OUTLINE

- I INTRODUCTION
- II DESIGN METHODOLOGY: AN OVERVIEW
- III ABSTRACTION LEVELS IN ALLIANCE
- IV VHDL: A HARDWARE DESCRIPTION LANGUAGE

Why an HDL ? (1)

X Hardware Solutions Limits

Why an HDL ? (2)

- Increasing Complexity
- **✗** Increasing Cost in Time & Investment
 - X Increasing Knowledge Requirement

A Software Solution is Needed

Why an HDL? (3)

✗ Programming Language not Suited

A Special Purpose Language: HDL

Why VHDL ? (1)

Circuit Manufacturers
Fully Satisfied with their
Proprietary HDLs...

Why VHDL ? (2)

Problems for system manufacturers

✗ Impossible to verify a whole mixed-system

Why VHDL ? (3)

- **X** Vendor dependency
- **✗** Design documentation exchange

A Standard HDL from the System Manufacturer's Point of View: V H D L

VHDL

Very High Speed Integrated Circuits (VHSIC)

Hardware

Description

Language

History

- 1981: an Extensive Public Review (DOD)
- 1983: a Request for Proposal
 (Intermetrics, IBM, and Texas Instruments)
- 1986: VHDL in the Public Domain
- 1987: a Standard Language VHDL'87 (IEEE-1076)
- 1992: a New Standard VHDL'92

Advantages & Drawbacks

Standard

Open language

- ✓ Vendor independent
- ✓ User definable
- ✓ Wide capabilities

- **X** Complex tools
- **X** Slow tools

Abstraction Levels (1)

Algorithmic Level

- Very High Abstraction Level
- > Functional Interpretation of a Discrete System
- ➤ No Implementation Details
- Sequential Program-Like Description
- Programmer's Point of View

Abstraction Levels (2)

Finite State Machine Level

- ➤ Controller Part of a Digital Design
- > Internal States
- > State Changes Driven by:
 - **♦** Status Information
 - ♦ Clock and other External Inputs...

Abstraction Levels (3)

Register Transfer Level

- Registers Connected by Combinatorial Logic
- Very Close to the Hardware

Abstraction Levels (4)

Gate Level

➤ A Gate Net-List Describing Instantiation of Models

Abstraction Levels (5)

Layout Level

➤ A Set of Segments and Layers

Synthesis Flow

VHDL Main Features

VHDL Architectures

Nizar Abdallah

A Dataflow Language (1)

CONTROLFLOW DATAFLOW

EX: C language assignment

$$X = A \& B;$$

X is computed out of A and B ONLY each time this assignment is executed

EX: VHDL signal assignment

A <u>PERMANENT</u> link is created between A, B, and X

X is computed out of A and B WHENEVER A or B change

A Dataflow Language (2)

CONTROLFLOW

DATAFLOW

EX: C language assignment

$$X = A \& B;$$

$$X = C & D;$$

EX: VHDL assignment

