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Chapter 1

Second order optimality
conditions

1.1 Hessian

From the geometric viewpoint the study of conditional optimality can be es-
sentially reduced to the study of boundary of the image of a vector-function.
Indeed, let we try to minimize a function f0(u) under conditions fi(u) = xi, i =
1, . . . ,m. Consider a vector-function F (u) = (f0(u), f1(u), . . . , fm(u)). A point
ū is a desired minimizer if and only if the intersection of the image of F with
the ray {(f0(ū) − s, x1, . . . , xm) : s ≥ 0} in Rm+1 consists of exactly one point
(f0(ū), x1, . . . , xm). In particular, if ū is a minimizer, then F (ū) belongs to the
boundary of the image of F .

We are mainly interested in optimality conditions based on the second dif-
ferential. Consider the problem in a general setting. Let

F : U → M

be a smooth mapping, where U is an open subset in a Banach space and M is
a smooth n-dimensional manifold. The first differential

DuF : Tu U → TF (u)M

is well defined independently on coordinates. This is not the case for the second
differential. Indeed, consider the case where u is a regular point for F , i.e., the
differential DuF is surjective. By implicit function theorem, the mapping F
becomes linear in suitably chosen local coordinates in U and M , thus it has no
intrinsic second differential. In the general case, well defined independently of
coordinates is only a certain part of the second differential.

The differential of a smooth mapping F : U → M can be defined via the
first order derivative

DuF v =
d

d ε

∣∣∣∣
ε=0

F (ϕ(ε)) (1.1)
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along a curve ϕ : (−ε0, ε0) → U with the initial conditions

ϕ(0) = u ∈ U , ϕ̇(0) = v ∈ Tu U .

In local coordinates, this derivative is computed as

d F

d u
ϕ̇, ϕ̇ = ϕ̇(0).

In other coordinates q̃ in M , derivative (1.1) is evaluated as

d F̃

d u
ϕ̇ =

d q̃

d q

d F

d u
ϕ̇.

Coordinate representation of the first order derivative (1.1) transforms under
changes of coordinates as a tangent vector to M — it is multiplied by the

Jacobian matrix
d q̃

d q
.

The second order derivative

d2

d ε2

∣∣∣∣
ε=0

F (ϕ(ε)), (1.2)

ϕ(0) = u ∈ U , ϕ̇(0) = v ∈ Tu U ,

is evaluated in coordinates as

d2 F

d u2
(ϕ̇, ϕ̇) +

d F

d u
ϕ̈.

Transformation rule for the second order directional derivative under changes
of coordinates has the form:

d2 F̃

d u2
(ϕ̇, ϕ̇) +

d F̃

d u
ϕ̈ =

d q̃

d q

[
d2 F

d u2
(ϕ̇, ϕ̇) +

d F

d u
ϕ̈

]
+

d2 q̃

d q2

(
d F

d u
ϕ̇,

d F

d u
ϕ̇

)
. (1.3)

The second order derivative (1.2) transforms as a tangent vector in TF (u)M only
if ϕ̇ = v ∈ KerDuF , i.e., if term (1.3) vanishes. Moreover, it is determined by u

and v only modulo the subspace Im DuF , which is spanned by the term
d F

d u
ϕ̈.

Thus intrinsically defined is the quadratic mapping

KerDuF → TF (u)M/ Im DuF,

v 7→ d2

d ε2

∣∣∣∣
ε=0

F (ϕ(ε)) mod Im DuF. (1.4)

After this preliminary discussion, we turn to formal definitions.
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The Hessian of a smooth mapping F : U → M at a point u ∈ U is a
symmetric bilinear mapping

Hessu F : Ker DuF ×KerDuF → CokerDuF = TF (u)M/ Im DuF. (1.5)

In particular, at a regular point CokerDuF = 0, thus Hessu F = 0. Hessian is
defined as follows. Let

v, w ∈ KerDuF

and
λ ∈ (Im DuF )⊥ ⊂ T ∗

F (u)M.

In order to define the value

λ Hessu F (v, w),

take vector fields

V, W ∈~U , V (u) = v, W (u) = w,

and a function
a ∈ C∞(M), dF (u)a = λ.

Then
λ Hessu F (v, w) def= V ◦W (a ◦ F )|u . (1.6)

We show now that the right-hand side does not depend upon the choice of
V , W , and a. The first Lie derivative is

W (a ◦ F ) = 〈dF (·)a, F∗W (·)〉,

and the second Lie derivative V ◦W (a ◦ F )|u does not depend on second deriva-
tives of a since F∗W (u) = 0. Moreover, the second Lie derivative obviously
depends only on the value of V at u but not on derivatives of V at u. In or-
der to show the same for the field W , we prove that the right-hand side of the
definition of Hessian is symmetric w.r.t. V and W :

(W ◦ V (a ◦ F )− V ◦W (a ◦ F ))|u = [W,V ] (a ◦ F )|u = dF (u)a︸ ︷︷ ︸
=λ

◦DuF [W,V ](u)

= 0

since λ ⊥ Im DuF . We showed that the mapping Hessu F given by (1.6) is
intrinsically defined independently of coordinates as in (1.5).

Exercise 1.1. Show that the quadratic mapping (1.4) defined via the second
order directional derivative coincides with Hessu F (v, v).

If we admit only linear changes of variables in U , then we can correctly define
the full second differential

D2
uF : Ker DuF ×KerDuF → TF (u)M
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in the same way as Hessian (1.6), but the covector is arbitrary:

λ ∈ T ∗
F (u)M,

and the vector fields are constant:

V ≡ v, W ≡ w.

The Hessian is the part of the second differential independent on the choice of
linear structure in the preimage.

Exercise 1.2. Compute the Hessian of the restriction F |f−1(0) of a smooth
mapping F to a level set of a smooth function f . Consider the restriction of a
smooth mapping F : U → M to a smooth hypersurface S = f−1(0), f : U → R,
df 6= 0, and let u ∈ S be a regular point of F . Prove that the Hessian of the
restriction is computed as follows:

λ Hessu (F |S) = λD2
uF − d2

uf, λ ⊥ Im Du F |S , λ ∈ T ∗
F (u)M \ {0},

and the covector λ is normalized so that

λDuF = duf.

1.2 Local openness of mappings

A mapping F : U → M is called locally open at a point u ∈ U if

F (u) ∈ intF (Ou)

for any neighborhood Ou ⊂ U of u. In the opposite case, i.e., when

F (u) ∈ ∂F (Ou)

for some neighborhood Ou, the point u is called locally geometrically optimal
for F .

A point u ∈ U is called locally finite-dimensionally optimal for a mapping F
if for any finite-dimensional smooth submanifold S ⊂ U , u ∈ S, the point u is
locally geometrically optimal for the restriction F |S .

1.2.1 Critical points of corank one

Corank of a critical point u of a smooth mapping F is by definition equal to
corank of the differential DuF :

corankDuF = codim Im DuF.

In the sequel we will often consider critical points of corank one. In this case
the Lagrange multiplier

λ ∈ (Im DuF )⊥, λ 6= 0,
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is defined uniquely up to a nonzero factor, and

λ Hessu F : Ker DuF ×KerDuF → R

is just a quadratic form (in the case corankDuF > 1, we should consider a
family of quadratic forms).

Now we give conditions of local openness of a mapping F at a corank one
critical point u in terms of the quadratic form λ Hessu F .

Theorem 1.1. Let F : U → M be a continuous mapping having smooth re-
strictions to finite-dimensional submanifolds of U . Let u ∈ U be a corank one
critical point of F , and let λ ∈ (Im DuF )⊥, λ 6= 0.

(1) If the quadratic form λ Hessu F is sign-indefinite, then F is locally open
at u.

(2) If the form λ Hessu F is negative (or positive), then u is locally finite-
dimensionally optimal for F .

Remark. A quadratic form is locally open at the origin iff it is sign-indefinite.

Proof. The statements of the theorem are local, so we fix local coordinates in
U and M centered at u and F (u) respectively, and assume that U is a Banach
space and M = Rn.

(1) Consider the splitting into direct sum in the preimage:

Tu U = E ⊕KerDuF, dim E = n− 1, (1.7)

and the corresponding splitting in the image:

TF (u)M = Im DuF ⊕ V, dim V = 1. (1.8)

The quadratic form λ Hessu F is sign-indefinite, i.e., it takes values of both
signs on KerDuF . Thus we can choose vectors

v, w ∈ KerDuF

such that
λF ′′

u (v, v) = 0, λF ′′
u (v, w) 6= 0,

we denote by F ′, F ′′ derivatives of the vector function F in local coordinates.
Since the first differential is an isomorphism:

DuF = F ′
u : E → Im DuF = λ⊥,

there exists a vector x0 ∈ E such that

F ′
ux0 = −1

2
F ′′

u (v, v).
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Introduce the following family of mappings:

Φε : E × R → M, ε ∈ R,

Φε(x, y) = F (ε2v + ε3yw + ε4x0 + ε5x), x ∈ E, y ∈ R,

notice that
Im Φε ⊂ Im F

for small ε. Thus it is sufficient to show that Φε is open. The Taylor expansion

Φε(x, y) = ε5(F ′
ux + yF ′′

u (v, w)) + O(ε6), ε → 0,

implies that the family 1
ε5 Φε is smooth w.r.t. parameter ε at ε = 0. For ε = 0

this family gives a surjective linear mapping. By implicit function theorem, the
mappings 1

ε5 Φε are submersions, thus are locally open for small ε > 0. Thus
the mapping F is also locally open at u.

(2) Take any smooth finite-dimensional submanifold S ⊂ U , u ∈ S. Similarly
to (1.7), (1.8), consider the splittings in the preimage:

S ∼= TuS = L⊕KerDu F |S ,

and in the image:

M ∼= TF (u)M = Im Du F |S ⊕W,

dim W = k = corank Du F |S ≥ 1.

Since the differential DuF : E → Im DuF is an isomorphism, we can choose,
by implicit function theorem, coordinates (x, y) in S and coordinates in M such
that the mapping F takes the form

F (x, y) =
(

x
ϕ(x, y)

)
, x ∈ L, y ∈ KerDu F |S .

Further, we can choose coordinates ϕ = (ϕ1, . . . , ϕk) in W such that

λF (x, y) = ϕ1(x, y).

Now we write down hypotheses of the theorem in these coordinates. Since
Im Du F |S ∩W = {0}, then

D(0,0)ϕ1 = 0.

Further, the hypothesis that the form λ Hessu F is negative reads

∂2 ϕ1

∂ y2

∣∣∣∣
(0,0)

< 0.

Then the function
ϕ1(0, y) < 0 for small y.

Thus the mapping F |S is not locally open at u.
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There holds the following statement, which is much stronger than the pre-
vious one.

Theorem 1.2 (Generalized Morse’s lemma). Suppose that u ∈ U is a
corank one critical point of a smooth mapping F : U → M such that Hessu F
is a nondegenerate quadratic form. Then there exist local coordinates in U and
M in which F has only terms of the first and second orders:

F (x, v) = DuF x +
1
2

Hessu F (v, v),

(x, v) ∈ U ∼= E ⊕KerDuF.

We do not prove this theorem since it will not be used in the sequel.

1.2.2 Critical points of arbitrary corank

The necessary condition of local openness given by item (1) of Theorem 1.1 can
be generalized for critical points of arbitrary corank.

Recall that positive (negative) index of a quadratic form Q is the maximal
dimension of a positive (negative) subspace of Q:

ind+ Q = max
{

dim L | Q|L\{0} > 0
}

,

ind− Q = max
{

dim L | Q|L\{0} < 0
}

.

Theorem 1.3. Let F : U → M be a continuous mapping having smooth re-
strictions to finite-dimensional submanifolds. Let u ∈ U be a critical point of F
of corank m. If

ind− λ Hessu F ≥ m ∀ λ ⊥ Im DuF, λ 6= 0,

then the mapping F is locally open at the point u.

Proof. First of all, the statement is local, so we can choose local coordinates
and assume that U is a Banach space and u = 0, and M = Rn with F (0) = 0.

Moreover, we can assume that the space U is finite-dimensional, now we
prove this. For any λ ⊥ Im DuF , λ 6= 0, there exists a subspace

Eλ ⊂ U , dim Eλ = m,

such that
λ Hessu F |Eλ\{0} < 0.

We take λ from the unit sphere

Sm−1 =
{

λ ∈ (Im DuF )⊥ | |λ| = 1
}

.
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For any λ ∈ Sm−1, there exists a neighborhood Oλ ⊂ Sm−1, λ ∈ Oλ, such
that Eλ′ = Eλ for any λ′ ∈ Oλ, this easily follows from continuity of the form
λ′ Hessu F on the unit sphere in Eλ. Choose a finite covering:

Sm−1 =
N⋃

i=1

Oλi
.

Then restriction of F to the finite-dimensional subspace
∑N

i=1 Eλi satisfies the
hypothesis of the theorem. Thus we can assume that U is finite-dimensional.
Then the theorem is a consequence of the following Lemmas 1.1 and 1.2.

Lemma 1.1. Let F : RN → Rn be a smooth mapping, and let F (0) = 0.
Assume that the quadratic mapping

Q = Hess0 F : Ker D0F → CokerD0F

has a regular zero:

∃ v ∈ KerD0F s.t. Q(v) = 0, DvQ surjective.

Then the mapping F has regular zeros arbitrarily close to the origin in RN .

Proof. We modify slightly the argument used in the proof of item (1) of Theo-
rem 1.1. Decompose preimage of the first differential:

RN = E ⊕KerD0F, dim E = n−m,

then the restriction
D0F : E → Im D0F

is one-to-one. The equality Q(v) = Hess0 F (v) = 0 means that

F ′′
0 (v, v) ∈ Im D0F.

Then there exists x0 ∈ E such that

F ′
0x0 = −1

2
F ′′

0 (v, v).

Define the family of mappings

Φε(x, y) = F (ε2v + ε3y + ε4x0 + ε5x), x ∈ E, y ∈ KerD0F.

The first four derivatives of Φε vanish at ε = 0, and we obtain the Taylor
expansion

1
ε5

Φε(x, y) = F ′
0x + F ′′

0 (v, y) + O(ε), ε → 0.

Then we argue as in the proof of Theorem 1.1. The family 1
ε5 Φε is smooth and

linear surjective at ε = 0. By implicit function theorem, the mappings 1
ε5 Φε are

submersions for small ε > 0, thus they have regular zeros in any neighborhood of
the origin in RN . Consequently, the mapping F also has regular zeros arbitrarily
close to the origin in RN .
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Lemma 1.2. Let Q : RN → Rm be a quadratic mapping such that

ind− λQ ≥ m ∀ λ ∈ Rm∗, λ 6= 0.

Then the mapping Q has a regular zero.

Proof. We can assume that the quadratic form Q has no kernel:

Q(v, ·) 6= 0 ∀ v 6= 0. (1.9)

If this is not the case, we factorize by kernel of Q. Since DvQ = 2Q(v, ·),
condition (1.9) means that DvQ 6= 0 for v 6= 0.

Now we prove the lemma by induction on m.
In the case m = 1 the statement is obvious: a sign-indefinite quadratic form

has a regular zero.
Induction step: we prove the statement of the lemma for any m > 1 under

the assumption that it is proved for all values less than m.

(1) Suppose first that Q−1(0) 6= 0. Take any v 6= 0 such that Q(v) = 0. If
v is a regular point of Q, then the statement of this lemma follows. Thus we
assume that v is a critical point of Q. Since DvQ 6= 0, then

rank DvQ = k, 0 < k < m.

Consider Hessian of the mapping Q:

Hessv Q : Ker DvQ → Rm−k.

The second differential of a quadratic mapping is the doubled mapping itself,
thus

λ Hessv Q = 2 λQ|Ker DvQ .

Further, since ind− λQ ≥ m and codim KerDvQ = k, then

ind− λ Hessv Q = ind− λQ|Ker DvQ ≥ m− k.

By the induction assumption, the quadratic mapping Hessv Q has a regular zero.
Then Lemma 1.1 applied to the mapping Q yields that Q has a regular zero as
well. The statement of this lemma in case (1) follows.

(2) Consider now the second case: Q−1(0) = 0.
(2.a) It is obvious that Im Q is a closed cone.
(2.b) Moreover, we can assume that Im Q \ {0} is open. Indeed, suppose

that there exists
x = Q(v) ∈ ∂ Im Q, x 6= 0.

Then v is a critical point of Q, and in the same way as in case (1) the induction
assumption for Hessv Q yields that Hessv Q has a regular zero. By Lemma 1.1,
Q is locally open at v and Q(v) ∈ int Im Q. Thus we assume in the sequel that
Im Q \ {0} is open. Combined with item (a), this means that Q is surjective.
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(2.c) We show now that this property leads to a contradiction which proves
the lemma.

The smooth mapping

Q

|Q|
: SN−1 → Sm−1, v 7→ Q(v)

|Q(v)|
, v ∈ SN−1,

is surjective. By Sard’s theorem, it has a regular value. Let x ∈ Sm−1 be a
regular value of the mapping Q/|Q|.

Now we proceed as follows. We find the minimal a > 0 such that

Q(v) = ax, v ∈ SN−1,

and apply optimality conditions at the solution v0 to show that ind− λQ ≤ m−1,
a contradiction.

So consider the following finite-dimensional optimization problem with con-
straints:

a → min, Q(v) = ax, a > 0, v ∈ SN−1. (1.10)

This problem obviously has a solution, let a pair (v0, a0) realize minimum. We
write down first- and second-order optimality conditions for problem (1.10).
There exist Lagrange multipliers

(ν, λ) 6= 0, ν ∈ R, λ ∈ T ∗
a0xRm,

such that the Lagrange function

L(ν, λ, a, v) = νa + λ(Q(v)− ax)

satisfies the stationarity conditions:

∂ L
∂ a

= ν − λx = 0, (1.11)

∂ L
∂ v

∣∣∣∣
(v0,a0)

= λDv0Q|SN−1 = 0.

Since v0 is a regular point of the mapping Q/|Q|, then ν 6= 0, thus we can set

ν = 1.

Then second-order necessary optimality condition for problem (1.10) reads

λ Hessv0 Q|SN−1 ≥ 0. (1.12)

Recall that Hessian of restriction of a mapping is not equal to restriction of
Hessian of this mapping, see Exercise 1.2 above.

Exercise 1.3. Prove that

λ (Hessv Q|SN−1) (u) = 2(λQ(u)− |u|2λQ(v)),

v ∈ SN−1, u ∈ KerDv Q|SN−1 .
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That is, inequality (1.12) yields

λQ(u)− |u|2λQ(v0) ≥ 0, u ∈ KerDv0 Q|SN−1 ,

thus
λQ(u) ≥ |u|2λQ(v0) = |u|2a0λx = |u|2a0ν = |u|2a0 > 0,

i.e.,
λQ(u) ≥ 0, u ∈ KerDv0 Q|SN−1 .

Moreover, since v0 /∈ Tv0S
N−1, then

λQ|L ≥ 0, L = KerDv0 Q|SN−1 ⊕ Rv0.

Now we compute dimension of the nonnegative subspace L of the quadratic

form λQ. Since v0 is a regular value of
Q

|Q|
, then

dim Im Dv0

Q

|Q|
= m− 1.

Thus Im Dv0 Q|SN−1 can have dimension m or m− 1. But v0 is a critical point
of Q|SN−1 , thus

dim Im Dv0 Q|SN−1 = m− 1

and
dim Ker Dv0 Q|SN−1 = N − 1− (m− 1) = N −m.

Consequently, dim L = N − m + 1, thus ind− λQ ≤ m − 1, which contradicts
the hypothesis of this lemma.

So case (c) is impossible, and the induction step in this lemma is proved.

Theorem 1.3 is completely proved.


