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1. Intreduction

The study of electron transport in severely disordered systems is only
just beginning. A general understanding of the behaviour of simple liquid
metals may be obtained from Boltzmann transport theory which we review in
Section 2. This is a good place to start because, apart from having
application to liquid metals we may also put the results in a form having
wider validity than their derivation might suggest. In particular we find
that the static conductivity and themmopower may be expressed as Kubo-
Greemwood fornmlael. These formulae have been used a great deal to analyse
transport data for amorphous semiconductors as we discuss in Section 3.

It is characteristic of disordered systems that some of the electron
states are localised. Transport thicugh these states takes place through
a hopping mechanism which has received much attention in recent years. We
review the general formalism in Section 4 and make simple applications to
ac conductivity and dc conductivity in Sections 5 and 6. Finally in
Section 7 we outline a unified theory of both ac and dc hopping conductivity
which has been developed in the last two years.

Hopping transport is one characteristic feature of amerphous semiconductors.
Another is anomalous carrier pulse propagation. In crystalline semiconductors,
subjected to a steady electric field, injected carrier pulses are usually found
to be drifted Gaussians. In amorphous semicenductors such simple behaviour is
seldom observed. We discuss the marked anomalies which arise and the reasons
for them in Section 8. At one time a hopping theory was used to discuss the
origin of the anomaliesz - More recent treatments point to trapping as the most

likely mechanism® .

Boltzmann transport theory is treated in most books om crystalline solid
state physics. The author has given a review in a previous Spring College8
and applications to liquid metals have recently been reviewed by March®. The
book by Mott and Davis! is outstanding in its treatment of many topics in non-
crystalline materials. Hopping conductivity has been reviewed by several
au'chors.lo_16 and anaualous carrier pulse propagation is discussed at length

by Pfister and Scher? on the basis of a hopping model.

2. Boltzmapn Transport Theory
2.1, Introduction

Let us suppose that the electron states may be labelled by a wave vector
k and that scattering from k to k” is weak. Then we may describe the electron
system by a semi-classical electron distribution function f(k, r, t), which

depends on position r and time t as well as k, and satisfies the Boltzmarn
equation

M ovvaye FETE - [af] (2.1)

Here: £ = f(k, I, t}, ¥ is the velocity of an electron in state k and F is the
classical force. The right hand side of (2.1) describes the effect of collisions
and has the form

[-g_g]c = J (701 - £1 P(K, ) - £11 - £ P(k, k) }k (2.2)

where £ = £(k", r, t) and P(X", k) describes the scattering rate frem k™ to k.
We suppose that f is normalised so as to be equal to the probability that state
k (with spin up) is occupied amd that spin flips are forbidden. Then

P(k", k) = (Q/Bn ) times the transition rate fram k" to k in a volume @ and
is independent of Q. The physical interpretation of the solution of equation
(2.1) is provided by the following expressions for the electron density n,

the electric current demsity J and the heat flux vector Q:

=£3.[fdl<_ , (2.3)
T
£=-4_egjf_gd5 R (2.4)
T
g=4_13[f[s-eF]XdJ£ . (2.5)
T

In these equations we ignore spin splitting and give equal weights to the
contributions from both spin orientations; € is the energy of state k and e
is the chemical potential.

F

2.2. Solution of Boltzmann's Equation

The formalism camprised in equations (2.1) to (2.5) is often applied to
crystalline metals and semiconductors and details are given in mest textbooks
on solid state physics. A review has been given by the author in a previous
Spring College”. To determine the transport properties of the electrons in a
particular energy band we use the functional dependence of € upon k for that
band and interpret v as the corresponding group velocity h ly_ke. The formalism
becomes particularly simple for an isotropic system in which details of the band



structure are averaged out so that e depends only on k = lk|. We confine our
attention to this case. Our results are then particularly appropriate to liquid
metals which are the subject of Professor Beck's lectures! They also provide
a useful, but idealised, description of crystalline metals and semiconductors.
In the interest of simplicity we consider only static situations, so that

3t/3t = 0. We also suppose that a weak, uniform electric field E is applied
and that the magnetic field vanishes. Finally, we allow weak gradients of ep
and temperature. Then we may solve (2.1) by expanding in powers of the small
quantities E, EEF and ¥T.

In zero the order we write f = fn and determine fO from

3,
7 "0 (2.6)

Now, P(k”, k) satisfies the detailed balance condition

P&, X -

P kY D eBET -1 | (2.7)

~ where B = [kBT)'l_with ch denoting Boltamann's constant and T denoting the
temperature at the point I; e=eg(k)ande” = (k). It follows immediately
that (2.6) may be satisfied by making the integrand in (2.2) vanish. Thus we
- find that £y is just the Femmi-Dirac function of the energy:

fole) = LexplB(e - )} + 177" (2.8)

where 8 and ¢y are arbitrary functions of r.
]
In first order we write

f=f

o*f

L (2.9)
and find from (2.1) that £, is determined by the linearised Boltzmann equation

€E Bfl

X-Zfo - -z-k fo = ﬁ'—' c (2.10)

In this equation (Bfllat) c denotes the linearised collision term:
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(2.11)

where fl = :El(_]_(_, T, ti, f’l' = fl{E‘, r, t), fo = fo(s), fa = O(S:) and the
function r(k”, k) is the thermal equilibrium electron flux from k" to k per
unit volume of k space:

I, B o= £50 - £) BK, K) (2.12)

We see immediately from (2.7) amd (2.8) that I'k", k) is symuetrical, i.e.:
k", K) = Tk, k).
in solving (2.10} it is comvenient to use the relations

df -
Vg = - g e + TI(e - ¢ (2.13a)

1

daf
-0 2.1%b
lrfor g v (2.13b)

on- the left-hand side. To-simplify the subsequent analysis we introduce on the
right-hand side, the relaxation time T = t(c) by writing

af f.
i .. 2.13¢
[51‘. ]c T ( )
Then we have
df
0 DR | _ 2.14
£] % T V. [eE" + 17I(e - £p)] (2.14)

where E“ = E + e_lst is the electromotive force.

2.3, Formulde for the transport coefficients

We obtain formulae for the transport coefficients by substituting (2.9) into
(2.4) and (2.5). Thus we find with the aid of (2.14) that

=qg.E° + L.VT
I=ak - (2.15a)
Q=ME" +NIT

where
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2 df
o=~ |vy Tag—odk
4 -
e CH:.O
L=-4——3— vy TE— (E‘.-EF)dE (2.16)
nT
df
0
M= [vv 1 (e - eg) dk
” [—- x F
df

In crystals o, L, M and N are tensors For liquid metals they reduce to scalars
which are obtained from (2.16) by replacing the dyadic y v by the scalar V2/3.
Equations (2.15a) are the "theorists form" of the transport equations in which
E” and VT are taken as the independent variables. In the "experimentalists
form" J and VT are the independent variables. Thus we have

E"=p g+ STT

Q

oJ - «VT

where the (scalar) resistivity p, thermopower S, Peltier coefficient I and thermal
conductivity k are given by

peot
§=-¢1 (2.17)
= oM
k=0 M - N
The Onsager relations
M=-TL (2.18a)

I =TS (2.18b)

(2.156)

are trivially obvicus fram equations (2.16) and (2.17}.

2.4. Conductivity and thermopower

We are primarily concerned with the most commonly measured transport
coefficients o and S. By writing dk = 4vk° (dk/de)de and v = 1™ de/dk in
the scalar form of the above equations we readily find that

dfo
g == HE— U(EJdE (2-19)
k df (g - gg)
_ B 0 a(e F
s- B 0 ol & (2.20
where
&2 2
dle) = 4nk” v 1 (2.21)
12#%

is the "conductivity at energy €. For liquid metals the electron statistics are
degenerate and we find from (2.8} that d.folde =z - §(e - EF).. Hence, we easily
obtain the familiar results

o = olep) ’ " (2.22)
2 g dolep)/de
5= -wmlpT Trg— (2.23)

For n-type semiconductors with a conduction band edge at e, which is several
kgT away fram eg the electron statistics are non-degenerate. Hence equation
(2.8) reduces to :l:'0 = exp[B(eF - £)] and we have

g=8 J exp[B(EF - €)Jo(e) de

ky [e. - ¢
s,._;li[c F]fA (2.24)
where
df, £ -£
- Q0 ofe C
A--J —c(-l—k;r—de (2.25)



is the '"heat of transport" in units of kgT.

We see that (2.20) specifies S as kp/e times the average carrier energy
measured relative to €p calculated with the weighting factor —dfo/ds ole).
This result is thought to have validity outside the domain of Boltzmann
transport theory in which we have derived it?,

2.5. The Einstein relation

In equations (2.15) E” denotes the emf E + e_lVeF. Hence, under
isothermal conditions the current density takes the form

J=oE+ o lave (2.26)
vhere €p is detemmined from the equation for the electron density

1
n= f. dk (2.27
:;510— )

to which fl makes no contribution. The first term in equation (2.26) is the
current density due to the electric field. We identify the second term as the
current density eD¥n due to diffusion and, by writing n = y_eF(dn/dsF) , We
obtain the Einstein relation: .

g= eZD(dn/dsF) (2.28)

Equation (2.28)} is the most general form of the Einstein relation and it is
valid for both degenerate and non-degenerate statistics, For non-degenerate
statistics, however, the relation is usually expressed in an altermative fomm
by noting that f = explB(e, - €)]. Hence n is proportional to exp(g eg) and
dn/de; = Bn. Thus we have

u = eb/kyT {2.29)
where u = o/en is the electron drift mebility. It should be emphasised, as a

preamble to the next sub-section, that equation (2.29) is valid only for non-
degenerate statistics,
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2.6. Energy dependent diffusivity and mobility’?

We may rewrite 'equation (2.27) for n in the form

n= J £ N(e) de (2.30a)
where
N(e) = —;——«—4“1“2 (2.30h!
4" de/dk '

is the density of states. When equation 2.30a} is differentiated with respect
to €p We see from (2.8) that

af
‘fz;_'—F = J 22 Ne) de (2.31)

By substituting this result into equation (2.28) and using equation (2.19) we find
that the diffusjon coefficient D may be expressed in the form

D =< D(e) » . (2.32)

vhete

D(e) = &) 2,33
AT =8 (2.33)

in the "energy-dependent diffusivity' and the angular brackets 5ignify an average
taken with the weighting factor -N(¢) dfo/ds. We see immediately from equations
(2.21) and (2.30b) and (2.33) that :

D(e) = ?1’- Vz'l.‘

Sl (2.34)

where v, T and the mean free path A = vt are all evaluated at energy .

We may rewrite (2.33) in a form which i$ often used in discussions of
amorphous semiconductors:

o(e) = e N(s)kBT uwie) (2.35)

where
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(2.36)

is usually referred to as the "mobility at energy €. This terminology is a
little unfortunate but has now become firmly established. The factors kgl
actually cancel out of equations (2.35) amd (2.36) to yield the simpler
equation

o(e) = e’N{e) D(e) (2.37)

which has the same physical content. Thus u(e) as given by {2.36) is simply
D{e) scaled by a factor e/kBT te g2 it the dimensions of mobility, The
scaling factor does not change the physical interpretation of Dfe) which is
that of a diffusion constant. Indeed, we may readily verify from equations
(2.22}, (2.28), (2.31) and (2.37) that, for degenerate statistics, the
macroscopic diffusion constant is just D(eFJ whereas u(eF) as given by
equation ' (2.36) has no simple macroscopic interpretation. By way of
illustration we consider electrons with a constant effective mass m*. Then

e-r(eF) ZeF, ]
p(EF) = — 3.%1, . {2.37)

in which we recognise the first factor as the drift mobility,

For non-degenerate statistics p(e) has a more reasonable interpretation. We
Teadily verify that the macroscopic mobility in this case is g/en = < u(g) >
where the angular brackets have the same significance as in equation (2.32).
Unfortunately, this simple result becomes invalid as soon as the statistics
become degenerate to any degree.

2.7. Hall mobility and ac conductivity

To determine the low-field Hall mobility uy = oxy/Bun we must include
a Lorentz force term ~ev x B in the classical force F entering into Boltzmamm's
equatiog (2.1}. The calculation of Wy is elementary but tedious for isotropic
systems . We find that By = u for degenerate statistics and

Wy = W< 12>>/<< T >>2 (2.38)

for general statistics and a constant effective mass. In equation (2.38) the
double angular brackets indicate an average calculated with a weighting factor
- dfo/de times the intégrated denmsity of states.
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The current density response to an ac electric field Re[Eexp(-iwt)] may
be calculated by keeping the time derivative in Boltzmann's equation {2.1). For
degenerate statistics the result is Relc(w) E exp(-iwt)] where o(w) is given by
the Drude formula:

ow) = oll ~ im(eF):]'l ' (2.39)

For general statistics the general behaviour is the same as that predicted by
the Drude formula but T(_EF) is replaced by an apprppriate-, frequency-dependent,
average of t(eg).

2.8. Conclusion

To evaluate:the formulae for the transport coefficients we require t.
For elastic scattering between plane wave states k and k* the behaviour of
each individual scatterer is usually described by the differential scattering
cross~section o(9) where 8 is the angle between k and k”. The correlations in
the positions of an assembly of scatterers with density h may be allowed for
by multiplying @(8) by the static structure factor a(K) where K = stine/z_is
the magnitude of the scattering wave vector k* - k. With this notatiom, t
is given by the well known formula:

ny 2n I ¢{8)(1 - cos8) a(K) sing J8 (2.40)

i
T
In semiconductors we usually assume completely random scatterers, so that
a(X} = 1, and calculate o(8) in the Born approximation. In liquid metals
a(K} is usually taken from X-ray or neutron scattering data and a{8) is
calculated from the ion-core phase shifts. This topic will be persued by
Professor Beckl7. :

When we turn to inelastic scattering, we find that T is not very well-
defineds. Nevertheless, very often an approximate relaxation time may be
introduced which provides good physical insight. When this is not possible
it becomes necessary to solve the linearised Boltzmann equation by rumerical
or variational methods. Scme examples are given in reference 8.
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3. Applications of Kubo-Greerwood Formulae

3.1. Intreducticn

Equations (2.19) and {2.20) are usually known as Kubo-Greenwood formulael.
In the one-electron approximation they have validity outside the domain of
Boltzmann transpert theory. When the transport mechanism is different from
that dssumed in Section 2, vhat changes is o(e), equations (2.19} and (2.20]
Temain intact. We quote them again here for convenience:

af, , '
g = - = a(e) de _ (3.1)
df (€ - ¢,) R
8 =eﬁ; CY{O} —k—B.r—F de : G

The first relation is ‘easily justified for electrons moving in a disordered
static potential. We give a derivation in Section 3.2. Accepting. (3.1) for
the moment we may immediately give a heuristic derivation of (3.2). Equation
(2.18), expressing Onsager symmetry, and (2.15), éxpressing the linear transport
relations have general validity. Hence S = I/T where the Peltier coefficient is
 the ratio of Q to J when ¥T = 0. For the electric field E = (€, 0, 0), -
J = (cEm > 0, 0) and we see fram (3.1} that the contribution to UEx from energies
between € and € + de is —Ex(dfo/de) g(e} de. The corresponding contribution to
Qx in the heat flux vector Q= (Qx, 0, 0} is obtained by dividing by -e and
multiplying by € - €. Thus we obtain (3.2). The argument used here is
obvicusly not rigorous. Nevertheless equation (3.2) is usually assumed to be
generally validl.

3.2. Derivation of the conductivity formulal’s

As the nomenclature implies, equation (3,1) may be derived from the Kubo
formu1al® for the conductivity o(u) at frequency w. A very simple approach is
possible when we recognise that the real part o, {w) of o(w) is equal to
2/ [E[2 times the time-averaged power absorption density P in an electric
field (Ex’ 0, 0} with Ex = Re[Eexp(-iwt)], The perturbation of the Hamiltonian
produced by E, for one electron is eE,x and this produces a transition

-17 -

rate Wm between any pair of one-electron states m and n which we may calculate
using Femi's Golden Rule:
2'rTe2 E 2 2 s + 1)) 3.3)

Won = 5 [<n|x|m>| [8(e, - ey -~ fw) + (e, - £ y (3.
The corresponding power dissipation if m is known to be occupied and n is known
to be empty is %(en - €. In thermal equilibrium the Tobability of the initial
condition necessary for the absorption to take place is m(l - fgj where
fl?l = fo(r-:m) is the Fermi-Dirac function (2.8). Hence we have, considering a
volume Q,

2 .
9@ =3 L enlxing? 6, - 0 - £

x 8, - €q ) + 8(e] - 5 + Fuw]

o8
=15 1 lenlxinol? 6e, - g - )
x 15001 - £9) - La - &3
2
= Tr;:nm mz; ]<n|x]m>|2 8(e, - g, - Tw) (iﬁ - fg) (3.4)

In the second line we have interchanged the. dummy variables m and n and have used
the properties of the §-function and the hermiticity of <m|x|n>,

In the one-electron approximation

Ix, Hl = - [x, pi] s A (3.5
=]

o P
m, *x
where H is the one-electron Hamiltonian and m, is the free electron mass. It
follows that

if

<njx|m> (eq - &) = a. <n[p|m> (3.6)
e



- 13 -

and (3.4) may be written in the equivalent form:

[f.(e ) - £.(e_ + Tw)]
o, W) = lewz?lz): [<n|px|m>!2 (e, - gy - Tw) x Shie.. —ﬁ?) L

In the 1imit w -+ O we therefore have

4ol dy
g = gq(0) = —gz [<n|p, Im> |2 8(e, - ) _dE—_ 5 o) de
e T (3.7)
with
ofe) = "ezhi [<nlpx|m>| 8 - €,) 8(c - )
(3.8)
i 2
- m;m M) ol (€),,
€
where
NE) =216 - g _ (3.9)
n

is the density of states (counting both épin orientations} and pi(e:) av is the
average of {<n|px|m>]2 calculated with the weighting factor é(g - em) éle - s:n).

3.3. Localised and extended states

We see from the above discussion that ¢(g) is determined by the matrix
elements of p, between states with energy €. For this reason the distinction
between extended and localised states is of great importance in the theory of
electron transport in disordered systems. As the name implies: extended states,
like Bloch functions, run right over the macroscopic volume Q of the system
while localised states, like impurity wave functions, are confined to a
microscopic volume. The two types of state cannot co-exist at the same energy
because any coupling of a localised state to an extended one will lead to
delocalisation’.

Let us consider a single energy band for which N(g) has the form shown in
Fig. 1. For weak disorder most of the states are extended. Localised states
arise only in the tails of N{e), as indicated by the cross~hatching, and are due
to extreme fluctuations of the potential. The localised states are separated from
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the extended states by "mebility edges” e, and €. The reason for this
nomenclature is made clear below. As the disorder increases €, and Ec‘:
move towards the centre of the band and coalesce at a critical value of
the disorder. Thereafter all the states in the band are localised. This

is called an Anderson transitionl.

3.4, Behaviour of o(e)

Whes T + O the conductivity o in equation (3.1) approaches c(eF).
Now, we see from the discussion of Secticn 3.2 that c(sr_) is determined
by the matrix elements of Py between states having the energy ep. Moreover,
it follows from (3.6) that all these matrix elements vanish if <n|x|m> is
well defined - which it is for localised states. Consequently o(eF) =0
when ep lies in the region of localised states. This argument breaks down
when e 1lies in the region of extended states because <n|x|m> diverges.
Thus c(eF) & 0 in this case. '

We are therefore led to picture o(e) as vanishing when € lies outside
the region between € and eé and the reason for calling these energies "mobility
edges” is apparent. In the extended state region o(e) > 0. The behaviour of
a(e) as ¢ approaches a mobility edge remains controversial.. Mott supposes that
it attains a minimm value '

= 0.026 e2/ha = 610/a @71 (3.9)

Tmin
where a is a typical interatamic dimension measured in Angstroms. We may derive
this result very easily from (2.21), by arguing that the minimm value of the
mean freepath vt v a and k ~ 1/a which gives %nin = e2/37r2ha. There is
considerable experimental evidence to support this contention', Nevertheless,
it may be that o(e) reaches a value in the order of Opip DEAT the mobility
edge and then drops rapidly to zero. It would not be easy to tell the difference
from experimental data,

Since (3.8) must agree with (2,21} for weakly scattered free electrens with
N(e} = 471k /4'rr5ﬁv, v e ‘hk/m and A = vT we have

2
oo, = T A (3.10)

Mott supposes that a result of this form has general validity for extended states
with A being the phase coherence length of the wavefmctionl. If this is the

case, and if A reaches_. a minimam value of a, pi(e)av is fixed and we see from
(3.8) that o(e) becomes proportional to the square of the demsity of states.
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For temperatures above absclute zero the coupling of electrons to the
phonons gives o(e) a small but non-vanishing value in the localised state
regions. Transport through these states proceeds by a hopping mechanism
as we discuss in detail later on. For the mament we concentrate on general
applications of the Kubo-Greenwood formulae without detailed discussion of
the transport mechanism.

3.5. N-type semiconductor transport

In amorphous semiconductors the transport properties are determined by
carriers in states near the 'pseudo-gap" in the density of states shown
schematically in Fig. 2. At room temperature the transport properties are
usually thought to be dominated by either holes in extended states in the
valence band or electrons in extended states in the conduction band. In
either case the statistics are non-degenerate because e is located near
the middle of the gapl. To be definite we consider n-type material. Then
we may write fO(s) = exp[B(s:F - €)] in the conduction band and ignore the
valence band states altogether. The Kubo-Greemwood formulae (3.1) and (3.2)
therefore become

= J op(e) expl8(ep - €)1de (3.11)
5 [ 9@ -
§=- & EkT;T_ explBle, - €)1 (e - ep)de (3.12)

where, by expressing o{e) in the form (2.35), we have introduced a "“differential
conductivity'":

GD(E:) = U(E)/k T =e N(e) ule) (3.13)

There have been a muber of different treatments of these equations and we mention
some of them br1ef1y here,

In the most elementary treatment we set o(e) = o(e c) for & > € and
o(e) =0 fore< ¢ - Then we have immediately

= a(€ Jexpl- Ble, - €p)] (3.14)
k Eq - €
B|%s ™ °r

s=-_e [T+A] (3.15)
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wit.hed=es=scandA= 1. Ife:c - e = W - yT, where W and v are constants
we see that a plot of log ¢ against B has an activation energy (slope) W and

g = O intercept G(sc) exp(y/kB) while a plot of Se/kB against B has an activation
energy Wand 8 = O intercept 1 - Y/kB. A great deal of experimental data for
many amorphous semiconductors exhibits this sort of general behaviour but the
slopes and intercepts are very sensitive to the method of preparationl.

A material vhich has been studied very extensively in recent years is
a - 5i prepared by the glow discharge decomposition of silane and the experimental
data on ¢ and S have been investigated by several authors for both doped and
undoped samples. Le Comber and Spear made the first detailed investigations
of this material at Dundee and the work of the Mundee group will be reviewed by
Professor Spear 9. They have often analysed their data on the assumption that
there are three transport chamnels: extended states, tail states and donor states?C.
Frledma.nn has made a careful analysis of Dundee data on the basis of equations
(3.11) to (3.13) using the values of N(e) determined by Le Comber and Spear?
and making reasonable assumptions about the variation of u(e) across the mobility
edge. Spear and co-workers have also emphasised the importance of the temperature
dependence of both € and possibly €. in determining the behaviour of ¢ and 5 and
the variation of thlS behaviour from sample to sa.mplezz 23,

The transport problem which has received most attention in recent years is
the observation that while (3.14) and (3.15) are valid for a - 8i, ¢ 's
frequently greater than £g and the difference By = €g varies from one sample to
another. The simplest explanation is that the. mebility involved in ofe ) =
e N(e ) ule ) k T is activated with an activation energy € &g T § but then
the dependence on preparation method is hard to understand. Dohler? has
emphasised that one may actually determine the differential conductivity (3.13)
from experimental data on S and ¢ provided it is supposed that ople) is hﬁeper]denf
of B, To do this we write equations (3.11) and (3.12) in the form

G(B)e'ssF = r O'D(r:)e_{58 de (3.16)
Be
e .. %qu ape)e e - ep)de (3.17)

We see from (3.16) that o(B)exp(- Bep) is the Laplace transform of ch{e) Hence
we may determine o (e) by inverting the transform once €g is known as a function



of B. To determine that we differentiate equation (3.16) with respect to B
. and use {3.17) to show that '

de
F:_l eS_dlo O’S) 3.18
* B{k}; =% J (3.18)

The right-hand side of this equation is known frem experiment. Hence ep may be
determined to within an additive constant which depends on the origin of energy.
Consequently ople) may be determined apart fram an arbitrary shift on the energy
scale. Dohler finds that o(e) increases rapidly by several orders of magnitudes
over a few tenths of an electron velt and depends on. doping. This is consistent
with the sort of behaviour to be exne~ted near a mobility edge but the details
are hard to understand because no transport model is assumed.

Gruwald amd"Thomas25 have shown that it is also possibie to explain some
of the data using a variable-range hopping model but to do so requires what are
probably unrealistic assumptions about the distribution of tail states and its
doping dependeﬁce. .

The most. recent and most promising treatment of the problem is due to
Overhof and Beyer who suggest that & is due to long range fluctuations of
€. caused by charged defects in the material. The value of €y is determined
by extreme fluctuations while €g involves an average and is consequently less.
These authors emphasise the importance of the quantity

Q=1ogo+ eS/kB

log a(ec) - SDB (3.19)

where we have used equations (3.14) and (3,15). We see that @ does not involve
ep explicitly and is much more indicative of the transport mechanism (as opposed
to the electron distribution) than either o or § individually which do involve

¢g. A plot of Q against 8 is usually a straight line over a much wider tenperature

range than is the case for either log  or S. Moreover the slope €y depends on
preparation which one would expect if it is determined by fluctuatlons of -

3.6. Conductivity near the mobility edge

Gotze and co-workers have developed an unusual and interesting approach to

the problem of conductivity in random systems” 30. The theory provides formulae

for both ac and dc conductivity. We outline the dc calculation here. Free
electrons with an effective mass m* are considered and it is supposed that they

are scattered by a random potential, A relaxation time t depending on frequency

and the location of the Femmi level is introduced and this determines the
conductivity when T = 0. In the Boltzmann transport regime 1 -1 is given by
(2.40) with ¢ .= € =‘r1 k /Zm* and it is supposed, for simplicity that there
is a cut-off in the Founer transform of the scattering potential such that

a(K) o(8) is constant for K < Ko and zero for K > 1(0 Then

-1
TO EF * ZkF < Kor
(3.20)
3/2
g ZkF >K0.

- Gitze goes beyond the Boltzmann transport regime by relating the frequency

dependent T to the density fluctuations in the system, as perturbed by the
scattering, which also involve T in the simplest approximation. Thus a
self-consistency condition arises which can be solved numerically. For
weak Coupling the solution falls slightly below the Boltzmamn result (3.20}
at high energies but, and this is the important point, T drops to zero at a
mobility edge €., varying as (e - ec)} as indicated in Fig. 3. For g < €.
T becames imaginary and the dc conductivity vanishes.

A mobility edge is thus predicted by the theory but o(e) falls
contimiously to zero as € approaches €. fram above and a minimm metailic
conductivity does not appear in the formalism. Belitz and GStze have
therefore looked again at experimental data on the de conductivity of Sb
doped Ge, Laa.1 x Sr V03 and Gd1 < Sr VO in which variation of €p shows
up a transition from semiconducting (actlvated) to metallic (temperature—
independent) behaviour. This has been interpreted as an Anderson transition
in the sense that &g moves through the mobility edge €.+ 'There seems little
doubt that this is the case”. However, the data does not seem to provide good
evidence for a minimm metallic conductivity (as has scmetimes been suggested )
because Belitz and GStze can fit it with reascnable parameter values by using
the 6(c) derived frem their model in the Kubo-Greermwood formula (3.1}.



4. Hopping Transport Theory: General Fomalism
“4.1. Introduction

The states in the tails of the conduction band and valence band of an
amorphous semiconductor are localised. Electrons move amongst these states
by "hopping" from full states to empty states. The treatment of electron
transport involving this mechanism is usually described by a rate equation
wiich is the analogue of Boltzmann's equatien for localised states. We use
this approach here. As in all transport problems the same results may be
obtained by considering the expectation values of appropriate correlation
functions in thermal equilibrium, For hopping conductivity the appropriate
equilibrium variable is the mean square uistance moved by a hopping electren
in time t. Thus: we may calculate the diffusivity frem a study of a random
walk problem and then use the Einstein relation to obtain the conductivity.
This approach has attracted the interest of several authorslz' 31 - 38. We
do not use it here because for degenerate statistics the randam walk is
necessarily an artificial one since, in the real system, the electrons get
in each others way. Instead we proceed as in Section 2 to introduce a weak
field into the rate equation and calmlate the perturbations of the occupation
probabilities of the localised states which it produces. We shall see how the
random walk formalism arises in this context. However, for calculating
transport coefficients the Boltzmann equation approach is more direct and
is easier to use because, for weak fields, it reduces to Kirchhoff's equations
for an equivalent RC networkz’g.

4.2. Miller-Abrahams equivalent circuit

We follew previous treatments given by the author and regard the
localised states as defining sites which may be occupied by one, and only
one, e¢lectron. Let £, and Ry be respectively the occupation probability
of site m and the transition rate from m te n. Then the f)'s are determined
by the rate equations

;ti = 121 £, - R - £ - £ IR “.D

Let us write &, for the unperturbed energy of site m and Um for the perturbation

of €, produced by the applied field, We suppose that R, satisfies the detailed
balance relation

Run
m = exp[B(sm *Up -, - Un)]

(4.2)
= explB(ey - €)1 (1 + B (U - U]

for small applied fields. When U, = 0 for ail m, f, reduces to the thermal
equilibrium form

£ = UeplB(e, - )} + 117" (4.3)

This is just the Fermi function (2.8) modified by a factor of 0.5 in front of
the exponential to take account of the fact that only one electron, but with
either spin orientation, may occupy site m. When Um % 0 it is convenient to
write '

aff
fm=f1(1)|"d£ﬁ¢m (4.4)

where ¢ remains to be detemmined. When equations (4.2) and (4.4) are substituted
m . -

into equation (4.1} we find that to first order in ¢y and Um, the linearised rate

equations are

e Uy e L 0 s
where
Gy = - e a0/de (4.6a)
g = ¢ B0 - £ 10 (4.6)
Vo= - [Exy ¢ et g (4.6c)

In equations (4.5) and (4.6) we have written

u, = eExm 4.7}

to specialise to the case when a uniform electric field E is applied in the
positive x direction. In equation (4.6b) RO is the equilibrium value of R .
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Equations (4), (5) and (6) have a simple interpretation. We see from
(4.3) and (4.4) that ¢, may be regarded as the local change of chemical
potential at site m. Hence Vi in equation (4.6c) is the local change of
the electrochemical potential ¢ * eEx, multiplied by —e_l for convenience
of notation. We refer to Vm simply as the "voltage™ at site m. The particle
current which flows from n to m is proporticnal to the electrochemical difference
between the two sites. In equation (4.5) we have introduced a factor -e so that
the electric current from n to m appears as gﬂm(\fn - Vm}. The quantity Em is given
by equation (4.6b). It follows from the detailed balance relation {4.2) in zero
field that B = Sme Thus Zm is a positive, symmetrical conductance. Finally,
we note that the left-hand side of equation (4.5) is the time-tate of change of
the electric charge on site m and that Cn in (4.6a) is positive and may be
interpreted as a capacitance. Hence, equations (4.5) are Kirchhoff's equations
for the RC network shown in Fig. 4 where the ground potential is zero and the
voltage generators sustain the applied potential at each site. This point of

view was originally introduced by Miller and Abrahﬂmssg and it has proven to be
Very fr'uitfu._l.

4.3, Conductivity formulae

There are several alternative ways to write a general formula for the
conductivity o(w) at frequency w. Let us suppose that E has a time factor
exp(-iwt). Consider a large cube of side L inside an infinite specimen. The
current density across the coordinate plane at « is

J@) =LY g V- V) B - 2y 80y, - %) (4.8)
m

where the unit step functions exclude contributions from pairs of sites for
which the inequalities x < &< x  are not satisfied. The current density is
independent of x when L + ». We may therefore average over z from O to L and
divide by E to obtain the conductivity formula

ow) = lm'z,‘m (x, = Xg) 80k, - =) g, (Vy, - V)

1
= v 4.9)
=E Em S Ymm *m

-22 -

13 =V - =x - i i .
where 0 = L7, Vm Vm Vn and Xom = ¥y~ Xy In the first line of (4.9)
terms with z < X are excluded. In the second line we have used the symmetry

of Zmn to include them.

We may also obtain a simple formula for the real part 9 (@) of o{w) by
noting that the Joule heat generated in @ is the sum of the Joule heats
developed in the individual conductances. Thus we find that

1 2
= Y (4.10)
01( ) 20|E ) L gmnl mn|

when w + 0,E and an are real and the modulus signs may be removed from (4.10).
Tt will be noticed that there is no difficulty in taking the limit w + 0 in
either (4.9) or (4.10). However, to use either formula we must £irst obtain
an approximation to V. o We discuss ways of doing this in Sections 5, 6 and 7.

Our final task in this sub-section is to obtain an explicit formula for
o@w) by introducing a Green's matrix to solve equations (4.5}. Let us write

= Gyl * B (412

for the charge on site m. We consider a finite system and introduce yow
matrices g and x whose nth colums are q, and x| respectively and the square
matrices W and C whose (mm}th elements are respectively:

W= - g /Gt S Egmnlcm {(4.12a)

Sm = Cn S

Then, assuming a time factor exp(-iwt), the linearised rate equations (4.5) take

" (4.12b)

the matrix form
-iwq = - gW - ExX CW . (4.13)
Writing
_ .
G= (W~ iw) (4.14)
for the Green's matrix we have

q = Ex C G (4.16)
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The cenductivity is equal to -iw/E times the z-camponent of the dipole moment
density. Hence

o) = - L xowe x (4.17)

where X is the transpose of x. It only remains to write this formal result in
a more recognisable form.

4.4, The Einstein Relation

To rewrite equation (4.17) in the form of an Einstein relation we require
to notice some elementary properties of G, We see fram (4.14) that W commtes
with G and

1+iw G=W6 =W (4.18)

Taking the mnth matrix element of this equation and suming over n we obtain

1 +iml):16mn=0 (4.19)
since, from (14.12a),
[w, =0 (4.20)
n

Finally, we notice that the detailed balance relation S = By TWeans that the
conductance matrix g = (W is symmetrical. It follows that § = C'%g(.‘-i =cl el
is symmetrical. Hence

_C W W
CG_—E[1+"1U_;Z+"”]
2 (4.21)
_ ¢l s 8§ ]
——E{1+-ﬁ-—z+....lc
®
is also symmetrical, i.e.
Cm(%m=cncnm “.z2)

To carry out the algebra we substitute for WG in (4.17} from (4.18) and eliminate
the diagonal elements of G with the aid of (4.19}. Thus we have
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0(w)=-%ﬂtl§:3ncmn£m (1+imG)]mxn-§1xm cmngm @+ w6 X
: - 4.23
=0T L X Gy Gy Oy - ) (4.23)

2
w 2
b DAL SCREES
In the last line of (4.23) we have symmetrised the summand and have made use of
(4.22).

Equation (4.23) provides a formal expression for c¢(w). To put it in its
most easily interpretable form we note that the electron density is

n=aly (4.2¢)
m

where fg is given by equation (4.3). Hence

(4.25)

S

dn -1
=-q 2
23 n
which, with (4.6a), allows us to write (4.23) in the fom of an Einstein relation:

2 ‘fﬁ“; D(w) (4.26)

Zm
D - -
(w) w deg
mas—-

m

ow) = e

I Gop (5 - 50"
n

(4.27)

being a frequency dependent diffusivity.

4.5. The associated random walk

It follows from equation (4,14) that Gmn is the causal Fourier transform
of Pmn(t) where

d = = -
& Pm -E[wenpm-wmpmj.t>o, P =8y » t=0. (4.28

We see that the diagonal elements of W are not involved in this equation.
Moreover -Wm = gﬂn/CR. is positive and may be regarded as a hop rate.



Hence P (t) may be interpreted as the probability that a single particle will
be found on n at time t, ‘given that it was on m at time O and that it hops
between sites with the rate -W n' Consequently, the sum over n in equation
(4.27) is the Fourier transform of the mean square distance moved by the
particie in time t. The sum over m averages this quantity over sites with

a weighting factor dfg/dem.

The connection of the hopping conductivity problem with random walks is
contained in equations (4.26) and (4.27). For non-degenerate statistics
dfg/dem = —Bfg and we readily find that Hon = Rgn. Hence the particle is
hopping with the thermal equilibriim hop rate and the site averaging in (4.27)
is done with a Boltzmarm weightir  iactor. In that case the relevant random
walk problem is the actual random walk of any one electron in the hopping
system because non-degenerate statistics imply that the electron demsity is
30 low that the electrons never get in each others way. For degenerate
statistics dfﬁ/dem ¥ —Bflon and WX Rr?m The relevant random walk is therefore
an artificial one and the site averaging is also done in an artificial way which
takes proper account of the degenerate statistics. A random walk picture, all
be it an artificial one, makes an appearance even in this case because of the
particular structure of the linearised rate equationsl?‘.

5. Hopping Conductivity: ac conductivity

5.1. The pair approximation

Assuming a time factor exp(~imt}, we see from equation (4.5) that Vm > Exm
when w + = so that both equations (4.9} and (4.10) yield the same asymptotic
limit

o(=) = %ﬁgm & xnm2 {5.1)

The existence of a non-zero high frequency limit to ofw) is due to our tacit
assumption that the hops take place instantaneously which introduces §-functions
into the current response. It is edsy to expand o{w) in powers of wl but the
convergence is too slow for the series to be of any value. A much more
successful expansion when w ¥ 0 is in powers of the site density n.. Since
double sums are involved in the general formulae for o(w) the leading temm in
the expansion is proportional to nﬁ and it is obtained by summing the
contributions from all pairs of sites calculated by treating each pair as

being isolated from all other sites. This is the "pair approximation" originally

introduced by Pollak and Geballe40.

Let us consider an arbitrary pair of sites m and n. Then Kirchhoff's
equations (4.5) reduce to

i Gt + Exm) = %o Vi (5.2a)
-iw Cn(\rn +Ex) = - &m Vo (5.20)
so that
Ex
Voo = - —“Eﬁﬁ (5.3)
& ‘i
where
p .1 _1 1 .
L T &9
when this result is substituted into (4.9) we obtain the pair approximaticn to
alw):
ORE S e A (5.5)
m

which remains to be system averaged. Before doing that we notice that (5.5}
yields the exact result {5.1) when w -+ « and that it gives g(0} = 0 because
Z[I[’m + o yhen w + 0. Thus, the pair approximation becomes progressively worse
as w is reduced. Nevertheless, it is frequently used to analyse data for audio
and video frequencies provided that 9 (w) => g(0).

5.2, The r-hopping model

A special case which is often considered is what we shall call the
r-hopping model. It is defined by

Bun = 8. exp(—Zocrmn)
(5.6)

Cm=C

where o, g, and € are constants. To arrive at a model of this type we consider
non-degenerate electrons in a band of states whose width is small campared to
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kBT' Then fg + £, a constant much less than one so that ¢ = ezsf. Moreover, T/da 8(r - rm). Similarly [1 + w? T2]—1 o e(rw - T). When these results are
if we suppose that the hop rate between two sites a distance Tnn 8part is substituted into (5.10) we obtain imediately
I-{O exp(-Zarm) then ga‘= R, i.e. = gaC-l is the natural wnit of frequency . o (w) .
in the problem. For sites randomly distributed with a density ng the system ol % (on'o) (arwj (5.12a) |
average of equation (5.5) yields:
4 o, (w)
2 2 .
o) = 370 g, (urg) | LT (5.7 Lt 1 ) r)® (5.12b)
’ AR 5.12
m -5 log(r.u'ro) = - 0.293 1og10(w'ro) (5.12c)
vhere
% It is usually supposed that o™ 10713 sl. Then T, decreases slowly with
T=18 i (5.8a) increasing w for frequencies in the typical experimental range of 1 ki to
1 Mz, Consequently both ol(m) and 95(w) show a slightly sub-linear frequency
with dependence which is often approximated by a &® with
d log o, (w)
-1 4
T = (&) (5.8b) S " I Tog 2 -1 Tog % (5.13)
When w > = we obtain being the slope of the real part of gy (w) on a log-lag plot. The frequency
dependence of s and the ratio ) (m)/crl(w) is very weak and is usually not
a(=) = (ga) 3} (nsa"3)2 (5.9) discernable in experimental data.
At lower frequencies we use this result to normalise ¢(w) so that 5.3, The AHL model
gw} _ 4 & : In the r-hopping model we consider a very narrow band. It is of interest
W o o (-iw 1'0) r4 dr 1 + wt (5.10)
ol=) " 3 1+aw? 18 14942 : to go to the opposite extreme of a very wide band. The simplest model for this
0 case is ene introduced several vears ago by Ambegackar Halperin and Langer43 to

N , describe dc conductivity, It is defined by
The real and imaginary parts of the integral in (5.10) are easily

approximated at low frequencies‘lo b 42. When c:ms_:l/3 >> 1 and w To << 1 we

= - 5.14
find that w /11 + w® 123 has & sharp peak at b~ 8 P(spy) (-1

1 -1 where the conductivity exponent s o is given by
Ty = 7 loglety) (5.11)

1
AT =Zor  +uBlle |+ || +|e -¢ ] 5.15
which is the value of r at which ut = I, We may readily integrate wr/[1 + 2 {27 “mn m * 7 Bleyl + | al * o al (>-15)

. 2 2 .
over 8ll 1 to obtain the value T/t Thus wi/l + o 1 1 may be approxinated by vhere the site energies are measured from the Fermi level plus kBT log 2. The

energy-dependent exponential factor in (5.14) arises from asymptotic approximations
to Fermi and Bose factors in equation (4.6b) for &m- To carry out the configuration
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average we suppose that the sites are uniformly distributed in space with a
density ng and uniformly distributed in energy over a wide band width W with
a density of states Pp = nS/W. Then the system average of (5.5) becomes:

. -Zor
w2 4 (-
aw) = L op g, J de, [ de, er L gy (5.16)
0
where

Q= ex‘p[-}ﬁ{lEll + |521 + |€]_ - ezl}] (5.173

and

-1 _ i1 1 -2ax ‘
T = l-é.]-.. + (-:El g, Qe (5.18)

We suppose that W »>> kgT. Then the major contribution to the energy integrals
in (5.16) comes from the neighbourhood of B] =8y = 0 and the limits of
integration may be extended to infinity.

When ¢ » « we have

o) = (go) J e ™2 q (5.19)
where
q=w?| g rdez Q = 6(kgT/W)’ (5.20)

Bquation (5.19) differs from our result (5.9} for r-hopping only by the factor
Q. Moreover, therfrequency dependence of o(w) obviously still has the same
general character as before and we may roughly evaluate (5.14) by giving T its
value when By =gy = 0. Thus we write T as in equation (5.8) with RO equal to
the transition rate in thermal equilibrium for r = O and e; = &, = 0. Then
our previous evaluation of o(w)/c(=») goes through unaltered except for the
reinterpretation of o(x)and Tg- At low frequencies the final result is

-0 -

o, (0) = (ga) n? (pekgTe %2 wrgor, )’ (5.21)

with T, given by (5.11) and dz(cu)/crl(w) given by (5.12c). This result differs
from (5.12a) only in that ng is replaced by 6(kaBT). It was4grigma11y derived
by Austin and Mott with a slightly different numerical factor’ . The simple
approximation used to evaluate the integral in (5.16) has been criticised
recently by Pramanik and Islam45. The integral has therefore been evaluated
numericiiély. The approximate results quoted here are found to be substantially
correct .

5.4, ‘General Debye Modsls

The basic structure of the pair approximation is of the Debye type”

o) = - m{i—fﬂ,;u—ﬁ (5.22)

where the angular brackets signify an average and the choice of Xor T and the
average define the model. In the energy-dependent case we toock T = 9 exp(2ar),
Xomrz and the probability distribution in r was propertional to arr?. In the
AL model we again, in the end, put 1 = Ty exp(Zar} but took Xo Qrz and the
probability distribution of r, € and € Was proportional to 4'n'r2W'2.' Another
variant which has attracted considerable interest in recent years is the "classical
barrier hopping model” originally introduced by pike®® but discussed extensively
by Elliott“’ 49, 50 gor chalcogenide glasses. In these materials the absence
of spin resonance signals suggests that one is concerned with the hopping of
pairs of electrons between D" and D" centres. (An account of the defect centres
found in amorphous semiconductors is given in this Spring Cellege by Professor
Davis®® and in the book by Mott and Davisl.) Elliott supposes that the hops

are thermally activated over a Coulamb barrier of the fom

W= Wm - ZeZ/E'nr (5.23)

where € is the electrical permitivity of the material and r is the spatial
separation of the two sites. Then we have

-
|

= 1, exp(-8/1} (5.24)

where T; = T, exp(Wm/kBT) and B Zez/eﬂkBT. The real part of the conductivity
has the form t»(rm)6 in this case, the additional two powers of T, arising in

the evaluation of the Debye integral because the exponent in T involves L
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The optimm distance for ac absorption 1 is determined as before by the squared distance moved by a particle hopping in such a cluster must remain

equation wt = 1, which gives for Elliott's model, finite for large times. To calculate ¢(0) it is therefore necessary to
consider an infinite system.

- B - g
ro= 1og(urr1) a wm/kBT + log wT, (5.25) We easily obtain a formal expression for ¢(0} by taking the dc limit

of equation (4.10):

Consequently o (W) ~ w® with

2
s=1- Wr‘r_ﬁ (5.26) 70 = 2 E %an Vo -1
/g * 108 uTg '

This equation has been used to evaluate o{0) for large systems modelled on
a cmnputerm. To proceed with an analytical derivation of o(0) we take the
system average of (6.1) to obtain

where, for most chalcogenides, below about 200 K the frequency-dependent term
may be neglected in comparison to W, /k T. Consequently s =1 - Bk T/W which
increases with decreasing T as is often observed 47, 49, 50. Recent Sh:(.ma.l':.'iwa52
has pointed out that at high temperatures it is possible to identify additional
components in the ac conductivity which he associates with single electron hops
between D° and D or D™ centros. The D° centres are thermally activated from

D' and D™ centres as the tenperature risesl’ 92.

a(0) = E% nﬁ r2 g(r) AVz(r) dr (6.2)
E

where g(r) = g, exp(-2ar) and AV (r) is the mean square voltage clrop between
two sites separated by a distance r. The quantity P(r) = g(r) AV (r) is the

5.5. Conclusion mean power dissipated in the conductance g(r) jeining the sites. When r is

The strong frequency dependence associated with ac hopping cenductivity large av? (r) = E2r2/3 because there is an electric field of magnitude E oriented
is due to the highly disordered state of the materials under consideration. in the z direction. Hence P(r) grows exponentially as r decreases. Eventually,
For a randcm walk on a regular Bravais lattice the mean square distance moved however, an optimm separation r,_ for power absorption will be reached and P(r)
in time t is easily seen to be strictly proportional to t for all t. The falls off again when r is reduced still further. This is because g(r} behaves
Fourier transform of this ramp function is proportional to w % and essentially like a short circuit when r + 0. Thus AVz(r) + 0 but a non-zero
consequently, from equation {4.27} we see that D{w) is independent of w. current flows through g(r) which is determined by the currents in the neighbouring
The fact that o) () increases with w is also indicative of hopping in a cgnductances. Forzr < r, it is therefore convenient to rewrite P(r) in the form
disordered system. This behaviour is to be contrasted with the decrease I1°(r)/g{r) where I°(r) is the mean square current through g(r). To make P(r)
of o;{w) with increasing w which we see from (4.38) is characteristic of continuous at r_ we must have Iz(r )= gz(rp} Ezr 2/3. For simplicity we neglect
Beltzmamn transport involving extended states. the variation of 12(1') when r < rp. Thus, finally we arrive at the ansatz:

g(r) AVz(r] = g(r) EZrZ/S, r>r

. p’
6. Hopping Transpert: dc conductivity and thermopower
6.1. Introduction: the r-hopping model. gz(r } (6-3)
_ 2
In the early 1970's several groups realised that the calculatiocn of dc e E r /3 T rP

hopping conductivity involves ideas taken from percelation r_heoryu’ 53, 54,

To illustrate the sort of considerations involved we discuss first of all the
r-hopping model for which the ac conductivity has already been calculated in
Section 5.2. by using the pair approximation. We have to go outside this

When this is substituted into (6.2) the integral may be evaluated immediately.
When Ty, is large we obtain the simple result:

approximation to calculate the dc Iimit. Taking finite clusters containing

two or more sites can never yield a non-zero value of ¢(0) because the mean



o = F 5.7} (g /0007 (6-4)

The behavicur of o{0) is dominated by the finai exponential factor in
(6.4). For dimensional reasons o is proportional to n_l/:s. Percolation
theory comes in to determine the constant of proportionality. The argument
is an asymptotic one concerning the behaviour of the system as a -+ = with
n, tixed, There is then an enormous spread in conductance values. As o
incredases, all the conductances with r greater than a chosen value, Ty
say, can be omitted from the network without affecting 0{0) because they
become exponentially small compared with those which are retained. This
argument is valid provided that removing all the conductances with r # T
does mot cause the infinite netv ..k to break into isolated islands so that
dc conductivity becomes impossible. The critical value of o for which the
network just falls apart is called the critical percolation radius. It is
identical to the value of r for which P{r) has its maximum value when ar

is large.

Henceforth we interpret r_ as the critical percolation radius. Its
value may be determined on a computer by shrinking identical spheres centred
on random sites until no continuous paths of overlapping spheres remain54’ 55.
Thus we find that the percolation criterion which determines r_ takes the form:
the mean mmber of neighbours with r < r_ is equal to N where N_ = 2.7 in 3D,

4.5 in 2D and 2.1 in 4D {which we shall need later in energy-dependent problems).

Our current problem is three dimensicnal and we therefore have

qo 3 _ -
Trpns-Np 2.7 (6.5)

which determines r completely. In Fig. 5 the full curve was calculated from
{6.2) by using the ansatz (6.3) with t_ given by (6.5); the points were
obtained by solving Kirchhoff's equations for a system containing 2500 sites
and substituting the voltage drops calculated in this way into the sum (6.1)56.
The agreement between the analytical and computed results is extremely good and
should serve to remove any lingering doubts about the validity of the above
argument. The lower dashed curve in Figure 5 is the low density approximation
(6.4); the upper dashed is obtained by setting rp =0 in (6.3).

6.2. The ML model

We may extend the discussion in Section 6.1 to the case when the
conductance between two sites involves the site energies as well as the
intersite distance. To be definite we consider the AHL model discussed
in Section 5.3. Then the conductance exponent Sm given in (5.15) replaces

Zor and the configuration average of (6.1) reduces to

Z
2mp
F Z 2 6.6
5@ = — J dey J ) J 12 812 AV1; 91 (6.6)
where AV%Z is the mean square voltage drop across the conductance g,. To

evaluate (6.6) we generalise the ansatz (6.3):

2 _ 2.2
g2 8Vy, = 8, exp(—slz) E"r"/3, 5, > Sp?

(6.7

22
g, exp(s ~ Zsp) E rp/3, 513 % sp,
where the critical percolation exponent s 1is determined by the criterion that
the mean mumber of conductances emanating from site 1 with s, < Sy is _
= 4,5 (the value for 4D hyperspheres). Once sp is fixed, rp is determined

as a function of € and e, by setting S19 = sp in equation (5.13).

A problem arises in identifying the mean number of neighbours emanating
from site I with $17< S because, as we see from (5.15), there can be no
neighbours at all which satisfy the percolation criterion when e, » kyT sp.
These sites must thersfore play a negligible role in the dc conductivity and
we solve the problem by excluding them altogether in calculating Sp' Then .
the mean mmber of sites with g; < Sy kBT per unit volume is Z_QF sp kT while
the mean manber of conductances per unit volume with S19< 8 o is

1 2 2
B=7pFJdel[dsz J 4n* dr (6.8)

where the factor of 1/2 prevents double counting. Since each conductance is
connected to two sites, the percolation criterion is

B _ N =45 (6.9)
Zop s, Kl P

Thus we £ind that °
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which leads the Mott's famous Tl/ 4 law for hopping conductivity by degenerate
electronsl. It is usual to speak of "variabie range” hopping in this case
because of the interplay of distance and energy variations which determines the
" critical percolation expenent s . When the ansatz (6.7} is used to evaluate
g(0) in (6.6) the final result is8

5 46 _
o) = g, I (o kP L [:EJ e5p (6.11)

when 5 is large. In Figure 6 the dashed curve is a plot of ¢(0) calculated
from (6.11). The dots are calculated by solving Kirchhoff's equations for
2197 sites 57.. They are believed to be overestimates because only twelve
neighbours to each site were taken into account in the calculations>0 57.
The significance of the full and dash-dot curves is explained in Section 7.

6.3. More general models

The general idea behind the application of percolation theory to the
calculation of o) is easily extended to more general cases. We may vary
the density of states so as to deal with tail states and two-dimensional
impurity bands may be handled as wel2l2s 14. The idea that percolation theory
determines the exponent in o(0) is now over a decade old. The notion that the
simple ansatz that we have used for the mean square voltage drop between two
sites could also be successful in predicting the prefactor is taking longer
1o gain acceptance. Suffice it to say that it has worked well in every case
for which mmerical results are available.

6.4, Themop@ er

An entirely satisfactory theory has vet to be developed because of the
intimate involvement of the phonons in the hopping process which should be
taken into accountsg. There has therefore been seme controversy in the
literatureﬁ'o’ 61. However, it is usually assumed that the mean energy
5(_em + en) is transported when an electron hops from m to % 63. Then,
on the basis of the argument given in Section 3.1. we find that the thermopower
for a hopping system is given by

- G -

) 8o Vom X L3 (e, + e) - gp]
§=-1 m (6.12)

€ T &m Vmn N
m

where V ' 15 the voltage drop between sites m and n produced by an applied
electric field. For non-degenerate statistics a result of the standard

type (2.24) is cbtained. At low temperatures the statistics become degenerate.
For extended state conduction in metals the result is that S is proportional

to T as in equation (2.23) because the mean energy transported relative to the
Fermi level is proportional to (kET)Z. In the ggppé?g case the significant
range is sp k.BT leading to a Ti dependence of $7°* ° because sp is proportional
to T4 “Moreover, we see from (4.3) that the peak of -af0/ds occurs at

Ep * kB'Ilug 2 when the hopping sites can only be singJI.y g;:cupied. This leads
to an additional constant term - kplog 2/e when T + 0°* 7, ‘When the Hubbard U
is finite (rather than infinite as we have assumed), S again tends to a
constant value when T + O but the value of the constant depends on the details
of the model”> 64.

7. Hopping Conductivity: Unified Theory

In Sections 6 and 7 we have approached the calculation of ac and dc
hopping conductivity along entirely different routes. There is a clear
need for a unified treatment. This problem has been approached recently
by Movaghar and co-workers~> ~ 37 through the random walk formalism and
by Butcher and Summerfie1d®>s 58 via the Miller and Abrahams equivalent
circuit. We outline the latter approach because it is very simple. The
pair model equations (5.2) are modified by the addition of extra temms
-Y(eml (Vm + E’ﬁn) and -Y(en) (Vn + Exn) on the right-hand sides Of, (5.2a)
and (5.2b} respectively. Y(emJ and Y(sn) are average admittances which
take account of the effect of the rest of the network on the pair (m,n).
They are determined from a modified mean field equation:

-1
Y(e,) = 571 J e, ole,) J 4Trr,,m2 [é%n * Y@l:““‘;m;J 4 (7.1)

Once this equation is solved, the pair equations (5.2}, modified as indicated.
above, may be solved immediately to yield Vm for insertion into (4.9) prier
to system averaging. The correction factor B is chosen so that the theory
yields the correct percolation threshold in percolation problems imvolving
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cut-offs in the conductances. We find that B = NP or two and three dimensional
R-hopping, while B = 4.4 for the AHL model™,

Details of the calculations are in the course of publicationsa. By way
of illustration we show in Figures 7 and 8 the real and imaginary parts of
o(w) for a 3D R-hopping model. The model is studied mmerically in reference
66. It should be noted that it differs from the R-hopping model defined by
equation (5.6) by the multiplication of &mn by an additicnal factor (ar rnn)S/ 2.
The full curves in Figures 6 and 7 are derived as indicated here. The points
are obtained by sclving Kirchhoff's equations for 1600 sites66 and the dashed
curve is taken fram the unified random walk theory”. In Figure 6 we make a
correspending comparison for the dc conductivity calculated for the AHL model.
The full curve is the unified equivalent circuit theory resultsa, the dots are

computer point557

, the dashed curve is obtained using perceolation theory8 and
the dot-dash curve is cbtained from the barrier hopping hopping model of Movaghar
et a137'

The availability of a unified thecry is very useful for the interpretation
of experimental data. It is all too easy to fit either ac data or dc data but
not both. A preliminary studyf'? indicates that the data of Pollak and ceballe®
for impurity bands in ¢ - §i is in fair agreement with the theory. The data of
l{ahlert68 for impurity bands in ¢ - GaAs is in excellent agreement with the
theory as far as dc conductivity is concerned ‘but the thecry fails completely
to account for the rapid rise of ac conductivity which is observed. In these
cases the only unknown is the density of states curve. Excellent experimental
data is also availableﬁg' 70 for a - Ge which exhibits Tl/ % behaviour when
w = 0. Very few of the relevant parameters are known in this case. The dc
behaviour is easily fitted using the AHL model but the characteristic hopping
frequency has an unacceptably high value in the order of 1091 1, 97, Again
the rapid rise of the ac conductivity which is observed is mot predicted by
the theory. In this comnection it should be noted that the excellent agreement
between theory and experiment for a - Ge shown in Figure 8 of reference 37 is
incorrect; the frequency axis has been scaled inappropriately to achieve it.

8. Anomalous Carrier Pulse Propagation and Trap-controlled Transport
8.1. Introduction

Let us consider a plate-like specimen with the spatial coordinate x
measured across the plate as shown in Figure 9. Suppose that a pulse of
electrons with mmber density n(x, t) is created at one end by uniform
{1lumination over the cross-section of the plate. This may be achieved

- 38 -

by shining light through a transparent electrode (see Figure 9). In this
Section we address the question of how the carrier pulse will move and
distort when an electric field E(x, t) is applied in the negative x direction.

To study carrier pulse propagation experimentally it is usual to
monitor the total current density in the positive # direction:

I(t) = Jx, 1) - 21 (8.1)
where J(x, t) is the electric current density due to the electrons and £ is
the electrical permitivity. The minus sign appears in front of the displacement
current because E(x, t) has been taken in the negative z direction to make the
electron pulse move in the positive x direction. Maxwell's equations show that
the total current density is equal to the curl of the magnetic field and is
therefore non-divergent. For the one-dimensional situation under discussion
here this means that I{t) is independent of x (as our notation implies) and
may be monitored outside the specimen. The behaviour of I(t) depends on the
boundary conditions produced by the circuit external to the specimen. We
suppose, for simplicity, that the potential difference between the ends of
the specimen is held constant, Then we may average (8.1) over the specimen
length L to express I(t) as the spatial average of J(x, t}:
L .
I(t) =% J(x, t) dx (8.2)

0
I{t) is the quantity that we wish to calculate. To do so we use.the
charge conservation equation

BJCx, t) _ on(x, ) .
Mix, £) _ il ) . g (8.3)

where n{x, t) is the total electron density. We stress the word total lere
because we will subsequently be concerned with situations in which some electrons
cease to contribute to J(x, t) because they drop inte traps. Nevertheless, the
trapped electrons continue to contribute to n(x, t). Theories of carrier pulse
propagation differ from one another in the relation which is supposed to exist
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between J(x, t) and n(x, t) in equation {8.3}. We review the conventional
theory in the next sub-Section. The pulse is a drifted Gaussian; I(t) is
constant while the pulse remains in the specimen and falls away after a
transit time proportional to L/E at which the pulse passes out of the far
end. This sort of behaviour is observed in most crystalline semiconductors.
It is the basis of the method for measuring carrier drift mobility originally
pioneered by Shockley and I—Ia\}c'nes?1 for crystalline semiconductors and
developed by Spear and co-workers for amorphous saniconductorsl.

In amorphous semiconductors I(t) often behaves campletely differently.
Indeed om a linear-linear plot it frequently droops to zero in an apparently
featureless way. Replotting on log-log paper reveals small-time behaviour
propertional to t'1+°,° and large-time behaviour proportional to gl-e where
o is a constant between O and 1. One may identify a "transit time" t, by
interpolating between these two regimes and it is found that tp ™ (L/’I‘)l e,
Finally, logI(t) against log t plots for different values of ty (i.e. for

different values of E or L) can be superimposed by scaling.

What we have described above may be called archetypal anomalous carrier
pulse propagation. We show a good example in Figure 10. More complicated
data can arise and there may be a switch to conventional carrier pulse
propagation as the temperature variesl? 2, Nevertheless, archetypal behaviour
is observed often enough for us to seek a general explanation of it in the
properties of amorphous semiconductors. A possible explanation was advanced
by Scher and Montro11>2. They suggested that the anamalies were to be
expected if one was concerned with hopping carriers. We review the theory
in Section 8.3, Qualitative, it makes the right predictions but quantitatively

it seems unlikely to be correct. More recently it has been emphasised by several
authors® ~ 7 that trapping is a more likely explanation. It is a remarkable fact

that the central equation in the theory is formally the same in both cases which
makes the two possibilities hard to distinguish on a qualitative basis.
Nevertheless, the bulk of the quantitative evidence would appear to favour
trapping effects as being dominant. We review the trap-controlled case in
Section 8.4. and the theory of archetypal anomalous carrier pulse propagation
in Secticn 8.5.
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8.2. Conventional carrier pulse propagation

It is suppesed in the conventional theory of carrier pulse propagation
that

Jix, t) = - en(x, t) pE + eb n x;( t_l

(8.4)

where p and D are respectively the electron mebility and diffusivity. These
quantities are taken to be constant and are related by the Einstein relation
(assuming non-degenerate statistics)
W= Por : (8.5)
B
We also neglect the effect of carrier space charge on E which is identified with
the constant applied potential difference divided by L.

When (8.4) is substituted into (8.3) we therefore obtain the familiar
equation

L al
an oan _ . 3n
Fr R T Dﬂx . (8.6}

where Vp = ME is the electron drift velocity. We impose the houndary condition
nix, 0) = ny §(x), t=0. (8.7)

Then the appropriate solution of (816) may be obtained by elementary methods:

I, x - th)Z
nx, t} = W exp|- —m—

To determine I(t) we substitute this result into (8.4) and then use (8.2), If
the peak of the pulse is well away from the ends of the specimen the diffusion
term in (8.4) integrates to zero while the conduction current tem yields

~€Ry Vi The pulse approaches the far end of the specimen at a transit time
tp = L/\.rD = L/UE. The spatial width of the pulse is then proportional to t%/ Z
and this will be reflected in a trailing edge on I(t) with time-width
proportional to (L/E)'J‘.

(8.8)

8.3. Carrier pulse propagation invelving hopping

Let us suppose that the electrons in the pulse reach a local equilibrium
at temperature T and move by hopping. We have seen in Section 4 that the
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that the diffusivity D{w) becomes strongly frequency dependent in this case.
Morecver, asSumiDg non-degenerate statistics, the Einstein relation is preserved
at frequency w SO that the frequency dependent mobility w{w) is given by (see
Section 4.4.):

plw) = e D(m)/kBT (8.9)

These observations suggest that we modify (B.4) by taking 1ts Fourier transform
and replacing the constants p and D by the frequency dependent quantities u(w)
and D{w). Thus we have:

) = - eBu(w) nlw) * e D 2 n@ (8.10)
where J(w) and n(w) are the Fourier transforms of J(x, t} and nix, t) respectively.

Equation (8.4) is regained by peglecting the frequency dependence of u(w) and Diw].
Inverting the transform we have

% | i
Jix, t) = - %’T ‘ d(t - 1) nix, 1) dt + & '?Tx d(t - ) nlx, 1) dt
: B Lo - (8.11)
where
-1 =5 ‘ D) e 2T w. (8.12)

Thus we must make equation (8.4} non-lecal in time because of the strong frequency
dependence of D(w). It is mot Aifficult to verify the validity of (8.11) by
studying in detail the behaviour of the hopping Green's fumction in the long
wavelength 1im'11:72 -

g.4. Carrier ulse propagation involving tra

Ve suppose that the current density J{x, t} is carried by electrons in a
conduction band according to the equation

- sn (%, t}
J(x, ©) = —en.(x, 1) uck ¥ ede —'Ea‘x—“ (8.13)

Where nc(x, t) is the carrier density in the conduction band, W is their mobility
and D 1s their diffusivity which we take to be constants related through the
Einstein relation. Without traps equation (8.13) reduces to the conventional
relation (8.4). The traps make themselves felt because nc(x. t) is different

from the total electron density n(x, t) which appears in the particle
conservation equation (8.3). We are here discussing trap—controlled band
conduction for simplicity. The argument may be generalised to deal with
trap—controlled hopping”’

. . 4,6
To describe the traps we use the linear rate equations’’

ol @
23

= c. - p: Rs (8.14)
ne &y TP T

where € ; is the capture rate and Rj is the release rate of the jth type of
trap. 1o solve these equations we suppose that the carrier pulse is injected
jnto the conduction band at X = owhent =0 and that at that time all the
traps are empty. Then the Fourier transform of (8.14}) yields
-1 : = , - p. )R, 8.15)
iv py @ n @) Cy p; @Ry (
in an obyvious notation. Hence
_c
py W) = LR T (8.16)
The total electron density is
alx, 1) = 0. 0l Py (8.17)
J
By taking the Fourier transform of (8.17) and using (8.16) we obtain irmediately
E C. ‘1 8
n () = nlw) |1+ jﬁj"]-—fu (8.18)

When this result is inserted into the Fourier transform of (8.13) we see that we
obtain an equation of identical structure to (8.10) but where now

C. -1
.
13

and D{w) is determined by the Einstein relation (8.9).

We see that there is a formal identity between the equation which determines
the carrier pulse shape for hopping and trap—controlled carriers.
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8.5. Archetypal _anomalous carrier pulse propropation formula:
For very long times the carrier pulse propagation is controlled by the nix, t) = 800 72“9 r exp[-iw(é E JJC/EIJ @I 4, (8.23)
¥
de value u(0) of w(w). Thus the pulse eventual converts to the drifted Gaussian T M

predicted by the conventional transport equations. Ancmalous carrier pulse
propagation arises at times prior to that for which the approximation p{w) = p(0)
is valid. The nature of the propagation is then determined by the frequency
dependence of g(w), In the hopping case we have seen in Section 4 that there

is large frequency range in which the ac conductivity has a power-law dependence
on w. The ac mobility therefore exhibits similar behaviour. The work of
Noolandi may be interpreted as showing that quite simple trap distributions

can lead to power-law behaviour for the effective mobility defined in (8.19).

For arbitrary u(w) this integral must be evaluated mumerically. However, there
are two especially simple cases. Firstly, when a + 1 so that (8.20) gives
plw) = by @ constant. Then we immediately obtain the expected result:

nx, t} = n, 8(x - ulEt) (8.24)

Secondly, when a = } then we may write (8.18) in the form

We show below that such a power-law dependence of pw) on w leads immediately nw) = - 2 ’Z'I:'I%Y explikx] 8 (x) (8.25a)
to the archetypical amomalous carrier pulse propagation described in Section 6.1. e
Let us suppose, then, that ' where
- | A ST : 2

n@) = (!~ @ . (2.20) Dy = (mE)* 14 (8.25b)
where ., To amd « are constants with 0« a < 1. We shall see below that the _ o is:an_e.ffective diffusion constant and
frequency deperidence of the mobility will, of itself, cause an injected carrier ;
‘pulse to spread out. The diffusion term in equation (8.10) is not necessary k= (iw/D) (8.25¢)
for this purpose and may be neglected at sufficiently long times. This
situation is in complete contrast to the conventional one when the diffusion We may immediately verify from equation (8.8), with vy = O (or from the
temm can never be neglected. We note that our neglect of any dc contribution conventional diffusion equation, which is rather easier) that
to cenventional carrier pulse propagation which we discussed above will never 2 g 5
take place for the model under discussion. When diffusion is neglected the nx, t) = — 1 exp(-x"/4Dt) 8(x) (8.26)

(4'eretJ

Fourier transform of equation (8.3) yields

We begin to see the seeds of archetyped anomalous carrier pulse propagation in

g.)_c (W) n(w)E] - iw n(w) = Ty §(x) (8.21) the simple result (8.26). It will be recalled that we have neglected diffus::Lon
altogether. Nevertheless the pulse diffuses rather than drifts into the region
where we have imposed the boundary condition (8.7). Equation (8.21) may be X > 0 with an effective diffusion constant D, determined by the electric field.
integrated immediately to give The peak of the pulse remains at x = O for all t. The factor of 2 in equation
(8.26) keeps n(x, t) nomalised to n, for all t since none of the electrons move
nw) = 5‘8)’1;‘ expliux/Eu (w1 8 (x) (8.22) into the region x < 0. It is easy to verify that n(x,at) is proportio?gl to
t™ times a function of x and t in the combination x/t*. In Figure 11 we
The unit step function 8(x) appears in n(w) because, with the field peinting in show pulse shapes calculated for various values of a as functions of
the negative x direction (as we suppose), the electrons must move in the positive (x/ta)/EulTol-u-

X direction.

When the Laplace transform (8.22) is inverted we have the pulse shape
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Te study the behaviour of I{t), which is what is measured experimentally,
we substitute (8.22) into the first term of (8.10) and invert the transform to
obtain the conduction current density

e .

J(x, t) = - ;—2— due™ Wt 8(x) expliwx/En(w)] .21

Then I(t) follows from equaticn (8.2) when we invert the order of integration.
Thus we find that

iqL
gl

(=] “
I(t) = - ;%- At €7 -1 (8.28)

where q = iw/Ep(w) which is proportional to w® when u(w) has the power law form
(8.20). We consider times which are long encugh for diffusion to be neglected
but still short enough to ensure that no significant part of the carrier pulse
has reached the far end of the specimen. Then we may let L + « in {8.27) which

Temoves the exponential term. Making the change of variable u = wt we find
that

I(t) ~ f- Tt

, £+ 0. (8.29)
On the other hand, when t + = we are concerned with small w, i.e. with small
q. The leading terms in the factor of the integrand in (8.28) involving g are
eiqL ) .
—ﬁr—'\' 1+ i qu (8-30)

The first temm yields a §-function which may be ignored. The second term gives
Ikt (8.31)

Finally, we may define a transit time tp by equating (8.29) and (8.30}. We see
that '

1 .
ty [%]a (8.32)

Equations (8.29), (8.31) and (8.32) are the salient qualitative features
observed in archetypal anomalous carrier pulse propagation. The ability to
superpose curves of I(t) for different transit times follows immediately from
the power-law behaviour which is exhibited in these equatiocns and stems from
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the power-law behaviour assumed for u{w).

8.6. Comparison with experiment

The addition of dc term to the mobility function modifies the behaviour
found above”’ 78, 80. As an example we show in Figure 11 n{x, t) calculated

as a function of X/iJOETO for various values of T = t/T0 when

ulw) = ug + (-:‘mo)l'“ (8.33)
with ¢ = 0.5 and ulluo =100 %9, We note in particular that the peak of the
pulse drifts away from the origin in contrast to the behaviour found when in
sub-Section 8.5. when o = 0.5 and Uy = 0. This is always the case when Hy ¥0 80.
Consequently, the total current settles down to a constant value after a time t,
determined by the relative strengths of the ac and dc contributions to u(w).

For ancmalous carrier pulse propagation to occur we must have tp << t,. For a
hopping mechanism it is possible to estimate the ac and dc contributions to

u(w) from ac and dc conductivity data. The values of t, calculated on this
bases for a - Se are always very large compared to estimates of tr and yet

this material shows a transition from conventional to anomalous carrier pulse
propagation at 143 K 79. Moreover, the values of u should correlate with the
powers of w arises in ac conductivity. The degree of correlation is very poor7g
and we conclude that trapping is more likely to be the mechanism involved in most
cases in which anamalous carrier pulse propagation has been observed.

9. Conclusion

In this brief review of the theory of electron transport in disordered
solids we have given most weight to the hopping mechanism because the theory
of that is now well developed within the framework of the rate equation
formalism. The rate equations themselves have been taken as intuitive.

They may of course be derived from first principles.16 or from a master
equationsl. '

In recent years there has been a great deal of work on calculations of
the Hall effect for hopping electrons 2 ~ o3, The Hall mobility is small but
not zero., However, the calculations remain of academic interest because the
Hall effect has so far defeated all attempts to measure it in a hopping system.

Our discussion of transport by electrons in extended states has necessarily
been more temuous because the simple picture afforded by a rate equation is not
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generally valid. We have concentrated on concepts which are commonly used

in the analysis of experimental data. The treatment of conductivity for
electrons near a mobility edge which has been developed recently by Gotze

and co-workers®’ - 0 has not yet been used very much. Nevertheless, it
would appear o be the most promising new approach to a more general theory,
None of the properties of amorphous materials are understood very well from

a quantitative point of view. There are always a great many unknown parameters
in any transport theory which can be adjusted so as to give apparent agreement
between the theory and experiment. The most obvious case in which this
cbstacle to progress can be easily overcome is impurity bands in crystalline
semiconductors. Purther experimental work on these systems would be extremely
valuable. This is particularly so at the present time because a theoretical

understanding of the effect of Coulomb interaction on their transport
properties is beginning to emergel’ 15, 16, 89, 90.
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Figure Captions

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Density of states for a single band showing localised state

regions (cross-hatched) bounded by mobility edges at ¢ c and

sé.

Density of states near the pseudogap in an amorphous semiconductor
showing the localised state region (cross-hatched) extending from

a mobility edge €, in the valence band to a mobility edge Ec in the
conduction band, The Fermi level €p is near the middle of the pseudo

gap.

Schematic plot of the relaxation time at zero frequency calculated
by Belitz and Gﬁtzeso Dashed line: Boltzmann transport regime.
Full line: solution of the self-consistent equation.

The Miller-Abrahams equivalent circuit.

Dc conductivity as a function of density for the r hopping model.
Full curve: full analytical formula (6.2), (6.3) and (6.5). Upper
dashed curve: calculated from (6.2) with rp = 0. Lower dashed
curve: calculated from (6.4) and (6.5). Points: computed directly
for a system of 2500 sitesss.

Dc conductivity as a function of Tﬂa'25 for an AHL model with
cms-]'/s = 3.4 and W = 10 meV. Dashed curve: calculated from
(6.11). Dots: camputed using a full numerical solution of

Kirchhoffs equations for 2199 sites>. Full curve: calculated

from the extended pair approximation equationsss. Dash-dot

curve: calculated from the barrier hopping mde137.

Real part o;(w) of the ac conductivity for a three dimensional
R-hopping system as a function of wy = m/PD. The full curve is
calculated using the extended pair approximationsg’ 65. The
dashed curve is obtained from the unified randam walk theory" .
The points are obtained by using a full mumerical solution of
Kirchhoff's equations for 1600 sitesﬁﬁ.



Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.
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Imaginary part cz(m) of the ac conductivity for a three dimensional
R-hopping system as a function of W = m/}%. The full curve is
calculated using the extended pair approximationsa’ 65. The
dashed curve is obtained from the unified random walk theory®'.

The points are obtained by using a full mmerical seluticn of

Kirchhoff's equations for 1600 sites66.

Schematic diagram of the experimental arrangement for chserving
carrier pulse propagation. The potential difference V across the
specimen (cross-hatched) is held constant and the total current
I(t) is monitored.

Superposed log I - log t plots for 1:1 TNF:PVK with the applied
voltages indicated™”.

The function fu(s) = n(x, t)/ (n,0 Eyy 2 -ré'aj plotted against

s = (x/t% /Buy ‘ré’“ for the values of a shown’®.

Carrier density as a fimction of x/uoE 9 for various values of
T = t/7y when u(w) = gl + 100 (-wry)?1 &

N(E)
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