < 5}
Translating this region by —1, we get the region
, 1
D= {(a+iy)|x < b (et 14y < 1)

defined in Theorem 1.1.9.
The statement then follows from Theorem 1.1.9 and Proposition
1.2.4. 0

Suppose that P € R[X] is a polynomial of degree p with all its real
zeroes in (—2°,2%) and let P be the squarefree part of P. Consider
natural numbers k and ¢ such that 0 < ¢ < 2% and define

_QZ-I—k _I_ CQZ-I—I

ek =
2k

It is clear that, for k& big enough, the polynomial P has at most one
root in (@, det1k) and has no other complex root in Clack, tet1.k)o U
C(ac,ka ac—l—lik)l- 3

Let b(P,c, k) denote the list of coefficients of P in the Bernstein
basis of (acx, @eqp1,x) and V(b(P, ¢, k)) its sign variations.

Using Theorem 1.2.15, it is possible to decide, for k big enough,
whether P has exactly one root in (@, @et1k) or has no root on
(@eky ey r) by testing whether V(b(P, ¢, k) is zero or one.
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An isolating list for P is a finite list L of rational points and
closed intervals with rational end points of R such that each point or
interval of L contains exactly one root of P in R and every root of P
in R belongs to an element of L.

Example 1.2.16 Continuing Example 1.2.13, let us study the roots of
P on [0, 1], as a preparation to a more formal description of Algorithm
Algorithm 1.2.17 (Real Root Isolation).

The Bernstein coefficients of P on [0,1] are 4,—6,7,10. There
maybe roots of P on [0, 1] as there are sign variations in its Bernstein
coefficients.

As already seen in Example 1.2.13,a first application of Algorithm
1.2.8 (Bernstein Coefficients) gives

4 -6 7 10
-1 1/2 17/2
-1/4 9/2
17/8

There maybe roots of P on [0,1/2] as there are as there are sign
variations in the Bernstein coefficients of 8 P which are 32, —8, —2,17.
There are no roots of P on [1/2,1].

Let us apply once more Algorithm 1.2.8 (Bernstein Coefficients):

4 -1 -1/4 17/8
3/2 -5/8 15/16
7/16 5/32
19/64
There are no sign variations on the sides of the triangle so there are

no roots of P on [0,1/4] and on [1/4,1/2].
Algorithm 1.2.17 (Real Root Isolation)

Input: a square free non-zero polynomial P € R[X].
Output: « list L(P) isolating for P.

Procedure:

Compute { such that (—2°,2%) contains the roots of P in R using
Lemma 1.2.1.
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Compute b(P,0,0), the Bernstein coefficients of P, using Proposition
1.2.4 on (—2,2).

Initialization: Pos :={(b(P,0,0)} and L(P) is the empty list.
While Pos is non-emply,

Remove b(P, ¢, k) from Pos.

IfV(b(P,c,k)) =1 and P(ac)P(act1r) # 0, add [ack, ep1 1] to
L(P).

If V(b(P,c,k)) =0 do nothing.

IfV(b(P, e, k) > 1 or Placy)P(act1r) =0, compute b(P,2¢, k+
1) and b(P,2¢ 4+ 1,k + 1) using Algorithm 1.2.8 Bernstein
Coefficients) and add them to Pos. If P(aze41,4+1) = 0, add

{@ser1h41} to L(P).

Proof of correctness: [9] The algorithm terminates since R is archimedean.
Its correctness follows from Theorem 1.2.15. Note that, since there is

only one root of P on each interval [a,b] of L(P), P(a)P(b) < 0. O

Remark 1.2.18 It is clear that Algorithm 1.2.17 (Real Root Isolation)
also provides a method for counting real roots.

1.3 Sturm and Sylvester’s theorems

Let P be a non-zero polynomial with coefficients in a real closed field
R. Not only would we like to determine whether P has a root in R but
also to determine whether P has a root at which another polynomial
() is positive.

With this goal in mind, it is profitable to look at the jumps (dis-

/

continuities) of the rational function . Clearly, these occur only at

points ¢ for which P(¢) = 0,Q(¢) # 0. If ¢ occurs as a root of P with

. P'Q _ pQ(c)
Itiplicity g then — = ———
multiplicity ¢ then Iz Y .

defined at c. It is now obvious that if Q(¢) > 0, then

+ R., where R. is a rational function

/

jumps from
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/

—00 to 400 at ¢, and if Q(¢) < 0, then jumps from 400 to —oo at
!

from —oo to 400 minus the num-

c. Thus the number of jumps of

/

ber of jumps of from +o00 to —oc is equal to the number of roots

of P at which @) is positive minus the number of roots of P at which @)
is negative. This observation leads us to the following definition. We
need first what we mean by a jump from —oo to +oc.

Notation 1.3.1 Let x be a root of P. The function % jumps from
—o0 to +oo at x if the multiplicity p of = as a root of P is bigger than

the multiplicity v of = as a root of (), p — v is odd and the sign of % at

the right of z is positive. Similarly, the function % jumps from +oo

to —oo at x if if the multiplicity p of = as a root of P is bigger than

the multiplicity v of x as a root of ), p — v is odd and the sign of %

at the right of z is negative.
Given @ < bin RU {—o0,+00} and P,Q € R[X], we define the

Cauchy index of % on (a,b), Ind (%;a,b), to be the number of

jumps of the function = from —oo to 400 minus the number of jumps
of the function % from +oo to —oo on the open interval (a,b). The

Cauchy index of % on R is simply called the Cauchy index of %

and it is denoted by Ind (%), rather than by Ind (%, —00, —|—oo> .

Remark 1.3.2
a) Suppose that deg(P) = p and deg(Q) = ¢ < p. The Cauchy
index Ind %; a,b ) is equal to p if and only if ¢ = p — 1, the signs of

the leading coefficients of P and () are equal, all the roots of P and @)
are simple and belong to (a, b), and there is exactly a root of ) between
two roots of P.
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b) If R =Rem(Q, P), it follows clearly from the definition that

Ind (%;a,b) = Ind (g;a,b> .

With this definition we can reformulate our observation, using the
following notation.

Notation 1.3.3 The Sturm-query of @) for P in (a,b) is the number

SQ(Q, P;a,b) =
#({z € (a,b) | P(z) =0 Q(x) > 0})—
#({z € (a¢,b) | P(z) =0 A Q(x) < 0}),

where #(5) is the number of elements in the finite set S.
The Sturm-query of ) for P on R is simply called the Sturm-query
of @ for P, and is denoted by SQ(Q, P), rather than by SQ(Q, P; —oc0, +00).

The preceding discussion implies:

Proposition 1.3.4
P/
SQ(Q, Pia,b) = Tnd (TQ; a,b> .

P/
In particular the number of roots of P in (a,b) is Ind (F, a,b) .

We now describe how to compute Ind [ —=:;a,b |. We will see that

P
the Cauchy index is the difference in the number of sign changes (Def-
inition page 3) in the signed remainder sequence S(P, Q) evaluated at
a and b, defined above.

If @ # 0, the remainder in the euclidean division of P by
@, denoted Rem(P, @), is the unique polynomial R € K[X] of degree
smaller than the degree of @) such that P = AQ + R with A € K[X].
The quotient in the euclidean division of P by @), denoted Quo(P, @),
is A.
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Algorithm 1.3.5 (Euclidean Division)

Input: two univariate polynomials P = a,X? + -+ 4+ a9 and ) =
by X%+ -+ by in K[X] with b, # 0.

Output: Quo(P, Q) and Rem(P,Q), the quotient and remainder in the
Fuclidean division of P by Q).

Procedure: [nitialization: C :=0, R:= P.

For every 5 from p to q,
Ci=C+ Lfg(h)) Xi=a,
g

R:=R— “fgﬂxﬂg

q
Output C, R.

A greatest common divisor of P and (), denoted ged(P,Q), is
a polynomial G € K[X] such that G is a divisor of both P and @, and
any divisor of both P and @) is a divisor of .

We now prove that greatest common divisors exist by using eu-
clidean division repeatedly. Given P, () € K[X], not both 0, we define
the signed remainder sequence S(P,(Q)) = So,51,...,5; of P and

Q by,

Sy = P,
S1 = Q,

Sy = —So + AoS1, Ag = Quo(So, S1),

S5 = —S1 + A4S, A; = Quo(Sy, Sa),

Sk = —Sk—2 + Ar—2Sk—1, Ag—2 = Quo(Sk—2, Sk-1),
Sk+1 = —Sk—1 + Ap—1Sk, Ar—1 = Quo(Si—1, Sk),
Sk 7£ O,Sk+1 — 0
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In the above, each 5; is the negative of the remainder in the eu-
clidean division of S;_5 by S;_1 for 2 < ¢ < k 4+ 1, and the sequence
ends when S;y1 = 0, for £ > 0. We claim that Sy is a greatest common
divisor of P and (). Observe that if a polynomial A divides two poly-
nomials B, (' then it also divides UB + V(' for arbitrary polynomials
U, V. Since Sgr1 = —Rem(Sg-1,5;) = 0, Sy divides Si_; and since,
Sk—2 = —Sg + Ap_2Sk_1, Sk divides Si_o using the above observation.
Continuing this process one obtains that S; divides So = P. Also, if any
polynomial divides Sg,S; (that is P, Q) then it divides Sy and hence S
and so on. Hence, it divides S, proving that Sy is a greatest common
divisor of P, ().

Note that the signed remainder sequence of P and 0 is P and when
Q) 1s not 0, the signed remainder sequence of 0 and @) is 0, Q, 0.

Also, note that by unwinding the definitions of the S;’s, we can
express Sy = ged(P, Q) as UP + V@ for some polynomials U,V in
K[X]. We prove bounds on the degrees of U,V by elucidating the

preceding remark.

Proposition 1.3.6 IfG is a greatest common divisor of P and @), then
there exist U and V' with

UP+VQ=0d.
Moreover, if G # @ and deg(G) = g, U and V' can be chosen so that
deg(U) < q—g, deg(V) <p—g.

Theorem 1.3.7 Let P, P # 0, and Q) be two polynomials with coeffi-
cients in a real closed field R, and let a and b (with a < b) be elements
of RU{—00,400} that are not roots of P. Then

o) — Q.
V(S(P,Q);a,b) =Ind (P,a,b> )

Proof: We can assume without loss of generality that ¢ and b are
not roots of a polynomial in the signed remainder sequence. Indeed
if a < a < b < bwith (a,d’] and [V/,b) containing no root of the
polynomials in the signed remainder sequence, it is clear that

Ind (%, a,b) = Ind (%, a’,b’) .
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We prove now that
V(S(P,Q);a,b) = V(S(P,Q); ', b').

First notice that since a is not a root of P, a is not a root of the greatest
common divisor of P and (), and hence a is not simultaneously a root
of S; and S;41 (respectively S;_; and S;). So, if @ is a root of of S;,
J#0,5;-1(a)S;+1(a) <0, since
Sj+1 = =521 + Quo(S;,S;-1) - 5;

so that

V(Sj—lv S5y Sj41; a) = V(Sj—lv S5y D413 a/) =1
This implies V(S(P, Q);a) = V(S(P, Q); a'), and similarly V(S(P, Q); b) =
V(S(P,Q);b).

Let R = Rem(P, Q) and let o(a) be the sign of PQ at « and o(b)
be the sign of PQ) at b.

Lemma 1.3.8

oy JVS(Q.=R)iab) +o(b)  if o(a)a(b) = 1,
V(P @);a,6) = {V(S(Q,—R);a,b) if o(a)o(b) = 1.

Proof: The claim follows from the fact that at any x which is not a
root of P and @ (and in particular at ¢ and b)

L V(S(Q,—R);x)+ 1 if P(2)Q(x) <0,
V(P Q)i = {v<s<c2, CR)x) i P(o)Q(r) > 0.

looking at all possible cases. O
Lemma 1.3.9
R .
Ind (—; a,b) +o(b) ifo(a)o(b)=—1,
Q.. b)) = Q
Ind o a,b | = R
Ind (?’ a, b) if o(a)o(b) =1.
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Proof: We can suppose without loss of generality that () and P are
coprime. Indeed if D be a greatest common divisor of P and () and

P R
b = Ean = %7R1 = Rem(P1, Q1) = D’

then P, and () are coprime,

Ind (Q; a,b) = Ind (ﬁ; a,b> ,Ind <_—R; a,b> = Ind <_—Rl; aJ?) ;
P Py Q o

and the signs of P(x)Q(x) and P (x)Q1(x) coincide at any point which
is not a root of PQ).

Let n_y (respectively ni_) denote the number of sign changes from
—1 to 1 (respectively from 1 to —1) of PQ) when z varies from « to b.

Noting that
R P
Ind{ =;a,6) =Ind | =;a,0),
() = (Go)

it follows from the definition of Cauchy index that

Q R
Ind(F;a,b + Ind é;a,b =n_4 —n4_.

The claim of the lemma is now clear, since

bl { 0 if o(a)o(b) =1
-t + o(b) ifo(a)o(b)=—1.

a

The proof of the theorem now proceeds by induction on the number
n > 2 of elements in the signed remainder sequence. The base case
n = 2 corresponds to R = 0 and follows from Lemma 1.3.8 and Lemma
1.3.9. Let us suppose that the Theorem holds for n — 1 and consider P
and ) such that their signed remainder sequence has n elements. The
signed remainder sequence of () and —R has n — 1 elements and, by
the induction hypothesis,

—R
V(S(Q,—R);a,b) = Ind <?, a,b) .
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So, by Lemma 1.3.8 and Lemma 1.3.9,

: _ Q.
V(S(P,Q);a,b) = Ind (P,a,b> .
O

As a consequence of the above we derive the following theorem due
to Sylvester.

Theorem 1.3.10 (Sylvester’s theorem) If a < b are elements of
R U {—o00, 400} that are not roots of P, with P,Q € R[X], then

V(S(P, P'Q);a,b) = SQ(Q, P;a,b).

Proof: This is immediate from Theorem 1.3.7 and Proposition 1.3.4.
O

The sequence of signed remainders of P and P’, S(P, P'), is the
Sturm sequence of P.

As an easy consequence of Theorem 1.3.10 we have the following
theorem.

Theorem 1.3.11 (Sturm’s theorem) With the same hypothesis and
notations used in Theorem 1.3.10, V(S(P, P');a,b) is the number of
roots of P in the interval (a,b).

Proof: The proof is immediate by take () = 1 in the previous corollary.
O

Example 1.3.12 Consider the polynomial P = X* — 5X? +4. The
Sturm sequence of P is

So(P, Py =P =X*—-5X?144,
Si(P,P)=P =4X° - 10X,

5
SQ(P,P/) — §X2—4,

1
&quzgx

Sy(P, P') = 4.
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5 18

The leading coefficients of the Sturm sequence are 1,1, 375 4, and the

degrees of the polynomials in the Sturm sequence are 4,3,2,1,0. The
signs of the polynomials of the Sturm sequence at —oo are + — + — +,
and the signs of the polynomials of the Sturm sequence at +oo are
+++++,s0 V(S(P, P'); —00, +00) = 4. There are indeed 4 real roots:
(1,-1,2,-2).

We have the following method for computing a Sturm-query. Recall
that the Sturm-query of ) for P is the number

SQ(Q, P) =
#{z € R P(x) =0AQ(x) > 0})—
#{x € R| P(x) =0AQ(x) < 0}).

Algorithm 1.3.13 (Sylvester Univariate Sturm-query)

Input: a non-zero univariate polynomial P and a univariate polyno-
mial ), both with coefficients in K.

Output: the Sturm-query SQ(Q, P).
Procedure:
Initialization: So:= P, S1:= P'Q), 1 := 1.
While S; # 0

Si+1 = —Rem(S;_1,5;),
1:=14+ 1.
Compute the difference in sign variations at —oo and +oo from the

degrees and signs of leading coefficients of the polynomials in this
sequence.

Proof of correctness: The correctness follows from Theorem 1.3.10
(Sylvester’s theorem). O

The bitsizes of the coefficients in the signed remainder sequence can
indeed increase dramatically as we see in the next example.
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Example 1.3.14 Consider the following numerical example:

P:=9X" 18X — 33X 4+ 102X% + 7X7 — 36X°
—122X° +49X* +93X% — 42X% — 18X + 9.

The greatest common divisor of P and P’ is of degree 5. The leading
coeflicients of the signed remainder sequence of P and P’ are:
36
13’
10989
16
2228672

165649 °
900202097355

4850565316
3841677139249510908

 543561530761725025
6648854900739944448789496725

 676140352527579535315696712
200117670554781699308164692478544184

~ 1807309302290980501324553958871415645

1.4 Signed Subresultant Polynomials

Now we define and study the subresultant polynomials [8] which provide
another real root counting method. Their coefficients are determinants
extracted from the Sylvester matrix, and they are closely related to the
remainder sequence[7].

1.4.1 Resultant and Subresultant Coeflicients

Let P and ) be two non-zero polynomials of degree p and ¢ in D[X],
where D is a ring. When D is a domain, its fraction field is denoted by
K. Let

P = a,X?+a, 1 XP7'+ -+ aq,

Q = b, X14b,_ 1 X'+ 4 by.
We define the Sylvester matrix associated to P and () and the resultant
of P and Q).
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Notation 1.4.1 The Sylvester matrix of P and @, Syl(P, @), is the
matrix

ap (273} 0 0
0 KR :
. 0 q
0 | I e
bq bo 0 0
. : p
O--- «vv ... 0 bq bo
p+yq

It has p + ¢ columns and p + ¢ rows. Note that its rows are
Xtp o P X, Q
considered as vectors in the basis X?PT7=1 X 1.

The resultant of P and @), denoted Res(P, @), is the determinant
of Syl(P, Q).

Remark 1.4.2 This matrix comes about quite naturally since it is the
transpose of the matrix of the linear mapping

UV—=UP+VQ,
where (U, V) is identified with
(uq_l, ey Uy Up—1y - - - ,Uo),

and

U:uq_qu_l—l—---—l—uo

and

V = Up_lXp_l —|— s —|— Vg.

The following lemma is clear from this remark.
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Lemma 1.4.3 Let D be a domain.
Res(P,Q) =0

if and only if there exist non-zero polynomials U € K[X] and V' € K[X],
with deg(U) < q and deg(V') < p, such that UP +VQ = 0.

We can now prove the well-known proposition.

Proposition 1.4.4 Let D be a domain. Then Res(P,Q) = 0 if and
only if P and Q) have a common factor in K[X].

Proof: The proposition is an immediate consequence of the preceding
lemma, since the least common multiple of P and () has degree < p+q if
and only if there exist non-zero polynomials U and V with deg(U) < ¢
and deg(V) < p such that UP + V@ = 0. O

If D is a domain, with fraction field K, a, # 0 and b, # 0, the
resultant can be expressed as a function of the roots of P and () in an
algebraically closed field C containing K.

Theorem 1.4.5 Let

_y]

SR
o-uIlx

in other words xy,...,x, are the roots of P (counted with multiplicities)
and yi, ...y, are the roots of Q) (counted with multiplicities).

P q

Res(P, Q) —aqprH i —Yi)

=1 j=1

Proof: lLet

P q

o) = ot T T~ v

=1 j=1
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If P and ) have a root in common,
Res(P,Q) =0(P,Q) =0,

and the theorem holds. So we suppose now that P and () are coprime.
The theorem is proved by induction on the length n of the remainder
sequence of P and ().

When n = 2, () is a constant b, and

Res(P,Q) = O(P, Q) = ¥
The induction step uses the following lemma.

Lemma 1.4.6 Let R be the remainder of the Fuclidean division of P
by () and let v be the degree of R. Then,

Res(P, Q) = (—1)"b;""Res(Q, R),
O(P,Q) = (=1)""6;7"0(CQ, R).

Proof : Let R = ¢, X"+...4¢o. Replacing the rows of coefficients of the
polynomials X971 P ..., P by the rows of coefficients of the polynomials
X7 1R, ..., R in the Sylvester matrix of P and @ gives the matrix

S - S IR |
S | e
M= bq T /7 0 cee oo 0 }
0 -‘ -‘ -‘ -‘ -‘ -‘ -‘ -“ : p_r
: b, bo
) 0 r
0 0 b, bo
p+q
such that

det(M) = Res(P, Q).
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Indeed,

pP—q

R=P-> d(X'Q),

=0

pP—q

35

where C' = Z d; X" is the quotient of P in the euclidean division of P

=0

by @), and adding to a row a multiple of other rows does not change

the determinant. Denoting by N the matrix whose rows are
X, X, QX R, LR,

we note that

by o e eee e e by 0 eee e 0
: b, bo
. 0
N=1odo 0 b, b
0 e g 0 0
: . .. . . . . . .0
0 oo e 0 e gy e e e e g
p—r+g+r

is obtained from M by exchanging the order of rows, so that

det(N) = (—1)%* det(M).

p—r

——

It is clear, developing the determinant of N by its p — r first columns,

that
det(N) = b "Res(Q, R).

On the other hand, since P = CQ + R, P(y;) = R(y;) and

O(P.Q) = ai [T Q(x:) = (=10 [ | Pluy).



36 CHAPTER 1. REAL ROOTS

we have
O(P,Q) = (—1)"b H P(y;)

_ qupHR y;) qup 'O(Q, R).

For any ring D, the following holds:

Proposition 1.4.7 If P,() € D[X], then there exist U,V € D[X] such
that deg(U) < ¢, deg(V') < p, and

Res(P,Q)=UP + VQ.

Proof: Let Syl(P,Q)* be the matrix whose first p+ ¢ — 1 columns are
the first p 4 ¢ — 1 first columns of Syl(P, @) and such that the elements
of the last column are the polynomials X9='P ... P, XP~1Q, ... Q.
Using the linearity of det(Syl(P, Q))*) as a function of its last column it
is clear that

ptq—1

det(Syl(P,Q)*) = Res(P, Q) + Z d; X,

where d; is the determinant of the matrix Syl( P, Q)); whose first p+¢—1
columns are the first p 4+ ¢ — 1 columns of Syl(P, Q) and such that the
last column is the p + ¢ — j-th column of Syl(P, Q). Since Syl(P, @),
has two identical columns, d; =0 for y =1,....,p+¢g—1 and

det(Syl(P,@Q)") = Res(P, Q).

Expanding the determinant of Syl( P, Q)* by its last column, we obtain
the claimed identity. a
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The Sylvester matrix and the resultant also have the following useful
interpretation. Let C be an algebraically closed field. Identify a monic
polynomial X% +4b, 1 X97' 4. 4+ by € C[X] of degree g with the point
(bg—1,...,bo) € C%. Let

m:C?x CP —s (QIFP
(@, P) — QP

be the mapping defined by the multiplication of monic polynomials.
The map m sends

(bq—h .. .,bo,ap_l, Ce ,Clo)

to the vector whose entries are (myqq4-1,...,Mmg), where

m; = Z b_ia,_pfor j=p+qg—1,....0

q—itp—k=j

(with b, = a, = 1). The following proposition is thus clear:

Proposition 1.4.8 The Jacobian matriz of m is the Sylvester matrix
of P and () and the Jacobian of m is the resultant.

Finally, the definition of resultants as determinants implies that:

Proposition 1.4.9 If P is monic, deg(Q) < deg(P), and f:D — D'

is a ring homomorphism, then

J(Res(P,Q)) = Res(f(P), [(Q))

(denoting by f the induced homomorphism from D[X] to D'[X]).

We now define the Sylvester-Habicht matrices and the signed sub-
resultant coefficients of P and Q).

Notation 1.4.10 Let 0 < 5 < min(p, q) if p # g (respectively 0 < j <
p—1if p = ¢q). The j-th Sylvester-Habicht matrix of P and @,
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denoted SH;(P,Q), is the matrix

REAL ROOTS

T T 0
0 - :
0 0 Up ao
0 o0 b, bo
: ' 0
: : P
bq bo 0 0
p+g—27

It has p+ g — 7 columns and p + ¢ — 25 rows. Note that its rows are

Xei=tp O PQ,..., XPTLQ

considered as vectors in the basis X?t?=7=1 . X 1.
The j-th signed subresultant coefficient denoted sr;(P, Q) or
sr; is the determinant of the square matrix obtained by taking the first

p+ q— 25 columns of SH;(P, Q).

Remark 1.4.11 This matrix comes about quite naturally since it is

the transpose of the matrix of the mapping
U,V—UP+VQ,
where (U, V) is identified with
(Ugmjmty v ey Uy U0y - e oy Vp—im1),s

with 4
U=y ;1 X777 4 Fug
and

V = Up_]‘_lXp_j_l —|— s —|— Vg.

The peculiar order of rows is adapted to the real root counting results

presented later.
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The following lemma is clear from this remark:

Lemma 1.4.12 Let D be a domain and 0 < 57 < min(p,q) if p # ¢
(respectively 0 < 3 <p—11ifp=yq). Then,

st; (P, Q) =0

if and only if there exist non-zero polynomials U € K[X] and V' € K[X],
with deg(U) < ¢—j and deg(V') < p— 7, such that deg(UP +V Q) < j.

Proposition 1.4.13 Let D be a domain and 0 < 7 < min(p,q) if p # ¢
(respectively 0 < 5 < p—1ifp=gq). Then deg(ged(P,Q)) > j if and
only if

sto(P,Q) = =srj_1(P,Q) =0.

Proof: Suppose that deg(ged(P,@)) > j. Then, the least common
multiple of P and @,

_re
ged(P, Q)

has degree < p 4+ g — j. This is clearly equivalent to the existence
of polynomials U and V, with deg(U) < ¢ — j and deg(V) < p — 7,
such that UP = =V = lem(P, Q). Or, equivalently, that there exist
polynomials U and V with deg(U) < ¢ — j and deg(V) < p — j such
that UP + V() = 0. This implies that stg = ... = sr;_; = 0 using
Lemma 1.4.12.

The reverse implication is proved by induction on 7. If j — 1 =
0, st = 0 implies, using Lemma 1.4.12, that there exist U and V
with deg(U) < ¢ and deg(V') < p satisfying UP + V@ = 0. Hence
deg(ged(P,Q)) > 0. If

SI’()(P,Q) == Srj—?(PvQ) = 07

the induction hypothesis implies that deg(ged(P,Q)) > j — 1. If in
addition sr;_; = 0 then, by Lemma 1.4.12, there exist U and V with
deg(U) < g — j and deg(V) < p — 7 such that deg(UP + VQ) <
jJ — 1. Since the greatest common divisor of P and () divides UP + V()
and has degree > 5 — 1, we have UP + V) = 0, which implies that
deg(lem(P,Q)) < p+ g — j and hence deg(ged(P,Q)) > J. O

lem(P, Q) =
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The following corollary is clear, using Lemma 1.4.12 and Proposition

1.4.13.

Corollary 1.4.14 Let D be a domain and 0 < 57 < min(p,q) if p # ¢
(respectively 0 < 5 < p—1if p=q). Then deg(ged(P,Q)) = j if and
only if

SrO(PvQ) == Sr]—l(PvQ) = O,SI’]‘(P,Q) 7£ 0.

Remark 1.4.15 Writing &; = (—1)""1/2 we note that ¢, is the sig-
nature of the permutation reversing the order of ¢ consecutive rows in
a matrix. For every natural number ¢ > 1,

In particular, ;_o; = (—1)’e,.
Thus, it is clear from the definitions that

sto( P, Q) = ¢,Res(P, Q). (1.2)

Note that, as a consequence Proposition 1.4.4 is a special case of Propo-
sition 1.4.13.

If P is monic,we define the discriminant as
Disc(P) = sro( P, P') = ¢,Res( P, P'). (1.3)

If P is not monic, we define

1 1
Disc(P) = —sro(P, P') = —e,Res(P, P'). (1.4)

ap ap

since
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Exercise 1.4.16 «)

Disc(P) = H (z; — x;)°.

pi>5>1

b) If P € R[X] is monic with R real closed, of degree p, and with p
distinct roots in C, and t is the number of roots of P in R.

Disc(P) > 0 if and only if t = p modulo 4,
Disc(P) < 0 if and only if t = p — 2 modulo 4.

Remark 1.4.17 Note that if P € D[X], then Disc(P) € D, since
Syl(P, P') has coefficients in D and the only non zero elements of its
first column are a, and pa, which are both multiple of «,.

Definition 1.4.18 The discriminant of a polynomial P with coeffi-
cients in a ring is defined as the determinant of the matrix

1 ap_1 T R
0 a, G e e T g
. -1
. 0 p
0 0 Uy  Up_1 ag
0 TRy TRy 0 pa/p TRy TRy TRy TRy 20/2 a/l
0
0 pa, T 2a9 aq :
p (p— 1)a/p_1 TRy TRy TRy 20/2 a/l 0 TRy TRy 0
2p—1

1.4.2 Polynomial Determinants

We define polynomial determinants, which will be useful in the study
of subresultant polynomials.

Let K be a field of characteristic 0. Consider the K-vector space
F,, consisting of polynomials whose degrees are less than n, equipped
with the basis

B=X""' .. X1.
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We associate to a list of polynomials P = Py,..., P, with m < n a
matrix Mat(P) whose rows are the coordinates of the P;’s in the basis
B. Note that Mat(B) is the identity matrix of size n.

Let 0 < m < n. A mapping ® from (F,)™ to F,_,,11 is multilinear
iffor e K,peK

Q... AN+ B, )= A0 AL )+ (. B ).
A mapping ® from (F,)™ to F,_,+1 is alternating if
O(...,A ... A ..)=0.
A mapping ® from (F,)™ to F,_,41 is antisymmetric if
O(....A,...,B,...)=—0(....B,..., A ...).

Lemma 1.4.19 A mapping from (F,)" to Fp_nt1 which is multilinear
and alternating is antisymmetric.

Proof: Since ® is alternating,

(..., A+B,...,A+B,...)=0
O(...,A ... A, ..)=P(..,B,....B,...)=0;

Using multilinearity, we get easily

®(..,A...,B,..)+®(...,B,... A..)=0.

Proposition 1.4.20 There exists a unique multilinear alternating map-
ping ® from (F,)" to F_mi1 salisfying

CI)(X”_l,...,X”_m"'l,Xi) =X ifi<n—m
QXU L XD XY =0 ifn > (1) > ...> {(m),
and there exists 1 < m

with ((i) #n — 1.
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Proof: Decomposing each P; in the basis B of monomials and using
multilinearity and antisymmetry, it is clear that a multilinear and al-
ternating mapping ® from F* to F,_,+1 depends only on the values
S(XWM . X X)) for (1) > ... > {(m). This proves the
uniqueness.

In order to prove existence, let m;, 1+ < n, be the m X m minor of
Mat(P) based on the columns 1,...,m — 1,n — ¢, then

O(P) = Z m; X' (1.5)

<n—m

satisfies all the properties required. a

The (n,m)-polynomial determinant mapping, denoted pdet
is the unique multilinear alternating mapping from F* to F,,— 41 sat-
isfying the properties of Proposition 1.4.20.

When n = m, it is clear that pdet, ,(P) = det(Mat(P)), since
det is known to be the unique multilinear alternating map sending the
identity matrix to 1.

On the other hand, when m = 1, pdet(P), (X) = X' and, by
linearity, pdet(P),1 = P.

If follows immediately from the definition that

Lemma 1.4.21 Let P =P,..., P,.

IfQ=Q1,....Qu is such that Qi = P, i # j, Q; = P+ Y AP,
J#

n,m?

then pdet, . (Q) = pdet, . (P).
If Q= P,..., P, then pdet, , (Q) = e,pdet, , (P), where &, =
(—=1)™m=1/2 (see Notation 1.4.15).

We consider now a sequence P of polynomials with coefficients in a
ring D. Equation (1.5) provides a definition of the (n,m)-polynomial
determinant pdet, . (P) of P. Note that pdet, , (P) € D[X].

We can express the polynomial determinant as the classical deter-
minant of a matrix whose last column has polynomial entries in the
following way:

IfP=~F,..., P, welet Mat(P)* be the m x m matrix whose first
m — 1 columns are the first m — 1 columns of Mat(P) and such that
the elements of the last column are the polynomials P, ..., P,.
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With this notation, we have
Lemma 1.4.22
pdet,, ,.(P) = det(Mat(P)").

Proof: Using the linearity of det(Mat(P)*) as a function of its last
column, it is clear that det(Mat(P)*) = Y. m; X", using the notation
of Proposition 1.4.20. For ¢ > n—m, m; = 0 since it is the determinant
of a matrix with two equal columns. a

Remark 1.4.23 Expanding det(Mat(P)*) by its last column we ob-
serve that pdet, :(P) is a linear combination of the F; with coefficients
equal (up to sign) (m —1) x (m — 1) to minors extracted on the m — 1
first columns of P. It is thus a linear combination with coefficients in

D of the P.’s.

The following immediate consequences of Lemma 1.4.22 will be use-

ful.
Lemma 1.4.24 Let P = Py,..., Py, Pyq, ..., P, be such that
deg(P;)) =n—1,1 </l deg(P;) <n—1—-({<i<m.
Then
¢
pdetn,m (7)) = HICOf(Pi)pdetn—Z,m—Z(Q)7
i=1

where Q@ = Py, ..., P
Proof: The shape of the matrix Mat(P) is as follows

lcof (Py)
0
: . . . ¢
0 <o 0 leof(F) )
0 e e 0 COfn—Z—l (Pg_|_1) s COfO(PZ-l—l)
: : m—t
0 0 COfn—Z—l(Pm) COfO(Pm)

n

Using Lemma 1.4.22, develop the determinant det(Mat(P)*) by its
first £ columns. O
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Lemma 1.4.25 Let P = Py, ..., P, be such that for everyi, 1 <1 <
m, deg(P;) < n—1. Then

pdetmm(P) = 0.

Proof: Using Lemma 1.4.22, develop the determinant det(Mat(P)*)
by its first column which is zero. a

1.4.3 Definition of Signed Subresultants

For the remainder of this chapter, let P and ) be two non-zero polyno-
mials of degrees p and ¢ and with ¢ < p with coefficients in an integral

domain D. The fraction field of D is denoted by K. Let

P = aXP+a, 1 XP' +a, o XP72 + -+ + aq,
Q = b, X14b,_ 1 X'+ 4 by.

We define the signed subresultants of P and () and some related
notions.

Notation 1.4.26 For 0 < 5 < ¢, the j-th signed subresultant of
P and @), denoted SR;(P, @), is the (p+ ¢ — J,p + ¢ — 2j)-polynomial

determinant of the sequence of polynomials
H;(P,Q)=X"""'P... . PQ,... XPT71Q.

The Sylvester-Habicht matrix SH;( P, Q) (Notation 1.4.1) is Mat(H;( P, Q)).
Clearly, deg(SR;(P,Q)) < j. By convention, we extend these defini-
tions for ¢ < 7 < p by
SR,(P,Q) = sign(a=)P,
SRy—1(P, Q) = sign(a; ™" 1)@,
SR,;(P,Q)=0,¢g<j<p—1
Also by convention SR_; (P, @) = 0. Note that SR, (P, Q) = £,_,b777'Q.

The j-th signed subresultant coefficient of P and ), denoted sr;( P, @),
is the coefficient of X7 in SR;(P,Q), j < p, and by convention

stp(P,Q) = sign(ag_q).
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Note that sty (P, Q) = ¢,-,607%. The j-th signed subresultant coefficient
was already considered in Section 1.4.1.

If deg(SR;(P,Q)) = j (equivalently if sr;(P,Q) # 0) we say that
SR;(P, Q) is non-defective. If deg(SR;(P,Q)) = k < j we say that
SR;(P, Q) is defective of degree k.

1.4.4 Structure Theorem for Signed Subresultants

We are going to see that the non-zero signed subresultants are propor-
tional to the polynomials in the signed remainder sequence. Moreover,
the signed subresultant polynomials present the gap structure, graph-
ically displayed by the following diagram: when SR;_; is defective of
degree k, SR;_; and SRy, are proportional, SR;_s,...,SRi4;1 are zero.

The structure theorem for signed subresultants describes precisely
this situation. We omit P and () in the notation of the theorem. We
write sT; for lcof(SR;). Note that if deg(SR;) = j, §; = sr;.

Theorem 1.4.27 (Structure theorem) Let 0 < 5 <i < p. Suppose
that SR;_1 ts non-zero and of degree j.

a) IfSR;_, is zero, then SRi_y = ged(P,Q), and SRy is zero, { < j—1.
b) If SR;_y # 0 has degree k then
sr;5T;_1SR4_1 = —Rem(sr43T;_1SRi_1, SR;_).
In fact, the quotient is in D[X]. That is
s1;87;—1SRk—1 = —s145T;_15R;_1 + Cr_1SR; 4 (1.6)
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with deg(Cy_1) = j — k and Cy—1 € D[X].
Moreover if 3 < q, k < 7 —1, SRy is proportional to SR;_;. More

precisely
Z) SR]‘_Q — ... = SR’k-I—l = 0}
ZZ) ST = gj_kj]—i_ki17 (where g = (_1)2(2—1)/2)
T

J
ZZZ) ﬁj_lst == SI’kSR]‘_l.

Note that Theorem 1.4.27 implies that SR;_; and SR; are proportional.
The following corollary of Theorem 1.4.27 will be used later in this
chapter.

Corollary 1.4.28 IfSR;_; s defective of degree k,
sr2SRi—1 = —Rem(sr5T,_15R;, SR;_1).
Proof: Immediate, using
st;8T;-15R,—1 = —Rem(sry57,-1SR;_1,SR;_1)
and the proportionality between SR;_; and SR;. O

Note that we have seen in Proposition 1.4.13 that deg(gcd(P, Q)) is
the smallest j such that sr; # 0. The Structure Theorem 1.4.27 makes
this statement more precise:

Corollary 1.4.29 The last non-zero signed subresultant of P and () is
non-defective and a greatest common divisor of P and ().

Proof: Suppose that SR; # 0, and V ¢ < k SR, = 0. By Theorem
1.4.27 b) there exists 7 such that deg(SR,;_1) = j, and SR;_; and SR;
are proportional. So SR; is non-defective and by a) SR,;_; is a greatest
common divisor of P and Q). a

Moreover, a consequence of the Structure Theorem 1.4.27 is that
signed subresultant polynomials are closely related to the polynomials
in the signed remainder sequence.

In the non-defective case, we have:
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Corollary 1.4.30 When all SR;(P, Q) are non-defective, j = p,...,0,
the signed subresultant polynomials are proportional up to a square to
the polynomials in the signed remainder sequence.

Proof: We consider the signed remainder sequence

So = P,
Sl:Qv

Sg_|_1 = _Rem(sé—lv SZ)?

Sty = —Rem(Sk_2, Sk-1),
Sk-l—l =0,

and prove by induction on ¢ that SR,_, is proportional to 5.

The claim is true for £ = 0 and ¢ = 1 by definition of SR, and
SR,_1.

Suppose that the claim is true up to /. In the non-defective case,
the Structure Theorem 1.4.27 b) implies

st2_p419Rp——1 = —Rem(sr2_,SR,_r11, SRy—0). (1.7)

By induction hypothesis, SR,_¢41 and SR,_¢ are proportional to Sy_;
and S;. Thus, by definition of the signed remainder sequence and by
equation (1.7) SR,_,_1, is proportional to Si4;. O

More generally, the signed subresultants are either proportional to
polynomials in the remainder sequence or zero.

Corollary 1.4.31 [fS; 1 and Sy are two successive polynomials in the
signed remainder sequence of P and Q, of degrees d({ — 1) and d({),
then SRge—1)—1 and SRqqy are proportional to S,.

Proof: The proof if by induction on /. Note first that P = Sy is
proportional to SR,. The claim is true for £ = 1 by definition of SR,
SR,_1, and SR,. Suppose that the claim is true up to £. The Structure
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Theorem 1.4.27 b) implies (with ¢ = d({ —2), j = d({ — 1),k = d({))
that SRg)—1 is proportional to Rem(SRyy—2)—1,5Rau—1)-1). By the
induction hypothesis, SR4(¢—2)-1 and SRg(,—1)—1 are proportional to S,_;
and S,. Thus, SRy(z)-1 is proportional to Sgy1. Moreover SRy(s)-1 and
SRa(e41) are proportional by the Structure Theorem 1.4.27. O

The proof of the structure theorem relies on the following proposi-
tion relating the signed subresultants of P and () and of ) and —R,
with R = Rem(P, Q).

We recall that P and () are two non-zero polynomials of degrees p
and ¢, g < p, with coefficients in an integral domain D, with

P = a,X?+a, 1 X" fa, o XP72 + - 4 ao,
Q = b, X14b,_ 1 X'+ 4 by.

Proposition 1.4.32 Let r be the degree of R = Rem(P, Q).

SR; (P, Q) = )by 7"SR;(Q, — R) if g <,
SR;(P,Q) = ep—gb?"SR;(Q,—R) = 0 ifr<j<qg-—1,
SRy—1(P, Q) = ep—gsign(bi" )b~ 1SR, 1 (Q, — R),

SR,(P,Q) = 5p_qsign(bg_”+1)bf;‘q_ISRq(Q, —R),

where g; = (—1)i(i_1)/2.

Proof: Replacing the polynomials X?=7='P, ... P by the polynomials
Xe==1R ... R in H;(P,Q) does not modify the polynomial determi-
nant. Indeed,

R=P— Zci(XZQ),

p—4q

where C' = Z ¢i X" is the quotient of P in the euclidean division of P
=0

by (), and adding to a polynomial of a sequence a multiple of another

polynomial of the sequence does not change the polynomial determi-
nant, by Lemma 1.4.21.

Reversing the order of the polynomials multiplies the polynomial
determinant by €,1,_5; using again Lemma 1.4.21. Replacing R by -R
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multiplies the polynomial determinant by (—1)?~/, by Lemma 1.4.21,
and (—=1)99¢,,, 92; = ¢,_, (see Notation 1.4.15). So

SR;(P,Q) = ¢,_,pdet (XP71Q, ..., Q,—R...,—X7/7'R).

p+a—J.p+g—23
Ity <,
XPTQ L Q, R, —XTTIR)

qtr—g,q9+r—2; (Xr_j_le cee Q7 —R... R _Xq_j_lR)
= by "SR;(Q, —R),

pdetp-l—q—j,p-l—q—?j(
= by "pdet

using Lemma 1.4.24.
fr<jy<qg-—1,

pdet XPTlQ L Q,—R..., XTI R) =0,

p-l—q—j,p-l—q—?j(

using Lemma 1.4.24 and Lemma 1.4.25, since deg(— X971 R) < ¢ — 1.

pdet,yy _0ya(XP7IQ, ..., Q,—R) = _bf;_q-l-lR
= Sigﬂ(bg_r_l)bg_q-l—lSRq—l(Qv _R)v

using Lemma 1.4.24 and the convention in Notation 1.4.26.
Ity =g,

pet,,,(XP7171Q....Q) = b-1'Q
= sign(b” T TTISR(Q, — R),

using Lemma 1.4.24 and the convention in Notation 1.4.26. O

Proof of Theorem 1.4.27: For ¢ < j < p, the only thing to check is
that

SR,-1 = —Rem(sr,5T,-15R,, SR,_1),
which follows from

—€p_qb§_q+1R = —Rem(asp_qbf;_qHP, Q)
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since sty = £, 40079, 57,1 = sign(a,)’~?"'b,, and SR, = sign(a, )’ "' P.

The remainder of the proof is by induction on the length of the
remainder sequence of P and ().

Suppose that the theorem is true for (), —R. The fact that the
theorem holds for P, Q) for j < r is clear by Proposition 1.4.32, since
SR;(P, Q) and SR;(Q,—R), 7 < r, are proportional, with the same
factor of proportionality &,_,007".

For r < j < g, the only thing to check is that

stp_1sryoR, 1 = —Rem(sr,51,_1SR,—1, SRy_1),
which follows from

SR,-1(Q,—R) = —Rem(sr,(Q, — R)sT,-1(Q, —R)SR,(Q, —R),SR,-1(Q, —R))

since

STp—151,SR, 1 = sign(a, )P0, - 607 - bI7"SR, _1(Q, —R)
sty = £,y b s, (Q, — R)
Sfy—1 = 5p—qSign(bq)q_r_lbs_q—l_lﬁq—l(Qv —R)
SRy—1 = Sign(ap)p_qHQv
SR,(Q,—R) = sign(bq)q_r_lQ.

The fact that Cy_y € D[X] is proved later in this section (Lemma
1.4.38). O

Before proving the last part of Theorem 1.4.27, we need to prove an
analogue of Proposition 1.3.6 for subresultants.

Notation 1.4.33 Define SU;(P, Q) (respectively SV;( P, (Q))) as det(M;)
(respectively det(N;)), where M; (respectively N;) is the square ma-
trix obtained by taking the first p + ¢ — 25 — 1 columns of SH;(P, Q)
and with last column equal to (X717 ... X, 1,0,...,0)" (respectively
(0,...,0,1,X,...,

Xp=1=i) " Note that if P,Q € D[X], then SU;(P,Q),SV;(P,Q) €
D[X].

Proposition 1.4.34 Let j < g. Then,
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CL) deg(SU]—l(Pv Q)) S q— .jv deg(svj—l(Pv Q)) S p— .jv
SR;(P, Q) = SU;(P, Q)P + SV;(P,Q)Q.
b) If SR;(P,Q) is not 0 and if U and V' are such that
UP+VQ =SR;(P,Q),

deg(U) < qg—7—1, and deg(V) < p—j—1, then U = SU;(P,Q)
and V =SV,(P,Q).

¢) If SR;(P, Q) is non-defective, then
deg(SU;-1(P,Q)) = ¢ — j, deg(SV,;-1(P.Q)) = p — j.
and lcof(SV,;_1(P, Q)) = apsr;(P, Q).
Proof: a) The conditions

deg(SU]—l(Pv Q)) =4q— .jv deg(svj—l(Pv Q)) =P _.j

follow from the definitions of SU;_1(P, Q) and SV,;_1(P, Q). By
Lemma 1.4.22, SR;(P,Q) = det(SH,(P,Q)*), where SH;(P, Q)"
is the square matrix obtained by taking the first p +¢ — 25 — 1
columns of SH;(P, Q)) and with last column equal to

(X97'p L XPPQ,..., XPTTQ).

Expanding the determinant by its last column, we obtain the
claimed identity.

b) Suppose deg(U) < g—j—1,deg(V) <p—j—1, and SR;(P,Q) =
UP 4+ VQ so that (SU;(P,Q)—U)P + (SV,;(P,Q) — V)Q = 0.
If SU;(P,Q) — U is not 0, then SV,;(P, Q) — V cannot be 0, and
deg(ged(P,Q)) > j. But this is impossible since SR;(P, Q) is a
non-zero polynomial of degree < j belonging to the ideal gener-

ated by P and Q).
c¢) Since SR;(P, Q) is non-defective, it follows that sr;(P, Q) # 0. By

considering the determinant of the matrix SH;_;(P, Q)*, it is clear
that the coefficient of X?=7 in SV,;_1(P, Q) is aysr;( P, Q). More-
over, deg(SV;_1) = p — j and deg(SU;_1(P, Q) = ¢ — j.

O
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We omit P and () in the notation in the next paragraphs. For SR;_;
non-zero of degree j, we define

B — SU,_1 SV,
hr SU]‘_l Sv]‘_l ’
where SU,;_1,SV,_1,5U,;_1,5V,;_; € D[X] are the polynomials of the
(¢ — 1)-th and (5 — 1)-th relations of Proposition 1.4.34, whence

(g;:i) = Bii- (g) : (1.8)

Lemma 1.4.35 [If SR;_1 is non-zero of degree j, then
det(B;,;) = sr;8T;_1.
Proof: Eliminating @) from the system (1.8), we have
(SU,;_15V,;_1 — SU;_1SV,_1)P = SV,;_1SR,_1 — SV,_1SR; 1. (1.9)

Since deg(SR;_1) = j, deg(SR;) = j by the first part of the Structure
Theorem 1.4.27, which is already proved, and deg(SV,_1) = p — J.
Using deg(SR;j_1) < j— 1 and deg(SVi_y) < p—1 < p—j, we see
that the right hand side of equation (1.9) has degree p . The leading
coefficient of SV;_; is a,sr; by Proposition 1.4.34. Hence SU;_15V,;_; —
SU]‘_lsvi_l = SI';ST; 1 75 0. O

Corollary 1.4.36 [f SR;_1 is non-zero of degree j, then

Bz_»l _ 1 SV]«_l —S\/i_l
It srjﬁi_l —SU]‘_l SUi_l ’

whence sr;5T;,_ B € D[X].

Now we study the transition between two consecutive couples of
signed subresultant polynomials SR;_;,SR;_; and SR;_;, SRi_1, where
SR;_q is of degree 5, SR;_ is of degree k, and 0 < k < 53 < p.

The signed subresultant transition matrix is

0 1
T, = (_Srkﬁjq Cr—1 ) € K[X]2X27

SI';ST;_4 SI';ST;_4
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so that o
ST;STj_1 SR+ Ch_1
i—1

srjﬁi_l srjﬁi_l

SRi-t\ _ o SRii
()= (5) (111)

by the Structure Theorem 1.4.27.

SRy = —

SR, (1.10)

and

Lemma 1.4.37 If SR;_; is non-zero of degree j and SR;_; is non-zero
of degree k, then
Bk7] - T]B]J.

A B

A simple degree calculation shows that deg(A) < ¢ — j,deg(B) < p —
J,deg(C) = g—k, and deg(D) = p— k. From equations (1.11) and (1.8)

we see that

Proof: lLet

SR;_; = AP + BQ

The conclusion then follows from the uniqueness asserted in Proposition

1.4.34 b). 0

We can now prove the fact that C_; is in D[X] as is claimed in the
Structure Theorem 1.4.27.

Lemma 1.4.38 If SR;_; is non-zero of degree j and SR;_; is non-zero

of degree k, then Cy_; € D[X].

Proof: From Lemma 1.4.37, we see that T} = BMB;Z»I, which together

with the definition of By ; and Corollary 1.4.36 shows that

Ch_ 1
k=1 — . (_SUk—l . Svi—l —|— SVk_l . SUi—1)7

srjﬁi_l srjﬁi_l

whence Cy_; = SUj_y - SV,_1 — SV,_1 - SU,_; € D[X]. O
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The following proposition elaborates more on the proportionality

between SR;_; and SRy.

Proposition 1.4.39 Let j < q with SR; non-defective and deg(SR;_,) =
k<73 —1. Define

Srj_q - SR]‘_l
2
SI’]‘

m]‘_z - —

e 55Tj—1 - SR 5

SRj_s_1 = (1) JJord=2,...,5—k—1.

ST
Then all of these polynomials are in D[X] and SRy = SRy.

Proof: Add the j — k —1 — 4§ polynomials X*T+1 . X7 to H;_; to
obtain H;_;_s. It is easy to see that the polynomial determinant of

7‘[]‘_1_5 is SR]'_l_g. O

Size of Remainders and Subresultants Observe, comparing the
following example with Example 1.3.14, that the bitsizes of coefficients
in the signed subresultant sequence can be much smaller than in the
signed remainder sequence.

Example 1.4.40 We consider, as in Example 1.3.14,

P:=9X" — 18X — 33X +102X% + 7X" — 36X°
—122X° +49X* +93X% — 42X% — 18X + 9.

The subresultant coefficients of P and P’ for 7 from 11 to 5 are:

37908
—72098829
—666229317948
—1663522740400320
—2181968897553243072
—151645911413926622112
—165117711302736225120,

the remaining subresultants being 0.
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The difference in bitsizes of coefficients between signed remainder
and signed subresultant sequences observed in Examples 1.3.14 and
1.4.40 is a general fact (see [1]).

1.4.5 Subresultant Computation

We now describe an algorithm for computing the subresultant sequence,
based upon the preceding results.

The principal signed subresultant polynomial sequence is
the sequence of signed subresultant polynomials SR,_4_; where d is
the degree of a polynomial in the signed remainder sequence.

Algorithm 1.4.41 (Signed Subresultant)

Input: two univariate polynomials P = a,X? + ... + ag and ) =
b, X9+ ... 4 by with coefficients D of respective degrees p and q,
p>q.

Output: the sequence of principal signed subresultant polynomials.

Procedure:

Initialization : SR, := sign(a?™7")P, sr, = 5T, := sign(a’™?), SR,_; :=
sign(ab= ") Q, 5T,_y 1= sign(a? )b, i:=p+ 1, 7= p.

While SR;—1 # 0,
k= deg(SR;_1),

Ifk=j-1,

ST;_q 1= ST;_1,

SRy_q := —Rem(sr?_ISRi_l, SR;_1)/(sr;5T;_1).
Ifhk<j—1,

Computation of sry:
Ford from1 toj—k—1:
5Tj—5-1 1= (—1)° (5Tj-1 - 5Tj-5) /51,
Sry := ST'p.
Computation of SRp_1:
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SRk_l = —Rem(ﬁj_lsrkSRi_l, SR]‘_l)/(SI’jﬁi_l),
STg—1 := lcof(SRy—1).

1:=7,7:=k.

Proof of correctness: The correctness of the algorithm follows from
Theorem 1.4.27. O

1.4.6 Signed Subresultant Coefficients and Cauchy
Index

We indicate how to compute the Cauchy index by using only the signed
subresultant coefficients. We need a definition:

Notation 1.4.42 Let s = s,,...,50 be a finite list of elements in an
ordered field K such that s, # 0, s,_1 = ... = 5,41 = 0, and s, # 0.
Let 8" = s,,...,80 (if ¢ =0, " is the empty list). We define inductively
0 if s/ =0,
D(s) =< D(8') + g,—gsign(s,s,) if p— ¢ odd,
D(s") if p — q even.

where ¢,_, = (—1)P=9p-a-1)/2,

Note that when all elements of s are non-zero, D(s) is the differ-
ence between the number of sign permanencies and the number of sign
changes in s, ..., so. Note also that when s is the sequence of leading
coefficients of polynomials P = P,,..., Py with deg(F;) = i, then

D(s) = V(P; —o0, +00)
(see Notation 1.1.1).
Let P and ) be two polynomials with:

P =a,X?+ ap_lXp_l + -+ ag
Q=b,_ X"+ + by,
deg(P) = p,deg(@Q) =g <p—1.

We denote by sr(P, Q) the sequence of st;(P,Q), 7 =p,...,0. Note
that sr;(P, Q) # 0 if only if SR;(P, Q) is non-defective.
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Theorem 1.4.43

D(st(P,Q)) = Ind (%) .

Note that in the non-defective case (deg(SR;(P,Q)) = j for every j =
ps...,0) Theorem 1.4.43 is a consequence of Theorem 1.3.7 (with ¢ =
—00,b = 400) and Corollary 1.4.30.

Proof of Theorem 1.4.43: The proof of the theorem will use the fol-
lowing two lemmas.

Lemma 1.4.44

—R . . :
iy (Q) _ Ind <?> + sign(ayb,) if p— q is odd,

P Ind (%) if p— q is even.

Proof: We can suppose without loss of generality that P and () are
coprime. The claim is an immediate consequence of Lemma 1.3.9. O

Lemma 1.4.45
_ ) D(sr(Q, —R)) +sign(ayby) if p—q is odd,
D(se(P,Q)) = { D(st(Q,—R)) if p—q is even.
Proof: By Proposition 1.4.32, for 5 <r,

SR;(P,Q) = )by "SR;(Q, — R).

q

Using the convention in Notation 1.4.26 and the definition of SR, (P, @),

SR,(Q. —R) = sign(b] 1)@,
SR, (P, Q) = 5p—qb§_q_1Q-
Thus,
SR,(P, Q) = ¢y sign(t~ ISR, (Q, ~ R).
So,
Disty(P.Q).....s0o(P.Q)) = D{st(Q. ~ ).

Noticing that e,_,s1,(P, Q)sry(P, Q) = (sign(a,)b,)?~9, the conclusion
follows by definition of D. a
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The proof of the theorem proceeds by induction on the number n
of elements with distinct degrees in the signed subresultant sequence.

If n =2, @ divides P. We have
nd (Q) B {sign(apbq) if p—qis odd,

P 0 if p— q is even,

P

by Lemma 1.4.44 and
| sign(a,b,) if p— ¢ is odd,
Dlse(P,Q)) = { 0 if p— ¢ is even,

by Lemma 1.4.45.

Let us suppose that the theorem holds for n — 1 and consider P and
() such that their signed subresultant sequence has n elements with
distinct degrees. The signed subresultant sequence of () and —R has
n — 1 elements with distinct degrees. By the induction hypothesis,

D(st(Q, — R)) = Ind (%) .

So, by Lemma 1.4.44 and Lemma 1.4.45 |

D(st(P,Q)) = Ind (%) .

Denoting as before
SQ(Q, P) =
#({z e R P(z) =0AQ(x) > 0})—
#({r € R | Plr) =07 Q(z) < 0}).

Corollary 1.4.46 Let P and Q) be polynomials in D[X] and R the
remainder of P'Q) and P. Then D(st(P,R)) = SQ(Q,P).

Proof: Apply Theorem 1.4.43 and Proposition 1.3.4, since

PQyN R
Ind( 2 )-Ind (F)

by Remark 1.3.2. O
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Corollary 1.4.47 Let P be a polynomial in D[X]. Then D(sr(P, P"))
is the number of roots of P in R.

Algorithm 1.4.48 (Univariate Sturm-query)

Input: a non-zero univariate polynomial P and a univariate polyno-
mial (), both with coefficients in D of respective degree p and q.

Output: the Sturm-query SQ(Q, P).
Procedure:

if deg(Q) =0, Q = by, compute the sequence st(P, P') of signed sub-
resultant coefficient of P and P' using Algorithm 1.4.41 (Signed
Subresultant), and compute D(st(P, P")) (Definition 1.4.42). Out-
put
D(st(P, P")) if bp >0
—D(st(P, P")) if by <O0.

if deg(Q) =1, Q = b1 X +by, compute R := sign(b;)(pby P — P'Q), the
sequence st(P, R) of signed subresultant coefficient of P and R,
use Algorithm 1.4.41 (Signed Subresultant) to compute D(sr(P, R))
(Definition 1.4.42).

if deg(Q) > 1 use Algorithm 1.4.41 (Signed Subresultant) to com-
pute the sequence st(—P'Q), P) of signed subresultant coefficient of
—P'Q and Q, and compute D(st(—P'Q, P)) (Definition 1.4.42).
Output

{ D(st(—P'Q, P)) +sign(b,) ifg—1 is odd,
D(st(—P'Q, P)) if g — 1 is even.

Proof of correctness: The correctness follows from Corollary 1.4.46
and Lemma 1.4.45. a



Chapter 2

Quantifier elimination

2.1 Tarski-Seidenberg theorem

2.1.1 Sign Determination

We consider a P € R[X] with P not identically zero, Q a finite subset
of R[X], and the finite set Z = Z(P,R) = { € R | P(x) = 0}.

We will give an expression for the number of elements of Z at which
Q satisfies a given sign condition o.

Let o be a sign condition on Q i.e. an element of {0,1,—1}<. The
realization of the sign condition o over 7 is

R(o,P=0)={zeR | Plx)=0n \ sign(Q (@)}
Qe

[ts cardinality is denoted ¢(o, P = 0). We denote

R(Q=0,P=0)={z€eR | Plz)=0AQ(x) =0},
R(Q>0,P=0)={z€eR | Plz)=0AQ(x) >0},
R(Q<0,P=0)={zeR | Plz)=0AQ(x) <0},

and ¢(@ = 0,P = 0),¢(Q > 0,P = 0),¢(Q < 0,P = 0) are the
cardinalities of the corresponding sets.
Given a € {0,1,2}€, we write Q° for H Q@ When R(c, P =
Qe
0) # (), the sign of Q% is fixed on R(o,P = 0) and is equal to

61
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H U(Q)Q(Q), with the convention that 0° = 1. Hence, we define the sign
Qe
of Q% on o, sign(Q, o), to be H o ), whether or not R(o, P = 0)

' Qee
1s empty.

We number the elements of Q so that @ = {Q1,...,Qs}.

The lexicographical ordering on {0,1,2}€ is defined by a <je 3
if and only if

()<ﬁ)

V(@) = B(Q.) A a(Quor) < B(Qur))
V (0(Qu) = BQ) A - A a(@s) = B(Qs) A alQs) < B(Q)),
V (a(@2) = BQIA A a(Qa) = B(Q2) A Q1) < B(QL)).

Given a list of elements A = ay,...,a,, of {0,1,2}< ordered lexi-
cographically by
a1 <lex - - - <lex Om,

we write Q4 for Q21 ..., Q%" and SQ(Q%, P) for
SQ(Q, P),...,S5Q(QY, P).

The lexicographical ordering on {0,1, —1}< is defined by ¢ <jx 7
if and only if

V (0(Qs) = 7(Qs) A 0(Qumr) < T(Qsr))

Q
Qs) N oo N 0(@s) = 7(Qs) A a(Qs)
QA oA o(Q2) = T(Q2) A a(Q)

where 0 < 1 < —1.
Given a list of elements ¥ = oy,...,0, of {0,1, —1}<, with

T1 <lex -+ - - <lex On,
we write R(X, P = 0) for

R(o1, P =0),...,R(on, P =0)
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and ¢(X, P = 0) for
c(oy, P=0),...,¢(0,, P =0).

Definition 2.1.1 The matrix of signs of Q4 on Y is the m x n
matrix M(Q*, %) whose 7, j-th entry is sign(Q*, o;).

Example 2.1.2 If Q = {Q1,Q,} and A = {0,1,2}9}, {Q1,Q,}* is
the list 17Q17 %7Q27QIQ%Q%Q%Q%?QIQ%?Q%Q%' Takmg for X

Q1:0/\Q2:07Q1>0/\Q2:07Q1<0/\Q2:07
Ql:OAQ2>O,Q1>0/\Q2>0,Q1>0/\Q2<0,
Ql:OAQ2<O,Q1<0/\Q2>0,Q1<0/\Q2<0,

the matrix of signs of these nine polynomials on these nine sign condi-
tions 1s

11 1 11 1 1 1 1
01 -1 01 -1 0 1 -1
o1 1 01 1 0o 1 1
00 0 1 1 1 -1 -1 -1
M{Q1,Q} " )y=10 0 0 01 -1 0 -1 1
00 0 01 1 0 -1 -1
o0 0 11 1 1 1 1
00 0 01 -1 0 1 -1
00 0 01 1 0 1 1]

For example, the 5-th row of the matrix reads as follows: the signs of the
5-th polynomial of {Q1,Q2}* which is Q@ on the 9 sign conditions
Y are

00001 -1 0 —1 1].

Proposition 2.1.3 If U R(o, P =0) =7 then
ogEY

M(QA, %) - ¢(X, P =0) =SQ(Q*, P).

Proof: It is obvious since the (7,7)—th entry of M(Q#,¥) is the sign
of the polynomial Q%' of Q4 on the sign condition o; of X. a
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Note that when Q@ = {Q}, A = {0,1,21?} and ¥ = {0,1, —1}{?}

the conclusion of Proposition 2.1.3 is

11 1 o(Q=0,P=0) 5Q(1, P)
01 1] -[c@>0,P=0)]=|5QQ,P) |. (2.1)
01 1 o(Q <0,P=0) SQ(Q2, P)

It follows from Proposition 2.1.3 that when the matrix M(Q4, ) is
invertible, we can express ¢(X, P = 0) in terms of SQ(Q#, P). This is
the case when A = {0,1,2}¢ and ¥ = {0,1, —1}<, as we will see now.

Notation 2.1.4 Let M and M’ = [m!,] be two matrices with respec-
tive dimensions n x m and n’ x m’. The matrix M @ M’ is the nn’ x mm/’
matrix

The matrix M ® M’ is the tensor product of M and M’.

Example 2.1.5 If

111
M=M=1]0 1 —-1],
01 1

11 1 11 1 1 1 1]

01 -1 01 -1 0 1 =1

01 1 01 1 0 1 1

00 0 1 1 1 -1 -1 -1

M@M'=100 0 01 —1 0 =1 1

00 0 01 1 0 —1 —1

00 0 11 1 1 1 1

00 0 01 -1 0 1 =1

00 0 01 1 0 1 1|

Notice that M@M’ coincides with the matrix of signs of A = {0,1,2}{@1.Q2}
on ¥ = {0,1, —1}{@u@),
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Notation 2.1.6 Let M, be the 3° x 3° matrix defined inductively by

11 1
My=1(0 1 -1
0 1 1

and

My = My @ M.
Exercise 2.1.7 Prove that M, is invertible using induction on s.

Proposition 2.1.8 Let Q be a sel of polynomials with s elements, A =
{0,1,2}€ and ¥ = {0,1, —1}<, ordered lexicographically. Then

M(Q*, %) = M,.

Proof: The proof is by induction on s. If s=1, the claim is Equation
(2.1). If the claim holds for s, it holds also for s+1 given the definitions
of Myyy, M(Q",%), and the orderings on A = {0,1,2}¢ and ¥ =
{0,1,—1}<. 0

So, Proposition 2.1.3 and Proposition 2.1.8 imply
Corollary 2.1.9
M, -c(%, P =0)=S5Q(Q* P).

We have all the ingredients needed to decide whether a subset of
R defined by a sign condition is empty or not, with the following two
lemmas.

Lemma 2.1.10 Consider the finite set Z = 7Z(P,R) and a sign con-
dition o on Q. Whether or not R(o,P = 0) = () is determined
by the degrees of the polynomials in the signed pseudo-remainder se-
quences of P, P'Q% and the signs of their leading coefficients for all
ac A=1{0,1,2}¢.
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Proof: For each o € {0,1,2}2, the degrees and the signs of the lead-

ing coefficients of all of the polynomials of the signed pseudo-remainder
sequences S(P, P'Q) clearly determine the number of sign changes of

S(P, P'Q%) at —oo and +oo,i.e. V(S(P, P'Q%); —oo) and V(S(P, P'Q%); +0),
and their difference is SQ(Q®, P) by Theorem 1.3.10. Using Proposi-

tions 2.1.8, Proposition 2.1.3, and Corollary 2.1.9

Ms_l ) SQ(QAvp) = C(Z,P = 0)

Denoting the row of M ! that corresponds to the row of ¢ in ¢(X, P =
0) by ro, we see that r, - SQ(Q4, P) = c(o, P = 0). Finally,

R(o, P =0)={z € R|P(x) =0 A )\ sign(Q(x)) =0(Q)}

Qe
is non-empty if and only if ¢(o, P = 0) > 0. a

Lemma 2.1.11 Let o be a sign condition on Q. Whether or not

R(c) =0 is determined by the degrees and the signs of the leading co-

efficients of the polynomials in V(S(C,C")) (with C' = H Q) and the
Qe

signs of the leading coefficients of the polynomials in V(S(C',C"Q%))

forall a € A={0,1,2}<.

Proof: Recall (Theorem 1.3.11) that the number of roots of C' is de-
termined by the signs of the leading coefficients of V(S(C, C")).

If C' has no roots, then each ) € Q has constant sign which is the
same as the sign of its leading coefficient.

If C' has one root, then the possible sign conditions on Q are deter-
mined by the sign conditions on Q at +o0 and at —oo.

If C' has at least two roots, then all intervals between two roots of
C' contain a root of C’ and thus all sign conditions on Q are
determined by the sign conditions on Q at 400 and at —oo and
by the sign conditions on @ at the roots of C” this is covered by
Lemma 2.1.10.
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2.1.2 Projection of semi-algebraic sets

Let R be a real closed field. If P is a finite subset of R[Xy,..., X], we
write the set of zeros of P in R* as

Z(P.RF) ={x e R" | )\ P(z)=0}.

PepP

These are the algebraic sets of R* = Z({0}, R¥).

The smallest family of sets of R* that contains the algebraic sets
and is closed under the boolean operations (complementation, finite
unions, and finite intersections) is the constructible sets.

We define the semi-algebraic sets of R as the smallest family of
sets in R” that contains the algebraic sets as well as sets defined by
polynomial inequalities i.e. sets of the form {z € R¥|P(z) > 0} for
some polynomial P € R[Xj,..., X;], and which is also closed under
the boolean operations (complementation, finite unions, and finite in-
tersections). If the coefficients of the polynomials defining S lie in a
subring D C R, we say that the semi-algebraic set S is defined over
D.

It is obvious that any semi-algebraic set in R* is the finite union of
sets of the form {x € R¥|P(z) = 0 A Noeo @(x) > 0}. These are the
basic semi-algebraic sets.

Some terminology from logic is useful for the study of semi-algebraic
sets.

We define the language of ordered fields by describing the formulas
of this language. The formulas are built starting with atoms, which
are polynomial equations and inequalities. A formula is written using
atoms together with the logical connectives “and”, “or”, and “negation”
(A, V, and —) and the existential and universal quantifiers (3,V). A
formula has free variables, i.e. non-quantified variables, and bounded
variables, i.e. quantified variables. More precisely, let D be a subring
of R. We define the language of ordered fields with coefficients
in D as follows. An atomis P =0 or P > 0, where P is a polynomial
in D[X7,..., Xi]. We define simultaneously the formulas and the set
Free(®) of free variables of a formula ¢ as follows

- an atom P =0 or P > 0, where P is a polynomial in D[ X7, ..., X{]
is a formula with free variables { X, ..., X} },
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- if ®; and ¥, are formulas, then ®; A ¢, and ®; V &, are formulas
with Free(®; A ®3) = Free(®; V @3) = Free(®) U Free(d,),

- if @ is a formula, then =(®) is a formula with Free(=(®)) = Free(®),

- if @ is a formula and X € Free(®), then (3X) ® and (VX) @ are
formulas with Free((3X) ®) = Free((VX) ®) = Free(®) \ {X}.

If ® and W are formulas, ® = W is the formula —(®) v V.

A quantifier free formula is a formula in which no quantifier
appears, neither 4 nor V.

The R-realization of a formula ®(Y},...,Y}) with free variables
{Yy,..., Y} is denoted by R(®(Yi,...,yx), R¥). It is the subset of
elements (v, ...,yx) of R such that ®(yy,...,yx) is true:

R(CI)(Yl,...,yk),Rk) ={(y1,..., ) € RF | D(y1,...,uk)}

Two formulas ® and ¥ such that Free(®) = Free(V) = {Y},...,Y,} are
R-equivalent if R(®(Y1,...,Y:), RF) = R(¥(Yi,...,Ys),RF). If there

is no ambiguity, we simply write R(®(Y1, ..., Yy)) for R(®(Y;, ..., Y,), RF)
and talk about realization and equivalence.

It is clear that a set is semi-algebraic if and only if it can be repre-
sented as the realization of a quantifier free formula. It is also easy to
see that any formula in the language of fields with coefficients in D is
R-equivalent to

O(Y) = (QiX1) ... (QuXum) B(X1,. ., X, Y1, ... Yi)

where each Q; € {V,3} and B is a quantifier free formula involving poly-
nomials in D[X7,..., X,,, Y1, ... Y,]. This is called its prenex normal
form (see Section 10, Chapter 1 of [?]). The variables X;,..., X}, are
called bound variables . If a formula has no free variables, then it is
called a sentence, and it is either true or false in R.

When P € R[X],Q C R[X], the realization R(o,Z(P,R)) of a
sign condition o on Q over Z( P, R) (definition page 61) is exactly the
realization of the quantifier free formula

P(x)=0A /\ sign(Q(z)) = o(Q)

Qe
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and is a basic semi-algebraic set of the line R.

The goal of this section is to show that the semi-algebraic sets in
R**! are closed under projection if R is a real closed field.

Now that we know how to decide (see Lemmas 2.1.10 and 2.1.11 )
whether or not a basic semi-algebraic set in R is empty, we can show
that the projection from R¥*! to R¥ of a basic semi-algebraic set is
semi-algebraic. We extend our method from the univariate case to the
multivariate case by viewing the univariate case parametrically. The
basic semi-algebraic set S C R*™ can be described as

S={zeR* | \ Pla)=0n /\ Q(z) >0}

PepP QeQ

with P, Q finite subsets of R[ X1, ..., Xk, Xkt1], and its projection 7(.5)
(forgetting the last coordinate) is

7(S) = {y eR* |3 e R (A P(e) =0 A\ Qufe) > 0)}

PepP QeQ

For a particular y € R* we can decide, using Lemmas 2.1.10 and 2.1.11,
whether or not

JreR (N Plz)=0 )\ Q,x)>0)

PepP QeQ

is true.
What is crucial here is to partition the parameter space R into
finitely many parts so that for all points y in the same part, the set

Sy={reR| /\Py(x):()/\ /\Qy($)>0}

PepP QeQ

is empty or is not empty. It is important too that 7(9) is the union of
those parts where S, # (. In fact, the decision method is the same (is
uniform) for all y in any given part. Thus each part is a semi-algebraic
set and consequently 7 () is semi-algebraic being the union of finitely
many semi-algebraic sets.

We have been able to decide whether a basic semi-algebraic set in R
is or is not empty using Sturm’s theorem and its extension by Sylvester
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(Lemmas 2.1.10 and 2.1.11). Extending this method to the parametric
situation will yield the desired theorems.

For a specialization of Y to y = (y1,...,yx) € R¥, we write P,(X)
for P(y1,...,yr, X). We next study the signed remainder sequence of
P, and @, for all possible specialization of ¥ to y € R*. This cannot
be done in a completely uniform way, since denominators appear in
the euclidean division process. Nevertheless, fixing the degrees of the
polynomials in the signed remainder sequence, it is possible to partition
the parameter space, R¥, into a finite number of parts so that the signed
remainder sequence is uniform in each part.

Example 2.1.12 We consider a general polynomial of degree 4. Di-
viding by its leading coefficient, it is not a loss of generality to take
P to be monic. Solet P = X* + aX?® + X% +~X + 5. The trans-
lation X — X — «a/4 Kkills the term of degree 3, so we can suppose
P=X*'+aX*+0X +ec.

Consider P = X* + aX? 4+ bX + ¢ and its derivative P’ = 4X° +
2aX + b. Their signed remainder sequence in Q(a, b, ¢)[X] is

P=X*4+aX’+0X +¢
P =4X34+2aX +b
Sy = —Rem (P, P') = —%(ZXQ — %bx —c

8ac—9b*—2a’) X b (12 2
53 = —Rem(P’,SQ) = ( e 3 “ ) — ( Cz—l_ “ )
a a
54 = —Rem(Sg, 53) =
1 a? (256 ¢® — 128 ac? + 144 ach® — 16 a’c — 27b* — 4b%a?)
4

(8ac—9b% — 2a3)?

Note that when (a,b,c) are specialized to values in C* for which
a =0 or 8ac — 9b? — 2a® = 0, the signed remainder sequence of P and
P’ for these special values is not obtained by specializing a, b, ¢ in the
signed remainder sequence in Q(a, b, ¢)[X].

In order to take into account all the possible signed remainder se-
quences that can appear when we specialize the parameters, we intro-
duce the following definitions and notation.
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We get rid of denominators appearing in the remainders through
the notion of signed pseudo-remainders. Let

P=a,X?+...4a €D[X],Q=0b0,X"+...4+by € D X],

where D is a subring of R. Note that the only denominators occurring
in the euclidean division of P by () are bfz’ 1 <p—q+1.

The signed pseudo-remainder denoted Prem(P,Q), is the re-
mainder in the euclidean division of b;lP by @), where d is the smallest
even integer greater than or equal to p— ¢+ 1. Note that the euclidean
division of b;lP by @ can be performed in D and that Prem(P, Q) €
D[X]. The even exponent is useful in Chapter 2 and later when we deal
with signs.

Let @ = b,X7+ ...+ by € D[X]. We define for 0 < ¢ < ¢, the
truncation of () at ¢ by

Tru(Q) = b; X' + ...+ be.

The set of truncations of a polynomial @ € D[Y},...,V;][X] is a
finite subset of D[Y],. .., Y;][X] defined by

() if lcof(Q)) € D
Tru(Q) = { {Q} U Tru(Trugegg)-1(Q)), otherwise.

The tree of possible signed pseudo-remainder sequences of
two polynomials P, () € D[Y},...,Y;][X], denoted TRems(P,Q), is
a tree whose root R contains P. The children of the root contain
the elements of the set of truncations of ). Each node N contains a
polynomial Pol(N) € D[Y1,...,Y;][X]. A node N is a leaf if Pol(N) =
0. If N is not a leaf, the children of N contain the truncations of
—Prem(Pol(p(N)), Pol(N)) where p(N) is the parent of N.

Example 2.1.13 Continuing Example 2.1.12, we consider P = X* +
aX?+ bX + ¢ and its derivative P/ = 4X?2 4+ 2aX + b and write down
the tree TRems(P, P’), denoting

Sy = —Prem(P, P')
= —8aX*—12bX — 16,
S3 = —Prem(P’, Sy)
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= 64((8ac — 9h* — 2a3)X —b(12¢ + az)),
Sy = —Prem(Ss, S9)
= 16384 ¢ (256¢® — 128a’c* + 144ab’c + 16a’c — 27b* — 44°b%)
u = —Prem(P’, Tru;(Sy))
= 768b (—27b* + T2ach® + 256 ¢) .

P

l
//\\

/S Trul\S‘z Trug(S2) 0
53 TI’UO( 3) 0 u 0 0

AT

(l) 0

Define

s = 8ac — 9b* — 2a°,
t=—b(12¢ + a2)
§ = 256¢° — 128a2c? + 144ab’c + 16a*c — 27b* — 4a>b>.

The leftmost path in the tree going from the root to a leaf, namely the
path P, P’. Sy, S5,54,0 can be understood as follows: if (a,b,¢) € R?
are such that the degree of the polynomials in the remainder sequence

of P and P’ are 4,3,2,1,0, i.e. when a # 0,5 # 0,6 # 0 (getting rid
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of obviously irrelevant factors), then the signed remainder sequence of
P =X*"+aX?+4bX +cand P’ is proportional (up to non-zero squares
of elements in R) to P, P’, S, S5, 54.

Notation 2.1.14 For a specialization of YV = (Y1,...,Y}) to y =
(y1,---,yx) € R*, and Q € D[Y1,...,Y:][X], we denote the polyno-
mial in R[X] obtained by substituting y for ¥ by @,. Given Q C
D[Y1, ..., Y;][X], we define Q, C R[X] as {Q, | @ € Q}.

Let @ = b,X%+...4+by € D[Y1,...,Y;][X]. We define the quantifier
free formula degx (Q) = ¢ as

by =0A...ANb1=0Ab; #0 when 0<1<g,
b, # 0 when 1 =q,
by =0A...ANbp=0 when 1= —o0,

so that the sets R(degy(Q) = 1) partition R* and y € R(degy(Q) = 1)
if and only if deg(@,) = 1.

Given a leaf L of TRems(P, Q), we denote by By, the unique path
from the root of TRems(P, Q) to the leaf L. If N is a node in By, which
is not a leaf, we denote by ¢(N) the unique child of N in By. We denote
by Cr, the quantifier free formula

degx(Q) = degx (Pol(c(R)))A
N degx(—Prem(Pol(p(N)), Pol(N))) = degy (Pol(c(N)))

NeBL N£R

It is clear from the definitions, since the remainder and pseudo-
remainder of two polynomials in C[X] are equal up to a square, that

Lemma 2.1.15 The R(Cy) partition RE. Moreover, y € R(CL) implies
that the signed remainder sequence of P, and Q, is proportional (up to

a square) to the sequence of polynomials Pol(N), in the nodes along the
path By, leading to L. In particular, Pol(p(L)), is gcd(P,, Q).

Example 2.1.16 We start with an example. We describe the projec-
tion of the algebraic set

{(a,b,e, X) € R | X* +aX* +bX +c=0}
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to R?, i.e. the set
{(a;b;¢) € R? | IX € R, X'+ aX? +bX + ¢ =0},

as a semi-algebraic set.

We look at all leaves of TRems(P,P’) and at all possible signs
for leading coefficients of all possible signed pseudo-remainders (using
Example 2.1.12). We denote by n the difference between the num-
ber of sign changes at —oo and +oo in the Sturm sequence of P =
X* 4+ aX? + bX + ¢ for each case. We indicate for each leaf L of
TRems(P, P’) the quantifier free formula Cy, and the degrees occurring
in the signed pseudo-remainder sequence of P and P’ along the path

Br,.

(@a#£0As#O0ANS#£0,(4,3,2,1,0))
al— — — -+ 4+ + +
s+ + — =+ + - -
S+ — + - + - + -
n|4 2 0 2 0 =2 0 2

The first column can be read as follows: for every polynomial
P=X"4+aX*+bX +c

satisfying a < 0,8 > 0,4 > 0, since the leading coefficients of the signed
pseudo-remainder sequence of P and P’ are 1,4, —a,64s,16384a*§ (see
Example 2.1.13) and the degrees of the polynomials in the signed pseudo-
remainder sequence of P and P’ are 4,3,2,1,0, the signs of the signed
pseudo-remainder sequence of P and P’ at —oc are + — + — + and at
400 are + + + + +. Therefore the number of real roots is 4.

The other columns can be read similarly. Notice that n can be
negative (for @ > 0,s > 0,0 < 0). Though this looks paradoxical,
Sturm’s theorem is not violated. This only means that there is no
polynomial P € R[X] with P = X* 4+ aX? +bX +cand a > 0,5 >
0,9 < 0. Notice that even when n is non-negative, there might be no
polynomial P € R[X] with P = X*+aX?+bX+cand (a, s, d) satisfying
the corresponding sign condition.

Similarly, for the other leaves of TRems(P, P’)
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(a#0Ns#£0AN6=0,(4,3,2,1))
al— — + +

+ -+ -

31 -1 1

¥l

3

(a#£0As=0AL#0,(4,3,2,0))

a + +
tl+ - + -
n‘ 2 0 0
(a£0Ns=1=0,(4,3,2))

b
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Finally, the formula (3 X) X* + aX? +bX 4 ¢ = 0 is equivalent to

(a <O0ANs>0)
(a<0As<OAS<O0)
(a>0ANs<0A6<O0)
a<O0As#0AS=0)
a>0As<0ANd=0)
a<O0As=0AL#£0)
a<0As=0At=0)
a=0Ab<0Au<O0)
a=0Ab>0Au>0)
a=0Ab#0Au=0)
a=0ANb=0Ac<0)
(a=0Ab=0Ac=0),

(
(
(
(
(
(
(
(

\%
\%

\%
\%
\%
\%
\%
\%
\%
\%
\%

by collecting all the sign conditions with n > 1.

The example should be useful in order to understand the proof of
the following theorem.

Theorem 2.1.17 Given a semi-algebraic set of R* defined over D,
its projection to R¥ is a semi-algebraic set defined over D.

Proof: Since every semi-algebraic set is a finite union of basic semi-
algebraic sets it is sufficient to prove that the projection of a basic semi-
algebraic set is semi-algebraic. Suppose that the basic semi-algebraic
set S in R is

R(0,2) = {(y,2) € R" x R| P(y,x) =0 r \ sign(Q(y,)) = o(Q)},
QeQ

Z ={z € R" | P(z) = 0}. Let S’ be the intersection of S with the
subset of (y,x) € R**' such that P, is not identically zero.

Let L be a function on {0,1,2}< associating to each a € {0,1,2}<
a leaf L, of TRems(P,P’'Q%), and let A(L,) be the set of non-zero
polynomials of D[Y7,..., Y] appearing in the quantifier free formula
Cr., (see Notation 2.1.14).
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Let £ be the set of all functions L on {0, 1,2}< associating to each
a aleaf L, of TRems(P, Q%), and

A=) U AZ.) cDm,... Y]

Lel ae{0,1,2}2

Note that since A contains the coefficients of P’ the signs of the coef-
ficients of P are fixed as soon as the signs of the polynomials of A are

fixed.
We define

Y ={re{0,1,-1}*\Vy € R(7),R(a,, Z,) # 0},

where Z, = {x € R | P(z,y) = 0}, 0,(Q,) = o(Q).

Using Lemma 2.1.10, it is clear that the semi-algebraic set

Uy € R¥Jsign(A(y)) = 7}

TEY

coincides with the projection of 5.

The fact that the projection of the intersection of S with the subset
of (y,z) € R**! such that P, is identically zero is semi-algebraic follows
in a similar way, using Lemma 2.1.11.

Thus the whole projection S = S"U (S\ ) is semi-algebraic as a
union of semi-algebraic sets. O

Exercise 2.1.18 Find the conditions on a,b such that X® +aX + b
has a strictly positive real root.

The projection theorem (Theorem 2.1.17) implies that the theory
of real closed fields admits quantifier elimination in the language of
ordered fields, which is the following theorem.

Theorem 2.1.19 Let ®(Y) be a formula in the language of ordered
fields with coefficients in an ordered ring D contained in the real closed
field R. Then there is a quantifier free formula W(Y') with coefficients
in D such that for every y € R*, ®(y) is true if and only if V(y) is
irue.
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Proof: Given a formula
O(Y) = (3X) B(X, V),

where B is a quantifier free formula whose atoms are equations and
inequalities involving polynomials in D[ X, Yy, ...,¥;], Theorem 2.1.17
shows that there is a quantifier free formula =Z(Y') whose atoms are
equations and inequalities involving polynomials in D[ X, Y], ..., ¥;] and
that is equivalent to ©(Y"). This is because R(O(Y'), R¥) which is the
projection of the semi-algebraic set R(B(X,Y), R*!) defined over D
is semi-algebraic and defined over D, and semi-algebraic sets defined
over D are realizations of quantifier free formulas with coefficients in D.
Since (VX)) @ is equivalent to =((3X) —(®)), the theorem immediately
follows by induction on the number of quantifiers. a

Corollary 2.1.20 Let ®(Y) be a formula in the language of ordered
fields with coefficients in D. The set {y € Rk|q)(y)} is semi-algebraic.

Corollary 2.1.21 A subset of R defined by a formula in the language
of ordered fields with coefficients in R ts a finite union of points and
intervals.

Proof: By Theorem 2.1.19 a subset of R defined by a formula in the
language of ordered fields with coefficients in R is semi-algebraic and
this is clearly a finite union of points and intervals. a

Exercise 2.1.22 Show that the set {(z,y) € R*}|In € N, y = na} is
not a semi-algebraic set.

Theorem 2.1.19 immediately implies the following theorem known
as the Tarski-Seidenberg Principle or the Transfer Principle for real

closed fields.

Theorem 2.1.23 (Tarski-Seidenberg principle) Suppose that R’ is
a real closed field that contains the real closed field R. If ® is a sentence
in the language of ordered fields with coefficients in R, then it is true
in R if and only if it is true in R’
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Proof: By Theorem 2.1.19, there is a quantifier free formula ¥ R-
equivalent to ®. It follows from the proof of Theorem 2.1.17 that W is
R'-equivalent to ® as well. Notice, too, that ¥ is a boolean combination
of atoms of the form ¢ = 0,¢ > 0, or ¢ < 0, where ¢ € R. Clearly, ¥ is
true in R if and only if it is true in R’ O

Since any real closed field contains the real closure of QQ, a conse-
quence of Theorem 2.1.23 is

Theorem 2.1.24 Let R be a real closed field. A sentence in the lan-
guage of fields with coefficients in Q is true in R if and only if it is true
in any real closed field.

2.2 Cylindrical algebraic decomposition

Using subresultants, it is possible to simplify description of the projec-
tion of a semi-algebraic set.

Example 2.2.1 Consider P = X* + aX?+bX + c,

sty(P, P') =1,
st3( P, P') = 4,
sto( P, P') = —8a,

sti( P, P') = 4(8ac — 9b* — 2a°)
sto( P, P') = 256¢” — 128a°c” + 144ab’c + 16a*c — 27b* — 4a°b”.

Let

s = Sac — 9b* — 24°,
§ = 256¢° — 128a2c? + 144ab’c + 16a*c — 27b* — 4a>b>.

Note that & = sro( P, P') is the discriminant of P.
We indicate in the following tables the number of real roots of P
(computed using Theorem 1.4.43) in the various cases corresponding to
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all the possible signs for a, s, d:

L+ ++ 4+ + 4+ + + +
40+ + + + + + + + 4+
—al+ + + + + + 4+ + +
s+ 4+ + - = —000
S|+ =0 + =0+ —0
n |4 2 3 0 2 1 2 2 2
L+ + + + + 4+ + + +
40+ + 4+ + 4+ + + + 4
D
s+ 4+ + — — — 000
S+ = 0 4+ =0+ =0
n |0 —2 -1 0 2 1 0 0 0
L+ ++ 4+ + 4+ + + +
40+ + + + + + + + 4+
—a|0 0 0 0 0 0 0 0 0
s+ 4+ + - = —000
S|+ =0 + =0+ —0
n|2 0 1 0 2 1 0 2 1

Note that when @ = s = 0, according to the definition of D when
there are two consecutive zeroes,

D(st(P,P'))=0 ifd>0

D(st(P,P))=2 ifd<0
D(st(P,P"))=1 ifé=0.

As a consequence, the formula (3 X) X* 4+ aX? 4+ bX 4+ ¢ = 0 is

equivalent to

(a<OAs>0A6>0)V
(a <OAS<O)V
(a>0ANs<O0Ad<LO)V
(a=0As>0Ad8>0)V
(a=0As<0A6<L0).
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collecting all sign conditions giving n > 1. It can be checked easily
that the realization of the sign conditions (¢ =0A s> 0AJ§ > 0) and
(a <OAs=0Ad > 0)are empty. So that (3 X) X4 aX?+bX+¢=0

is finally equivalent to

(a<O0As>0A0>0)V
(a <OAS<O)V
(a>0ANs<O0Ad<LO)V
(a=0As<0A6<L0).

2.2.1 Computing cylindrical decomposition

The cylindrical decomposition method is due to [3]

Definition 2.2.2 A cylindrical decomposition of R” is a sequence
S1,...,Sy where, for each 1 < i < k, S; is a finite partition of R’ into
semi-algebraic subsets, called the cells of level i, which satisfy the
following properties:

Each cell S € &7 is either a point or an open interval.

For every 1 <1 < k and every S € §;, there are finitely many contin-
uous semi-algebraic functions

5571<...<§5¢S:S—>R

such that the cylinder S x R C R'™" is the disjoint union of cells
of §;y1 which are:

either the graph of one of the functions g ;, for 7 =1,...,lg:
{(,zj41) € S xR | wjp1 = €s5()}

or a band of the cylinder bounded from below and from above by
the graphs of the functions {g; and &g 41, for 7 =0,.... 03,
where we take {59 = —o0 and & 41 = Fo0:

{($/,$j+1) €S xR | 557]‘(1‘/) <z < 557]‘4_1(1'/)} .
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Remark 2.2.3 Denoting by 7, the canonical projection of R¥ to RY,
it follows immediately from the definition that for every cell T of S;,
i >0, 5 =m(T) is a cell of §;. We say that the cell T lies above the
cell S. Tt is also clear that if S is a cell of &;, denoting by Ty,..., T,

the cells of S;41 lying above S5, S x R = U T;.
j=1
Example 2.2.4 We illustrate this definition by presenting a cylindrical
decomposition of R® adapted to the unit sphere.
The decomposition of R consists of five cells of level 1 corresponding
to the points —1 and 1 and the three intervals they define.

Sl = (—OO,—l)
={-1)

53 = (_171)
= {1}

55 = (1,00)

Above S; (respectively Ss) in R?, there are no semi-algebraic func-
tions, and only one cell S7; = 51 x R (respectively S5 1 = 55 x R).

Above S, (respectively Sy), there is only one semi-algebraic function
associating to —1 and 1 the constant value 0, and there are three cells.

5271 = 52 X (—O0,0)
5272 = 52 X {0}
5273 = 52 X (0, OO)

Sy =S4 X (—00,0)
respectively Sio = 54 x {0}
5473 = 54 X (0, OO)

Above S5, there are two semi-algebraic functions {3 ; and &35 asso-
ciating to « € S5 the values &5 1(x) = —v/1 — 2% and &a(x) = V1 — 22
There are 5 cells above S5, the graphs of &5, and &35 and the bands
they define

={(z,y) | 1<z <ly<&alr)}
={(z,y) | 1<z <ly=E&a()}

533 ={(z,y) | 1<z <1,&a(r) <y < &av)}
={(z,y) | 1<z <ly=Ealr)}
={(z,y) | -1 <2 <1,&q2(2) <y}
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Above Sy (respectively S3.1, 523,531, 3,5, 54,1, 94,3, 95,1), there are
no semi-algebraic functions, and only one cell:

Star =511 xR
(respectively Ss 11 = S21 X R,
So31 = S23 X R,

Sz = 531 X R,

S350 = S35 X R,

Sanp =S40 X R,

Sazn = Saz X R,

557171 = 5571 X R)

Above Sy (respectively Sss, Ssa, Siz,) there is only one semi-
algebraic function, the constant function 0, and three cells:

52,2,1 = 52,2 X (—0070)
Sz222 = S22 X {0}
Sz223 = S22 X (07 OO)

53,2,1 = 53,2 X (—0070)
respectively Ss92 = S32 x {0} ,

53,2,3 = 53,2 X (07 00)7

53,4,1 = 53,4 X (—0070)

53,4,2 = 53,4 X {0} )

53,4,3 = 53,4 X (07 OO)

54,2,1 = 54,2 X (—0070)

54,2,2 = 54,2 X {0}

54,2,3 = 54,2 X (07 OO)

Above S35, there are two semi-algebraic functions 331 and &332
associating to (x,y) € 553 the values &31(x,y) = —y/1 — 22 — y? and
£332(x,y) = /1 — a? — y2, and five cells

(,y) € S33,2 < &s31(2,y)}
T,y) € S33,2 = E331(x,y)}
z,y) € S33,8331(2,y) <z < &2, y)}
T,y) € S33,2 = E332(2,y)}

y) € Ss3,&32(x,y) < z}.

e =,
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Definition 2.2.5 Given a finite set P of polynomials in R[ X7, ..., Xj],
a subset S of R* is P-semi-algebraic if S is the realization of a quan-
tifier free formula with atoms P =0, P > 0or P < 0 with P € P. It is
clear that for every semi-algebraic subset S of R*, there exists a finite
set P of polynomials in R[X7, ..., X}] such that S is P-semi-algebraic.
A subset S of R* is P-invariant if every polynomial P € P has a
constant sign (>0, < 0, or =0) on S. A cylindrical decomposition
of R* adapted to P is a cylindrical decomposition for which each
cell €' € Si is P-invariant. It is clear that if S is P-semi-algebraic, a
cylindrical decomposition adapted to P is a cylindrical decomposition
adapted to 5.

The main result about cylindrical decomposition is the following.

Theorem 2.2.6 For every finite set P of polynomials in R[ X1, ..., Xk],
there is a cylindrical decomposition of R® adapted to P.

Since we intend to construct a cylindrical decomposition adapted
to P it is convenient if for S € Sy_; we choose each {g; to be a root of
a polynomial P € P, as a function of (x1,...,24-1) € S. To this end,
we shall prove that the real and complex roots (those in R[i] = C') of a
univariate polynomial depend continuously on its coefficients.

Notation 2.2.7 We write D(z,r) = {w € C | |z — w| < r} for the
open disk centered at z with radius r.

Theorem 2.2.8 (Continuity of Roots) Let P € R[Xy,..., X;] and
let S be a semi-algebraic subset of R*™'. Assume that deg(P (', X})) is
constant on S and that for some a’ € S, zy,. .., z; are the distinct roots
of P(a', X)) in C = R[1], with multiplicities pq, ..., u;, respectively. If
the open disks D(z;,r) C C are disjoint then there is an open neighbor-
hood V' of a' such that for every ' € V.0 S, the polynomial P(z', X))
has exactly p; roots, counted with multiplicities, in the disk D(z;,r), for
i=1,...,7.

We next consider the conditions which ensure that the zeros of two
polynomials over a connected semi-algebraic set define a cylindrical
structure. :
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Theorem 2.2.9 Let P be a finite subset of R[X1,...X}] and S «a
semi-algebraically connected semi-algebraic subset of R*™'.  Suppose
that, for every P € P, deg(P(a', X)) and the number of distinct real
roots of P are constant over S and that, for every pair P,Q) € P,
deg(ged(P (', Xi), Q(2', Xi)) is also constant for all ' € S. Then
there are { continuous semi-algebraic functions & < ... <& : 5 — R
such that, for every a' € S, the set of real roots of H P(2', Xy), where

Pep!
P’ is the subset of P consisting of polynomials not identically 0 over S,

is exactly {&(2'), ..., &(x")}. Moreover, for i = 1,...,0 and for every
P € P, the multiplicity of the root (') of P(a', Xy) is constant for
e s.

It follows from Proposition 1.4.13 that the number of distinct com-
plex roots of P and () and the degree of the greatest common divisor
of P and () are determined by whether the signed subresultant coef-
ficients sr;( P, P') and sr;( P, ()) are zero or not, as long as the degrees
(with respect to Xj) of P and @) are fixed.

Notation 2.2.10 Let
Tru(P) ={Tru(P) | P € P}.

We define Elimy, (P) to be the set of polynomials in R[X7,..., Xj_1]

defined as follows:

If R € Tru(P), degx, (R) > 2, Elimy, (P) contains all st;(R, 0R/IXy)
which are not in R, j =0,...,degy, (R) — 2.

If R € Tru(P), S € Tru(P), Elimx, (P) contains all sr;(R,S) which
are not in R, j =0,...,min(degy, (R),degy, (5)) — L.

If R € Tru(P), and lcof( R) is not in R, Elimyx, (P) contains lcof( R).

Theorem 2.2.11 Let P be a set of polynomials in R[Xq, ..., Xg], and
let S be a semi-algebraically connected semi-algebraic subset of R~
which is Elimx, (P)-invariant. Then there are continuous semi-algebraic
functions & < ... < & S — R such that, for every ' € S, the set
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{&(2"), ... &)} is the set of all real roots of all non-zero polynomi-
als P(2', Xy), P € P. The graph of each & (respectively each band
of the cylinder S x R bounded by these graphs) is a semi-algebraically
connected semi-algebraic set semi-algebraically homeomorphic to S (re-
spectively S x (0,1)) and is P-invariant.

Proof: Let R € Tru(P) and consider the constructible set A C R!
defined by lcof(R) # 0,deg(P) = deg(R). By Proposition 1.4.13, for
every a’ € A, the vanishing or non-vanishing of the sr;(R,dR/0X})(d')
determines the number of distinct roots of P(a’, X)) in C, which is
deg(R(d', X)) — deg(ged(R(d', Xi),0R/0Xk(d', X)).

Similarly, let R € Tru(P) and S € Tru(Q) and consider the con-
structible set B defined by

lcof(R) # 0,deg(P) = deg(R),lcof(5) # 0,deg(Q)) = deg(5).

For every a’ € B, the vanishing or non-vanishing of the sr;(R, S)(d’)
determine deg(ged(P(a’, X), Q(a’, Xi))). Thus, the assumption that a
connected semi-algebraic subset of R¥™! is Elimy, (P)-invariant implies
that the hypotheses of Theorem 2.2.9 are satisfied. O

We are finally ready for the proof of Theorem 2.2.6.

Proof of Theorem 2.2.6 The proof is by induction on the dimension
of the ambient space.

Let @ C R[Xi] be finite. It is clear that there is a cylindrical
decomposition of R adapted to Q since the real roots of the polynomials
in @ decompose the line into finitely many points and open intervals
which constitute the cells of a cylindrical decomposition of R adapted
to Q.

Let @ C R[Xy,...,X;] be finite. Starting from a cylindrical de-
composition of R adapted to Elimy,(Q), and applying to the cells of
this cylindrical decomposition Proposition 2.2.11, yields a cylindrical
decomposition of R adapted to Q.

This proves the theorem. a
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Example 2.2.12 We illustrate this result by presenting a cylindrical
decomposition of R? adapted to the polynomial P = X2+ X2+ X2 1.

P
The 0-th Sylvester-Habicht matrix of P and aaX
3

is
1 0 X{4+X5-1
0 2 0
2 0 0

oP ., oP
P7 a—)(?)) = —4(X1 + X2 — 1) and Srl(P, a—)(?))

rid of irrelevant constant factors, we obtain

Hence, sro( = 2. Getting

Elimy, (P) = {X? + X2 —1}.

Similarly,
Elimy, (Elimy, (P)) = {X? — 1}.

The associated cylindrical decomposition has already been described
in Example 2.2.4.

We denote, for i =k —1,...,1,
Ci(P) = Elimx,,, (Ci11(P)),
with Cr(P) = P, so that
Ci(P) C R[Xy,..., X|].

The family C(P) = U C;(P) is the cylindrifying family of polyno-
i<k

mials associated to P . It follows from the proof of Theorem 2.2.6

that the semi-algebraically connected components of the sign conditions

on C(P) are the cells of a cylindrical decomposition adapted to P.

The Cylindrical Decomposition Algorithm consists of two phases:
in the first phase the cylindrifying family of polynomials associated
to P is computed and in the second phase the cells defined by these
polynomials are used to define inductively, starting from ¢ = 1, the
cylindrical decomposition.
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The computation of the cylindrifying family of polynomials associ-
ated to P is based on the following Elimination Algorithm.

The set of truncations of a polynomial ) € D[Xy,..., Xp_1][X] is
the finite subset of D[X, ..., X;_1][Xk] defined by

{Q} if leof(Q) € D,

degxk (@)

(@) = { {Q} U Tru(Q — leofy, ()X, ), otherwise.

Algorithm 2.2.13 (Subresultant Elimination)

Input: a finite ordered list of variables X1,..., Xy, a finite set P C
D[Xy,...,
Xyi], and a variable Xj,.

Output: « finite set Elimy, (P) C D[Xy,..., Xy—1]. The set Elimy, (P)
is such that the degree of P € P with respect to Xy, the number
of real roots of P € P, and the number of real roots common to
P € P and Q) € P is fired on every semi-algebraically connected
component of the realization of each sign condition on Elimx, (P).

Procedure: Place in Elimy, (P) the following polynomials when they
are not in D:

sti(R a—R) for P € P, deng(P) =p>2, ReTruP),j=
0,...,degx, (R) —2.

sti(R,S) for P € P, Q € P, Re TrulP), S € Tru@®), j =
0,...,min(degy, (R),degy, (5)) — 1.

lcof(R) for P € P, R € Tru(P).
Sketch of complexity analysis: Let
D[le s 7Xk] = D[le s 7Xk—1][Xk]7

s a bound on #(P), and d a bound on the degrees of the elements of P.
There are O(s*d?) subresultant sequences to compute, since there are
O(s?) couples of polynomials in P and O(d) truncations for each poly-
nomial to consider. Each of these subresultant sequence takes O(d?)
arithmetic operations in the integral domain D[X7, ..., X;_] according
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to the complexity analysis of Algorithm 1.4.41 (Signed Subresultant).
The degree with respect to Xy,..., X;_; of the polynomials throughout
these computations is bounded by 2d2. a

Example 2.2.14 a) Let P = X{ + X; + X7 — 1. The output of
Algorithm 2.2.13 (Subresultant Elimination) with input the variable
X3 and the set P = {P} is (getting rid of irrelevant constant factors)

the polynomial
ap

Sro(P, a—)(?)

) =X+ X, -1

(see example 2.2.12).
b) Consider the two polynomials

and
Q= X5 — (X1 +2)(Xy = 1)(X; = 3).

The output of Algorithm 2.2.13 (Subresultant Elimination) with in-
put the variable Y and P = {P,Q} contains three polynomials: the
discriminant of P with respect to X3,

opP

Sro(P, y
2

) =4X1 (X1 4+ 1)( Xy —2),

the discriminant of () with respect to Y,

09
X
and the resultant of P and ) with respect to Y,

sro(Q, ) = 4(X1 + 2)(X1 — 1)(X; = 3),

sto( P, Q) = (= X7 = 3X1 +6)7,
since st1(P,Q)) = 0 is a constant.

Now we are ready to describe the two phases of the cylindrical
decomposition method.

Let S = Sy,..., S; be a cylindrical decomposition of R*. A eylin-
drical set of sample points of S, A = A;,..., A, is a list of k sets
such that
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for every i, 1 < i <k, A; is a finite subset of R which intersects every
S e s,

for every i, 1 <i <k -1, mi(Aiz1) = A;, where 7; is the projection
from R'*! to R’ forgetting the last coordinate.

Algorithm 2.2.15 (Cylindrical Decomposition)

Input: a finite ordered list of variables X1,..., Xy, and a finite set
P CD[Xy,..., X

Output: «a cylindrical set of sample points of a cylindrical decomposi-
tion S adapted to P and the sign of the elements of P on each
cell of S.

Procedure:
Initialize Cy(P) :=P.
Elimination phase: Compute C;(P) = Elimyx,, (Cit1(P)), for i =

k—1,...,1, applying repeatedly Elimy, , using Algorithm 2.2.13
(Subresultant Elimination).

it1

Lifting phase: Compute the sample points of the cells in S; by char-
acterizing the roots of C1(P) and choosing a point in each
interval they determine.

For every 1 = 2,...,k, compute the sample points of the cells
of §; from the sample points of the cells in S;_1 as follows:
Constider, for every sample point x of a cell in &;_1, the list
L of non-zero polynomials Py(x, X;) with P; € C;(P). Char-
acterize the roots of L and choose a point in each interval
they determine.

Qutput the sample points of the cells and the sign of P € P on the
corresponding cells of R

Note that we have not been very precise about how we describe and
compute sample points.
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Sketch of omplexity analysis: Let s be a bound on #(P) and let d
be a bound on the degrees of the elements of P. Using the complexity
analysis of Algorithm 2.2.13 (Subresultant Elimination), if the input
polynomials have degree D, the degree of the output is 2(D?) after one
application of Algorithm 2.2.13 (Subresultant Elimination). Thus, the
degrees of the polynomials output after kK — 1 applications of Algorithm
2.2.13 (Subresultant Elimination) are bounded by f(d,k — 1), where f

satisfies the recurrence relation
f(dv Z) = Zf(dvl - 1)27 f(dv 0) =d. (22)

Solving the recurrence we get that f(d, k) = itz 4287 dzk_l, and hence

the degrees of the polynomials in the intermediate computations and

the output are bounded by QLA+ 42872 ot O(d)Qk_l, which is poly-

nomial in d and doubly exponential in k. A similar anal}llﬂsils shows
/A

that the number of polynomials output is bounded by (sd)® ~, which
is polynomial in s and d and doubly exponential in k. a

Example 2.2.16 Let P = X{ + Xj + X7 — 1. Continuing Example
2.2.12, we describe the output of the Cylindrical Decomposition Algo-
rithm applied to P = {P}.

We have

Ca(P) = {X7+ X5 + X; — 1},
CQ(,P) = {X12 + X22 - 1}7
C1(73) = {Xf — 1}.

The sample points of R consists of five points, corresponding to the
two roots of X? — 1 and one point in each of the three intervals they
define: these are the semi-algebraically connected components of the
realization of sign conditions defined by C;(P). We choose a sample
point in each cell and obtain {(S1, —2), (52, —1), (53,0), (54, 1), (S5, 2)}.

The cells in R? are obtained by taking the semi-algebraically con-
nected components of the realization of sign conditions defined by
C1(P) U Cy(P). There are thirteen such cells, listed in Example 2.2.4.
The sample points in R? consist of thirteen points, one in each cell.
The projection of a sample point in a cell of R* on its first coordinate
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is a point in a cell of R. We choose a sample point in each cell and
obtain

{(511,(=2,0)),
(52717( 1_1))7(5227( 170))7(52737( 171))
(53717(07_2))7(53727( ) 1))7(5337(070))7(53747(071))7(5357(0 2))
(54717(7 1))7(54727(170))7(54737(171))

(55717 (27 0))}

The cells in R® are obtained by taking the semi-algebraically con-
nected components of the realization of sign conditions defined by
Ci(P) U Co(P) U C3(P). There are twenty five such cells, listed in
Example 2.2.4. The sample points in R® consist of twenty five points,
one in each cell. The projection of a sample point in a cell of R? is a
point in a cell of R%. We choose the following sample points and obtain,
indicating the cell, its sample point and the sign of P at this sample
point:

{(51,1,17(—2 0 0)71)7
(52,1,1,( ),1
(S221,(—=1,0,=1),1), (5222, (— 1 0 0),0
(527371,( 1,1,0) )
(53,11, (0, ) 1)
(53,21, (0, =1, —1), 1), (5322,(0, ,0),0

)7
)7 (SQ 2,3, (_1707 1)7 1)7

Y

) (53237( ’ 171)71)7

(5373717(0707 )7 )7(53327(0 ) 1)70)7
(533,3,(0,0,0), —1)
(53.3,4,(0,0,1),0),(5335,(0,0,2),1),
(S5,41,(0,1,=1),1),(5,42,(0,1,0),0), (55,43, (0,1,1),1),

(555.1,(0,2,0),1),
(Ss11,(1,—1,0),1),
(S421,(1,0,=1),1),(S5422,(1,0,0),0), (5423, (1,0,1),1),
(Si31,(1,1,0),1),
(S51.1,(2,0,0),1)}.
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This example is particularly simple because we can choose all sample
points with rational coordinates. This will not be the case in general:
the coordinates of the sample points will be roots of univariate polyno-
mials above sample points of cells of lower dimension, and the real root
isolation technique has to be generalized to deal with the cylindrical
situation.

2.2.2 Decision

Now we explain how to decide the truth or falsity of a sentence us-
ing the Cylindrical Decomposition Algorithm applied to the family of
polynomials used to build the sentence.

Let P be a finite subset of R[X1,..., X;]. A P-atom is one of
P=0,P#0,P>0,FP <0, where P is a polynomial in P. A P-
formula is a formula (Definition page 67) written with P-atoms. A
P-sentence is a sentence (Definition page 68) written with P-atoms.

Notation 2.2.17 For z € R", we denote by sign(P)(z) the sign con-
dition on P mapping P € P to sign(P)(z) € {0,1,—1}.

We are going to define inductively the tree of cylindrical realizable
sign conditions, CSign(P), of P . The importance of this notion is that
the truth or falsity of any P-sentence can be decided from CSign(P).

We denote by m; the projection from R**! to R forgetting the last
coordinate. By convention, R® = {0}.

For z € R¥, let CSign,(P)(2) = sign(P)(z).
For i, 0 < i < k, and all y € R’, we inductively define

CSign,(P)(y) = {CSign 1 (P)(2)|z € R mi(2) =y}

Finally, we define the tree of cylindrical realizable sign condi-

tions of P, CSign(P), by
CSign(P) = CSigny(P)(0).

Example 2.2.18 Consider two bivariate polynomials P, = X5, P, =
X12—|—X22—1 andP: {Pl,PQ}.
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We order the set P with the order P, < P,.

For y € R?, sign(P)(y) is the mapping from P to {0,1,—1} send-
ing (P, P2) to (sign(Pi(y)),sign(Ps(y))). Abusing notation, we de-
note the mapping sign(P)(y) by (sign(Pi(y)),sign(Pz(y))). For exam-
ple if y = (0,0), sign(P)(0,0) = (0,—1) since sign(F(0,0)) = 0 and
sign(P(0,0)) = —1.

Fixing « € R, CSign,(P)(x) is the set of all possible sign(P)(z) for
z € R? such that m(z) = z. For example if + = 0, there are seven
possibilities for sign(P)(z) as z varies in {0} x R:

(—1,1),(=1,0), (=1, —1), (0, —1), (1, —1),(L,0), (L, 1).

So CSign,(P)(0) is

{(_17 1)7 (_17 0)7 (_17 _1)7 (07 _1)7 (17 _1)7 (17 0)7 (17 1)}
Similarly, if « = 1, there are three possibilities for sign(P)(z) as z varies
in {1} x R:

(—=1,1),(0,0),(1,1).
So CSign,(P)(1) is
{(_17 1)7 (07 0)7 (17 1)}

If # = 2, there are three possibilities for sign(P)(z) as z varies in {2} xR:

(—=1,1),(0,1),(1,1).

So CSign,(P)(2) is
{(_17 1)7 (07 1)7 (17 1)}
Finally CSign(P) is the set of all possible CSign,(P)(x) for « € R.
It is easy to check that the three cases we have considered (v = 0,2 =

1,z = 2) already give all possible CSign, (P)(x) for + € R. So CSign(P)

is the set with three elements

{{(_17 1)7 (_170)7 (_17 _1)7 (07 _1)7 (17 _1)7 (170)7 (17 1)}7
{(_17 1)7 (070)7 (17 1)}7
{(_17 1)7 (07 1)7 (17 1)}}
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We now explain how CSign(P) can be determined from a cylindrical
set of sample points of a cylindrical decomposition adapted to P and
the signs of P € P at these points.

If A=A, ..., A, A C RN, mi(Aiy1) = Ai, where 7; is the projec-
tion from R to R’ forgetting the last coordinate, we define inductively
the tree of cylindrical realizable sign conditions CSign(P, A) of
P on A.

For z € Ay, let
CSign, (P, A)(z) = sign(P)(z).

For all 7, 0 <1 < k, and all y € A;, we inductively define

CSign, (P, A)(y) = {CSign,y (P, A)(:)]z € A (=) = y).

Finally,
CSign(P, A) = CSigny(P,.A)(0).
Note that CSign(P) = CSign(P,R*). Note also that CSign(P,A) is a
subtree of CSign(P).

We are going to prove the following result.

Proposition 2.2.19 Let S = Sy, ..., Sk be a cylindrical decomposition
of R¥ adapted to P and let A= A, ..., Ay be a cylindrical set of sample
points for S. Then

CSign(P, A) = CSign(P).
We first start by explaining how this works on an example.

Example 2.2.20 Let P = X7+ X?4 X3 —1 and P = {P}. Since there
is only one polynomial in P, we identify {0,1, —1}" with {0,1, —1}.

We use Example 2.2.16, where the cells and sample points of the
cylindrical decomposition of {P = X? + X2 + X2 — 1} were described.
The sign condition sign(P)(u) is fixed on each cell of R? by the sign of
P at the sample point of the cell and thus

—1 ifz - 537373

sign(P)(z) = 0 if 2 € 5221 US222U5322
US332U S334US342U 5422
1 otherwise.
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The set CSign,(P)(y) is fixed on each cell of R* by its value at the
sample point of the cell and thus

{0717_1} lny 53,3
CSlgnz(P)(y) == {0, 1} if Y € 5272 U 5372 U 5374 U 5472
{1} otherwise.

The set CSign,(P)(x) is fixed on each cell of R by its value at the
sample point of the cell and thus

{{1}7{071}7{0717_1}} lfx S 53
CSign, (P)(z) = { {{1},{0,1}} ifzeSUS,

Finally the set CSign(P) has three elements and

CSign(P) = {{{1}, {0, 1}, {0, 1, =11}, {{1}, {0, 1}}, {{1}}}.
This means that there are three possible cases:
there are values of z; € R for which
for some value of x5 € R, the only sign taken by P(zy,xs,23)
when x5 varies in R is 1,

for some value of 2 € R, the only signs taken by P(xq, 22, 3)
when x5 varies in R are 0 or 1,

for some value of x5 € R, the signs taken by P(x1,xq,23) when

x3 varies in R are 0, 1, or —1,

and these are the only possibilities,
there are values of x; for which

for some value of x2 € R, the only sign taken by P(xq,x2,23)
when x5 varies in R is 1,

for some value of 2 € R, the only signs taken by P(xq, 22, 3)
when x5 varies in R are 0 or 1,

and these are the only possibilities,

and there are values of z; for which
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the only sign taken by P(x1,y, 23) when (2, x3) varies in R? is

1

b
and together these three cases exhaust all possible values of x; € R.

Proposition 2.2.21 Let S = Sy, ..., Sk be a cylindrical decomposition
of R* adapted to P. For every 1 <i <k and every S € S;, CSign,(y)
is constant as y varies in S.

Proof : The proof is by induction on & — 1.

If ¢+ = k, the claim is true since the sign of every P € P is fixed on
S e S

Suppose that the claim is true for : + 1 and consider S € S;. Let
Ti,..., Ty be the cells of S;41 such that m;(7;) = S. By induction
hypothesis, CSign;,;(P)(z) is constant as z varies in T}. Since S is a

¢
cylindrical decomposition, U T; =5 x R. Thus
7=1
CSign; (P)(y) = {CSigny, (P)(2)]z € R mi(2) = y}
is constant as y varies in S. O

Proof of Proposition 2.2.19: Let Ay = {0}. We are going to prove
that for every y € A,,

CSign,(P)(y) = CSigny (P, A)(y).

The proof is by induction on £ — 1.

If i = K, the claim is true since A; meets every cell of S.

Suppose that the claim is true for ¢ + 1 and consider y € A;. Let
S € §; be the cell containing y, and let T,...,T; be the cells of &;11
such that m;(T;) = S. Denote by z; the unique point of T; N A, 41 such
that m;(z;) = y. By induction hypothesis,

CSigHH_l(P)(Z]‘) = CSigni-l—l(pv A)(Zj)-
Since CSignH_l(P)(z) is constant as z varies in 7},
CSign,(P)(y) = {CSign; 1 (P)(2)|z € RHI,m(Z) =y}
= {CSign, (P, A)(2)|z € A1, mi(2) = y} = CSign, (P, A)(y)
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The Cylindrical Decision Algorithm is based on the following result.
We are going to need a notation.

Notation 2.2.22 If P C K[Xy,..., X] is finite, X = (Xq,..., Xy),
F(X) is a P-quantifier free formula, and o € P91~} is a sign condition
on P, we define F*(o) € {True, False} as follows :

If F'is the atom P =0, P € P, F*(0) = True if o(P) = 0, F*(0) =

False otherwise.

If F'is the atom P > 0, P € P, F*(0) = True if o(P) = 1, F*(0) =

False otherwise.

If F'is the atom P <0, P € P, F*(0) = True if o(P) = —1, F*(o) =

False otherwise.
If F'=F AFy, F(o)=F[(o) A Fj(o).
If F'=FV F, FYo)=F(o)V F;5(o).
If F'==(G), F*(o) = ~(G*(0)).
Example 2.2.23 If
F=X]+X;4+X;-1>0,
then ‘
ro1={ e ito 0.
Proposition 2.2.24 The P-sentence
(Q1X1) (Q2Xya) ... (QiXy) F(Xq,...,Xy),

where F(X1,..., Xy) is quantifier free, Qi € {3,V}, is true if and only
of
(Q101 - CSlgH(,P)) (QQO’Q € 0'1) Ce (QkO'k € O'k_l)F*(O'k)

1 true.
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Example 2.2.25 We illustrate the statement of the proposition by an
example. Consider again P = {X? + XJ + X7 — 1}, and recall that

CSign(P) = {{{1},{0,1},{0, 1, =13}, {{1}, {0, 13}, {{1}}}

by Example 2.2.16.
The sentence

(VY X1)(V X2)(V X3) F,

with F' = X7+ X3+ X7—1 > 0 is false since taking (21, 2, 23) = (0,0,0)
we get 7 + x5 + 23 — 1 < 0. It is also the case that

Vo, CSign(P))\Vo, € 01Vos € oy F*(03)

is false since taking oy = {{1},{0,1},{0,1,—1}},00 ={0,1,—1},05 =
—1, the value of F*(03) is false.

Proof of Proposition 2.2.24 : The proof is by induction on the num-
ber k of quantifiers, starting from the one outside.

Since (V X) ® is equivalent to = (3X) =@, we can suppose without
loss of generality that Q; is 4.

The claim is certainly true when there is only one existential quan-
tifier, by definition of sign(P.

Suppose that

(3X1) (Q2Xz2) ... (QuXy) F(Xy,..., Xy),
is true, and choose a € R such that
(QQXQ) Ce (Qka) F(a, Ce ,Xk)

is true. Note that, if P, is the set of polynomials obtained by substi-
tuting @ € R to Xy in P,

CSign,(P)(a) = CSign(P,).
By induction hypothesis,

(Qz02 € CSign(Pa)) ... (Qxox € ok—1) F*(ok)
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is true. So, taking oy = CSign(P,) = CSign(P)(a) € CSign(P),
(o1 € CSign(P))(Q02 € 01) ... (Qrok € ok—1) F*(0ox)

is true.
Conversely suppose

(o1 € CSign(P))(Q02 € 01) ... (Qrok € ok—1) F*(0ox)
is true and choose oy € CSign(P) such that
(QQO’Q € 0'1) e (QkO’k € Uk—l) F*(O'k)

is true. By definition of CSign(P), oy = CSign(P)(a) for some a € R,

and hence
(Q202 € CSign(Pa)) ... (Quok € or-1) F(a1)
is true. By induction hypothesis,
(Q:Xa) ... (QX) Fla. .., X)
is true. Thus
(3X1) (QXa) . (QuXa) F(X1s ..., Xe)
is true. O

Before giving a description of the Cylindrical Decision Algorithm,
we explain how it works on the following example.

Example 2.2.26 We continue Example 2.2.20 to illustrate Proposi-
tion 2.2.24. We had determined

CSign(P) = {{{{1},{0,1},{0,1, =13}, {{1}, {0, 1} }, {{1} } }.

The formula

(3X1) (VXy) (VX3) X7+ X7+ X7 —1>0
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is certainly true since
(Joy € CSign(P)) (V o2 € 1) (Vo3 € 03) 03(P) =1:
take oy = {{1}}. It is also the case that the formula
(VX)) (3Xy) (3X3) XP+ X5+ X210
is true since
(Vo € CSign(P)) (Joy € 01) (o5 € 02) 05(FP) = 1.
The formula
(VX1) (3X2) (3X3) X7+ X5+ X7 —1=0
is false since it is not the case that
(Yo, € CSign(P)) (Fo; € 1) (o3 € 03) 03(P) =0 :

take oy = {{1}} to obtain a counter-example. It is also easy to check
that the formula

is false since it is not the case that

(Joy € CSign(P)) (Voq € 01) (o5 € 02) 05(FP) = 0.

We are ready for the Decision Algorithm using cylindrical decom-
position. We consider a finite set P C D[Xj,..., X], where D is an
ordered integral domain.

Algorithm 2.2.27 (Cylindrical Decision)
Input: « finite set P C D[Xq,..., Xi], a P-sentence
¢ = (QIXI) (QQXQ) cee (Qka) F(Xh s 7Xk)7

where F(Xy,..., Xy) is quantifier free, Q; € {3,V}.
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Output: True if ¢ is true and False otherwise.
Procedure:

Run Algorithm 2.2.15 (Cylindrical Decomposition) with input X1, ..., Xj
and P.

FEaxtract CSign(P) from the set of cylindrical sample points and the
signs of the polynomials of P on the cells of R* using Proposition
2.2.19.

Trying all possibilities, decide whether

(Qioy € CSign(P)) (Qzoz € 0y) ... (Qxok € ox_1) F* (o) = True,

which is clearly a finite verification.

Proof of correctness: Follows from Proposition 2.2.24. Note that
the two first steps of the computation depend only on P and not on
. As noted before CSign(P) allows us to decide the truth or falsity of
every P-sentence. a

Complexity analysis: According to the complexity analysis of Algo-
rithm 2.2.15 (Cylindrical Decomposition), the number of sample points
output is (Sd)o(l)k, so the total complexity is (Sd)o(l)k arithmetic op-
erations in D. Note that the evaluations of the boolean formulas are
not counted in this model of complexity since we count only arithmetic
operations in D. a

2.2.3 Quantifier elimination

Let us consider now quantifier elimination. We start by explaining
that the set of points of R® at which a P-formula ® with free variables
Yi,..., Y is true, is a union of cells in R’ of a cylindrical decomposition
adapted to P.

Indeed, let P C R[Y1,..., Y, Xq,..., Xi] and let Sy,.... S a
cylindrical decomposition of R¥** adapted to P. Let S € S;. We denote
CSign,(P)(y) for y € S by CSign,(P)(S), using Proposition 2.2.21.



2.2. CYLINDRICAL ALGEBRAIC DECOMPOSITION 103

Let (I)(Y) = (QIXI) (QQXQ) Ce (Qka)F(Yl, Ce ,Yg, Xl, Ce ,Xk),
where F'(Xy,...,Xy) is quantifier free, Q; € {3,V}, be a P-formula.
Let £ is the union of cells S of 8§, such that

(Qioy € CSign,(P)(9)) (Qeoz € 01) ... (Qk ok € ox—1) F* (o) = True.

Then
R(®,R) ={y e R | ®(y)} = L.

So we are not far from quantifier elimination.

However, a union of cells of a cylindrical decomposition in R is not
necessarily the realization of a C<,(P)-quantifier free formulas, where
C<e(P) =
U<, Ci(P). So a cylindrical decomposition does not always provide
a C<¢(P)-quantifier free formula equivalent to ®. We give an example
of this situation:

Example 2.2.28 Continuing Example 2.2.14 b), we consider P =
{P,Q} with

and

Q=X; — (X1 +2)(X; = 1)(X; = 3).
We have seen in Example 2.2.14 b) that

Cl(p) = {Av B, C}v

with
A(Xl) = Sro(P, ;TP) = 4X1(X1 + 1)(X1 — 2),
0
BIX) = (@, 515) = 40X +2)(X1 = (X 3
and

C(Xl) = Sro(P, Q) = (—X12 - 3X1 —|— 6)2

. 2 . . .
The zero sets of P and () in R” are two cubic curves with no inter-
section.

This can be checked algebraically. The roots of (—X7 — 3X; + 6)?,
— 1 — 1
which is the resultant of P and (), are a = 73 + 5\/ 33and b= 73 — 5\/ 33.
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Substituting these values in P and ) gives polynomials of degree 2
without real roots.
The only subset of R defined by sign conditions on C;(P) are

{-1,0}={z e R | A(z) =0A B(z) > 0AC(z) > 0},
(—1,0)U (3, +o0)={z € R | A(z) > 0A B(z) > 0A C(x) > 0},
(=2,-1)U(0,1)=H{zeR | A(x) <O0A B(x) >0AC(x) >0},

{3} ={zeR|A(z) >0AB(z)=0AC(z) > 0},

{=2,1} ={x e R | A(z) <O0A B(x) =0A C(x) > 0},

{2} ={2eR|A(z)=0A B(z) <0AC(z) > 0},
(2,3)={reR|A(z) >0AB(z) < 0AC(x) > 0},
(—o0,—2)U(1,2)\{a,b} ={z e R | A(x) < OANB(z) < 0AC(x) > 0},
{a,b} ={z e R| A(z) < OAB(z) < 0AC(z)=0}.

The set
{zeR|JyeR Pa,y) <OAQ(z,y) >0} = (2,+00)

is the union of semi-algebraically connected components of semi-algebraic
sets defined by sign conditions on C{(P), but is not defined by any
C1(P)-quantifier free formula. There are P-formulas whose realization
set cannot be described by Cy(P)-quantifier free formulas.

Fortunately, closing the set of polynomials under differentiation be-
fore each application of elimination of a variable provides an extended
cylindrifying family whose realization of sign conditions are the cells of
a cylindrical decomposition.

2.3 Existential theory of the reals

The decision problem for the existential theory of the reals is
to decide the truth or falsity of a sentence

(3X)) ... BX,) F(X1,.... X0,

where F\(Xy,...,X}) is a quantifier free formula in the language of
ordered fields with coefficients in a real closed field R. This problem
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is equivalent to deciding whether or not a given semi-algebraic set is
empty. It is a special case of the general decision problem.

When done by the Cylindrical Decomposition Algorithm, deciding
the existential theory of the reals has complexity doubly exponential in
k, the number of variables. But the existential theory of the reals has a
special logical structure, since the sentence to decide has a single block
of existential quantifiers. We take advantage of this special structure
to find an algorithm which is singly exponential in k.

Our method for solving the existential theory of the reals is to com-
pute the set of realizable sign conditions of the set of polynomials P
appearing in the quantifier free formula F'.

We first consider the case of a single polynomial.

2.3.1 One polynomial

We are going to describe a method for finding at least one point in
every semi-algebraically connected component of an algebraic set.

The field of Puiseux series which os an important example of a
non-archimedean real closed field containing R plays a key role in this
method.

The collection of Puiseux series in ¢ with coefficients in R will be
a real closed field containing the field R(e) of rational functions in the
variable ¢ ordered by 04 (see Notation ??). In order to include in our
field roots of equations such as X% —¢ = 0, we introduce rational expo-
nents such as £'/2. This partially motivates the following definitions.

Let ¢ a variable. The ring of formal power series in ¢ with
coefficients in R, denoted R[[¢]], consists of series of the form

=) ac, (2.3)

i>0

with ¢ € N, a; € R. Its field of quotients, denoted R((¢)), is called the
field of formal Laurent series in ¢ with coefficients in R and
consists of series of the form

=) ac, (2.4)

1>k
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with k € Z,1 € Z, a; € R.
A Puiseux series in ¢ with coefficients in R is a series of the
form

a=Y age’? (2.5)
i>k

with k € Z,1 € Z,a; € R, g a positive integer. Puiseux series are formal
Laurent series in the indeterminate '/7 for some positive integer ¢. The
field of Puiseux series in ¢ with coefficients in R is denoted R{(¢)).

These series are formal in the sense that there is no assertion of
convergence; ¢ is simply an indeterminate. We do assume that the
different symbols &”, r € Q, satisfy

eMel2 = 57’1+7’27
(57’1)7’2 — 57’17’27
eV =1.

Hence any two Puiseux series,

a = Z Cli@i/ql 5 g = Z b]‘afj/q2, (26)
12k2

i>k

can be written as formal Laurent series in ¢!/9, where ¢ is the least
common multiple of ¢; and ¢,. Thus, it is clear how to add and multiply
two Puiseux series. Also, any finite number of Puiseux series can be
written as formal Laurent series in /7 with a common g.

If
@ =ae™ +ax™ +... € R{(e)),

(with @y # 0 and 7y < ry < ...), then the order of @, denoted o(a), is
r1. By convention, the order of 0 is co. This function from R{(¢)) to

Q U {oo} satisfies

(@b) = o(@) + o(b).

o(@+ b) > min(o(@), o(b)), with equality if o(@) # o(b).

Q
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It is a straightforward exercise to verify that R{(¢)) is a field. We
make R((g)) an ordered field by defining a Puiseux series @ to be positive
if the coefficient of e?® is positive. It is clear that the field of rational
functions R(e) equipped with the order 0, is a subfield of the ordered
field of Puiseux series R{(g)), using Laurent’s expansions about 0.

In this order, ¢ is infinitesimal over R, since it is positive and smaller
than any positive r € R, since r —e > 0. Hence, R((¢)) is a non-
archimedean field. This is the reason why we have chosen to name the
indeterminate ¢ rather than some more neutral X.

Theorem 2.3.1 Let R be a real closed field. Then, the field R((g)) is

real closed.

We denote by R(e) the subfield of R((¢)) of algebraic Puiseux
series, which consists of those elements that are algebraic over R(e),
i.e. that satisfy a polynomial equation with coefficients in R(e).

Corollary 2.3.2 When R is real closed, R(e) is real closed. The field
R{e) is the real closure of R(e) equipped with the order 0.

We first explain how to associate to a possibly unbounded alge-
braic set Z C R* a bounded algebraic set Z’ C R<€>k+1, whose semi-
algebraically connected components are closely related to those of Z.

Let Z = 7(Q,R*) and consider

7' =UQ+ ((XT + .+ Xi) = DR,

The set 7’ is the intersection of the sphere S* of center 0 and radius —

€
with a cylinder based on the extension of Z to R{e). The intersection
of 7’ with the hyperplane X;.; = 0 is the intersection of Z with the

sphere S*=! of center 0 and radius —. Denote by 7 the projection from

R(e)*" to R(e)¥, )

Proposition 2.3.3 Let N be a finite number of points meeting every
semi-algebraically connected component of 7Z'. Then w(N) meets every
semi- algebraically connected component of the extension Ext(Z', R{e))

of Z' to R(e).
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Proof : Let D asemi-algebraically connected components of Z. If D is
bounded, Ext(D,R(e)) does not intersect S¥~1, and 7 =1 (Ext(D, R(e)))
is semi-algebraically homeomorphic to two copies of Ext(D, R(e)), one
in each half-space defined by X1 = 0. Thus, since N intersects every
semi-algebraically connected component of Z’, N intersects 7' (Ext(D, R{¢)))
and 7(N) intersects Ext(D, R(e)).

If D is unbounded, the set A of elements » € R such that D in-
tersects the sphere S*71(0,r) of center 0 and radius r is semi-algebraic

and unbounded and contains an open interval (a,+o00). Thus — €
€

Ext(A, R(g)), and Ext(D, R(c)) intersects S5, Take z € Ext(D,R{e))N
Sk=1 and denote by D’ be the semi-algebraically connected component
of 7' containing z' = (z,0) € Z'. Take € D' N and consider a semi-
algebraic path v connecting z’ to « inside D’. Then, 7(v) is a semi-
algebraic path connecting z to m(x) inside Z, thus 7(«) and z belong
to the same semi-algebraically connected component of Ext(Z,R(e)).
Since z € Ext(D,R(e)), n(x) € Ext(D,R(e)), and 7(N) intersects
Ext(D, R{e)). 0

Let us illustrate this result. If Q = X3 — X;(X; — 1)(X; + 1), then
7 = 7(Q,R?) is a cubic curve with one bounded semi-algebraically
connected component and one unbounded semi-algebraically connected
component.

The corresponding Z’ C R(e)” has two semi-algebraically connected
components above the bounded semi-algebraically connected of the cu-
bic curve, and one semi-algebraically connected component above the
unbounded semi-algebraically connected of the cubic curve.

So, if we have a method for finding a point in every semi-algebraically
connected component of a bounded algebraic set, we obtain immedi-
ately, using Proposition 2.3.3, a method for finding a point in every
connected component of an algebraic set. Note that these points have
coordinates in the extension R(e) rather than in the real closed field
R we started with. However, the extension from R to R(e) preserves
semi-algebraically connected components.

We are going to define X;-pseudo-critical points of Z(Q), Rk) when
Z(Q,Rk) is a bounded algebraic set. These pseudo-critical points are
a finite set of points meeting every semi-algebraically connected com-
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ponent of Z(Q,Rk). They are the limits of the critical points of the
projection to the X; coordinate of a bounded nonsingular algebraic
hypersurface defined by a particular infinitesimal perturbation of the
polynomial (). Moreover, the equations defining the critical points of
the projection on the X; coordinate on the perturbed algebraic set have
the special algebraic structure considered in Proposition ?7.

Given a polynomial () € R[X,..., X}] we define tdegy (@), the
total degree of () in X;, as the maximal total degree of the monomials
in () containing the variable X;.

Notation 2.3.4 Let d = (d,,...,dy),

Gi(d,c) = ™(XP + o+ X+ X2 oo+ XP) = (2 — 1), (2.7)
Def(Q. d.c,() = (Gr(d, c) + (1 — ()Q. (2.8)

Note that ¥V = € B(0,1/¢), Gy(d, ¢)(x) < 0.

In the next pages, the polynomial @) € D[X;,..., X;], where D is
a ring contained in the real closed field R, and (di,...,dy) satisfy the
following conditions:

Q(x) > 0 for every = € R,
7(Q,R*) C B(0,1/¢) for some ¢ < 1,¢ € D,
dy > dy--- = dy,

deg(Q) < dy, tdegy, (Q) < d;, for i =2,... k.

Remark 2.3.5 Note that supposing Q(z) > 0 for every z € R is not
a big loss of generality since we can always replace @ by Q2 if it is not
the case. Note also that we can always take

dy = ... =dj = deg(Q).

However considering different d; will be useful when the degree with
respect to some variables is small.

Let d; be an even number > d;,i = 1,...,k, and d = (d,, ..., dy).
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Proposition 2.3.6 The algebraic set Z(Def(Q, d, ¢, (), R<§>k) is a non-
singular algebraic hypersurface bounded over R contained in B(0,1/¢),
and

limg(Z(Def(Q, d. ¢, (), R(()")) = Z(Q, RF).

Notation 2.3.7 Let d = (di,...,d;), and using Notation 2.3.4, con-
sider the polynomial system

aDef(Qv J? ) C) aDef(Q7 J’ % C) }
X, Y Xy '
(2.9)

Cr(Q, d, e,¢) = {Def(Q, d, ¢, ),

Definition 2.3.8 An X;-pseudo-critical point on 7Z(Q,R") is the
lim¢ of an X;-critical point on Z(Def(Q, d, ¢, (), R<§>k)

An X;-pseudo-critical value on Z(Q, R¥) is the projection to the
Xj-axis of an Xj-pseudo-critical point on Z(Q, R¥) .

According to Definition 2.3.8, an X;-pseudo-critical point of Z(Q, R")
is the lim, of an Xj-critical point on

Z(Def(Q, d, ¢,¢), R(C)).

Proposition 2.3.9 The set of X -pseudo-critical points on 7(Q,R¥)
meets every semi-algebraically connected component of Z(Q,Rk).

Moreover, the polynomial system Cr(Q,d,¢,() has good algebraic
properties.

Proposition 2.3.10 1. The polynomial system Cr(Q,d,c,() is a

Grébner basis of 1(Cr(Q, d, ¢, (), R(()) for the graded lexicograph-
ical ordering with X1 >gpex **+ >grlex Xk-

2. The set Z(Cr(Q, d, ¢, (), C(C)") is finite.
3. The zeros of the polynomial system Cr(Q,d, ¢, () are simple.
We are now ready to describe an algorithm giving a point in every

connected component of a bounded algebraic set. We simply compute
pseudo-critical values and their limits.



2.3. EXISTENTIAL THEORY OF THE REALS 111

Algorithm 2.3.11 (Bounded Algebraic Sampling)

Input : a polynomial Q € D[X1,..., Xi] such that Q(x) > 0 for every
x € R* and such that Z(Q,R") is contained in B(0,¢).

Output : a set U of real univariate representations of the form

(fvgov"'vgk)vo-v

with {f,go,...,get C D[T)**% The set of points associated to
these univariate representations meets every semi-algebraically con-
nected component of 7.(Q, Rk) and contains the set of Xi-pseudo-
eritical points on 7(Q,R").

Procedure :

Choose (dy, . .., dy) such that d; > oz dy, deg(Q)) < dy, tdegy, (Q) <
di, fori=2,...,k. Take as d; the smallest even number > d;,i1 =
Lok, d=(dy, ... dg).

Compute the multiplication table M of Cr(Q, d, ¢, ().

Apply the lime map with input M, and obtain a set U of real univariate
representations v with

v=(f(T),9(T),....qx(T)), 0
{f(T),90(T),...,gx(T)} C D[TT*>.

Sketch of complexity analysis: See detailed analysis in[1]. The com-
plexity is (dy ...d;)°™" in the ring D. The polynomials output are of
degree O(dy)...O(dy) in T. O

Algorithm 2.3.12 (Algebraic Sampling)
Input : a polynomial Q € D[ Xy, ..., Xi].
Output : a set U of real univariate representations of the form

(fvgov"'vgk)vo-v

with {f,go,...,gry C DI[e][T]**2. The set of points associated
to these univariate representations meets every semi-algebraically
connected component of Z(Q,R<5>k).



112 CHAPTER 2. QUANTIFIER ELIMINATION

Procedure :

Define
R:=Q+ (e(X7+...+ X7, -1~

Apply Algorithm 2.3.11 (Bounded Algebraic Sampling) to R, and ob-

tain a set'V of real univariate representations v with

v=(f(1),90(T),...,96(T), gus:1(T)), 0
{F(T),90(T), .., gi(T), gia (T)} C DI)[TTF2.

Define m(v) by (u), with

u= (f(T)ng(T)v T 7gk(T))7 a
{f(T),90(T). ... 9e(T)} C DEJ[T]*,

and U = (V).

Sketch of omplexity analysis: See detailed analysis in [1]. The com-
plexity is (dy ...dy)°™") in the ring D[z]. The polynomials output are
of degree O(dy)...O(dy) in T. Moreover the degrees with respect to ¢
occurring in the computations of the multiplication table are bounded
by

O(dy + ... + dy—1)kdy,

2.3.2 Several polynomials

Let P = {P1,...., P} C R[Xy,...,X;]. Recall that we denote by
Sign(P) C {0,1,—1}7 the set of all realizable sign conditions for P.
We are now going to present an algorithm which computes Sign(P).
We first prove that we can reduce the problem of computing a set
of sample points meeting the realizations of every realizable sign con-
ditions of a family of polynomials to the problem of finding points in
every semi-algebraically connected component of certain algebraic sets.
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Proposition 2.3.13 Let D C R* be a non-empty semi-algebraically
connected component of a basic closed semi-algebraic set defined by

P=---=FP=0,P41>0,---,P >0.
There exists an algebraic set W defined by equations
Pp=--=P=P =P =0,

(with {i1, ... i} C{l+1,...,8}) such that a semi-algebraically con-
nected component D' of W is contained in D.

Proof: Consider a maximal set of polynomials
{P,....,P, P, ,.... P},
where
m=0or/l<iy < - <i,<s,
with the property that there exists a point p € D where

P==P=P =-=P =0.

Consider the semi-algebraically connected component D’ of the alge-
braic set defined by

PIZ"':PZ:Pilz"':P’im:(L

which contains p. We claim that D’ C D. Suppose that there exists a
point ¢ € D’ such that ¢ ¢ D. Then by Proposition ??, there exists
a semi-algebraic path v : [0,1] — D’ joining p to ¢ in D’. Denote by
¢’ the first point of the path 4 on the boundary of D. More precisely,
note that
A={tel0,1][~([0,t]) C D}

is a closed semi-algebraic subset of [0, 1] which does not contain 1. Thus
A is the union of a finite number of closed intervals

A= [O,bl] Uu...u [ag,bg].

Take ¢’ = v(b1). At least one of the polynomials, say Pj, j € {1,...,0,i1,... 1}
must be 0 at ¢’. This violates the maximality of the set

{P,....,P,P,,.... P}
It is clear that if D is bounded, D’ is bounded. a
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Corollary 2.3.14 Let D C R* be a non-empty semi-algebraically con-
nected component of a semi-algebraic set defined by

P1 :"':PZZO,PHJ >0,“',PS >0
There exists an algebraic set W C R<5>k defined by equations

Pi= =P =0,P =P, ==
(with {1, ..., im} C{l+1,...,8}) such that there exists a semi-algebraically
connected component D' of W which is contained in Ext(D,R(e)).

Proof : Consider two points  and y in D. By Proposition ??, there
is a semi-algebraic path v from 2 to y inside D. Since v is closed and
bounded, the semi-algebraic and continuous function mingyi<i<s(5)
has a strictly positive minimum on 7. The extension of the path v to
R(e) is thus entirely contained inside the subset S of R<5>k defined by

P1:“':PZ:()aPZ-I—l_5207'”7P5_520'

Thus, there is only one non-empty semi-algebraically connected com-

ponent D of S containing D. Applying Proposition 2.3.13 to D and S,

we get a semi-algebraically connected component D’ of some
PIZ"':PZ:()aPil:"'Pi =&,

m

contained in D. Then D' C Ext(D,R{e)). O

Remark 2.3.15 Corollary 2.3.14 and Algorithm 2.3.11 (Bounded Al-
gebraic Sampling), provides an algorithm outputting a set of points
meeting every semi-algebraically connected component of the realiza-
tion of a realizable sign condition of a family P of s polynomials on
a bounded algebraic set Z(Q,R*) with complexity 2°d°® (where d is
a bound on the degree of () and the P € P), considering all possible
subsets of P. Note that this algorithm does not involve polynomials of
degree doubly exponential in k, in contrast to Algorithm 2.2.15 (Cylin-
drical Decomposition).
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When s is bigger than the dimension £ of the ambient space, the
algorithm proposed in the preceding remark does not give a satisfactory
complexity bound, since the complexity is exponential in s. Reduction
to general position, using infinitesimal deformations, will be the key for
a better complexity result.

Let us define precisely the notion of general position that we con-
sider. Let

Pr=A{Pr,...., P},

where for every i = 1,...,s, P* C R[Xy,..., X] is finite, and such that
two distinct elements of P have no common zeros in R*. The family
P* is in (-general position with respect to @ € R[Xy,..., X;] in R
if no /41 polynomials belonging to different P have a zero in common
with Q in RF.

The family P* is in strong /-general position with respect to
Q € R[Xy,...,X;] in R* if moreover any ¢ polynomials belonging to
different P* have at most a finite number of zeros in common with )
in R,

When @ = 0, we simply say that P~ C R[Xj,..., X}] is in (-general
position (respectively strong f-general position) in R".

We also need the notion of a family of homogeneous polynomials
in general position in Px(C). The reason for considering common zeros
in Px(C) is that we are going to use in our proofs the fact that, in the
context of complex projective geometry, the projection of an algebraic
set is algebraic [1].

Let

Pr=APi,...., P},

where for every i = 1,...,s, Pr € R[Xo, X1,..., X;] is homogeneous.
The family P* is in /-general position with respect to a homoge-
neous polynomial Q" € R[Xo, Xi,..., X in P,(C) if no more than ¢
polynomials of P* have a zero in common with Q" in P(C).

We first give an example of a finite family of polynomials in general
position and then explain how to perturb a finite set of polynomials to
get a family in strong general position.
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Notation 2.3.16 Define
Hi(d, i) =14 Y  ¥XY,

1<j<k
Hi(d i) =X+ > X7

1<j<k
Note that when d is even, Hy(d,7)(z) > 0 for every x € R".

Lemma 2.3.17 For any positive integer d, the polynomials H]'(d,1),
0 <i < s, are in k-general position in Pr(C).

Proof: Take P(T, Xo,...,Xy) = Xo" + 2, VX4 If b+ 1 of the
HJ'(d,i) had a common zero T in Py(C), substituting homogeneous
coordinates of this common zero in P would give a nonzero univariate
polynomial in 7" of degree at most k with k& + 1 distinct roots, which is
impossible. a

Consider three variables €,4,v and R(e,d,~v). Note that ¢,d,~ are
three infinitesimals in R{e,d,v) with ¢ > § > v > 0. The reason
for using these three infinitesimals is the following. The variable ¢ is
used to get bounded sets, the variables ¢,~ are used to reach general
position, and describe sets which are closely related to realizations of
sign conditions on the original family.

Let P = {P,...,P;} C R[Xy,...,X,] be polynomials of degree
bounded by d. With d' > d, let P* be the family { P}, ..., Py} with

Pr={(1 =8P+ §Hy(d',i), (1 — §)P, — SHy(d', ),

We prove

Proposition 2.3.18 The family P* is in strong k-general position in
R(e, 8,7)".

There is a close relationship between the sign conditions on P and
certain weak sign conditions on the polynomials of P* described by the
following proposition. The role of the two infinitesimals 6 and v is the
following: ¢ is used to replace strict inequalities by weak inequalities
and ~ to replace equations by weak inequalities.
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Proposition 2.3.19 Let P = {P,..., P} C R[Xy,..., Xi] be such
that deg P; < d for all i, and suppose d' > d, d' even. Let D C RF be
a semi-algebraically connected component of the realization of the sign
condition

P =0,ielC{l,..., s},
P>0,0e{l,...,s}\ I

Then there exists a semi-algebraically connected component D' of the
subset D C R<€,5,’y>k defined by the weak sign condition

—’)/(SHk(d/,Z) S (1 — (S)PZ S ’)/(SHk(d/,Z), ? € [,

(1 — (S)PZ Z (SHk(d/,Z), ? € {1, .. .,S} \ I
EX]+-+ X)) <1
such that lim.(D') is contained in the extension of D to R{e,d).
Corollary 2.3.20 Let P = {Py,..., P} C R[Xq,..., Xi] be a finite
subset of polynomials of degree less than d and suppose d' > d, d' even.

Let D be a semi-algebraically connected component of the realization of
the sign condition

P, =0ielCA{l,...,s}
P>0,0e{l,...,s}\ I

Then there exists a semi-algebraically connected component E' of the
realization £ C R{e, 5,’y>k+1 of

ASHW(d i) < (1= 8P < A0HW(d'i), li € {1,...,s}\ [ €1,

(1—=08)P > §Hy(d', 1),

X+ XX ) =1

such that TI(lim,(E")) is contained in the extension of D to R{e,d),
where T1 is the projection of R* to R forgetting the last coordinate.
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As a consequence of Corollary 2.3.20, in order to compute all real-
izable sign conditions on P it will be enough, using Proposition 2.3.13
and Proposition 2.3.18, to consider equations of the form

Q=0Qu 4+ Q"+ (*(X{ +- + XP + X)) - 1) =0,

where 3 < k,Q;, € P~

217"

Ll < << 8,0 € Pr, to find a
point in each of the semi-algebraically connected components of their
zero sets and to take their limit under lim,.

A finite set S C R* is a set of sample points for P in R¥ if S
meets the realizations of all o € Sign(P) (Notation ?7). Note that the
sample points output by Algorithm 2.2.15 (Cylindrical Decomposition)
are a set of sample points for P in R*, since the cells of a cylindrical
decomposition of R* adapted to P are P invariant and partition RF.
We are going to produce a set of sample points much smaller than the
one output by Algorithm 2.2.15 (Cylindrical Decomposition), which
was doubly exponential in the number of variables.

Algorithm 2.3.21 (Computing Realizable Sign Conditions)
Input: a set of s polynomials,
P=AP,....,P} CD[Xy,..., X¢],
each of degree at most d.

Output: a set of real univariate representations in D[e, 8, T]**? such
that the associated points form a set of sample points for P in
R<5,5>k, meeting every semi-algebraically connected component
of R(c) for every o € Sign(P) and the signs of the elements of
P at these points.

Procedure:
Initialize U to the empty set.

Take as d' the smallest even natural number > d.
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Define

Py =A{(1=0)Pi + §H(d',1), (1 — 6) s — S Hy(d', i),
(1= 0)P; + oy Hi(d', i), (1 — 8) P — Sy Hy(d',4) }
P ={P,..., P}

for 0 <1 < s, using Notation 2.3.16.
For every subset of j <k polynomials Q;, € P,...,Q;; € P},
Let
Q=Qu" +- -+ Q"+ (P(XT 4+ XP+ X)) - )%

Fori=1,....k, let d; be the smallest even natural number >

deg(Q),i=1,....k, andlet dpyy = 6, d = (dy, ..., dy, dry1).

Compute the multiplication table M of Cr(Q,d,s,() (Notation
??).

Apply the lim, . map with input M, and obtain a sel of real
univariate representations (v, o) with

0= (1), o(T)s- ... ge(T), gun () € De, 3][T]H

Ignore gi1(T) and consider only the real univariate representa-
tions (u,0)

w = (F(1).00(T). ... u(T)) € D, d][T)+.
Add v to U,

Compute the signs of P € P at the points associated to the real uni-
variate representations in U, with input f and its derivatives and

the P,, P € P.

Sketch of complexity analysis : See detailed proof in [1]. The total

number of 7 < k-tuples examined is g 4 S . Each such call costs
4 J
i<k
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d°® arithmetic operations in D[e, §,7,(]. Since there is a fixed num-
ber of infinitesimals appearing with degree one in the input equations,
the number of arithmetic operations in D is also d°®. Thus the to-
tal number of real univariate representations produced is bounded by

Z 49 <S> O(d)k, while the number of arithmetic operations performed
i<k N
for outputting sample points in R{e, 5>k, is bounded by

5 ()

i<k N

The sign determination takes

5 () g
i<k M

arithmetic operations. a
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