OUTLINE

- I INTRODUCTION
- II DESIGN METHODOLOGY: AN OVERVIEW
- III ABSTRACTION LEVELS IN ALLIANCE
- IV VHDL: A HARDWARE DESCRIPTION LANGUAGE
- V VHDL: THE ALLIANCE SUBSET

Why a Subset ? (1)

1 - Complex Language

Developing a compiler is hard and time consuming

Why a Subset ? (2)

2 - Educational Needs

➤ Univocal (Ex: One way in describing a register)

Why a Subset ? (3)

3 - Our Environment

Criterions

Users versus Tools Requirements

Finding the Good Balance

Tools' Requirements (1)

Which Tools use VHDL?

- > Simulator
- > Synthesis Tools
- Placer & Router
- > Functional Abstractor
- Formal Proover

Tools' Requirements (2)

> Synthesis Tools

- * A register must be identified in a syntactical way
- * A bus must be identified in a syntactical way
- **✗** Signals must have the BIT type ('0', '1')
- **X** No timing

> FORMAL PROOVER

- * A register must be identified in a syntactical way
- * A bus must be identified in a syntactical way

Tools' Requirements (3)

- > PLACER & ROUTER
 - X No mixing between structural and behavioral views
- > Functional Abstractor
 - **X** VHDL subset as close as possible to the hardware
- > SIMULATOR
 - **X** No abstract types
 - **X** No timing

Users' Requirements

Looking for the Largest Subset ...

The Good Subset

- ✓ Lets the user describe his circuit easily
- ✓ Do not deteriorate the tool with a complex language

Alliance Internal & External Aspects

External Aspect

- ✓ Name
- ✓ Interface
- **X** Color
- **X** Temperature
- **X** -----

Mhaties vieible

Internal Aspect

- ✓ Structural
- ✔ Behavioral

- ✓ Signal
- ✓ Component
- Instance

howithwashes

Alliance External Aspect (1)

Example

Alliance External Aspect (2)

Example

```
entity ADDER_32 is
  port (
       A : IN BIT_VECTOR (0 TO 31);
       B: IN BIT_VECTOR (0 TO 31);
       CIN: IN BIT;
       SUM: OUT BIT_VECTOR (31 DOWNTO 0);
       COUT: OUT BIT
end ADDER_32;
```

Alliance Internal Aspect (1)

Structural

Alliance Internal Aspect (2)

Structural

```
BEGIN
   Instance_AB : XOR_Y
         PORT MAP (
                        I0 => A,
                        I1 => B,
                        T => Parity_AB
   Instance_CD : XOR_Y
         PORT MAP (
                        I0 => C,
                        I1 => D,
                                            DESCRIPTION
                        T => Parity_CD
                                                PART
```

Alliance Internal Aspect (3)

Structural

Alliance Internal Aspect (1)

Behavioral

BOOLEAN FUNCTIONS:

- **♦**AND
- ♦ OR
- **♦XOR**
- **♦NAND**
- **♦NOR**
- **♦NOT**

Always use brackets.

Alliance Internal Aspect (2)

Behavioral

• ASSERT (Condition)

REPORT "Message"

SEVERITY Level;

Very useful in large-scale design.

- Allows encoding specific constraints and error conditions
- Provide useful messages.
- •Stop the simulation when constraints are not met.

Alliance Internal Aspect (3)

Behavioral

Conditional Assignment

Always

Alliance Internal Aspect (4)

Behavioral

Selective Assignment

WITH Address(3 downto 0) **SELECT** Out <= "000100" **WHEN** "0000",

"000101" **WHEN** "0001",

"000000" **WHEN Others**;

Alliance Internal Aspect (5)

Behavioral

REGISTERS

SIGNAL myregister : **REG_BIT REGISTER**;

store : **BLOCK** (CK = '0' **AND NOT CK'STABLE**)

BEGIN

myregister <= **GUARDED** I0;

END BLOCK store;

Alliance Internal Aspect (6)

Behavioral

Alliance Internal Aspect (7)

Behavioral

BUS

SIGNAL my_bus1 : MUX_BIT BUS;

Only one driver active at the same time.

SIGNAL my_bus2 : WOR_BIT BUS;

Many drivers drive the same value.