
MICROPROCESSOR LABORATORY

African Regional Course on Advanced VLSI Design
Techniques

24 November - 12 December 2003

Kumasi - Ghana

Exercise 6

Design of a Serial Hex Combination Lock Chip

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 1

Problem Description

In this exercise a serial combination electronic lock chip is designed starting from the
specifications. This design exercise was inspired by the example of a simple
combination lock given in the book, The Art of Digital Design, “An Introduction to
Top Down Design”, by, Franklin P. Prosser & David E. Winkel, Prentice Hall Inc.,
Chapter 5. In this design example you will learn to:
• Specify the characteristics of the lock starting from scratch as an Algorithmic

State Machine (ASM).
• Describe the behaviour of the lock’s ASM in Alliance fsm language and generate

the behavioural description of the ASM.
• Add the architectural blocks to the generated behavioural description and simulate

the design.
• Generate the structural description of the chip.
• Place the necessary pads and re-simulate the structural description.
• Synthesise the layout of the chip.
• Extract the circuit from the layout.
• Extract the behavioural description from the netlist and compare with the original

behaviour file we created, to complete formal verification.

In this design example you will:
• Describe the ASM using Alliance fsm language putting an output for each state so

as to debug the machine (elock.fsm).
• Generate the behavioural file using Syf (elocks.vbe).
• Write test pattern files for simulation and validation.
• Simulate the behavioural description of the ASM with the pattern file by using

Asimut.
• Copy the elock.fsm file to the lock.fsm file and remove the outputs for the states.
• Generate the behavioural file using Syf (locks.vbe).
• Copy locks.vbe to lock.vbe and add the architectural blocks to the behavioural

description (lock.vbe).
• Re-simulate the behavioural description with the architectural blocks using

Asimut.
• Synthesise the logic and structural descriptions using Bop and Scmap (lockl.vst).
• Use Glop to add buffers to adjust critical paths and fanouts (lockopt.vst).
• Use the Standard Cell Router, Scr to place and route the core (lockopt.ap).
• Add the necessary pads for the chip and compile using Genlib (lockchip.vst).
• Use Asimut to simulate the ‘lockchip.vst’ file with the pattern file developed

earlier.
• Place the pads and generate the layout of the chip with pads using Ring

(lockchip.ap).
• Use Tas to perform the static timing analysis.
• Use Lynx to extract the netlist from the layout file ‘lockchip.ap’ (lockchip.al).
• Use Lvx to compare the extracted circuit ‘lockchip.al’ and the original

‘lockchip.vst’ file created by Genlib.
• Use Yagle to extract the behaviour, ‘lockchip.vbe’ from the ‘lockchip.al’ netlist

file.
• Use Proof to compare the extracted behaviour file, ‘lockchip.vbe’ and the

behavioural file created in the first phase, ‘lock.vbe’.

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 2

Fig 1. Design flow for the Hex Combination Lock

Proof

lockchip.al

Scr

 T ext Editor
Fsm Description
of Controller of

 lock chip
with state outputs

 for each state
 (elock.fsm)

Yagle

lockchip.vbe

 T ext Editor
Add architectural
Blocksn to the fsm

 behavioural
 file locks.vbe core

 description
(lock.vbe)

Bop & Scmap

lockl.vst

 T ext Editor
Genlib Language
Descript ion of

connectivity
between

Pads & core
 (lockchip.c)

Genlib

lockchip.vst

Ring

 T ext Editor
Relative
posit ion
of Pads

(lockchip.rin)

lockchip.ap

T ext Editor
T est Vectors using
Genpat Language

(filename.c)

Genpat

lockchip.pat

 T ext Editor
Modify T est

Vectors
(lockchip.pat)

Asimut

Lynx

Graal

lockchip.alLvx

filename.pat
(to be checked

for correct
functionality)

S2r

lockchip.cif
(Chip ready
for foundry)

lockopt.ap

Glop

lockopt.vst

T ext Editor
(lockchip.inf)

Syf

elockr.vbe

 T ext Editor
Fsm Descript ion of

Controller of lock chip
without state outputs

for each state
 (lock.fsm)

T ext Editor
T est Vectors for fsm

using Genpat
Language
(elocks.c)

Genpat

elocks.pat

Asimut

Syf

lockr.vbe

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 3

A Serial Combination Lock

Background:
We build in this exercise an electronic version of a mechanical combination

lock that is available in the market.

Mechanical locks come in two flavours, parallel and serial. A parallel
combination lock is a suitcase type of lock, where there are 3 to 4 disks that can be
rotated independently to the correct combination. A serial lock is dial type of lock that
comes on safety lockers in banks: a single dial is rotated through a sequence of
numbers in the correct order. Any wrong number requires that, the procedure of
entering the numbers is started all over again.

In this design example we design an electronic version of the serial
combination lock. The lock’s combination is entered in hexadecimal notation, one
digit at a time. Any wrong digit sends the lock to an error state, which requires a reset
signal to start all over.

Target System:
A “N” digit serial combination lock that lights a light when the combination is

correct. The number of digits “N” for the combination is chosen by the user. The
combination is programmed by the user.

Designing the lock’s Algorithm:
The following important design decisions are taken before the design of the

algorithm.

1. Data is entered through a hexadecimal keypad. The keypad output is a 4 bit bus
that is called “keynum[3:0]” which indicates the number that has been punched.
The keypad has a strobe signal that is called “keypress” that lasts for one cycle of
the system clock that indicates that one of the keys of the key pad has been
punched. The keypad is debounced and sends only one “keypress” signal even if
any of the keypad buttons is held down. To send another “keypress” signal, the
keypad key has to be released and pressed down again.

2. Combination is entered from left to right. A maximum of 8-digit combination is

allowed.

3. A “reset” button is provided to start over if a combination error is made. The

“reset” button is debounced.

4. A “set” button is provided to allow the user to program the combination. The “set”

button is debounced.

5. The user presses a “try” button to indicate the end of sequence entry and the

machine should check the sequence and if it matches, to command the lock to
open. The “try” signal lasts for only a clock cycle like the “keypress” signal. The
“try” button is debounced.

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 4

6. A light lights up if the sequence is correct, but does not give any information if the
sequence is wrong.

The ASM for the combination lock is shown below.

In each state the ASM checks for the “reset” or the “set” button press. A reset puts the
machine in the INIT state. The machine enters the READ_COMB state in the
following clock cycle.

In the READ_COMB, a “try” signal sends the ASM to the ERR state, whereas a
“keypress” signal compares the number punched in with that stored in the reference.
This compared signal is called the “cmpdig” signal. A successful digit comparison
allows the comparison of the next number in the sequence, but otherwise puts the
machine in the ERR state. How many numbers in the sequence should we check? We
have a counter to keep track of the number of digits entered in a sequence. In our lock
design we use a 3 bit counter so that we can have a maximum of 8 digit sequence
combinations. As each digit is compared successfully we increment the counter, until
it reaches the count of “N”. The reference digit is function of the counter’s output,
and as each digit is compared successfully, the reference digit is updated to the next
digit in the sequence to be compared. The number of digits to be compared “N” is
tested and given out as a “cmpnum” signal. This is comparison of the counter’s output
and a register that stores the number “N”. When the counter reaches a terminal count
equal to “N” after all successful digit comparison operation, the machine goes to the
TEST state.

In the TEST state, a “keypress signal” send the machine to the ERR state. The test for
the “keypress” signal is included in this state, so that even if someone arrives to the
correct combination in the sequence by luck, he does not know the number of digits to
be punched in! A “try” signal puts the machine in the state OK.

In the OK state, the “openlock” signal is validated and the lock opens. The lock closes
if the “reset” button is pressed and the machine goes back to the state INIT.

The combination sequence is stored in registers. These registers are accessed
for a read or write operation by the ASM. The ASM uses the 3 bit counter to present
the address to these registers. The reference numbers stored in these registers can be
changed by pressing the “set” button that puts the ASM in the SET_INIT state. The
number “N” is programmable and is automatically set when the user enters the
combination sequence of the lock in the SET_COMB state and then presses a “reset”
to indicate the end of the combination setting procedure.

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 5

CNT <- 0

RESET

RESET

INIT

READ
COMB

TRY

KEYPRESS

CMPDIG

CMPNUM

INIT

ERR

CNT <-
CNT + 1

RESET

INCR1

CMPDIG = T
if

NUM=REFNUM(CNT)

CMPNUM = T
if

CNT = N

SET SET
INIT

SET SET
INIT

RESET

ERR

INIT

T

T

F

T

T

F

F

T

F

T

T

F

T

F

F

T

F

F

F

TEST

Fig.2 ASM chart of the Serial Combination Lock

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 6

SET

RESET

KEYPRESS

TRY

TEST

INIT

SET
INIT

ERR

OPENLOCK

OK

SET

RESET

INIT

SET
INIT

CNT <- 0

SET
INIT

SET

SET

RESET

KEYPRESS

SET
COMB

INIT

LDNUM <- T
LDKEY <- T

CNT <-
CNT + 1

SET
SET
INIT

INCR2

SET
COMB

F

F

F

F

T

T

F

T

T

T

F

T

F

T

F

F

F

T

T

F

T

T

Fig. 2 (cont’d) ASM of the Serial Combination Lock

VSS

VDD

L
O

C
K

CK
KEYPRESS

TRY
NC

SET
OPENLOCK

RESET
KEYNUM(3)
KEYNUM(2)

KEYNUM(1)
KEYNUM(0)

NC

Fig. 3 Lock chip (a possible pinout diagram).

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 7

Solution

Legend

Give the command that appears immediately after this symbol, at the command line.

Edit and save into a file, all that appears after this symbol.

Explanation of a topic

Set the environmental variables as shown immediately after this symbol.

Creating the Design

Begin by creating a design directory, at a convenient position in your work space:

mkdir lock

Change into this directory:

cd lock

Create with the text editor a file called “elock.fsm”. Enter the following and save the
file.

 Entity elock is

 port(
 ck : in bit ;
 reset: in bit;
 try : in bit;
 keypress : in bit;
 set : in bit;
 cmpnum : in bit;
 cmpdig : in bit;
 openlock : out bit;

inccnt : out bit;
rescnt : out bit;
ldkey : out bit;
ldnum : out bit;
testflag, initflag, okflag, errflag, readflag, inc1flag,

inc2flag, setinitflag, setcombflag : out bit
);
 End elock;

 architecture auto of elock is
 type STATE_TYPE is

(INIT,READ_COMB,INC1,ERR,SET_INIT,SET_COMB,INC2,TEST,OK);

 -- pragma CLOCK ck
 -- pragma CUR_STATE CURRENT_STATE
 -- pragma NEX_STATE NEXT_STATE

 signal CURRENT_STATE, NEXT_STATE : STATE_TYPE;

 begin

 PROCESS(CURRENT_STATE,reset,try,keypress,set,cmpnum,cmpdig)
 begin
 case CURRENT_STATE is

WHEN INIT => initflag <= ’1’;
if (set=’1’) then

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 8

NEXT_STATE <= SET_INIT;
rescnt <= ’1’;

else if (reset=’0’) then
NEXT_STATE <= INIT;
rescnt <= ’1’;

else
NEXT_STATE <= READ_COMB;

end if;
end if;

WHEN READ_COMB => readflag <= ’1’;
if (set=’1’) then

NEXT_STATE <= SET_INIT;
rescnt <= ’1’;

else if (reset=’0’) then
NEXT_STATE <= INIT;
rescnt <=’1’;

else if
(try=’1’) then
NEXT_STATE <= ERR;

else if
(keypress=’0’) then
NEXT_STATE <= READ_COMB;

else if
(cmpdig=’0’) then
NEXT_STATE <= ERR;

else if
(cmpnum=’1’) then
NEXT_STATE <= TEST;

else
NEXT_STATE<= INC1;
inccnt <= ’1’;

end if;
end if;
end if;
end if;
end if;
end if;

WHEN ERR => errflag <= ’1’;
if (set=’1’) then

NEXT_STATE <= SET_INIT;
rescnt <= ’1’;

else if (reset=’0’) then
NEXT_STATE <= INIT;
rescnt <= ’1’;

else
NEXT_STATE <= ERR;

end if;
end if;
WHEN INC1 => inc1flag <= ’1’;
if (set=’1’) then

NEXT_STATE <= SET_INIT;
else if (reset=’0’) then

NEXT_STATE <= INIT;
rescnt <= ’1’;

else
NEXT_STATE <= READ_COMB;

end if;
end if;

WHEN TEST => testflag <= ’1’;
if (set = ’1’) then

NEXT_STATE <= SET_INIT;
rescnt <= ’1’;

else if (reset=’0’) then
NEXT_STATE <= INIT;
rescnt <= ’1’;

else if
(keypress=’1’) then
NEXT_STATE <= ERR;

else if
(try = ’0’) then
NEXT_STATE <= TEST;

else
NEXT_STATE <= OK;

end if;
end if;
end if;
end if;

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 9

WHEN OK => okflag <= ’1’;
openlock <= ’1’;
if (set = ’1’) then

NEXT_STATE <= SET_INIT;
rescnt <= ’1’;

else if (reset = ’0’) then
NEXT_STATE <= INIT;
rescnt <= ’1’;

else
NEXT_STATE <= OK;

end if;
end if;

WHEN SET_INIT => setinitflag <= ’1’;
if (set = ’1’) then

NEXT_STATE <= SET_INIT;
rescnt <= ’1’;

else
NEXT_STATE <= SET_COMB;

end if;

WHEN SET_COMB => setcombflag <= ’1’;
if (set = ’1’) then

NEXT_STATE <= SET_INIT;
rescnt <= ’1’;

else if
(reset = ’0’) then
NEXT_STATE <= INIT;
rescnt <= ’1’;

else if
(keypress = ’0’) then
NEXT_STATE <= SET_COMB;

else
NEXT_STATE <= INC2;
ldnum <= ’1’;
ldkey <= ’1’;
inccnt <= ’1’;

end if;
end if;
end if;

WHEN INC2 => inc2flag <= ’1’;
if (set = ’1’) then

NEXT_STATE <= SET_INIT;
rescnt <= ’1’;

else
NEXT_STATE <= SET_COMB;

end if;

 WHEN others =>
 assert (’1’)
 report "illegal state";

 end case;
 end process;

 process(ck)
 begin

 if(ck = ’1’ and not ck’ stable) then
 CURRENT_STATE <= NEXT_STATE;
 end if;

 end process;

 end auto;

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 10

Compare the state assignments and the conditions under which the state, changes with
that shown in the ASM chart. Notice the similarity between the ASM chart and the
description given in the fsm. We want to debug the state machine before we do
anything else with it. Therefore we have assigned a output flag to each of the state,
which become ‘1’ if the machine is in that state. Thus we can follow the transition of
states during a simulation.

Give the following command at the command line

syf -rV elock

r - Random encoding
V - verbose mode

This command produces a file “elockr.vbe”, which is the behavioural description of
the fsm description. This behavioural description can be simulated using asimut.

Test pattern file and simulation of the state machine

Write a pattern file for simulation. (You can write a C file that when treated with
Genpat will generate the pattern file for you. See exercise 3).
Modify the pattern file by editing it and simulate using Asimut with the -b option and
check if the state machine performs satisfactorily.

Adding Architectural Blocks

The behavioural file “elockr.vbe” contains only the description of the ASM. Now we
will have to add the architectural blocks, like the register that stores the combination,
the register that stores the number of digits to be compared, the counter and,
implement the various comparison operations. The ASM controls the architectural
blocks and some of the signals that appear in the “Entity” declaration become internal
signals that control these blocks.

Once we are sure that the state machine changes state as it should under the specified
conditions, the various flag signals that we put in the “elock.fsm” file to debug the
state machine, can be removed.
We start by copying the “elock.fsm” file to “lock.fsm” and editing this file to remove
the state flag signals from the description.

cp elock.fsm lock.fsm

Edit the file “lock.fsm” to remove the state flag signals to produce a description as
shown below.

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 11

 Entity lock is

 port(
 ck : in bit ;
 reset: in bit;
 try : in bit;
 keypress : in bit;
 set : in bit;
 cmpnum : in bit;
 cmpdig : in bit;
 openlock : out bit;

inccnt : out bit;
rescnt : out bit;
ldkey : out bit;
ldnum : out bit

);
 End lock;

 architecture auto of lock is

 type STATE_TYPE is
(INIT,READ_COMB,INC1,ERR,SET_INIT,SET_COMB,INC2,TEST,OK);

 -- pragma CLOCK ck
 -- pragma CUR_STATE CURRENT_STATE
 -- pragma NEX_STATE NEXT_STATE

 signal CURRENT_STATE, NEXT_STATE : STATE_TYPE;

 begin

 PROCESS(CURRENT_STATE,reset,try,keypress,set,cmpnum,cmpdig)
 begin
 case CURRENT_STATE is

WHEN INIT =>
if (set=’1’) then

NEXT_STATE <= SET_INIT;
else if (reset=’0’) then

NEXT_STATE <= INIT;
rescnt <= ’1’;

else
NEXT_STATE <= READ_COMB;

end if;
end if;

WHEN READ_COMB =>
if (set=’1’) then

NEXT_STATE <= SET_INIT;
else if (reset=’0’) then

NEXT_STATE <= INIT;
rescnt <=’1’;

else if
(try=’1’) then
NEXT_STATE <= ERR;

else if
(keypress=’0’) then
NEXT_STATE <= READ_COMB;

else if
(cmpdig=’0’) then
NEXT_STATE <= ERR;

else if
(cmpnum=’1’) then
NEXT_STATE <= TEST;

else
NEXT_STATE<= INC1;
inccnt <= ’1’;

end if;
end if;
end if;
end if;
end if;
end if;

WHEN ERR =>
if (set=’1’) then

NEXT_STATE <= SET_INIT;
else if (reset=’0’) then

NEXT_STATE <= INIT;
rescnt <= ’1’;

else
NEXT_STATE <= ERR;

end if;
end if;

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 12

WHEN INC1 =>
if (set=’1’) then

NEXT_STATE <= SET_INIT;
else if (reset=’0’) then

NEXT_STATE <= INIT;
rescnt <= ’1’;

else
NEXT_STATE <= READ_COMB;

end if;
end if;

WHEN TEST =>
if (set = ’1’) then

NEXT_STATE <= SET_INIT;
else if (reset=’0’) then

NEXT_STATE <= INIT;
rescnt <= ’1’;

else if
(keypress=’1’) then
NEXT_STATE <= ERR;

else if
(try = ’0’) then
NEXT_STATE <= TEST;

else
NEXT_STATE <= OK;

end if;
end if;
end if;
end if;

WHEN OK =>
openlock <= ’1’;
if (set = ’1’) then

NEXT_STATE <= SET_INIT;
else if (reset = ’0’) then

NEXT_STATE <= INIT;
rescnt <= ’1’;

else
NEXT_STATE <= OK;

end if;
end if;

WHEN SET_INIT =>
if (set = ’1’) then

NEXT_STATE <= SET_INIT;
rescnt <= ’1’;

else
NEXT_STATE <= SET_COMB;

end if;

WHEN SET_COMB =>
if (set = ’1’) then

NEXT_STATE <= SET_INIT;
rescnt <= ’1’;

else if
(reset = ’0’) then
NEXT_STATE <= INIT;
rescnt <= ’1’;

else if
(keypress = ’0’) then
NEXT_STATE <= SET_COMB;

else
NEXT_STATE <= INC2;
ldnum <= ’1’;
ldkey <= ’1’;
inccnt <= ’1’;

end if;
end if;
end if;

WHEN INC2 =>
if (set = ’1’) then

NEXT_STATE <= SET_INIT;
rescnt <= ’1’;

else
NEXT_STATE <= SET_COMB;

end if;

 WHEN others =>
 assert (’1’)
 report "illegal state";

 end case;
 end process;

 process(ck)
 begin

 if(ck = ’1’ and not ck’ stable) then

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 13

 CURRENT_STATE <= NEXT_STATE;
 end if;

 end process;

 end auto;

Give the command to synthesise the “.vbe” file.

syf -rV lock

This produces a “lockr.vbe” file as output. This file contains only the controller. The
“Entity” statement here contains the output signals that control the architectural
blocks and the input signals that decide the next state of the state machine. The
architectural blocks are:
1. the 3-bit counter that counts the number of digits punched in,
2. the comparator that gives the “cmpdig” signal to the state machine,
3. the comparator that compares the reference number with the one that is punched

in through the key board. and gives the “cmpnum” signal,
4. the decoder that brings in the correct reference number from the memory and,
5. the memory that holds the reference numbers.

To add the architectural blocks, to this file we edit the state machine behavioural
description. We convert the signals that control the architectural blocks, the signals
that are input to the state machine, (and are not required outside) as internal
“Signals”. Then the block’s behaviour are described while keeping the interface
signals between the blocks and the state machine the same.

Copy the file “lockr.vbe” to the file named “lock.vbe”. Edit this file and add the
architectural block description to the behavioural description as shown below.

Read the comments that have been given under the special comment line marked by --
**, to understand the changes that have been made to the file.

-- VHDL data flow description generated from ‘locks‘

-- Entity Declaration

ENTITY lock IS
 PORT (
 vdd, vss: in BIT;
 ck : in BIT; -- ck
 reset : in BIT; -- reset
 try : in BIT; -- try
 keypress : in BIT; -- keypress
 set : in BIT; -- set
 openlock : out BIT; -- openlock
 keynum: in BIT_VECTOR (3 downto 0)
);
END lock;

-- Architecture Declaration

ARCHITECTURE behaviour_data_flow OF lock IS
 --** All the signals that control the architectural blocks and that
 --** are not required outside the chip become internal signals.
 SIGNAL cmpdig, cmpnum, inccnt, rescnt, ldkey, ldnum : BIT;
 --** The memory that stores the combination is declared
 SIGNAL mem0, mem1, mem2, mem3, mem4, mem5, mem6, mem7: REG_VECTOR (3
downto 0) REGISTER;
 --** The counter and the register that stores the number of digits to
 --** compare in a sequence is declared
 SIGNAL counter, num : REG_VECTOR (2 downto 0) REGISTER;

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 14

 --** These are signals declared by syf
 SIGNAL current_state_0 : REG_BIT REGISTER; -- current_state_0
 SIGNAL current_state_1 : REG_BIT REGISTER; -- current_state_1
 SIGNAL current_state_2 : REG_BIT REGISTER; -- current_state_2
 SIGNAL current_state_3 : REG_BIT REGISTER; -- current_state_3
 SIGNAL init_s : BIT; -- init_s
 SIGNAL init_m : BIT; -- init_m
 SIGNAL read_comb_s : BIT; -- read_comb_s
 SIGNAL read_comb_m : BIT; -- read_comb_m
 SIGNAL inc1_s : BIT; -- inc1_s
 SIGNAL inc1_m : BIT; -- inc1_m
 SIGNAL err_s : BIT; -- err_s
 SIGNAL err_m : BIT; -- err_m
 SIGNAL set_init_s : BIT; -- set_init_s
 SIGNAL set_init_m : BIT; -- set_init_m
 SIGNAL set_comb_s : BIT; -- set_comb_s
 SIGNAL set_comb_m : BIT; -- set_comb_m
 SIGNAL inc2_s : BIT; -- inc2_s
 SIGNAL inc2_m : BIT; -- inc2_m
 SIGNAL test_s : BIT; -- test_s
 SIGNAL test_m : BIT; -- test_m
 SIGNAL ok_s : BIT; -- ok_s
 SIGNAL ok_m : BIT; -- ok_m

BEGIN
--** counter description
count: BLOCK (ck = ’1’ and not ck’STABLE)

BEGIN
counter <= GUARDED B"000" when (rescnt=’1’) else

B"001" when ((inccnt=’1’) and (counter = B"000"))
else

B"010" when ((inccnt=’1’) and (counter = B"001"))
else

B"011" when ((inccnt=’1’) and (counter = B"010"))
else

B"100" when ((inccnt=’1’) and (counter = B"011"))
else

B"101" when ((inccnt=’1’) and (counter = B"100"))
else

B"110" when ((inccnt=’1’) and (counter = B"101"))
else

B"111" when ((inccnt=’1’) and (counter = B"110"))
else

B"000" when ((inccnt=’1’) and (counter = B"111"))
else

counter;
end BLOCK count;

--** Generation of the cmpdig signal
cmpdig <= ((counter=B"000") and (mem0 = keynum)) or

 ((counter=B"001") and (mem1 = keynum)) or
 ((counter=B"010") and (mem2 = keynum)) or
 ((counter=B"011") and (mem3 = keynum)) or
 ((counter=B"100") and (mem4 = keynum)) or
 ((counter=B"101") and (mem5 = keynum)) or
 ((counter=B"110") and (mem6 = keynum)) or
 ((counter=B"111") and (mem7 = keynum));

--** Generation of the cmpnum signal
cmpnum <= (counter=num);

--** condition under which the num register is loaded
loadnum: BLOCK (ck=’1’ and not ck’STABLE)

 BEGIN
 num <= GUARDED counter WHEN (ldnum=’1’) else

num;
end BLOCK loadnum;

--** condition under which the sequence is loaded into the registers.
loadkey: BLOCK (ck=’1’ and not ck’STABLE)
BEGIN
mem0 <= GUARDED keynum WHEN ((counter=B"000") and (ldkey=’1’)) else

 mem0;
mem1 <= GUARDED keynum WHEN ((counter=B"001") and (ldkey=’1’)) else

 mem1;
mem2 <= GUARDED keynum WHEN ((counter=B"010") and (ldkey=’1’)) else

 mem2;
mem3 <= GUARDED keynum WHEN ((counter=B"011") and (ldkey=’1’)) else

 mem3;
mem4 <= GUARDED keynum WHEN ((counter=B"100") and (ldkey=’1’)) else

 mem4;
mem5 <= GUARDED keynum WHEN ((counter=B"101") and (ldkey=’1’)) else

 mem5;
mem6 <= GUARDED keynum WHEN ((counter=B"110") and (ldkey=’1’)) else

 mem6;
mem7 <= GUARDED keynum WHEN ((counter=B"111") and (ldkey=’1’)) else

 mem7;
end BLOCK loadkey;

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 15

--** This is the .vbe description synthesised by syf for the state
--** machine description made in lock.fsm
 ok_m <= ((try and not (keypress) and reset and not (set) and
test_s)
or (reset and not (set) and ok_s));
 ok_s <= (not (current_state_0) and current_state_1 and not
(current_state_2) and current_state_3);
 test_m <= ((not (try) and not (keypress) and reset and not (set)
and test_s) or (cmpnum and cmpdig and keypress and not (try) and
reset and not (set) and read_comb_s));
 test_s <= (not (current_state_0) and not (current_state_1) and
current_state_2 and not (current_state_3));
 inc2_m <= (keypress and reset and not (set) and set_comb_s);
 inc2_s <= (not (current_state_0) and current_state_1 and
current_state_2and not (current_state_3));
 set_comb_m <= ((not (set) and inc2_s) or (not (keypress) and reset
and not(set) and set_comb_s) or (not (set) and set_init_s));
 set_comb_s <= (not (current_state_0) and current_state_1 and
current_state_2 and current_state_3);
 set_init_m <= ((set and test_s) or (set and inc2_s) or (set and
err_s) or (set and set_comb_s) or (set and ok_s) or (set and
set_init_s) or
(set and inc1_s) or (set and read_comb_s) or (set and init_s));
 set_init_s <= (current_state_0 and not (current_state_1) and not
(current_state_2) and not (current_state_3));
 err_m <= ((keypress and reset and not (set) and test_s) or (reset
and
not (set) and err_s) or (not (cmpdig) and keypress and not
(try) and reset and not (set) and read_comb_s) or (try and
reset and not (set) and read_comb_s));
 err_s <= (not (current_state_0) and not (current_state_1) and not
(current_state_2) and current_state_3);
 inc1_m <= (not (cmpnum) and cmpdig and keypress and not (try) and
reset and not (set) and read_comb_s);
 inc1_s <= (not (current_state_0) and current_state_1 and not
(current_state_2) and not (current_state_3));
 read_comb_m <= ((reset and not (set) and inc1_s) or (not (keypress)
and not(try) and reset and not (set) and read_comb_s) or (reset and
not (set) and init_s));
 read_comb_s <= (not (current_state_0) and not (current_state_1) and
not (current_state_2) and not (current_state_3));
 init_m <= ((not (reset) and not (set) and test_s) or (not (reset)
and not (set) and err_s) or (not (reset) and not (set) and
set_comb_s) or (not (reset) and not (set) and ok_s) or (not (reset)
and not (set) and inc1_s) or (not (reset) and not (set) and
read_comb_s) or (not (reset) and not (set) and init_s));
 init_s <= (not (current_state_0) and not (current_state_1) and
current_state_2 and current_state_3);
 label0 : BLOCK ((ck and not (ck’STABLE)) = ’1’)
 BEGIN
 current_state_3 <= GUARDED (init_m or err_m or set_comb_m or ok_m);
 END BLOCK label0;
 label1 : BLOCK ((ck and not (ck’STABLE)) = ’1’)
 BEGIN
 current_state_2 <= GUARDED (init_m or set_comb_m or inc2_m or
test_m);
 END BLOCK label1;
 label2 : BLOCK ((ck and not (ck’STABLE)) = ’1’)
 BEGIN
 current_state_1 <= GUARDED (inc1_m or set_comb_m or inc2_m or
ok_m);
 END BLOCK label2;
 label3 : BLOCK ((ck and not (ck’STABLE)) = ’1’)
 BEGIN
 current_state_0 <= GUARDED set_init_m;
 END BLOCK label3;

openlock <= not ok_s;

inccnt <= ((not (cmpnum) and cmpdig and keypress and not (try) and
reset and not (set) and read_comb_s) or (keypress and reset and not
(set) and set_comb_s));

rescnt <= ((not (reset) and not (set) and init_s) or (not (reset)
and
not (set) and read_comb_s) or (not (reset) and not (set)
and inc1_s) or (not (reset) and not (set) and err_s) or (set
and set_init_s) or (not (reset) and not (set) and set_comb_s)
or (set and set_comb_s) or (set and inc2_s) or (not (reset)
and not (set) and test_s) or (not (reset) and not (set) and
ok_s));

ldkey <= (keypress and reset and not (set) and set_comb_s);

ldnum <= (keypress and reset and not (set) and set_comb_s);
END;

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 16

Test Pattern Generation and Simulation of the Complete Behavioural
Description

Write a pattern file to test the “lock.vbe” file.
Modify the pattern file by editing it and simulate using Asimut with the -b option and
check if the behavioural description performs satisfactorily.

Logic and Structural Synthesis of the Core

Now Logic can be used to optimise and synthesise the core of the chip from the above
behavioural description.

Give the command:

bop –o lock lockl

This takes as input the “lock.vbe” description and creates an optimised Boolean
behavioural description file “lockl.vbe”.

To synthesise the structural description give the command:

scmap lockl lockl

This takes as input the optimised behavioural description “lockl.vbe” and
creates the structural description file “lockl.vst” using the components from the
standard cell library.

The structural description created above has been created without worrying about the
standard cells fanout limits and critical path signals. Alliance Glop can analyse the
structural description and create a new description by adding buffers to the
appropriate nets.

Give the command:

glop -g lockl lockopt –i -t

This command takes “lockl.vst” structural description and generates a “lockopt.vst”
file after buffers have been added to the critical paths.

Give the command:

glop -f lockopt lockopt

-f - fanout optimization.

This command should add buffers to the appropriate nets to resolve fanout problems
and write over the “lockopt.vst” file created above.

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 17

Placement and Routing of the core

The core can now be routed using Scr. Give the following command at the command
line:

scr -p -r lockopt

-p - placement option
-r - routing option

A “lockopt.ap” file is created which can be viewed with Graal.

Describing the Pads and Core using the Procedural Design Language

The procedural description language is actually a set of C functions that allows you to
describe circuit objects like pads and the core and their connectivity.

Create and edit and save into the file “lockchip.c” the following:

#include<genlib.h>
main()
{
 DEF_LOFIG("lockchip");

 LOCON("VDD", ’I’,"VDD");
 LOCON("VSS", ’I’,"VSS");
 LOCON("VSSE",’I’,"VSSE");
 LOCON("VDDE",’I’,"VDDE");
 LOCON("CK",’I’,"CK");
 LOCON("RESET",’I’,"RESET");
 LOCON("TRY",’I’,"TRY");
 LOCON("KEYPRESS",’I’,"KEYPRESS");
 LOCON("SET",’I’,"SET");
 LOCON("OPENLOCK",’O’,"OPENLOCK");
 LOCON("keynum[0:3]",’I’,"keynum[0:3]");

/* Instance of pads of the chip. The instance_name of the pads is the
one that is to be */
/* given to the Ring tool for it to understand the names for pad
placement on the chip */
/* On passing this file through Genlib, a .vst file is generated. This
file has the output*/
/* input and IO pins as specified in the above list. Asimut understands
only these as the */
/* pins for simulation */

 LOINS("pvsse_sp","vss","cki","vdde","vdd","vsse","vss",0);
 LOINS("pvdde_sp","vdd","cki","vdde","vdd","vsse","vss",0);
 LOINS("pvddi_sp","ivdd","cki","vdde","vdd","vsse","vss",0);
 LOINS("pvssi_sp","ivss","cki","vdde","vdd","vsse","vss",0);

 LOINS("pck_sp","RINGCLK","CK","CKI","VDDE","VDD","VSSE","VSS",0);
 LOINS("pvsseck_sp","CLOCK","PCK","CKI","VDDE","VDD","VSSE","VSS",0);

LOINS("pi_sp","RESET","RESET","PRESET","cki","VDDE","VDD","VSSE","VSS",
0);
 LOINS("pi_sp","TRY","TRY","PTRY","cki","VDDE","VDD","VSSE","VSS",0);

LOINS("pi_sp","KEYPRESS","KEYPRESS","PKEYPRESS","cki","VDDE","VDD","VSS
E","VSS",0);
 LOINS("pi_sp","SET","SET","PSET","cki","VDDE","VDD","VSSE","VSS",0);

LOINS("pi_sp","KEYNUM0","KEYNUM[0]","PKEYNUM[0]","cki","VDDE","VDD","VS
SE","VSS",0);

LOINS("pi_sp","KEYNUM1","KEYNUM[1]","PKEYNUM[1]","cki","VDDE","VDD","VS
SE","VSS",0);

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 18

LOINS("pi_sp","KEYNUM2","KEYNUM[2]","PKEYNUM[2]","cki","VDDE","VDD","VS
SE","VSS",0);

LOINS("pi_sp","KEYNUM3","KEYNUM[3]","PKEYNUM[3]","cki","VDDE","VDD","VS
SE","VSS",0);

LOINS("po_sp","OPENLOCK","POPENLOCK","OPENLOCK","cki","VDDE","VDD","VSS
E","VSS",0);

/* The first name is the name of the .vst file that is to be used for
reference */
/* The second name is the instance_name and can be anything */
/* the names that follow can be anything except that they should be in
the same */
/* order as in the .vst file. Bus signals should have the same
dimensions. Names given */
/* should be the inputs or outputs of other instances which means that
the block is */
/* physically connected to other blocks in the description and is not
left hanging */

LOINS("lockopt","lock","vdd","vss","pck","preset",
 "ptry","pkeypress","pset","popenlock","pkeynum[3:0]",0);

SAVE_LOFIG();

exit(0);
}

Give the command at the command line:

genlib lockchip

This creates a “lockchip.vst” structural description file with pads.

Simulating the Structural Description

You can now simulate this structural description with the test vector file that you
developed for “lock.vbe”. Simulate the structural description and confirm the
functioning of the structural description.

Placing and routing the pads

Now the chip’s pads and the core has to be connected together physically in a layout.
This is done by using Ring.

Edit and save the following in the file “lockchip.rin”:

File used by RING tool
Placement of pads for the lock chip
north (clock vdd reset)
east (set ivdd try keypress)
south (openlock vss keynum0)
west (keynum1 ivss keynum2 ringclk keynum3)

This file describes the relative position of the pads on the four sides of the chip.

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 19

Give the command at the command at the command line:

ring lockchip lockchip

A “lockchip.ap” file is created that can be examined by using Graal.

Examine the layout using Graal.

Static Timing Analysis

The “lockchip.ap” contains the layout information. However we do not know if the
physical description produced reflect the desired behaviour. Therefore to check the
layout we use two tools, Lynx and Tas.
Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the
layout. The file created by Lynx will be the input file for Tas.
Tas is a switch level timing analyser for CMOS circuits.
Give the following command at the command line:

setenv MBK_OUT_LO al

This tells that the output file should be in the “.al” (Alliance) format.

lynx -v -t lockchip lockchip

-v - verbose
-t - build the netlist to the transistor level.
first lockchip - take the “lockchip.ap” layout file as input.
second lockchip - generate the “lockchip.al” netlist file.
Give the following command at the command line:

setenv MBK_IN_LO al

This tells that the input file for Tas must be in the “.al” (Alliance) format.

tas -tec=/alliance/archi/Linux_elf/etc/prol10.elp lockchip

-tec - selects the technology file prol10.elp.

Layout Extraction and Netlist Comparison

The “lockchip.ap” contains the layout information. However we do not know if the
physical description produced reflect the behavioural description. Therefore to check
the layout we use two tools, Lynx and Lvx.

Lynx is a netlist extractor. It extracts a netlist representation of the circuit from the
layout.

For this you have to set some environmental variables. You have to specify the format
in which the extracted netlist is generated.

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 20

Give the following command at the command line:

setenv MBK_OUT_LO al

This tells that the output file should be in the “.al” (Alliance) format.

Give the command at the command line:

lynx -v -f lockchip lockchip

-v - verbose
-f - asks Lynx to generate the netlist from the
Standard- cells level.
first lockchip - Take the “lockchip.ap” layout file as input.
second lockchip - Generate the “lockchip.al” netlist file.

Lvx is a netlist comparison software that compares two netlists. Along with the
comparison it re-orders the interface terminals to produce a consistent netlist
interface.

Give the command at the command line

lvx vst al lockchip lockchip –f –o

-f - build the netlist to the standard cell level.
vst - take the first file in .vst format.
al - take the second file in .al format.
first lockchip - “lockchip.vst” file.
second lockchip - “lockchip.al” file.

The comparison should not produce any errors. If errors are produced by the
program, then there is some problem with the layout. The router has done something
funny and corrective action is to be taken at the layout level by studying the error
messages.

The Lvx tool has also re-ordered and built the netlist in the “.al” to the standard cell
format. This file can be simulated using Asimut.

Simulating the Extracted netlist file

The netlist file “lockchip.al” can be simulated using Asimut and the test vector file
that has been created to test “lock.vbe”.

Give the following command at the command line:

setenv MBK_IN_LO al

to set the input file format for Asimut for the “.al” format, before doing the
simulation. Any error during simulation means that you will have to retrace your steps
back to find out the source of the error.

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 21

Functional Abstraction

Yagle is a program that extracts from a standard cell level, the behaviour of the
circuit. Essentially a VHDL file is created from a standard cell connectivity
description! This VHDL file can be simulated in turn to verify the function of the
chip.

Give the command at the command line:

yagle -v lockchip

-v - vectorized
lockchip - Takes the “lockchip.al” as input.

The extracted VHDL description is put in the file “lockchip.vbe”.
Simulate the extracted behavioural description to verify the extracted behavioural
description.

Alliance has a program that compares the extracted behavioural file with the original
behavioural file to formally prove the functional congruence of the described and the
extracted circuit. However this step requires that the registers in the two behavioural
descriptions have the same names. This can be done automatically by Yagle by
giving it a list of registers to be renamed in an information file “lockchip.inf”.

Edit and save a file “lockchip.inf” with the following:

rename
lock.mem6_3.dff_s : mem6_3 ;
lock.mem5_0.dff_s : mem5_0 ;
lock.mem5_3.dff_s : mem5_3 ;
lock.mem7_1.dff_s : mem7_1 ;
lock.num_1.dff_s : num_1 ;
lock.current_state_1.dff_s : current_state_1 ;
lock.mem0_2.dff_s : mem0_2 ;
lock.mem1_1.dff_s : mem1_1 ;
lock.mem5_2.dff_s : mem5_2 ;
lock.mem2_1.dff_s : mem2_1 ;
lock.mem7_3.dff_s : mem7_3 ;
lock.counter_1.dff_s : counter_1 ;
lock.num_0.dff_s : num_0 ;
lock.current_state_2.dff_s : current_state_2 ;
lock.mem6_0.dff_s : mem6_0 ;
lock.mem6_1.dff_s : mem6_1 ;
lock.mem7_2.dff_s : mem7_2 ;
lock.mem3_1.dff_s : mem3_1 ;
lock.counter_2.dff_s : counter_2 ;
lock.mem6_2.dff_s : mem6_2 ;
lock.mem5_1.dff_s : mem5_1 ;
lock.mem7_0.dff_s : mem7_0 ;
lock.num_2.dff_s : num_2 ;
lock.mem3_2.dff_s : mem3_2 ;
lock.current_state_0.dff_s : current_state_0 ;
lock.mem1_2.dff_s : mem1_2 ;
lock.mem4_1.dff_s : mem4_1 ;
lock.mem4_2.dff_s : mem4_2 ;
lock.current_state_3.dff_s : current_state_3 ;
lock.mem4_0.dff_s : mem4_0 ;
lock.mem1_0.dff_s : mem1_0 ;
lock.mem3_3.dff_s : mem3_3 ;
lock.mem2_0.dff_s : mem2_0 ;
lock.counter_0.dff_s : counter_0 ;
lock.mem0_0.dff_s : mem0_0 ;
lock.mem3_0.dff_s : mem3_0 ;
lock.mem1_3.dff_s : mem1_3 ;
lock.mem2_2.dff_s : mem2_2 ;
lock.mem4_3.dff_s : mem4_3 ;
lock.mem2_3.dff_s : mem2_3 ;
lock.mem0_1.dff_s : mem0_1 ;
lock.mem0_3.dff_s : mem0_3 ;
end

Course on VLSI Design Techniques. Kumasi - Ghana, 24 Nov – 12 Dec, 2003

Exercise 6 Design of a Serial Hex Combination Lock Chip 22

Give the command:

yagle -i -v lockchip

-i - asks yagle to read the “lockchip.inf” file and rename the
registers in the “lockchip.vbe” file as given in the

list.

Give the command:

proof -p -d lockchip lock

-p - negates the input and output signal expressions of
the registers.

-d - display errors to screen.

If no errors are reported, then the two behavioural descriptions concur. It is possible
to have errors due to the missing signals vdde and vsse in the lock.vbe file; If this is
the case just add these signal in the port declaration of lock.vbe and run again proof.

Real Technology Conversion

Up till now all the files describe the circuit only as symbolic cells. The foundry
requires the layout of the chip, described in terms of rectangles and layers in the gds
or the cif format. This can be done in Alliance, by using S2r.

setenv RDS_TECHNO_NAME /alliance/archi/Linux_elf/etc/prol10_7.rds
setenv RDS_OUT cif
setenv RDS_IN cif

This chooses the 1.0µm CMOS process, chooses the output form of the chip in cif
format and, replaces the symbolic pads with their real equivalent.
Give the command:

s2r -cv lockchip lockchip

-c - deletes connectors at the highest hierarchy. (Use
man to see full description)

-v - verbose mode on

first lockchip - “lockchip.ap” file as input
second lockchip - “lockchip.cif” file as output.

This completes the design of the lock chip.

