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"MODELLING THE ATOMIC STRUCTURE"

JF. L. Finney, Department of Crystallography,
Birkbeck Cellege, Malet Street, london WC1E 7EX

INTRODUCTION

-Amorphous alloys were prepared first by the rapid cooling of the meltl,
Bypassinq crystal nucleation. An obvious parallel exists with the prepara-—
tion of silicate glasses, in which the essential structure of the liguid is
retained, although some structural relaxation will probably cccur during
cooling. When polycrystalline, distorted lattice, dislocation and other
lmodels.of amorphous alloys failed to account for the experimental structural
‘dataz (the radial distribufion function or the pair correlation function -
seée chapter 5), it therefore seemed sensible to look towards the parent lig-
.uid structure to assist our undexstanding of these new materials, although
non-liquid related preparation techniques (chapter 3) leave open the possi-
bility of the existence of structural variants ("amorphous polymorphism“3}.

Unfortunately although we know in great quantitative detail the struc-
tures of crystalline materlals, our ability to handle the structures of non-
crystalline condensed liquid phases is limited. Assuming we know how the N
constituent particles interact {the potential function) we require to con-

struct the configurational integral :

Q=‘—,§ﬁj...j o ¢/KT ay. . .avy ()
where ¢ is the potential energy of the assembly with atom ! in volume element
dvy ete. Once 9 is known, we can calculate the thermodynamics of the assembly
by purely formal manipulations.

Although the high coordination and density of the crystal means we must
take into account a relatively large number of interactions in calculating
9, the crystal lattice allows us to make a drastic simplification : eg for a
primitive ideal crystal (cne asymmetric unit per unit cell), Q can be writ-

ten as the product of ¥ identical partition functions, which can be caleu-

-simplify the problem by making use of. lattice symmetry - hence the popularity
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lated knowing the atomic positions. For a real crystal, we can use the ideal
. Ea.

crystal as a reference state for a perturbation-type analysis. At the other

Fnd ©of the spectrum - a perfect gas - there are no interactions between atoms
i - v
bxcept on collision, hence ¢ = 0, making the evaluation of 0 trivial. For a

dilute real gas, as contributions to $ arise from the small number of close
1

!

interatomic approaches, © can be evaluated in terms of pairs of atoms. As

i
the density increases, we must consider larger clusters of atoms (three,

?Dur, -..). This "cluster expansion" procedure4, however, becomes mathematid
1
Eally intractable for reasonably dense gases, and fails to cenverge before wo

feach liquid densities.

Calculating Q for a dense assembly is made difficult by the need to con-

sider a relatively large number of intermolecular interacticns. For a crys-—

Fal, the approximate identity of local enviromments allows us te drastically
.

i
Lntil relatively recently of lattice mecdels of ligquids {and glasées). Where

there is no wtderlying lattice structure, this approximation cannot be made,

!

nd we are unable to calculate the configurational integral unless the numben

of interactions is very small, as in a dilute gas. Thus, other methods have
to be developed, and this leads us into liquid state theory5r7. Even here,

Pnphysical approximations must be made to make calculations tractable; there

i ;
is still no adequate theory of the liquid state8,
i

In the absence of an adequate theory, we are driven to an alternative

; .
structural approach which constructs approximate models either in the laborad

tory or on the computer which are arguably representative of the structural

arrangement in the liqéid or glass. In the liquid case, our model - a set og

positional coordinates of atom centres - represents an instantaneous snapshotd
i

of atomic positions in the real liquid. For an amorphous solid, transla-.

tinpnal metions will have been frozen out, and our stationary model will xelate

directly to possible atem positions in the real assembly. Once such a model
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has _beén constructed, its structural propertiesi - J.n particular its radial
:distri.bution function (RDF) and density - can be caleculated and compared with

. experiment.
Such liquid models are now constructed routinely in the computer, using

computer simulation techniques which, within the limitations of the assumed

pqtential function, result in sample molecular assemblies which axe consis-
tent with the required equilibrium Gibbs ensemble. For non-crystalline sol-
ids - which are nén-eguilibritm assemblies - the use of such techniques is
prqble'matical {see below). Initially, we prefer to consider simpler ap- -
Proaches which illustrate more clearly the structural principles of non-
crystalline dense structures. Earlier detailed reviews of such model-building

techniques can be found in the literature3s19,29,46,61,62 .

THE IDEAL HARD-SPHERE GLASS : THE BERNAL MODEL

Bernal argue:il9 that the structure of a simple liquid - one of spherical
molecules with an angle-independent potential function - is determined by
volume exclusion. As the 1iguid density is about the same as (though gener-
ally a few per cent lower than) the crystal density, the constituent atoms
must have high cocrdination numbers, with surrounding atoms generally in cond
jtact, an argument consistent with experimental coordination numbers of
around 8-125,6,7, Hence, he proposed a zeroth order model in which the atomd
were considered as hard-spheres, and their local structure determined by the
restrictions on space-filling consequent zpon the Inability of twe atoms to

approach closer than one diameter. The structure of crystals of spherical

molecules such as the inert gases and simple metals had lonyg been rationalised

in this way, the familiar f.c.e. and h.c.p. structures being the consequence

of high density and the presence of a crystal lattice. What Bernal did was

to extend this approach to liquids, for which theoreticalm and experimental

evidence argued against lattice organisation. The ideal liquid might there-

fore have a structure similar to that realised when equal hard-spheres are
3 preetileg il oh

- . et — S ——

ipacité-d“ iég—ether at high déhsity without allowing any "crystallisation" to

!OCC\.U:'.

2 Such models were physically constructed in the laboratory, and their
]

Sstructural properties examined, independently by Bernal ardd cm.'o::lmrsgf“'12

and Scottlz. Bernal's models were-builtll 14 by pouring several thousand

|

isteel balls into a suitable flexible container (originally a football bladder)

'placed within a previously-prepared irregular surface to prevent surface
crystallisation. The assembly was tightly bound by several metres of rubber
strip to exert a compressive force, and then “kneaded™ to facilitate sphere
rearrangements to maximise the density. The mass was "fixed" by pouring
through it a molten mineral wax {earlier experiments!l yused paint), and aftexr
setting, the exterior skins were peeled off. The coordinates of each sphere
were measured using a converted toolmakers bench13. Scott's procedure12 in-
volved filling a beaker or spherical flask with spheres, densification being
achieved by mechanical vibratien.

Both procedures appear scmewhat ad hoc ~ yet the results from the two
different laboratories were in excellent agreement. In particular, both con-
Fluded that the maximum density of a har@-sphere non-crystalline packing was
0.6366, to within 0.1%. Moreover, recent attempts to reproduce this struc-
ture on the computerld yield an essentially indistinguishable radial distri-

bution function.

This medel "randeom close-packed structure" is showm in fig.1, and its

lack of crystallinity is immediately apparent. Calculations on the sphere
!

coordinates demonstrated the model possessed many of the structural features

of simple liquids, and gave appealing qualititative explanations of super-

9,17

;Cooling, nucleation, melting, fluidity and diffusion Although very

l'.simp].e, this structure contains within it the essential Physics of simple

iquidsa, and provides an illuminating structural framewcrk within which to -

consider the structure of other simple non-crystalline mystems.

L]




Because the model is static, and of maximum density {although lower den-
sity - "random loose" - packings can be constructedl?), it is particularly
appealing as a model of a zero temperature ideal glass of spherical molecules
Its specific application to amorphous metallic alloys was proposed in the
early 1960s by Cohen and Turnbullla, although it was nearly ten years later
before both model and experimental data were adequate to justify Cargill's
making a quantitative comparison using data from Bernal's laboratory. He
concluded that the experimental RDF of an amorphous Niyg¢P24 bore a strong
resemblance to that of a dense random packingz. The two RDFs are shown 1in
fig.2a: the random packing was the only model that could reproduce the experis
mental splitting of the second peak.

There are however, two major problems with this identification between
exparimental structure and the simple model. The first is quantitative, in
that the positions and relative intensities of the two components ¢f the

split second peak are in significant disagreement. This problem can be i

largely remcved by refinement of the model using soft potentials'9r37. 7The

second is more serious: we have identified a two-component real alloy with a
single component model. Although in the X-ray measurements on Ni;gP;, the

nickel will dcminate the scattering, the phosphorus contribution of about 8%

of the X-réy scattering power is not negligible. Moreover, the presence of a
secend compenent ~ especially a "glass fo;:mer" such as phosphorous - could be’
a significant determinant of the structure. Rather than identifying the ranj
dom ¢lose-packed hard-sphere model with the structure of a specific amorphouJ
alloy, it seems more. useful to consider it as an ideal single compeonent glass
It contains the essential consequences of volume exclusion in a nen-crystal-

line structure, and hence should be thought of as a reference structure -

perhaps a hard-sphere glass at OK - useful in the discussion of real struc-

tures,

5 c e e

ICOMPUTER CONSTRUCTION OF HARD-SPHERE MODELS

In order to progress to real alloys, we reguire less ad hoc modelling
procedures which allow us to probe the structural consequences of more real—

istic potentials and finite temperature, As the early structural work on

rmorphous alloys coincide@ with a rapid increase in available ccmputing
ower, most subsequent modelling studies have used computer construction tech

P
%iques. The need to Erogramka construction procedure focussed attention on

factors which might affect the resultant structure of a model. This in turn

highlighted problems with deterministic building procedures, and showed that
distinctly different "non-crystalline" organisaticns of the same hard-sphere
unit could exist. Although most current work has moved away from hard-spheres
to soft potentials and twe (and more) component assemblies, it is instructive

to consider the basic methods used in computer construction for hard-spheres,

} -
and how. the resultant structures may vary with the building procedure used.

h. Sequential Addition

Most computer construction methods add spheres seguentially to a start-
ing seed. At any stage in the building process, there are several stable
positions in which a further sphere can be added: these "tetrahedral pockets']
hre defined by three spheres, upon which a fourth can be placed in contact
with the pre-existing triplet. Within this general procedure, variations are]
'pcmsible in (a) the critericn used to choose between the available tetra-
;edral pockets and (b) the initial seecd.

% 20

The simplest addition criteriocn is that of Bennett“”, whose ‘global"

criterion chooses that pocket closest to the centre of the original seed
éluster, corresponding roughly to the site with the lowest energy in a gravi+
tational or other long-range potential. A second "local" procedure in which

the “"deepest" pocket is chosen favowurs sites that would be most strongly

bound by a short-range potential. The global criterion was used indepen- -

aently by adams and Mathesonzi, and Norman et g;?z. A further wvariant due to
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Ichiféw;24riestricts the utilised pockets to a pre-specified subset defined

in terms of the "tetrahedral perfection® of the pocket where :

k = max lrij)/(Ri+Rj)[irj=1-2r3? i»j; i#3) (2)
Here, rijy is the distance between spheres i and j, and Ri is the radius of
sphere i. Thus, k =1 corresponds-to a pocket formed by three touching
spheres while k = 2 describes the "lowest" perfection possible for spheres of}
equal size, and corresponds to the Bennett glebal criterion.

Two further modifications of the sequential pocket filling method attenpt]
to build models with a more intense first component of the split second peak
¢han obtained either in the laboratory models or the sequential methods so
far listed. Fig.la shows that the first component is relatively more intense
in NizgP2y than in the hard-sphere model, suggesting we might try to devise
an addition criterion to enhance the first component. Mrafke and Duhaj25
discriminated against those pockets which would contribute more to the second]
component of the split peak than to the first; where no clear cholce could be
made this way, the pocket closest to the certre was chosen. Sadoc et 31?6
noted that the First component of the split peak in amorphous NyuPig occurred
at about 1.65 "diameters", a value consistent with the presence of a large
fraction of icosahedral units, Their algoritilm therefore tries to bias the
resulting model towards such units in the folloing way. A central sphere A
is chosen, together with a neighbouring éecondarg sphere B. A third sphere (
is brought into contact with both A and B, and, retaining contact, is rotated
rouné the AB axis until it contacts a fourth sphere. Next, another secondary
sphere is chosen (the central sphere remaining unchanged) and the process
repeated. Only when no further additions can be made is a new central sphere
chosen. fThis retention of the central sphere ensures the construction around
the central sphere cf face-shaxing tetrahedra (a characteristic distance of
which is 1.633 diameters - of the 1.65 observed experimentally). The resul-

ting units around each central sphere will resemble an icosahedron, distorted

7

e R SR faG e A ERis " AFe "eontensed" towards oné §1de of the central
sphere.

Although most models have been constructed spherical)y outwards from a
egular tetrahedron, Bennett-type models have been grown from plan0523'27128;
These seguential additicn procedures raise several important points.

Fhe first is that they are sequential: once a spherc has been added, it can-
! ot be moved. They produce packings which - from the similarities between
Eocket £illing procedures - might be expected to relate more to the iabora—
%ory loose packings, rather than to the ¢lose packings which require further
Qensification. This conjecture is borne out by their relatively low extra-

polated densities (é 0.60), compared with the 0.637 of the random dense pack-
i T —

H
ﬁngs. Associated with this lower density is a failure to resclve adeguately

j
the split second peak of the RDF (fig.2b). Without the achievement of a high

density, therefore, a model does not show the full required structural pro-

perties: therefore sequential construction methods used alone must always be

suspect.

lﬂ”t _hs might be expected, the Bennett global procedurc produces the highest
Lensities (" 0.60); as tetrahedral perfection is increased using the Ichikawg
wvariant, the density falls - models constructed with k = 1.2 show significant
orosity and could be mechanically unstable. The Sadoc model has alse a

elatively low density p(O.SZ)lg: yet we know that the distorted icosahedral

ub-units which the algorithm produces are themselves dense structures

e T TR T TR T

?9 ~ 0.6730). The low dénsity of the total assembly is explained by the
éxistence of voids © which occur at the "interfaces'" between the locally
dense sub-structures, and fllustrates the difficulty of packing together
aense structures efficiently. Because of its prescribed bias towards distor-
ted icosahedra, the positions and relativé intensities of the two components
of the RDF split Eecond peak are in rea;onable agreement with experiment.

The unrealistically low density however, shows that this was achieved at the
i




expense of bypassing the packing constraints which must exist in the high
!
aensity real material and therefore the model is inadequate. It is rela--

tively simple to produce a model with either the experimental density or a

i

Yeascnakle RDF. To do both simultaneously is necessary, but difficult. As
%e describe later, it is probably impossible for an infinite hard-sphere

|

packing.

i

!
?. Collective Rearrangements

; _Sequential addition procedures can produce different "random" structuresg
Fepending on the pocket driterion. All, however, are "loose-packed" struc-
i
kures which fall to show ;he structural details found in real amorphous
alloys: to reproduce those, collective rearrangements are required to ircreasel
Fhe density,

These movements are easlly made on laboratory models by ad hoc shaking
?nd kneading, It is difficult ~ and very expensive - to program the computer
?o make them. Two approaches have been followed for hard-sphere structures.
&he first3j'32’33 simulates the compressicn of a hard-sphere gas. N positi-
;ns are chosen at random in a box (usually spherical) and a small sphere
%ssigned to each point. Checks are made that no two spheres overlap; when an
bverlap occurs, the two spheres are moved apart along their line of centres
Lntll they just touch {ignoring overlaps created thereby}. When all overlaps
pave been cleared, the sphere radius is increased and the overlap-clearance
procedure repeated. This method had been attempted by Bernal9 in the late
39505, but his computer was not up to the task, and the method was first used
successfully by Mason3l, Several such 500-sphere models of density hetween
0.57 and 0.67 have been built, and their RDFs and local structures examined32
Strong similarities were found between the laboratory-built dense packings
and computer-built assemblies of similar density (figs.2a and 2¢). This

suggests - but not conclusively - that the “"statisticail structure" of a hard-

sphere random packing above the loose packing density (v 0.60} may be unique

5 —_

for that density. Below p % 0.60, this 18 not so. The maim point of inter
1

i
3

! ; . :
est, however, concerns our apparent ability to build a model with a density

gome 4% higher than the apparent laboratory limit of 0.637, Moreover, in

ithe RDF of such a high density packing the relative intensities of the split

{

Peak components have reversed (fig.2d).

| Both these effects can be put down to a further failure to take full
i

account of packing constraints®- this time at the boundary. 1Ideally, our

Finite model should be a valid sample from an effectively infinite statisti~
§
cally-equivalent assembly. The laboratory model attempted - apparently suc-

cessfully - to do this by using irregular surfaces as model boundaries, while

y

both the sequential computer building and the hard-sphere gas compression
methods do away with the boundary altogether. This is particularly serious
for the hard-sphere gas compression method, in that the absence of a boundary,

(

by removing a strong packing constraint, allows the spheres to rearrange un-—
b

%estricted by the requirement that the model should be capable of being em-
%edded in an equivalent assembly. Thus, although this method can give appar-—
Lntly good agreement with both the experimental RDF.and density, it can do SJ
only at the expense of a relaxation of the required packing constraints. The
docal structures of these high density clusters also show significant differ-
ences from the laboratory dense packing32.

We could largely solve this "embedding problem” by performing the collec-
tive rearrangements on an assembly uéing periodic boundary conditions, in
which the (in this case cubic) box containing cur hard-sphere gas is surroun-

@ed by identical “image" boxes. This has been done successfully in two34,

but apparently not in three dimensions for har@d-spheres. Woodcock has, how-

ever, performed a lengthy molecular dynamics calculation in which the density
of an assembly of 500 spheres with periodic boundary conditions was slowly
increased from a low density fluid state te almost close-packing. The pro-

jected maximum density limit was at 0.637 ¢ 0.002 indistinguishable from that

e e e e e
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of tgevieboratory model (0.6366 + O, 0004) Moreover, tn;-gbt at the highest
‘density achieved (at 0.628 still significantly below the apparent maximum}
?was.identicai to that of the hard-sphere model within computational and -
experimental uncertainties. Despite the apparent ad hoc nature of the laborH
;atory;built model, its density and structure appear to be indistinguishable’
ifrom that of this "conflguzatonallywa:rested“ hard-sphere fluid, supporting

our tentative assignment of the hard-sphere dense packing as a zero temper-~

fatpre ideal glass. The collective rearrangements produced by either molec-

lular dynamics, or laboratory kneading and shaking, appear very similar.

23. Summary
! . Computer construction methods raise a basic problem of constructing a
model consistent witn the packing constraints imposed by the high density of
the real systems we are trylng to model. Sequential addition procedures
necessarlly result in lower density models which do not show the characterisH
tic RDF features found in real systems: collective rearrangements are ap—
parently necesnary to increase the density adequately to show a clear second
Eeak eplitting. Tne addition of a sphere on to a rartiy-built model is con-
. stralned only by the packing constraints exerted by the already-existing
rodel on one side only of the new sphere. Similarly, collective rearrange-—
ments with free bounda:ies take inadequate cognisance of the packing con-
straints that would be effective were the cluster consistent with being em-
bedded in a statistically equivalent ensemble. The additional freedom
allcwad by a free bcundary facilitates very high density packings with
lapparently improved {with respect to experimental) RDFs. Just as low density
medels with good EDFs must be considered inadequate, Sc must high density
models if they are incapahle of being extended in size indefinitely without
N .
the consequent exertion of packing constraiuts changing the density and RDF,.
;,The 1cosahedra1 model of Sadog i3 an example of the embedding problem on a

finen scaie.‘the density and RDFs of the subunit clusters are reasonable, but

11 ’ . e

[they cannot be packed together Without drastically reducing the density.

Although these remarks refer to hard-sphere packings they apply also to
more "realistic" “soft" sphere models. Experimcental comparison must be made
with both density and RDF at least: we can fit either with many models, but
to fit both by one fully embedded 'model is difficult, but necessary. Other-
wise, we would have failed to consider sufficiently the packing constraints

which, in dense systems, are strong determinants of the structure.

"REAL" AMORPHOUS ALLOYS

No real alloy consists either of hard-spheres, or of only one type of

atom. We need therefore to examine the effects of softer {ideally realistic}
1 . . ;
Potentials on the ideal hard-sphere structure, and to sce how this structure

changes when twe (or more) components and their chemistry are considered.

1. Potential Functions

wo main routes are followed to probe the effects of soft potentials.,

rirst, a previcusly-constructed hard-spherc assembly is rescaled to a soft
botential, and energy minimisation calculations perforsed. Moot work on
single component systems has used simple potentials such as those of the
}ennard—Jones or Morse variety, and conjugate gradient minimisation methods
%ave allowed relatively large structures (of a thousand or more atoms) to be
gandled36. Secondly, the use of computer simulation - wmolecular dynamics
{MD) and Monte Carlo (MC) - technigues has been explored.

i In the melecular dynamics procedure, an assembly of atoms is set up in
a (usually cubic} box, with periodic boundary conditions to mininmise boundary
iroblans- The atoms are each assigned a velocity at random, ensuring the
;verage kinetic energy corresponds to the required temperature. The forces
;cting on each atom are calculated, and the atoms allowed to move according
i

to Newton's laws. The temporal development of the system is followed until

Fhe assembly has apparently equilibrated, when its structural and dynamic
! .
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properties can be extracted. The Monte Carlo p;;;éduié.works rather differ-
ently but produces sample configurations which are in the limit consistent

with the molecular dynamics assemblies. Again starting from an initial con-
figuration of the required density, a randomly chosen atom is moved in a ran
dom direction by a {medulated) random amount and the potential energy change
éAU calculated. If AU is negative, the move is accepted and the process re-
%peated; otherwise, the move is accepted with a Boltzmann weighting. It can
be shown that both MC and MD methods converge towards configurations that arg
consistent with a Gibbs ensemble of the model molecules chosen.
These computer simulation technigques have been applied very successfully

[o liquids, and in fact were used early on to demonstrate the similarity

etween inert gas liquids and Bernal's medell”?, provided the calculation is

pursued for long enough (though how long this is is arguable especlially for

‘nen-simple molecules) the validity of the resultant structure (MC and MD)

.

and dynamics (MD only) depends on the adequacy of the potential functicns

used. The method is often used to test proposed potential functions.
When applied to amorphous solids, the reservation with respect te poten-
tial functions remains, and we have an additional problem: we are trying to
simulate a non-equilibrium assembly. Using molecular dynamics, we start with
é liquid assembly and then reduce the temperature progressively. However,
Eom@utational restrictions force us to réduce the temperature at a raté which
is unrealistically high (perhaps " 101! xs™Y) conpared to laboratory quench
Eates (% 10° Ks_ll.l The resultant structure is really a "configurationally-
arrested" liquid, rather than an amorphous solid which has been allewed to
adjust its structure during the quench. Monte Carlo suffers similar problems
in that temperature must be reduced (or pressure increased} unrealistically
rapldly. V
Relaxation calculation33 36~ 38, molecular dynam1c515 35,39,40 and Monte

Carlo41 ~44 ginulations have been reported on single compenent systems using

. performed.under different conditions; as a result, it is possible to draw

e

— -
]

ilargely Lennard-Jones or Morse potentials. Many of these calculations were

tentative conclusions concerning the variability of the resulting amorphous

structure with respect to the different conditions used. We give here a

brief summary relevant to the binary alloy work discussed below, fuller

details having been published elsewhere3‘38.

{a) Potential function and model boundaries. Both RDF and internal

structure ¢an vary with poténtial function3. For a very soft potential such

as a Morse 3, structural differences are also induced by the different trun-
cation procedures used in energy calculations3, These latter differences
are particularly evident when free boundaries are used, and might he attri-
Puted te a long-range compression effect which would be much reduced for an
gmbedded model.
The same starting configuration relaxed under free and confined boundary

conditions showed structural differences. However, the houndary problem may

e less critical for soft potential assemblies than for hard-spheres. In the
hard-sphere case, the "free volume” available for internal rearrangement
depends strongly on the presence of an unconstrained boﬁndary; for soft
pheres, internal adjustments are facilitated in addition by the softness of
the repulsive core., Nevertheless, as such calculations require only a minor
}ncrease in computer time, it would seem.sensible to use periocdic bowndary
H .

conditions to reduce the free boundary problem.

i (b) Starting configuration for energy minimisatien. If we could show

that the relatively low density sequentially constructed assemblies led to
relaxed structures indistinguishable from those obtained from dense, collec-

fively—rearranged hard-sphere starting configurations, then the objections
j
raised earlier to sequentjal construction methods could be ignored. The

limited evidence on this point Suggest53 that, although resultant RDFs of

relaxed models using starting configurations of densitles 0.637 {close~

14




|packed) and 0.60 {loose-packed) are statistically i;distinguishable, there
are measurable differences in internal structure. Which starting point is
more realistic is unclear, as is the effect on resultant structure o% using
even lower density starting configuraticns. Althcugh one might argue that
the detected local structural differences are physically unimportant, the
remaining uncertainty advises prudent use of several different starting con-

figurations.

{c) Computer simulation., Just as the hard-sphere MD calculation of

Woodcock3® tended towards a structure whose RDF is apparently identical to
that of the hard-sphere dense randem packingl6,35 so MD calculations on rap-
idly guenched lLennard-Jones atoms yleld RDFs very similar to those obtained
from free boundary relaxations39-40. Thus, despite the reservations raised
earlier about the identity of structures produced at realistic laboratory
quench rates and at accessible computer quench rates, indistinguishable RDFs
:can be obtained. We should stress several points, however. First an amor-
i

phous Lennard-Jones system has never been experimentally prepared, and it
may well be that the unrealistically high quench rates used in the simula-
it.ions may be thecretically necessary to produce one. In this case, the

apparent structural similarity hetween MD and relaxation calculations would

be expected although we could not justifiably generalise this similarity to

alloys which are produced at guench rate§ low enough to allow internal strucH
:tural rearrangements on the time scale of the guench. Secondly, the RDF is
a relatively crude measure of structure, and similar RDFs can hide subtle

structwral differences. Thirdly, some MD work suggests there may be a signi-

,ficant structural dependence on quench rates49, and structural data exists

to allow a detalled investigation of this point45,

2. Binary Amorphous Alloys

Each of the model-building techniques discussed above has its disadvan-

H

cedures that lock most attractive are (i) computer simulations and (ii) re-

laxation calculations, preferably using periodie boundaries. Monte Carlo ‘or

-nolecular dynamics guenching of a previously set-up liquid configuration wiﬁ
@zoduce a "configuraticnally-arrested liquid“ which will necessarily ignore
those.rearrangements that will occur on the time-scale of the laboratory
quench. The relative impﬁrtance of such processes to the final structure is
unclear, and ‘detailed examination of particular cases is required, The.pos-
sibility of identifying gﬁese processes - or perhaps relaxations from sequens
tially constructed computer‘models - with structural relaxation of as-
quenched glasses could be pursued (see chapter 10).

A major problem with relaxation calculations is the choice of starting
configuration. For single component modals, we have evidence for a depen-—
dence of structure on starting confiquraticn. For a multicomponent system,
this dependency will be much greater. In addition to the packing constraints
that dominate the single-component structure, we must consider the "disper-
§ion" of the two components in the alloy. This is generally termed "chemical
crdering", and refers toc the relative arrangement of A atoms around B, B
arcund A, etc. Relaxing a sequentially-constructed demse starting configu-
ration will not significantly perturb the topology of the local chemical

ordering: if it is incorrect at the start, it will remain incorxect - the

structure will be locked into an incorrect local enerqy minimum. "Correct"

;tages. When we consider trying to model real amorphous alloys, the two pro-
e — .. g —

topology‘of the starting configuraticn is therefore essential; subsequent

relaxaticn is merely a refinement, though one which — on the evidence of
{

i .
'single component hard + soft sphere relaxations - will significantly change
H

ﬁhe model RDF.
Thus, either method must be used with care, and the possible consequences
of variations in procedure explored fully. For sequential model-building

Iollowed by relaxation, alternative starting configurations should be used,

rhile for simulation calculations, quench-rate dependencies must be examined.

16



,ﬂvhybfld of the two approaches seems attractive, théuqh has yet to be attemp-

ted. On the reasonable assumption that - provided the potential functions

iare-"adequate“ - a computer-simulated liquid alloy has the correct liquid
"chemical ordering”, then that retained on rapid guenching would be a reason-
able starting configuration for a relaxation calculation4®, "Within the con-
straints of available computer time, guench rate dependencies of the starting
structure would be examined, and the detailed local structures of the final
"relaxed" models compared,

At this point, it is perhaps useful to restate the three major problems
facing the would-be serious modeller of binary or more complex amorphous

alloys. First, the potential functions. We know single component amorphous

lstructures depend upon the potential, and this dependency is probably stron-
gger for the binary metal alloy. For any resemblance of reality, therefore,

|

;we must abandon the oversimplified lLennard-Jones and Morse forms, This
'raises additional problems. In metals, we cannot ignore many-body effects
gfrom the delocalised electrons, and hence density-dependent potentials must
be used. When we consider the second component B, we need a description of
t

Tthe AB interaction which is consistent with the resulting "chemical ordering
!found in the liguid. For "simple” metals, some progress 1s possible using
?stablished techniques in metal physics, as in the fundamental work of
%afner47. Where metalloids are involved; we have even bigger prcblems:
ﬁirectionality of the metal-metalloid interaction - which would have conse-
éuences for "chemical ordering” - must somehow be considered,

In the light of these rather basic problems of potentials, it could be
?rgued that more ad hoc model potentials could be used, provided the model
gotential 1s designed to reproduce successfully - or at least be consistent
}

ﬁith ~ the observed local chemical ordering. This raises our second problem)
]

t
that of knowing what the chemical ordering is. For single component models,
1

1
©one ROF is the maximum structyral information that can immediately be
i

. ey -

rbbtained from a diffraégion experiment. For two components, we require
jthree partial RDFs -~ cne for each of the three possible pairs AA, AB, BB (see
chapter 5}. Merely obtaining this data for a given alloy is a tall order:
three independent scattering experiments are required in which the scatter—‘
ing power of the atoms is different, 1In principle this can be done for a
limited number of suitable alloys using isotope substitution in neutron work,
and ancmalous dispersicn for X-rays. Only very limited partial RDF data is
currently available, thouéh‘work in progress should lead te much better
local ordering characterisation in a few alloys. Other techniques such as
EXAFS, Mossbauer and NMR have also been used to try to obtain similar local
information, althcugh the interpretations of especially the last two are
strongly model dependent46.

Thirdly, even knowing the "chemical ordering", it is not a trivial task

to construct an amorphous alloy model with the two compeonents suitably dig-

persed to reproduce it. For the single-component models, packing constraints
are strong structure determinants, yet they are peorly understood. For the
binary, within this poorly-understood framework, we must build in the addi-
tional constraint of a prescribed “chemical order ing".

In this final section, we can do little more than indicate the approaches

that have been tried to tackle these problems. This discussion could be

iframed in terms .of how simultaneous satisfaction of these two {competing?)

’packing and "chemical ordering” constraints is attempted. All methods have
i

gused subsequent relaxation of the initial configuration, using potentials

v

]

.(generally Lennard-Jones variants) which are sometimes designed to blas the
|

assembly towards the desired local structure.

fa) "Dense random packing" models. Under this heading we consider

:modelubuilding approaches which satisfy packing constraints preferentially

to “chemical ordering". Although earlier laboratory models were built by
t

:Scott and Kovacs48 ang Cherry and Finney49, no attempt was made to bias the

e s ————m o g e ¢t o St et e e e ]



’ﬁodel towards a particular local ordering, Boudre;ux and GreqorSO'52

japplied Bennett's sequential addition procedure to (initially) hard-spheres

of size and composition ratio designed to mimic FegoPzp or PdggSizg. Tech-

‘nical modifications were made to the building procedure to ensure composit-

‘ional homogenitysz, and an attempt made to input same chemical order con-
straints by forbidding near neighbour P-P contacts. The initial hard-sphere
.models (of several compositions to allow investigation of structural vari-
Aations with composition) brought out a general defect of the segquential
iaddition procedure: the structure was highly anisotropic. The addition pro-
i

.cedure - probably partly because a site closest to the centre would tend to
ke-planar - showed a characteristic RDF (see fig.2¢) only in the radial
|
idirection. Collective rearrangements would be expected to take full account
;of the packing constraints in all directions and thus remove this anisotropy
This was successfully done by retaxing the assemblies under Lennard-Jones
?otemtiala. AS no attempt was made to design potentials which might bias thy
lrelaxation towards either retaining or enhancing ordering, the "chemical
crdering" was fed in soley through the exclusion of near-neighbour small
(metalloid) atoms. Relaxation increased Fe-Fe and P-Fe coordination numbers
; y 30% and 413 respectively, to values in reascnable agreement with experi-
Eentsz. Related structures have been built to model F99551560 and FeﬁguPﬂqoss
‘and the results compared only partially éuccessfully with limited partial RDFj
jdata.

The main problem with sequential addition procedures for modelling binar

ies with "chemical order" is feeding in local ordering constraints which are

consistent with the packing constraints at each stage during construction.

The free boundary forming half the neighbourhood of each atom means only halfi

the constraints are defined at each addition stage; therefore decisions must

hecessarily be made on limjted information. Forbidding close contacts of

particular types of atoms is straightforward, but the more complex congtraints

T e ]

that will probably be required te fully reproduce required chemical ordering
seem far more difficult to feed in to the sequential additioen process.

(b)Y Built-in chemical ordering. An alternative is to first build in

the desired chemical ordering - perhaps to excess - and to allow the relax-
ation process to bring in the dense packing constraints, perbaps using model
potential functions designed to favour the original locally-ordered struc-
tures. This approach is strongly-related to established model—building'tech
niques for network glasses such as vitreous silica and amorphous silicon and
germanium, ailthough herc the absence of significant packing constraints
means the prescribed chemical ordering remains. Gaskell first explored the
possibilities of the method in his work on PdegSizg and related transition
metal-metallcid alloys53 for which experimental coordination niumbers
measured by EXAFS and neutron scattering gave results which were similar to
those found in corresponding crystalline modifications which showed a tri-
gonal prismatic coordinatien (fig.3a). Considering the widespread occurrenca
of this kind of coordination polyhedron over a wide cemposition range, it
seems reasonable to expect it to cccur frequently in the amcrphous alloy.

A model was therefore built - initially in the laboratory, later trans-
ferred to the computer - by joining trigonal prismatic units in the manner
of fig.3b. This emphasises the strong trigonal prismatic chemical ordering
at the expense of packing constraints (ghe model in fact contains large
cavities). The packing constraints are then brought more into play by com-
puter relaxing the assembly. Again Lennard-Jones potentials were used,
though for one model the second neighbour Pd atom is treated differently to
try to emphasise the trigonal prismatic ordering in the relaxed structure.
The resultant structure shows encouraging agreement with experimental total
RDFs: no partial'RDF data are available for comparison.

The interplay between the initial trigonal prismatic coordination agd

the increasingly strong effect of the packing constraints as the relaxation

20



[pxoceeds is a particularly interasting problem which requires attention. At]

'experimental densities, widespread perfect trigonal prismatic order appears
i

I
‘not. to be possible in a non-crystalline assembly, but how small the distor-

tions need be to accommodate such local ordering is unclear. Using recently

developed technique554 we can begin to probe the degree of "trigonal pris~
imaticity“ remaining in these structures. Initial results show that many

such units do indeed remain, although generally distorted, and there is evi-

.dence that significant movements are forced on some atoms, in particular

;several S5i atoms become close to being first neighbours. We could speculate
ion the possibility of conétructing a more perfectly trigonal prismatic - yet
1densely packed - non-crystalline assembly from a totally different starting

‘point, with such an assembly inaccessible by relaxation frem a configuration
f

iconforming to the starting hypothesls of fig.3b.

i There is also the interesting question of how far the Boudreaux and

|

‘Gaskell approaches might tend towards similar relaxed structures. Fujiwara
i

fana 1shii5s

attemptad to characterise the local ordering. Although it is not clear how
|

constructed Boudreaux-type models of Fejgp-yxPyx alloys, and

;capahle their analysis techniques were of unambiguously describing the phos—
iphorous coordination geometry, they argqued for a strong tendency to trignna}
:prismatic organisation. Further work using more sensitive analysis tech-
iniques is under way to examine this poinf in more ﬁetailS4.

: (c) Other methods. In addition to computer simulated quenching sugges-
ted above - relying on realistic potential functions to reproduce the desired
chemical ordering in the liqgquid structure starting confiquration - one fur-
ther apprcoach seems worth pursuing. Boudreaux's approach puts primary em-
Phasis on the packing, (rather weak) constraints being added to try to mimig
.some of the features of expected chemical ordering (although the sequential

hature of the building procedure means that the packing constraints cannot

:be fully considered every time a sphere is added). Gaskell's method whish

:eﬁ haéiscs local ordering primarily, leaving rmlaxation to sort out packing

5 . R

‘constraints secondarily, seems a more flexible approach. BAnr interesting

57 starts from an already-constructed

ithird possibility currently being tried
gdensely—packed single component model, and feeds into it chemical ordering
information. The philosophy behind this approcch argues that a pre-existing
single component model contains the essential packing constraints in a dense
non-crystalline structure. The (variable) topolegy is precisely defined,
and therefore complete data is available for investigating the possibilities
of labelling the atoms A or B consistent with the desired local ordering.
allowing a degree of statistical variation in the topological and metrical
perfection of tﬁe local orderings we are trying tc insert, many different
possible combinations of A and B labellings can be explored and screened; re-
?laxation calculations can then be performed in the usual way using pericdic
boundary conditions. The simplest case of such an approach was used by von
Heimendahl and Hafner®® for Mg;02nj3e, using hepefully realistic potentials
developed from pseudg—potential theory47. As zero chemical ordering was
assuned, A or B (Mg or Zn) labels were assigned randomly (subject to composi=

5% includes much weaker

.tion). The related procedure cf Maeda and Takeuchi
packing constraints, their starting configuration being set up by a random
parking algorithm.

Extending this "seeding" approach fo the non-random chemical ordering
case is far from trivial. It attempts to partly decouple the topological
disorder {packing constraints) from chemical ordering so as to allow their

(partially) separate consideration, by using a completely defined non-crys-—

talline structure within which to probe the combinational possibilities. As

such a single-component "random lattice” (!) is a better approximation to the

packing constraints operating in a binary where the two components are necarly

cqual in size, it seems sensible to start by modelling a weakly-ordered alloy

of approximately equal size components.
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provide the opposite extreme, where packing constraints dominate and the
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. work will remcove this problem for selected alloys-
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750me~albeit restricted-insight.
-aifferent construction procedures can lead to structurally Jdifferent model
_assemblies ("amorphous polymorphism“)3 '~ although there i1g evidence to sug-

igest that at the higher densities of interest for real systems, a single

a non—crystalline assembly that is consistent with both local chemical
ordering and the overall packing constraints of high density structures.

Network glasses such as vitreous silica present much less of & problem as

chemistry of molecules with spherical symmetry ig not a significant considey

The major problem witn modelling real amorphous alloys is to construct

the chemistry (1inked 510y tetrahedra) dominates the structure, which exX-

nibits very strong chemical ordering with only mincr considerations of pack-

The real problems 1ie in between where the interplay between "pack-
ing" and nchemistzry" is crucial in determining the structure.

We are nandicapped in tackling this prcblen in two major wéys. First,
we lack good, model-independent data on chemical ordering, though gurrent’
Secondly, oOur under—
standing of the operation of packing constraints in dense non-crystalline
assemblies is poor- Even for single-cdmponent vjideal™ model systems, We

have no adequate theoryr and we are forced to model-building studies to gai

tven here, there are complications in that

ideal hard-sphere - and perhaps soft-sphere — gtructure can be (statisti-
cally) defined.

Although we have much experience of single—ccmponent modals -~ which
have heen useful in helping to at Jeast see (if mot to nderstand) how vari-
able model constructicn parameters can atfect final structure - only a
limited amount of work has been Jone to model binary amorphous alloys. TS
main approaches put aifferent stregses on chemical ordering and on packing

ey [E—

. ey e pRTLING B e ¢ o T , . e et
‘constraints in the starting structure, and have raised interesting questions

:concerning the interplay petween these two constraints which are crucial in

‘determining the model structure. Despite the severe problens in effectively

‘modelling the structures of real binary - and eventually ternary -~ amorphous

zalloys, progress is expected also via new "topological seeding” technigues.

Ia1though we might make use of comput.er simulation to set up 1iguid configu-

%

rations with chemical ordering determined by the assumed potential functions

1
Ineither MC or MD methods will sclve all problems, being yestricted to unrealy
;istically high gquench rates.

‘and may do more in the long term to improve our understanding of these fas-

cinating structures.

'REFERENCES

11. Duwez, P.. williams, R. J- and Klement, W.. J. Appl. rhys. 3&3 1136 (1966)-

i2. Ccargill, G. g. 1II, hcta Cryst. A25 (part S3),»§2§_(1969). Ccargill, G828
111, J. Appl- Phys. fil 12 {1970).

3.

simpler, cruder methods are still appropriate,

Finney, J. L. upiffraction studies of Nen-Crystalline gubstances”,
(Hargittai, I-. and Orville-Thomas, W. Y., Eds), Elsevier, amsterdam

(1981), p-440.

Mayer, J- E. and Mayer, M. G., rggatistical Mechanics"', Wiley, New York,

(1940).
croxten, C. A., "Ligquid State Physics", Cambridge University Press (19?&1

Watts, R. 0. and McGee, I. J.: "Liguid State Chemical physics", Wiley.

New York, (1976} .

Hapsen, J. P- and Mcbonald, 1. R., "The Theorf of Simple Ligquids”,
Academic Press, New vork, {(1976).

ziman, J. M., "Models of pisorder”, Cambridge University Press (1979) .

sernal, J. D., PLoc. Roy. SoC. EEQEJ 209 (1964).

pippard, A. B., *Elements of Cclassical Thermodynamics', cambridge Univer-

sity press (1966) p-122.

24



il.

iz,

13,

14,

13,

. C m—— e e o ——

Bernal, J. D., Nature, 188, 910 [1960).

Scott, G. D., Nature, 188, 808 {1980).

" Bernal, J. D., Cherry, I. A., Finney, J. L. and Knight, K. R., J. Fhys. }

E,i, 3is8 {1970).

Finney, J. L., PhD Thesis, University of Londen (1968).

Angell, C. A,, Geeseman, P, A,, Clarke, J. H. R. and Woodcoek, L. V., in
"The Structure of Non-Crystalline Materials", (Gaskell, P. H., Ed.),
Taylor and Francis, London (1977), p.191.

Pinney, J. L., Proc. Roy. Soc. A319, 479 (1970) .

Finney, J, L., Proc. Roy . Soc.ﬂlg, 495 (1970).

Cohen, M. H. and Turnbull, D., Nature 321, 964 (1964).

Finney, J. L., Na.tura‘zég, 309 (1977).

Bennett, C. H,, J. Appl. Phis.ﬁ, 2727 (1972).

Adams, D. J. and Matheson, A. J., J. Chem. Phys. EE_, 1989 (1972),

Norman, L. D., Maust, E. E. and Skolnick, L. P., U, S. Bureau of Mines,

Bull. 638, (1971).
Visscher, W. M. and Bolsterli, M., Nature 239, 504 (1972).

Ichikawa, T., Phys. Stat. Sol. A 29, 2923 (1975).

Mrafko, P. and Duhaj, P., J. Non~-Cryst. Solids 17, 143 (1975}.

Sadoc, J. P., Dixmier, J. and Guinier, A., J. Non-Cryst, Sclids 12, 46

(1973).
Matheson, A, J., J. Fhys. Cl, 2569 (1974).
Bonissent, A. and Mutaftschiev, B., Phil. Mag. .,31:2' 85 (1977).
Cargill, G. 8. III, Solid State Phxs.jg, 227 (1975).
Finney, J. L., J. Phys. (Paris) 3'6‘, C2-1~11 (1975).
Mason, G., Disc. Far. Soc. ﬂ, 75 (1967) .
Finney, J, L., Mater. Sci. Eng. ~2"3_, 198 (1976).
Koskenmaki, D. C., Mater. Sci. Eng. M2M3~, 207 (1976).

Kobe, §., Int. Symp. Amorphous Magnetism, Troy, New York (1976).

25

42,
43.

44.

45,

46.

a7,
48.
49,
50.

51,

52,
53.
54.
55.

56.

Wo'odcock, L. V., J. Chcm. Soc. Farad, Trans., II 72, 1667 (i97G).

von Heimendahl, L., J. Phys. F. .i’ L141 (1975).

Barker, J. A., Finney, J. L. and Hoare, M. R., Eﬂr_&ﬂ, 120 (1975).

Langon, F., Billard, L., Laugier, J. and Chamberod, A., J. Phys. F_sz,

259 (1982).

Ratman, A., Mandell, J. J. and McTague, J. P., J. Chenm. ths.ﬁ, 1564
{1976).

Damgaard Kristensen, W., J. Nen-Cryst. Solids 21, 203 (1976).

Street, W. B., Raveché, H. J. and Mountain, R. D., J. Chenm. Phys.i‘l‘_,
1960 (1974).

Wendt, H. R. and Abraham, F. F., Phys. Rev, Lett.:}i, 1244 (1978).

Abraham, F. F., J. Chem. Phys. l%, 359 (1980).

Bennett, C. H. and Finney, J. L., "Rapidly Quenched Metals", {Grant, N.
J. and Giessen, B. C. Eds), MIT Press, Cambridge, Mass. (1976) p. 231.

Finney, J. L., unpublished data.

Finney, J. L,, Gellatly, B. J. and wWallace, J., "Metallic Glasses :
Science and Technolegy”, (Hargittai, C., Bakonyi, I. and Kemeny, T.,
Eds), Akademiai Kiado, Budapest (1981}, p.55.

Hafner, J., Phys. Rev. sz.,l.,' 406 (1980) .

Scott, G. D. and Kovacs, G. J., J. Phys. D.i’ 1007 (1973),

Cherry, I. A, and Finney, J. L., mbublished work.

Boudreaux, D. §. and Gregecr, J. M., J. Appl. Phys. MiSq, 152 {1977},

Boudreaux, D. S. and Gregor, J. M., "Rapidly Quenched Metals" (Grant, N
J. and Giessen, B. C., Eds), MIT Press, Cambridge, Mass. (1876)p.323

Boudreaux, D. 5. and Gregor, J. M,, J. Appl. Phys.ﬂ, 5057 (1977).

Caskell, P. H., J. Non-Cryst. Solids 32, 207 (1979).

Gellatly, B. J. and Finney, J. L., J. Non-Cryst. Solids (in press).

Fujiwara, T. and Ishii, Y., J. Phys. F 10, 1901 (1980).

Bouguiere, J.-P. and Finney, J. L., unpublished data,

- . e . - T e emme e o e m—— e

26



—.\ —— —— — s —— e ————. -
.. , e — i
57. Eushnell—Wye, G. and Finney, 7. L., unpubiisheqg work. !FIGURL CAPTIONS

|
]
8. ven feimendani, . and Hafner, Tro Bhys. Rev. Lett. :}3_' 86 (1979;. ’ ;Figure 1 : A la.boratory—constructed random close—packing of hard—spheres,
t

7% Kobayashi, Srv Maeda, k. and Takeveni, Sor L Ph 2:_S0c. Japan 18 1147 showing the absence of lattice erdering,

(1980) .

|
Figure 2 . Pair distribution functions out to, about twe diameters of
60, Fujiwa.ra, T., Chen, H. S. ang Waseda, Y., J. ths. F (in Pressg), lgur

Several single Component hard-sphere models, (a) Hard-sphere
61, Boudreaux, L. 8., in "The Magnetic, Chemicay and Structural Properties g e -

tnal? - . , .
c = 0.6366) com ared with e erimenta) Niyg Py,
of Glassy Metallic Alleys”, (Hasegawa, R., Ed.}, cre Press Inc, Boca dense pa king™" (p P *p
———Z2E58 Inc
2 i 1 i (b) e t I~constructed model usin
Raton, Florida, usa (1981} chapter 2, data (continuous line); (b} ompute g
‘s " " 20, "gas-com resgion”
62, - Cargill, g, s, III, “Atomig Energy Review", Suppl, 1, Internationag Bennett's global™ criterion i (e} and (q) ga .

Atcmic Energy Agency, Vienna, {1981) P.63, medels of densitiesg {c) 0.639 and (d) 0.664,

————

28



$ ©

7









Lt

T

P

} I NTKHNATIONAL ATOMIO ENERGTY A G ENOQCY Ha[stﬂ

Ny UNITED NATIUNS EDUCATIONAL. BOIENTIFIC AND CULTURAL ORGANIZATION Jnidhlb
s e

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

34100 TRIESTE (1ITALY) - P.O. B. 686 - MIRAMARF, - BTRADA COSTIERA 11 - TELEPHONES  224281/2/3/4/68
CABLE: CENTRATOM - TELEX 4803921

SMR /94~ »

SPRING COLLEGE ON AMORPHOUS SOLIDS
AND THE LIQUID STATE

14 April - 18 June 1982

MODELLING OF LIQUIDS AND AMONPHOUS SOLIDS

{Lecture I)

J.L. FINNEY

Liquids & Diserdered Systems Lab.
Department of Crystallography
Birkbeck College

Malet Street

London, WC1E 7HX

UK

These are preliminary lecture notes, intended only for distribution to participanta,
Missing or ertra copies are available from Room 230,



ELRR I TR SRR R RV or (SRR I AR P J
e T T S SN

GEnefpl SWPE oF (oURSE
P e et e e

- e want twd W Ndweguan Ar mptd M ohwihunes
W~W§>MM Ay oo drdas am M Gdpodeg v+ on The uww.‘}\u.
Shan Lk e %ww Ax owentens pilds vafiates whin Mo hdiiid
oblomn e gradial, v vty Aown fan cument ek m
M amaiura'ﬁm.m aﬁﬂu\/ﬁa ol - ?\C MMonny Nwwv\h - L\’»\{LV\J] wahor

KECTURE 4 - IWROBULTION | THERL SINGLE (oMPONGNT PSSeMBiiss ARGRAORY  MobELS |

1. CMSTHRS ) GBS, PGV INS - T NAWRE of MRELS |

mnaw%dmi%ﬂ *M‘QM}WNACH_Q%\\]:&_
W@ub { b wf\okﬂa \gpazs 63 ’?nAWh\L&\s E‘M\ Juiﬁoﬂi\é

Mw\uwm,s v Rewgpabin Ade o dowd fowe o N

~ ¥/
N S
2 m&i

whag 2 M MMA c e Rl g lowua MWWM
oM. wdpchont ¥ oy e MHW out: %W
z =

‘ Z.Q

UH\WL Q, Ml u%mnml AW L\DG(&Q antns 0}\\'«1\0\1&“}3 J[)\U\%h%
Raawgh e ’p%Mzﬂ. IRy u(q,, —aiﬁ)
- Uy, N)/KT
G- “
\f“’rv!gu’(*L A

e — -

2.

In gk o il dn Vot s eodvolde W l"-‘.1~) fo it o Numekiot
m%gw A o ——— W e LY ‘L ‘l A .
MM?&WQ/W«N&W&M, N oo Ak o‘() ,Aw\erU cooabive s WAt cavdt g ,
bt o chwchuad kil W t:( s o K+ ,ﬂﬁ,\ﬁm@w&m
A wis W mm\u&&é appod bo weltd amck oo MRean

™
MODELS oF GBS+ ORYSTRLS. ArPLItARLITY To Liguh S ]

Q=0 L Rt en thoduae et
N aud qa sovohpan haiesaia 'gmli\ém dohgminad ‘QM L&d /JW'AER_CA (ng™>
adoretbicedan poludiol * no ambliois A ) ,
> Topdieh o+ o) wan® idencbs, Wik om S gt
 Jowna M (> Wh ¥W\MM O(UMJ\,%
AMAtpALh Y . _
“Clusm’pmwiw“ | o Mooy sledaiod wadohamion ijf/w \uek )
O o s an wa{mé MAOMpLass | Nowg '
wwmwwmﬁ Lagpurdls o

%_Q\i;u_% mgm L ouelive u?w( M,E’O WE --m}dmuiw%s) wi Yo
g vo. o ooy inlemding, -

wt ohhithwedy Tty e brordigia NI alpy - At
™ aﬁkﬁ&% Nowa, WAM;M& waledpwn g, —4.,,)

BT

> Rod (i) ol - pohurbabion. froen A0 1 e fagn Mo wition
AN B\\;mﬁ\ abion )+ TRyl Jn e ¥ c@w««cMM
lole Nibobdng

il Gon {FURERE W ¥ mw%fw %ngzm-o{lmhwﬂums

P (el e ovphinbtabit D st N )

"- %M WEMWNA W otk il D0 e we Bowe o
Topht otk

!
W

So WE  hpek T eTreR PussiBLE  APPROALHES



5. MODELS ofF IDEAL SINGLE (omPonenT WOYibs

%memwm MIM MJJ ko

mm}&&/\m Ma Mmmd GTJ o Adipd 'd Ry § g ool %WB(
Mon 88 whomat A Mo Mmm&w\n%wwg%%\w&nﬁo
Mlallftb bod- Ligu MMM\@MQ

LawaiW«AU\\ N wav{ll =

O otop iy wold o bt i lod i

ity z oI o avpommwenbutly
~ RYF

iy s

P ) (#3%) ) Bormad 3F50Ry ¢ wenkev 1933
AR MMM\l T

TP 12 1-18(m) () ok R Yy 4 -

B Rodode Yo vawf}&{ N\PLL&Q%
oo Abfrunlh ok Mo g Anoplt g vty

meo& %uanha\ ,o.p‘g\mn - _G,\GE\F 3 bl A
VI Uy T wvpoanainy WANL Dt o1 Yoy oh},wwé,
[ 3) Reavad Jlau’\l LIy .‘ vk v RDF R eg wilah vk £k
(4) Joob ~oane c\}‘Lm\f%«m @ ¥ o lre bt Amkemediie s -

o m

\ (vphnd - 4 QMM warinbond Wiy Apindy , priombad bncha, B

+ g .
L%&Nd M'EW\ & ‘ *NOMA[Q

Tl o.-.«om " haad M ‘f\m‘a\ 73 ﬁam; ¥ ONR‘E&F qwmtwmma &LEM

Voluany o . Cieapted m\@z{f@:btm pa 10213 h
Do o Rant oplves - wo i, PARIANIALD &t Vg
\Q)Uwﬂ.m\ —> 'W\{,\oLLQErt M_\Qﬁ_ ,wd

T Tl bowd

R Ppe ﬂo'wsﬁm)
MOMEL  wnSRGUIuN, .

() Poh bgebo ot opfgnn
[:) Pitangm b I ML&W P\\M\

() Koo Vbl Koy ounan me%
) Fx
o
(m\ Mm cemebivahen . (F) R ek Dl k sh ke

MATuR RESuLIS

) Dewds i-v 0637, (,% ob‘rwc&,‘ atﬂm = 0 F4ob.
_ﬁ“e o-63F <¢3«o’ho§” a’?m-(,&'mw No@Mfw O\J

%\Ww mw«% (uzxwp“bct ~voks)

c«ﬁ AV'NW"% ~ 0§

) RV © ot Dgud  forko o o ( Qb ke (Dot pok 7))
5

T, Miy ﬁmu&wm whsant ¥ cagu J&Lr aﬁmmxﬂ%‘%&
D'{) %L&MOL‘\QQ/S uv\}mwmﬁwm W\’f’}&wﬂ W\J Ao e A B

A Ak Ligwh wadih 5 LR Sounipll i An A_MA‘Q\&
E\MMN\(WPM/JE‘E\&LDFW(%}; §21) o " M oy o oy aLmﬂ»\WN

o Llh}\wu\\\)\w WWMWM ofy e Pagiws 96 Lgpwioly !

f

&wmﬂm vivisns 60y Mt @b &p preem cheo bmm\ P

PRM\LWWM\O{%\M mwk\wh JATING NP ‘p\,\\{ﬂh /m \QLNA‘& ) 'PWI }\MO )
MM{AM o\m\b\mm wNilMM} s

s« ¥ vogrif. ﬁ\M\-m ‘P\tWD'&a&M)‘Q \9\0\1\0‘6 N !\Q\.ﬂ»&ﬂ\'[
QD{M\ ;00w voga Afagut don Raned WE%»]C\

F\M\GW Rnww&\ Q\M\QA ﬂ\ o\tm

%v\o&-ﬁ‘w\m “u A Wk ‘g’t om ab Ny /‘n &w\E
honeten wﬁﬁk R ol ﬁ wiltln Mg \JCUP@EN PM
+ e oo me UC o Rl ot -

MY W\‘EMCK&WWJ\}\NM A&iwﬁaj Waod~ Y QM“‘*—“NM A G\QWU;VW
MLM Cana @\SNW%W%M& y

\\MMU»\% e _od el Ciﬁ \\N\}J\MQ W%W



. APPLILRTUNS To AMERPHOUS SonidS .

Mg ocnhe wilth diwendhaionhan (i 4oflin inansvandy | vouad
2R hinad. bk o ROF sk D, — o il A ppatund -badey
boepane. What An g e vl fus snb shne anpkiots
Al Bgd 2" ofbas” - poilaps i Wt RCP ( ovdins e -
’}Da\b}w‘ W\\m{ﬂi) AL O M HAE Mwimmm e«&m Ay Mo
\EMLJWO\ . N pha LUv\MWw»ta &é 2 ’W‘\k BJ‘Q/M\.QM\ —{lfl,w:ﬁ *{g{o{.w) 4%
el Wt Mis { Mg womasin v peaashd welumdigs ¢
Gt - difbeweas o dbeli) drad otweeAaes BoManion "ﬁgtma “

+ “uﬂm}ﬁwd\wv\ﬂﬂuﬁ ‘&q:mdy

@/PAM%NM O{th [0 &Nmm\f}c‘ﬁ»&hm wohel s (3) * W\QM aﬂ(;’uﬁo ,aﬁ‘sws
A agrtneand |k il Mforvnun i clifonl

SUMMARY

RYSTRL STRUGURE ©  lewirshund wsthe c{wm,?uhd&l Min, Dbe
e ineos Slonies ———R——— iy pobuchal bk, Wt

oL} Wwe\ﬂ.lwé[ aladien  enamioh Wt q\mm% Ahwhuny s land watt,
W\U‘\ o tiwh ,@H\M i Ne u\w‘mm‘ n N s dons

R

“y

U U (PR SR vy B dRannd goamde b _ Nﬂ falféo»#m whing .-

.

Qiln‘ol obkiaen O, wit o uvick \ L;%\ ; "!«\;wk\ N\l
b qw Op prthaiat

j @Wﬂ EQ‘W\ A oL T omeng



