OUTLINE

- I INTRODUCTION
- II DESIGN METHODOLOGY: AN OVERVIEW

Nizar Abdallah

DESIGNER'S DREAM

Millions of Segments Put Together

How to deal with such complexity?

Millions of Transistors Connected Together

★ Still Too Complex....!!!

Thousands of Cells Connected Together

★ Still Too Complex....!!!

Dozen of Functional Blocks Communicating Together

⊕ I'm Starting to Understand

A Set of Equations Reflecting the Circuit's functionality

```
entity simple is
port (
     a, b: Bit;
      c, d: bit
architecture simple is
a \le b \text{ or } c
d <= b and c;
end;
```

✓ I Understand What this Circuit is Supposed to Do

SO,

How to deal with such complexity?

- ✓ ABSTRACTION
 - ✓ HIERARCHY

LEVELS OF ABSTRACTION

To Go Across These Different Levels of Abstraction I Need

A Design METHODOLOGY

DESIGN METHODOLOGY

TOP-DOWN METHODOLOGY

Nizar Abdallah

STEP 1: SPECIFICATIONS (1)

Put Down the Circuit Concept

Two reasons:

> To be able to check it before manufacturing

> To have a reference manual for communication

STEP 1: SPECIFICATIONS (2)

Communication Language

Between People on the Project Between People and Computers

- ➤ No Ordinary Language
- > Accurate Language
- ➤ A Language that Can Be Simulated

STEP 2: PARTITIONING (1)

Divide and conquer strategy

Very difficult step: Relays on the know-how of the designer.

Main idea: To split into several small parts

HIERARCHY

STEP 2: PARTITIONING (2)

The cutting is guided by:

1 – REGULARITY OR NOT

- ✓ Identify regular blocks
- ✓ Identify random logic blocks

STEP 2: PARTITIONING (3)

The cutting is guided by:

2 – TIMING ASPECTS

- ✓ Coarse Estimation of Timing
- ✓ Looking for a Good Balance

STEP 2: PARTITIONING (4)

The cutting is guided by:

3 – TOPOLOGY

- ✓ Already in mind the circuit form
- ✓ An idea about the size of each part
 - ✓ An idea about the routing
 - ✓ Optimizing silicon area usage

STEP 2: PARTITIONING (5)

The cutting is guided by:

4 – TECHNOLOGY

- ✓ Using GAAS or CMOS ?
- ✓ Using PALs or Standard Cells?

STEP 2: PARTITIONING (6)

The cutting is guided by:

5 – CAD TOOLS

✓ What tools do I have to make my circuit?

STEP 3: IMPLEMENTATION

EACH PART WILL BE IMPLEMENTED USING A PARTICULAR METHOD. WHEN I SPLIT MY CIRCUIT, I ALREADY HAVE DECIDED WHICH ONE

STEP 4: ASSEMBLAGE

THE ASSEMBLAGE IS DONE IN A HIERARCHICAL WAY, STARTING FROM THE LOWEST LEVEL

CONCLUSION (1)

At each step, the information is enhanced:

- 1. From the idea down to the specifications
- 2. When structuring the model in an other way
- 3.
- → At each step, a <u>verification</u> is to be done

CONCLUSION (2)

All along the methodology, we handled different views:

1 – EQUATIONS

2- NETLISTS

3-LAYOUT

CONCLUSION (3)

Nizar Abdallah