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1. INTRODUCTION.

"Charged fluids" is =z generic name for a vast variety of gazeous
ar liquid syatems containing charged particles 1ike positive or negative
ions and radicals, chaged polymere, and free electrons, Systems of charged
Par..iies occur in many fields of physics and chemistry, ranging from astro-
Physizs and plasma rhysics, to electrochemistry and collofid science. The
common link between all these widely different systems is the predominance
of leng-ranged Coulomb interactions P :tween the charged particles which
confer to these systems a certa.n number of characteristic collective proper-
ties not found in fluids of neutral atoms or molecules. The present lectures
are devoted to an overview of the essential structural and dynamical proper-
ties of some charged fluids which are of importance in condensed matter and
chemical physics. This does exclude the very important field of plasms physics,
although contact will be made with concepts as well as simple models borrowed
from that field. We shall in fact be essentially concerned with ionic liquids
and solutions, but some reference will be mage to more “exotric® systems like

macromolecular ionie systems and two-dimensional Coulomb fluids.

The properties of these charged fluids will be examined from an
essentially microscopic point of view, within the frame-work of Statistical
Mechanics, Whenever possible the results of theoretical analysis and calcuyla-
tions will be confronted with experimental probes of the microscopic structure
and dynamics. We shall restrict ourselves to the essential features of tha
charged fluids uynder consideration, without golng into the details of guanti-
tative determinations of the Propertiss of specific fluids, This means that,
in order to gain a qualitative underscanding of basic physical mechanisms,
we shall give the preference to gimplified models (which still retain the
essential features) over very "realistic" calculations which, in any case,

always hinge on a precise knowledge of inter-molecular forces,

1.1, Classes of charged fluids,

Any classification of material systems is in some sense arbitrary,
but for the sake of clarity we list here the various coulombic fluids which

will be considered in greater or lesser detail during these lectures.

a} Liguid metals will be looked upon as "cold" twe-comporent plasmas, made
up of positive ions and degenerate conduction {or valence) electrons. We
a;all restrict ourselves to metals having simple band-structures (essential-
ly alkali metals} and their alloys. Electrical and thermal conductivities
ate electrenic in character, with electrical conductivities g of the order
of 104 Q_lcm_1.some liquid alloys made up two metallic elements become
ionic (with conductivities of the order of 1 0’1 cm-l) at a definite
stofchiometric composition ; the equimolar Cs-Au alloy is the best - known
example of such fonic melts,

b) A second class of ionie liguids comprises molten salts , made up of

two ionic specles of opposite charge. Salts are characterized by lavge
Coulomb binding and a correspondingly tigh melring temperature and by
lonic conductivities of the order of 1 0_1 c:m-_1 in the liquid phase, At
supercritical temperatures these systems exhibit a continuous change from
an insulating {molecular) vapour to a demse conducting £luid. Certain
crystailine salts exhibit very high conductivities, typical of the melten

phase ; these are the so called super-ionie conductors, in which, putting

it very schematically, one of the sublattices {corresponding generally to,
the smaller ionic species) melts, while the opposite ionic species main-
tains erystalline long range order, The best known example is silver
iodide (g-Ag I) where the Ag+ ions are delocalized in the temperature

range (450 T ¢ 850 K).
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©i Metal salt solutions of the form M - MX {with M an alkali metal and
¥ a haiide) are very interesting combinations of the two former classes
which gonerally exhibits a miscibitity gap and a vapid transition from

an ionic to a metallic behaviour with increasing metal concentration,

d) ati rreceding classes of charged fluids are exclusively made up of
particles carrying an electrie charge (ions and free electrons). In the
direction of increasing complexity we consider next the very broad class
of ionic sclutions consisting of a =" :mt (made up of polar molecules)
and a sclute (made up of at least two specles of oppositely charged ions),
If both species of ions are of gimilar size and absclute charge, one deals
with an glectrolyte solution (e.g. Na | Cl ~ in water),

Macromolecular ionic solutions contain macroions (charged polymer chains

or coils, micelles,charged colloidal particles, ...) and microscopic
counterions ; important members of this c¢lass of complex icnic liquids are
the polyelectrolytes and the charged colloidal suspensions which play an

important role in biochemistry and in many other fields,

e) Electron lavers at the surface of liquid Helium and in MOS devices are
two dimensional charged fluids which are being extensively studied in the

laboratory ; they will be briefly considered in the last lecture,

1.2, Some important physical parameters.

We consider a charged fluid @ade up of v species of particles of
mass m (1 = oS v), carvying an electric charge Z,e (e being the elemen-
tary proton charge) ; let n, = Na / €i be the number-density (number of
particles per unit volume) of species & . Overall electroneutrality requires

that

)
51 n,Z,=0 (1.1)
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A characteristic feature common to alle Coulombic fluids is the phenomenon
of screeuing : the electric potential due to any local excess charge s
effectively reduced at large distances by a vearrangement of the sur-
rounding charges. For sufficlently low densities and high temperatures
(i.e. in the weak coupling limit), this mechanism is characterized by the
Debye screening lengh AD ; with each ionic species one associates a partial

Debye wave-number :

1/2

¥ =(41n ZieZIGkBT) (.2

Do @
in terms of which the screening length is givenm by :

~%
)\zp = g— "ﬁpa( (1.3

In equation (1.2} & is the dielectric constant of the medium in which
the charges move (e.g. the solvent). The classical formula (1.2) does not

apply to the degenerate gas of conduction electrons in metallic liquids.

The Debye length allows a rough distinction between two important
classes of ionic liquids. Let n =;Enq be the total number demsity (irrespec-

tive of species) and
%
a = (3/‘”[’”-) (1.4)

The mean "ion sphere" radius. A third relevant length on a microscopic scale

is the ionic diameter d ; the corresponding packing fraction is defined as :
4 3
}\ = —Tm d (1.5
4
A convenient Coulombic coupling constant is the dimensionless parameter
2% ¢?
"' = (1.6)
af,T
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where Z is some mean ionic valence. Under typical molten salt conditions
(T =22 10°K, £ = 1) one finds that

M<as=d ;=0 550

This corresponds to the steng coupling regime, where Debye screening loses

its physical significance, and the microscopic fluid structure is dominated

by short-range order effects.

- In a dilute (10_3 molar say) electrolyte on the other hand, the follo-
wing double inequality holds (T3 300K, £ =80 in water)
d<a<ip ; Vlf-’lo"B o404
which corresponds to weak coupling conditions that are correctly described
by the classical Debye-Hiickel theery [17].

Concentrated electrolyte solutions

(e.g. 1 molar) are somewhat intermediate between the two preceding cases.

In simple metals and alloys, the screening is essentially governed by
the degenerate conducticn electrons and the relevant screening length is

roughly equal to the Thomas-Fermi length of an ideal Fermi gas, i.e. :

% 2 V.
-Afr' =4 ("TL)C h : (1.7
- WY PN .
F Z \3 m, & /7lef3
where the index e refers to electromic properties. Under typical liquid metal

conditions, )\TF‘: a and ['2 200, which corresponds to very strong coupling.

1.3, Simple models.

The simplest, although somewhat artificial medel of a Coulombic fliuid
is the so called "one component plasma" (OCP) , a system of N point particles
of charge Ze and mass m immersed in a neutralizing uniform background of
cpposite charge density ; the total potential energy VN of a periodic OCP
in a volume £L includes particle-particle, particle~background and background-

background terms, and can be expressed in terms of the Fourier components

of the microscopic particle density :
N - e
_ < EJ
f)4t =2 ¢ *
i=1

in the compact form :

Vo) = THTEE ppgh N

- - * s » 0
omission of the W = E? Fourier component {denoted by a prime in the summation}
accounts for the neutralizing background, while the substraction of N corres-

ponds to the omission of the infinite self energy of the point particles.

Under the name of

'jellium" the OCP has been widely used as a model
for the degenerate electron gas in solids under the assumption that the ionic
charge distribution is uniformly "smearéd out" over the whole volume. We
shall be more concerned with the opposite, high temperature limit where the
classical ions are represented by the discrete point charges, while the uni-
form background is provided by the degenerate Fermi gas of conduction elec-
trons. This assumption is closest to reality at high densities, since the
ratio of the electron screening length (1.7} over the ion -sphere radius
(1.4) can be cast in the form : ”

Are - v 5}1',-1/2

o T \37Zz) s
1/3

(1.9}

where T, = af(z ao) is the usual electron dénéity parameter and aoﬂﬁ’/mee2
is the Bohr radius. Eq.(1.9) show that in the high density limit (rs<<1),

the electron screening length becomes much larger than the inte?-ionic
spacing ; this means that the Pauli principle inhibits the polarization of
the electron gas by the ionic charge distribu:ion, s¢ that the former reduces
essentially to a rigid uniform background. Such extreme situations are in

fact achieved in very dense degenerate stars (e.g., white dwarfs), but we

shall see that the OCP is in fact a very useful starting point for the study
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of liquid metals. The model has the simplifying feature (which it shares
with all systems of particles interacting via inverse~power potentials) that
2ll its static and dynamical properties, when properly reduced to a dimen-
sionless form, depend on 2 single variable, which is conveniently chosen to
be the coupling constant(l.6). This property is easily verified upon inspec-
tion of any equilibrium statistical asverage, by noting that in the Boltzmann
factor the ratio of the Coulemb potectial over the thermal energy can be
written as :

ARy 22 22:2 o

— I
’&B‘T‘ /Z ’E-B'T' - a ngT )'(« - r {1.10)

Two extensions of the OCP model are particularly useful. If finite size
effects of the ions are impurtant, a model of charged hard spheres {of
diameter d) in a uniform background might be more appropriate, The situations
where the background penetrates the spheres and where it is excluded, bur
uniform outside the spheres, can be shown to be equivalent [}j} A thermodyna-
mic state of this model is characterized by two independent wariables, which

are conveniently chosen to be n and 7.

The second extension of the OCP model corresponds to the case

where there are several icnic species immersed in the neutralizing background.

The binary case ("binary ionic mixture" or BIM model) has been extensively

studied ; the two relevant variables are gemerally chosen to be " and cne

of the concentrations :

g m -
Xy = ; x=1,2

The BIM model can be taken as a starting point for the description of binary

alloys.

The simplest model retaining the essential features of ionic

liquids {molren salts or electrolytes) is the "primitive model” of opposi-

§

tely charged hard spheres. Let Z, e and d, be the charges and diameters of

the two ionic species ; the three pair potentials are of the form :

d{;' =¥ 5 N1 < Cix13:: %Z (Cld_-f 9[;3)
m;‘ (ﬂ,)——.‘ (1.11)
S

The impenetrable hard core accounts for the sharply repulsive forces acting

-between ions at short distances ; the Coulomb interaction is repulsive for

ions of the same species and attractive for ions of opposite species. In a
molten salt £ = 1, while for electrelytes £ > 1 accounts for the solvent
which reduces the Coulemb interaction between ions ; notice that in this
model the discrete molecular nature of the solvent is ignored and the latter

is modeled by a dielectric continuum.

The "restricted primitive model” (RPM) is a symmetrical versiom

of the primitive model in which the ions bave equal diameters (dl' d2= d)

and opposite charges (Z1 =~ 22) ; eq. (1.1) implies then nl'- n,. A ther-
modynamic state is characterized by the two variables h_and [Mor

EEJL {:Z.

}-:56[{ T .:2,—'1/ (1.12)
gl h?

The wvarious models introduced in this section must be looked upor as star-

ting points for a qualitative understanding of charged fluids, but they are
generally too crude for a quantftative description of such fluids ; more

"realistic" potential models are required for this task.

1.4. Some experimental tools.

Charged fluids can be studied in the laboratory by a variety
of experimental techniques which yield informatien on thermodynamic proper—
ties, microscopic structure and dynamics and transport coefficients. The

experiments oo molten salts are complicated by high temperature conditions.



We only mention here the radiation scattering technioues which give direct
information on static structure and singie parcicle or collective dynamics.
¥ - ray and inelastic neucron st .trering techniques have been reviewed by
rrofezsor Enderby. The technique of isotopic substitution jis crucial for
the separation of partial structure factors in multi-compenent fluids like
molten salts or aqueous solutions. Laser light scattering in conjunction
-with photon correlation iechniques has recencly yielded a wealth for infor-
mation on mactomolecular .omie solutions and colloidal suspensions. These
experiments are capable of probing the short range order as well as the

collective and self diffusion in macroionic solutions, because the macro-

ions have a size comparable to the wavelength of the laser lighe,

Among the most powerful tools for the investigation of micros-
copic structure and dynamics are computer "experiments™, i.e. simulations
of small, generally periodic, samples of model fluids, The two basic
Statistical Mechgnics simulation methods are the so called Metropolis
Monte Carlo (MC) scheme and the "Molecular Dynamics™ technique. Both
methods are used to simulate systems of B = 102 - 103 particles interac-
ting through given, generally pair-wise additive forces. The MC method
yields exclusively static properties of either classical or degenerate
systems, while the MD method is used to caleculate static as well as dyna-
mical (i.e. time-dependent) properties for classical systems.Both techniques
.have been abundantly described in the literature (see e.g. ref L3 ] 3.
Since we shall constantly refer to resules from MD simulations throughout
these lectures, we briefly recall that this method amounts to solving

numerically Newton's 3N coupled equations of motion :

D)=L Fpy_ 1 F.(t
)= mr g g%uE}()

(t.13)

{0

by a finite difference algorithm ; in equation (1.13) the dots indicate
-t — i

differenciation with respect to time and Fij (t) = - Fji (t) is the

force acting betweemn particles i and j at time t. A& widely used finite

r L} L3 o 1n
difference scheme to solve the equations of motion is the "leap-frog

algorithm, based on a straightforward Taylor expansion of ri(t +At) [ﬁ].

T (t+ab)= —F (-at)+ 27 (£)

24 f=i *
+BY) }Zf*‘) E}(t) + ot (1.16)

where At is a judiciously chosen time increment, which must be a

small fraction of the shortest characteristic time goverping the particle

dynamics in order to ensure a good conservation of the total energy and

momentum of the system. The relevant statistical ensemble is the microca-

nonical ensemble (fixed total emergy) and time averages of selected

quantities are taken by following the trajectories of all particles over
3

typically 10~ ~ 105 iterations of the basic algorithm (1.14) ; an estimate

of the statistical average of any dynamical variable /1 (%;) =

A (’T’L(t))" . Eﬂ(t}jﬁ(@} ﬁ(t)) is given by ;:

A> = i L (T A ot

d[ilt f A(M‘A,t) (1.13%)
+ “=4

where ¢Ar is the total number of time steps (iteratioms) generated during

(19

the simulaticn, In particular the mean temperature is estimated from the

time-average of the total kinetic energy of the system.



71

Surface effects, which would be severe for samples of the
size tractable by present day computers (N < 104 particles), are generally
eliminated by the use of periodic boundary condirions. The simulations
¥irld then "exact" results {except for statistical uncertainties) for
infinite periodic systems of particles intevacting via a specified force
law. The comparison with the predictions of approximate theories ig then
unambiguous, whereas a direct comparison between approximate theories and

experimental data is always limted by our incomplete knowledge of inter-

atomic forces,

47

2. MICROSCOPIC SERUCTURE AND THERMODYNAMICS.

In this lecture we introduce the fundamental static {equal time)
density-density correlation functions and various related quantities ;
we recall their relaticnship with thermodynamics and with the static
linear respemse to external perturbations which will allow us to derive
the long wave lenght behaviour of the static structure factors. Finally
we sketeh some theoretical techniques for the computation of static corre-

lation functions,

2.1, Distribution functions and structure factors.

Consider a fluid made up of y particle species, with
number densities n, and concentrations T, = M. /'YL (1 < % \J)

With each species we associate the micrescopic density :

Na
b= 2 9 (F-T, (1)

(2.1)
and its Fourier componists -
= AR R (L
Pea(t) = 2 e FFu)
A=4 (2.2)

where ?:c‘ (t) denotes the center of mass position of particle i of
species o at time t. Since we are inmterested in static {equal-time)
correlations in a fluid in -thermodynamic equilibrium {which satisfies

time translation invariance), we may ignore at present any explicit time
dependence. The one-particle densities are defined as the statistical
averages {e.g. in the canonical ensemble} of the corresponding micresceopic

) = —
o?' (r") = < Pm(f(?)> = No< < 3(”—1"‘}140()>(2.3)

the two-particle density matrix is defined in terms of the density-density

(K1) = < pel®) PpOEY> - ﬁ,f)(f?)D;PF(ff-fi’)
=2 %’4.5‘(71'-5;«)3‘[3/-;‘2“4 P>

(2.4)



where the prime
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in the summation means that the "self" term ( i = j) is

to be left out if X =

For a rotationnally and transliationally invariant (i.e. isotropic and

homogeneous) fluid :

(7

- My (2.5a)

Pep (57) = 1amp Gp (T

where the %“F are the {center of mass) pair distribution functiocns

{(p.d.£.). Clearly 4Tmn Mr)rzdr is the mean number of particles of

species P situated at a distance r (within dr) of a particle of species & .

For v ~» ao, the positions of two particles in a flwid are completely

decorrelated (no long-range order !) so that :

%MP{}U: 1 (2.6)

It is customary

’R.,:P ()

to define the pair correlation functions :

= Gup () — 1

which vanish in the limit p-» o0,

In the low density (weak coupling) limit, only positicns of pairs of

particles are correlated, so that :

m—»paa ?"P (n) = Lxp I"" 4"_"[5(’9/{ g,'T'J- (2.8)

where v a(r) denotes tha pair potential between speciese and P {assumed

to be spherical).

Two related correlation function matrices are :

SxF (/’l.) =

and its inverse,

ZJS“E}

The inverse defines the direct correlation functions c

sy (v =7,

U"‘P B'(ﬁ')-r%éc,(x/;)”é,ﬂdﬁ(z’c) (2.9)

defined by the relatiom :

r-7")S F,(T L7 )dr 42’ “P S(T-Thz.10

dF(r) via

PB_(/'L) f}‘[(x xF)yL 'o(/5 (Q) (2,11}

74

Inserting eqs.(28) and (2.11) into (2.10) we fmd that the hqﬁ(r) can be

expressed in terms of the ¢ I3(1') by the Ornstem-Zermke (0Z) relations :
Kiul) = Coupln 2 R (2.12)

where @ denotes a convolution product. Introducing dimensionless Fourier

transforms : ] -
FB) =n] e’“ﬁ"’sz d>2 2.1

the 0Z relationg take on a simple form im k-~ space :

'&ocl‘i (’&) = xp 'é)"i"z x ’Ca( f)ﬂ}[ﬁ [’ft) (2.14)

It is easily verified that the pal‘tlal structure factors :

S«P (£) =m 4 P x [3;;/3 > (2.15)

are précisely the Fourier transforms of the S (r) 3

o(F ()= B-KF + (2, x'F) /ﬁ,(F (49 (2.16a)
(aﬁ) = (2: xP) /C"(P (—ﬁ) (2.16b)

The S“ﬁ(k) are directly accessible by radiation diffraction techniques,
E

through their linear combinaticns :

I(e) « ;"%‘ f<fp Sxp¥) @.17)

where fy denotes the (k-dependent} atomic form facter (X-ray diffraction)
or the mean nuclear scattering lemgth {neutrom diffraction) of species o ,
and I{ @) is the scattered intensity per unit volume, with the scattering

angle given by :

4= 2m4G0 /2

Py being the radiation wavelength.

2.2. Number,concentration and charge structure factors.

In order to illustrate the définitions of the preceding section,

we now restrict ourselves to systems containing twe ionic species and
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consider two important classes of such binary fluids : molten salts and
metallic binary alloys. If n, (™ = 1,2) denotes the partial densities of
the two ionic species, the two classes of fluids differ fundamentally in
that the partial densities cannot be varied independently in the molten
salt, due to the electroneutrality condition (1.1}, while in the alloy
charge neutrality is achieved by the conduction electrons, so that ny and
®, can be varied freely ; an equivalent set of independent parameters in
the latter case are the total Inuic number denmsity m = n + n, and one of

1 2

the cencentrations, X, = n,/n (xl+ ®, = 1)

If one now examines typica: neutron scattering or computer simulation
data for the three partial structure factors of such binary systems, one
is immediately struck by a fundamental difference between molten salts and
binary allays. In the case of molten alkali halides (say Na+CI-), the three
Sx p{k) exhibit a first extremum at azbout the same wave-mumber (k%' 1.4 EFi
for Na Cl [5,6] }. bhut while this corresponds to a sharp maximum for 8, (k)
and 8__(k), the cross factor S+_(k) has a pronounced (negative) minimum at
the same wavenumber. In the case of a liquid alloy on the other hand, the
three partial structure facters exhibit sharp maxima at different wave-

6 Sn5 E?]).

numbers {see e.g. the classic example of the copper-tin alloy Cu

In order to snalyse this significant qualitative difference, it is
physically instructive to comsider certain linear combinations of the
partial microscopic densities (2.1). The total microscopic number density

is just the sum

PuT i) = L (T £)+ P (X, L) (2.18)
In the case of the molten salt, we define the charge density :
CPe R b)) =21 P (T )+ 2y (T, ) (2.19)

From (2.18) and (2.19) we can define the following three structure

factors :

: | 3
S ('g-): ';-JJ <f3"ﬁ.”N F;3> :; ‘%(76¢ xP) ZS“P['ﬂ)(Z.zoa)
Sz (4)= 7 LPgn F£z> =Z % (xd:rP)y‘ZP Sip B2

522 [’ﬁ-) —}%<F{2 F_E5>:§_% (xdxf)zza(zﬂsa(/&a 2.20c)

1€

These structure factors are shown in ref. 6 in the case of molten
Na CI. SNN(k) turns out to be a relatively structureless fumction of k,
due to a considerable amount of cancelletion between the SuF(k), whereas
the linear combination (2.21c) strongly enhances the structure and yields
a pronounced peak in SZZ(k) (Szz(kmax)ﬂ 4.5 1). This is a clear manifesta-
tion of charge ordering in the molten salt, which becomes very apparent if
one looks at the partial pair distribution functions g,F(r). Computer simu-
lations on molten alkali halides [8,9,&] show that, while g++{r)2!g__(r),
the oscillations of g+_(r) are exactly out of phase with those in g++(r).
Cousequently the linear combination gNN(r) is a very "flat" functien of r
leading to a rather structureless SNN(k), while the combination gzz(r)
enhances the oscillations, yielding a pronounced main peak in Szz(k). Local
charge neutrality is most efficiently achieved by a regular alternation of
opposite and equal sign neighbour shells, which clearly manifests itself
in the peculiar structure of the g,a(r). Moreover the short range order is
not unlike that found in a solid Na Gl structure, with an average nearest

neighbour coordination number close to 6.

In the case of a binary alloy, on the other hand, we define, in addi-
tion to the microscopic number density (2.18}, the microscopic deviation

from the mean concentration (or concentration "density") [10] :

fet)= x, p A t)- %, 3 (FE)  aw

Nete that in view of the electroneutrality condition (1.1), the charge
density (2.19) of a molten salt is similar to the concentration variable PL
of an allby. The physical interpretation of this new variable is clear : if
fcis integrated over a small volume inside the alloy, the result.is Zero
only if the numbers of particles of the two species inside this volume are
exactly proportional to the mean (macroscopie) concentrations Xy and *y 3
Pc(?,t) is hence the natural variable to study concentration fluctuations,

The corresponding structure factors are, apart from (2.20a)

Sec (£) = ﬁ1' <Pte P;CB 4 (2.23a)
=%,Z, ‘[1“; Si1(#)- 2(r,7,) Sy, (H)+ rd.su('j-}

» (4= Jﬁ <ﬁtN f;c> (2.23b)
S-S ) S Sult)



Note that for an ideal mixture (two species of identicai, butl tagged, icns)
it is a trivail exercice to check that S’c(k) * %%, and SNC(R) = for

all k.

2

By making the appropriate linear combications of experimental data for
the partial structure factors of a typical liquid alloy [?,10], one obtains
%« “harply peaked SNN(k) (not unlike the structure factor of a pure liquid),
wihile SCN(k) and especially Scc(k) turn out to be relatively structureless,
indicating the absence of any significant ordering ("random" alloy) in

contradistinccion to the charge ordering observed in the mclten salt.

2.3, Relation to thermodynar . s.

If the inter-particle forces are central and pair-wise additive, the

total pntential'energy is of the form :
Vo L%_ZZ P(l A-)z?l)

Within the framenwork of classical Statistical Mechanics, the internal energy

of the fluid is then expressible in the terms of the p.d.f.'s E’P(r}

Yo 28T+ <D
- 34,7 443 T 2a%pn [upGuplt) 229

Similarly, the virial theorem leads immediately to the following expression

for the pressure P :

.
Y f,; = 105 /nj ! ?1’3—@3*:*(’”"["“ )

For fluids of charged particles, the v F(r) contain the Coulombic part :
.° (1) = _Zséﬁ_d_
GLP e é—){( (2.26)
Use of the charge neutrality condition (1.1) allows then the Bxalr) to be

replaced by the correlation functions Q%P(r), so that the integrals appearing

in (2.24-25} remain separately finite.

2.4, _Static response and long wavelength bebaviour.

It is well known that the static structure factors, which are a measure
of equilibrium fluctuations, are intimately related to the static (linear)

respouse functions (or susceptibilities) which deseribe the response of the

1

sygtem to a weak external perturbation.
Let ép (Y) be the potential of an external force field coupled to the
density of particles of species fs . Since we are interested in linear

response, We may restriet ourselves to a single Fourier component of the

Ip B)= fplh) e HET

The hamiltonian in the presence of the external field reads (with H the

potential

hamiltonian of the unperturbed system)

H=H, + Jep ) Fp (7) 2
= Ho + 75/3 (t) F;P (2.27)

We are interested in the responmse of the system as measured by the deviation
. . ﬂ’

of the Fourier component of the local density of species X (i.e. pfj)

from its equilibrium value L

putB)=f (ei®7 Fp(7)d2
:i [< P> - <Pf°‘> ] (2.28)
> QN Jorpi- &BT[HoJr‘PZ(")f%/J]}Ff«dr ~<fe

where cL{:q denotes a phase space element, QN the partition furction and
the index o an equilibrium average over an ensemble of unperturbed systems.
Linearization of the Boltzmann factor in (2.28) with respect to the weak

external perturbation immediately yields the desired result :

o (¥) = _\g—i<ﬁﬁ°< f’;}s> 'é;:\-, 9',75("@')

¥ .
= - —%ﬁ—— Sﬁp(i) 95/5 (’f«)

By identification with the defining relation for the static response fung-—

tion ')(_O(FH_):
VP (#) = Kfbp ()
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we derive the static version of the (classical) fluctuation-dissipation
theorem D 1 ,3] :

e
Fap (B) = - (3?;,,1 S ) (2.29

We are more specifically interested in the response of a fluid of rigid ions
to the electric field of an external charge density having Fourier components

¢ (k) ; from Poisson's equation the corresponding electric potential
is

(2.30)

A 2
¢ £)= b41e
2 ( “Fﬁ(f)
which couples to the microscopic charge density f’*:ig of the fluid.

The dielectric behaviour is charecterized by the charge-charge response
function (k} according to :

z

B—fé(@ = Xzz (&) ‘;b;(ftj (2.31)

while the electrostrictive behaviour is measured by the response of the

particle density

?fﬂ('ﬂ'): XNE ({) ¢2‘¢ ('ij (2.32)

The charge response to the external charge density is also described by the

inverse (longitudinal) static dielectric function :

1 _EXEE) _m) 4 Ser
&(#) {‘ﬁ{zﬁ') - Fe(t) ~ 1+ ?l;ﬁ(i‘T) (2.33)

— ——ty
where E and D denote Lhe electric field and electric displacement

vectors respectively, & = fz -+ 3‘}02 is the total (i.e. external plus
induced} charge density, and use was made of Poisson's equation

720

LT % FU I IV S B R

Comparison of equation (2.33) with equations (2.31-32) yields the standard

relaticn :

1 1 4 Lwe?

E—(—&) = —:EZ—XH' (ﬁ) (2.34)

while the fluctuatiovn-dissipation theorem applied to the charge response

leads to :

12.2 (i) = -—7:%'- 522_(»34 (2.35)

From its definition (2,20¢), the charge structure factor Szz(k) is non-

negative, so that eqs. {2.34-35) entail the stability condition :

e
EHR) <4 (2.36)

Negative values of the dielectric function are a common feature of strongly
coupled charged fluids [ié].

Inside the fluid an external charge is screened due to the polariza~
tion of the medium, and each iom experiences a local electric field which is
the superpesition of the extermal field and the field due to the induced
charge density. The response of the system to the local (rather than external)

electric potential is described by the screened respense function :

9P (#) = ;V(';;;(‘&) Egb;('ﬂ + a?éz(’t)] 2.37)
where 3 ¢2 (£)= ﬂ?ﬁ%_‘l Py 5 (#) | (2.38)

Confromtation of eqs. (2.31) and (2.37) yields the relation between external

and screened response functions :

_ X (£) (2.39)
Xex(d) = — %ﬁ Xsal®)

E(-Q): iv%%z_%;z(—ﬁ) (2.40)

Perfect screening in a conducting fluid imposes the condition :

_ELO IOZ (t) =;£90é g‘je ('t) ‘i‘jﬁz (iﬂ.—: T ()
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which, combined with eqs. (2.31), (2.32) and (2.35), determines the long

wavelength behaviour of the charge structure factor :

2 ——
jﬁ(/—% %’iz_ 522(‘&)': Zz’ (2.42)

where
2.
Z“‘,‘ ¥ 2:,( (2.43)
and k% =Z. kﬁ* iz the Debye wave-number defined by eqs. (1.2-3).

ot
The charge structure factor vanishes as k? for long wavelengths, a

consequence of the k? singularity of the Coulomb potential.

The partial structure faztors, on the other hand, remain finite in the
limit k-»0. For the sake of jllustration we now specifically consider the
case of a binary ionic liquid. The total charge surrounding an ien of a given
species must exactly cancel the charge of that fonm : hence we have the

electroneutrality constraints :

414_2%1 j'jﬁiL (’7)61‘3Q *"HZ.Ehyjliil.GnJ Ct$’== "Eii,
1 Ze [F15 () d D + M2y [Gog(HA=-2,

Using equations (1.1) and (2.16a), in conjunction with the compressibility

(2.44)

equation for binary fluids [13:] , it is then a straight forward exercice
to show that the partial structure factors have the following long wavelength

limit -

/£‘> ;) SKP (’ﬁ/ = M#ET K'\" (2.45)

where K m . ('B‘Q' /BP)NIT /-ﬁ_ is the isothermal compressibility

We finally examine the long wavelength behaviour of the dielectric func-

w |2 2;/;[

tion & (k}, restricting ourselves now, for the sake of simplicity, to the
one éamponent plasma (OCP) model for which number and charge density fluc-
tuations coincide.A simple macroscopic calculation will give us the required
long wavelength behaviour [i&]. In the absence of any flow, the force due

to the local electric field must be exactly cancelled by the force due to

the pressure gradient :

’?L(Ze) _}_:: (/T) = _v_’ P(ﬁ') (2.46)

Poisson's equation reads :

ﬁg(ﬁ) = Le [Fe [/'fl)i-;fg[;f)] (2.47)

Assuming local thermodynamic equilibrium, and considering an isothermal

process, the pressure fluctuation can be expressed as !

E_P(J’L) E(’l Po (_D_E ;}l(/_f) __E) QP&(,V (2.48)
Combining eqs. (2.46-48) we arrive at the following differential equation
for E?oz

ez (ol VPR =3p0) = () @

This is easily solved in Fourier space :

EF.J: (ﬁ.) = 7 f{é’f}{é?_ (2.50)

/ﬂ?; = L,,-n—‘:}lez, f’PLz Krp (2.51)

is the square of the screening wave number. The long wavelength limit of &{k)

follows then immediately from eq.(2.33)

f(/&) = 1+ ,ﬁf (2.52)
2
Note that the perfect screening condition (2.41) is contained in eq.(2.50).

The electrostatic potential arcund the screened external charge is, according

to Poisson's equation :

b: (£) = 43t [fa-(#y +Ip (£)]
HBEp fo )= ATE /ae(r)

If one of the point charges in the fluid is regarded as the external charge

]

qﬂe(r) = ZeBZ?)), the preceding result shows that the effective electric

potential due to that charge decays exponentially at large distances :

{U’tg(ﬁ)'zle ’e’fl"ll 432 } @59

In the weak coupling limif, KT goes over to its ideal gas limit (nk T)

and ks reduces to the Debye wave number kD(eq.(l.Z)). In the $trong coupling
regime (I'> 1), the compressibility of the OCP becemes negative, so that k
takes on imaginary values [1&], corresponding to an oscillatory behavieur of

eff(r), characteristic of short range ordering.
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2.5. Approximations for the pair distribution functions.

In this section we briefly examine some of the more efficient appro-
ximations for the calculation of the pair distribution functions. Again, for
the sake of simplicity, we shall first restrict ourselves to the case of the
simplest model ionic fluid, the OCP (with Z = 1), the pair structure of which
is characterized by a single p.d.f. g(r). In the weak-coupling limit {[*s0),
correlations become negligible and we make the familiar "random phase" approxi-
mation (RPA), which amounts to replacing the screened response functiort%z (k)
in_eq.{2.39) by the response function of a system of non-interacting particles,
:x o(k), which reduces to —n/kBT in the ¢lassical limit. The structure factors
follows then directly from (2.35)

- / £
(ﬁ? = Z P (2.54)
It is worth noting that a similar reasoning leads to the familiar Lindhard

dielectric function of the degenmerate electron gas [15]. Son, (k) obviously

RPA
satisfies the long wavelength limit ¢2.42). From the OZ relation (2.16b) it

is immediately cleat that the RPA is equivalent to setting :

) = = F(4)/ 4T = — 45 [4*
<y = — () {,T

Eq.(2.55a) is believed to be true asymptotically (rwes), for any -pair potenrial

{2.55a)

ar

{2.55b)

flé]; the RPA replaces the direct correlation functiom by its asymptotic form,
for all distances r.
Eq.(2.55) allows a straightforward generalization of the RPA to multi-component

fluids, in conjunction with the OZ relatioms {2.16).

Historically the RPA was first derived by Debye and Hickel (DH) El]
from the Poisson-Boltzmann equation. The charge demsity around a central ion

is related to the electrostatic potential by the Boltzmann factor :
te ()= 901~ L] = m[orp [-Tst)+ AT - 1) (o sen)

where v{r) = e?/r and &(r) are the potentials due to the central ion and to

the polarization cloud respectively. The latter satisfies Poisson's equation :

VZ?P () = ~bme? Pz () (2.56b)
which admits the solution :
S= [ f(2) v (X))
=m jd ’/2’,{(/'2’)/1»(!5,“’72"!) {2.56¢)

Z4

where the definition (2.7) was used. The coupled equations (2,56) form a
¢losed, non-linear set. Upon linearization of egq. (2.56a) and subsequent
Fourier transformation, the RPA (orDH) structure factor {2.54) is recovered.
The linearization is only justified in the weak coupling (i.e. low density
or high temperature) limit. For intermediate couplings, the full, non-limear
Poisson~Boltzmann equation yields reasonable result [i?-ld] despite-the
neglect of correlations between particles in the polarization cloud. These
correlations are partly included in the so-called "hypernetted chain" (HNC)
approximation [},15] » Wwhich amounts to replacing the bare potential v(r) by
the "renormalized" potential - kT » c(r) in eq.{2.56c). Combining eqs.(2.56)

and (2.12) we cast the HNC approximation in the standard form :

T = wph-v)/H T +h(2) - /CUZ)J (2.57)

The multi-component generalization is

?ﬂp (1} = Mf’ {_' A&p(’t)/&svr +{Ka<13 [a)—,cdlz(@} (2.58)

Eqs.(2.58) and (2.12) form a closed set which must be solved numerically, by
an iterative procedure. Comparison with computer simulation data shows that
the HNC approximation generally yields reasomable pair distribution functions
for Coulombic fluids, even under strong coupling conditions (see. e.g, refe~
rences 9,19-21,26) Some improved versions of the HNC scheme haﬁé recently been

proposed, which lead to nearly perfect agreement with the simulation data

[22,23].

Another powerful approximation scheme, which applies to systems of
charged hard spheres, is the so-called "mean spherical™ approximation (MSA)
which has the advantage of admitting analytical solutions in some cases. The

pair potentials being of the form (1.11), the MSA completes the exact require~

?xp(ﬁ) =0 J < q{KF (2.59a)
by the approximate closure :
’C"‘P(IU :—{U&P (fz)/fa"[" J > d"fF (2.59b)

In the limit of vanishing hard sphere diameters (point ioms), the MSA reduces
to the RPA (cf.eq.2.55b) ; for finite diameters, the MSA includes short range
correlations via eq.(2.59a). Eqs (2.59) together with the 0Z relations (2.12)
form a closed set which has been solved analytically in the case of the restric-

ted primitive model (equal diameters, opposite charges) f&ﬁ] . The extension
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to unequal diameters and arvbifrary numbers of components is also availzile,
but requires the numerical solvtion of an algebraic equaticn [25] . The MSA
solutions reproduce the miin qualitative features of the partial p.d.f.'s in
the concentrated electvcivte and im the molten salt regime, and have heen used
to analyse X-ray and neutron diffraction data for molten alkali halides [__ZTJ,
In order to achieve quantitative agreement with experimental or simulatiom
data, one must resort to seu'li—emperi.cal modifications of the original MSA

sciveme, but at the expense of considerable numerical complications |_-23,29:] .







