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1. GENERAL INTRODUCTION

1.1  Heat Capacity and Thermal Conductivity Vitreous silica .

-‘IK—k

The easiest way to introduce this subject is by showing some ‘early cn10—5
resulos on the thermal Properties of vitreous silica and other amorphous

tclids, The heac capacity C and the thermal conductivity k are shown as

¢T3 )

functions of the absolure temperature T in Figs 1.1 and 1.2. Also shoun in
these figures are € and x for a similar crystalline material, a-quartz, which 10-6
can be used to review the behaviour expected on the basis of simple theories.

The heat capacity of a-guariz varigs as T3 telow 10 K, as expected on

the Debye theory which predicts that in the long wavelength limit the

density of phonon states g{w) varies guadratically with the phonon frequency 01 1 10 100

TIK

w; glw) = Aw? if the velocity of sound v, is a constant where wq = vg, with
q the phonon wavevector. At higher temperatures C increases wmore rapidly 1.1  Heat capacity c of vitreous silica and crystalline
than T3 as a result of the phonon digpersion which inereases glw). quartz 2s a function of temperature T. (D.P. Jones Thesis,
1982, after R.C. Zeller and R.0, Pohl, Phys. Rev., B4,

The Eemperature variation of the thermal conductivity Kk«T3 can be most
2023, 1971.)

casily explained by means of the simple kinetic formula
1 .
K=3-Cvsl 1.1
where ) is the phonon mean free path. At low temperatures phonons are

scattered by defects in the crystal, or by the surfaces of the sample so

that A is independent of T. «x is therefore preportional to € and so to T3I.
Above 40 K the reduction in A by phonon-phonon scattering leads to the fall 103
in x.
These ideas are well known, and serve ta emphasize the peculiarity of 2?102
the results in the glass. . ¢ varies roughly as T below 1 K, and at 0.1 K A3
is about two orders of magnitude greater in the glass than in the crystal, £§10
Below 1 K k varies as T2, in the range 4 to 30 K increases only slightly :E
with T, and then increases at higher temperatures towards a value similar 1
te that of quartsz.
These results were soon supplemented by measurements on a wide range 10_1
of other amorphous solids; oxide glasses, chalcogenide glasses, polymers and Vitreous
amorphous metals. In all these materials similar behaviour was observed, 10_2 silica -
as can be seen for a representative sample in Figs 1.3 and 1.4, 1
1073 7
1.2 Early Theories 1
i + - .. . . 10—lp|||||nlg.||
The universality of the pbenomena and the simplicity of the (idealized) 01 1 10 100 TIK

temperature dependences C proportional to T and ¥ proportional to T2 proved

great attractions for theorists. A large number of different theories were

1.2 Thermal conductivity x of vitreous silica and

erystalline quartz. (D,P. Jones Thesis, 1982, after

R.C. Zeller and R.0. Pchl, Phys. Rev., B4, 2029, 1971.) q,g_—
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proposed in a short space of time. Some of these were based on realistic
descriptions of the amorphous state, and are worth describing briefly in
order to show how ideas from other branches of the study of amorphous
solids can be applied to this field.

The first and perhaps most obvious explanation was in terms of electron
states. In the amorphous state the sharp distinction between energy bands
and energy gaps is blurred, and it was suggested that the specific heat was
a result of the almost constant density of localised electron states at the
Fermi level, giving a linear temperature dependent heat capacity just as
electrons do in a metal. However, it turms out that the density of these
localised states is much too small to explain the heat capacity. In silica
for example the density of states deduced from the heat capacity is
approximately 104637 'w 3 (1021 ev™! cm™3) whereas oprical measurements imply
a density of states less than 1043 g w3, After all, vitreous silica is
almost perfectly transparent as can be shown by its use in optical fibres,

‘ A second explanation involved the damping. or scattering of phonons
in a glass. This is based on the well-established idea that the lack of
translational symmetry prevents the use of a wavevector q to describe the
vibrational modes except at low frequencies where a continuum description
should hold. A mode of well defined q will therefore decay as it propagates
in the glass. Fulde and Wagner suggested a specific mechanism for this
decay, based on strucrural relaxation, and suggested that this could explain
not only the thermal conductivity bﬁt also (through the consequent broaden-—
ing of the spectral responsé function) the heat capacity. However subsequent
experiments, which will be described later, did not provide evidence for
their mechanism, although the explanation of the thermal cenductivity
resembles current ideas. .

The third and final example is a model for the thermal conductivity which
is based on the scattering of sound waves by inhomogeneities in the glass
structure. This is Rayleigh scattering by the local variations in the
velocity of sound, However, two problems arise with. this explanation. The
first concerns the frequency or q dependence of the effect, as w*, w? and w
dependences of the scattering rate have been suggested, and the second the
magnitude of the fluctuations. Density fluctuations estimated
thermodynamically or from light scattering experiment§ are too small, bat
there is no way of estimating the local variations of sound velocity, Such
scattering is undoubtedly important above 1 K, but probablx not at lower

temperatures.



Many other theories have been suggested, but in most cases these
theories are inconsistent with what is known of the amorphous state and

with the more precise experiments which will now be described.

1.3  Acoustic Experiments

At 1 K the frequency of a thermal phonon, given by HwvkT, is about
30 GHz. The properties of such phonons can be investigated directly by
means of thermal Brillouin scattering., An incident photon excites or
absorbs a phonon: measurements of the frequency shift at a particular
scattering angle give the frequency and wavevector of the phonon, and the
width of the Brillouin line gives the inverse phonon lifetime. Measurements
show that both transverse and longitudinal acoustic phonons exist in a
glass, and that there is no dispersion at these frequencies {i.e. the
gound veloeity is identiecal in $i0; with that measured at lower frequencies).
The mean free path of these acoustic phonons is at least ten wavelengths
at reom temperature, and becomes larger as the temperature. is reduced,
Taken together with the thermal measurements these results show that
additional excitaticns are present at low energies which contribute directly
to the heat capacity and which scatter the existing phonons.

Acoustic measurements at lower frequenmcies, 100 MHz to 1 GHz, have
provided a large amount of detailed information on the nature of these
excitations. Many of these will be described later, but the results shown
in Fig. 1.5 are particularly important. Below ! K the attenuation increases
with decreasing temperature if the acoustic intensity is low, just as
expected on the basis of the thermal conductivity. The values of the
phonon free path deduced from the acoustic measurements are consistent with
those caleylated from the thermal conductivity, However the most valuablé
aspect of these results from the point of view of investigating the low
frequency excitations is the observed saturation of the attenuation at high
acoustic intensities, The implication of these experiments is that the
excitations must be represented by two-level systems and not for example by

harmonic oscillators. This point will be considered later in more detail.

1.4 Tuonelling States

A specifiec form of the two-level system is provided by a tunnelling
state, Tndeed this model was suggested before the discovery of saturation
and predicted the effect. The basic idea isthat in contrast to a crystalline
solid where the position of each atom is determined by symmetry, the
amorphous solid contains atoms or groups of atoms which are equally happy

to sit in either of two lecal potential mirima. Indeed, it has been claimed
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1.5 The ultrasonic attenuation as a fumction of tempera-
ture at high and low powers (S. Hunklinger and M. v Schickfus
in Amorphous Solids: Low Temperature Properties, ed,

W.A, Phillips, Springer, 1981 {Ref 1}).

1.6 The double-well potential, together with the wave-
functions in the localised and diagonal representaticns.
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that this is an essential property of the glass, representing the additicnal
entropy frozem in at the glass transition Tg. 1If the barrier is not too
large the atom can tunpel from one minimum to the other {just as in the
ammonia molecule).

The state can be represented as in Fig., 1.6, and the quantum mechanical
treatment of- this double-well potential will now be considered in some
detail.

The calculation of the energy levels of a particle in a double-well
potential Vof the form shown in Fig. 1.6a usually starts with the solution
of the single-well problem shown in Fig. 1.6b. The choice of these two basis
states is known as the well, non-diagonal or localised representation, Fach
state is the ground state of the appropriate harmonic potential Vy or ¥y,
both of which are shown continued as dotted lines in Fig. l.6a. The

Hamiltonian can be written as

H = HE + (v —VI) = H2 + (Vv - VZ) 1.2
where H, and H, are the individual Hamiltonian operators. In this
representation the Hamiltonian matrix becomes

Ep + <1|v - v, [1>  <aju|is

1.3

<2|u|1> B, + 2|V - v, 2>

To a good approximatien each term v - Vi|i> can be neglected in comparison
with E;. If the zero of energy is chosen as the mean of the two ground state

energies E, and Ez €q. 1.3 can be.written

~-A ~Ag L.
i 1.4
~Ap A
where Ap is defined as
Tag = ~2<t|H2> , 1.5

the negative sign being introduced because the matrix element <1[H|2> is
negative, Notice that only if the wells are identical, apart from a relative
displacement in energy, is the A of eq. l.4 identical to that of Fig. 1.6a.
Ap can be evaluated for specific potentials. TFor two identical three-
dimensional harmonic oscillators with 4 = O and with an overall potential

shown by the dashed continuation in Fig, 1.6a

8V, \ 47 _ :
A = hmo[; - (——51) ]e 2V Mg 1.6

mhiwg,

—F -

where vy is the minimum emergy barrier between the two wells, and fiwg is
equal to 2E1 or 2E2. Since for our purposes (and indeed for the localised

representation to be useful) V, >>hug, eq. 1.6 becomes

2v \4 _
by = —Z'hmo(mbfo) e 2, Mg

2v3n2\ |
= 4]0

md?

where m is the mass of the particle and d the separation of the two minina.

1.7

e-(vaafhz)!d/z

This value of Ag is just twice that found for the equivalent problem in one
dimension.
As an alternative example, the solution of Mathieu's equation for a
rigid rotator in a twofold symmetric potential gives, in the same limit
V, >> hwp, the approximate result
Ay = -mao(;:zz)i e 4V Mg 1.8

where again v, is the height of the barrier separating the two wells, and

wp is the angular frequency of small oscillations with a single minimum.
Although both results imply a similar exponential dependence of 4y on
V, the numerical relationships are different, and the use of a particular
form of equation for Ag cannot be justified unless, as is often the case in
crystals, the microscopic symmetry of the potential is known.. For thig

reason an expression of the form

- 2,4
Ap = ~hge 920V, /0%) oo 1.9

where hQ is an energy roughly equal to hwg, is usually adequate in the case
of amorphous solids, It is worth noting that <1[H|2> is negative in these
examples because the negative contribution frem V-V, (for example) in
eq. 1.2 overwhelms the positive contribution frem H,.

The matrix eq. 1.4 can be diagonalized to obtain the eigenstates, the
true, diagomal or energy representation. The eigenfunctions, shown in

Fig. 1.7¢, have energies tE/2 where
2 _ a2 4 a2
E" = (A% + ad) 1.10

and are usually written in the analytic forms

¥ = |1>cos8 + |2>sine 1.11

¥p = |1>sing - |2>cose 1.12

- —



where tan 26 = Ap/A. §, is the lower energy state because Ag (as defined
here) is positive,

The functions §; and ¢, defined by eqs 1.10 and 1,11 are orthonormal
only to the extent that the overlap term <1!2> can be put equal to zero,

As far as normalization is concerned this presents no difficulty, as an
additional multiplicative factor can be readily calculated, but may lead

te more important problems in the calculation of matrix elements. Any matrix
element involving the overlap of <1| and }2> must be evaluated carefully
through a correct choice of orthonormal states.

It is worth pointing out the existence of a wide range of notation for
1.i10. HNot only have several syr'iii. been used for the various energies in
this equation but the same symbols have been used for half the energies,
Occasional discrepancies of powers of two in formulae cited in the literature
can often be traced to this difference in definition.

For this, as for any problem involving two energy levels, there is a
formal analogy with the problem of a spin 1/2 particle in a magnetic field.
The Hamiltonian matrixeq. l.4can be rewritten in terms of spin operators,

although here too there is a choice of notation berween the Pauli spin

matrices
=f{o 1 =0 -i _f1 o
ox (l O) Gy_(j_ 0) Uz _(0 _1) 1.13

and the spin -1/2 operators defined by 8, = i o;. After diagenalization the

Hamiltonian can be written in the obvious form
H =3 Eo 1.14

The advantages of this analogy will be seen later when it is used to
interpret non-linear and coherent effects in the interaction of tunnelling
states with acoustic and electric fields.

in many cases the results of experiments can be interpreted in terms
of a simpler model which ignores the detailed origin of the two levels, and
uses the energy E as the only parameter, in contrast to the tunnelling model
which uses both & and Ag. This model is often known as the two-level-system
medel, in cortrast to the tunnelling model described earlier.

The second step in the discussion of tunnelling states in amorphous
solids involves an evaluation of the distribution functions for the parameters
&y and A, the obvious choice of independent variables. Both parameters are
expected to take a wide range of values in the amorphous solid. 1In the case
of the asymmetry A it can be argued that the distribution funcrion must be

symmetric as positive and negative values of & areequally likely, and further

._.q_

that the scale of energy variations will be determined by the thermal energy
available at the effective temperature cbaracterising the 'frozen liquid'
state. Since Ty is between 300 and 1000 K for most glasses, this will be
of the order of 0,05 eV, Below 1 K the thermal energy is 1074 eV or less,
so that the low temperature properties are sensitive to the centre of a broad
symmetric distribution, The distribution function £(A) can therefore be
taken to be a constant.

A less firmly based argument can be used to derive the form of g(Ag).
Ag varies exponentially with the barrier height and separation. If the
exponent is assumed to vary smoothly on the scale of kTg, the form of g(ag)

is determined by the exponential dependence of Ap on the barrier parameters:

g{ap) o % . 1.15
Some care should be taken not to assume that this form of g(ag) is always

(or even sometimes) valid. There is little direct experimental evidence in
support of this precise form and indeed other slightly modified forms haYe
been suggested. However, the use of eq, 1,15 allows.apreliminary comparison

to be made between experiment and theory.

The density of states n(E) can be calculated from f{A) and g{Ag). The
details of this caleculation involves a treatment of the singularities
introduced by integrating 1.15 and will be discussed later in connection with
time-dependent heat capacities, but as might be expected the result is a
slowly varying legarithmic function of emergy., The origin of the 'linear'
temperature dependent term can be seen if this slight energy dependence is

neglected, so that n(E) = ng, a constant. The heat capacity is
«

L ? 2 E_ 1.16
= dE .
c(T) n, J‘ TRT sech T

(5]
where the integrand represents the response of a single two-level-system,

Integration gives
2
=1 2 .17
e =% n, k2T, _

a result that can be used to estimate n_ .

-0~



2, PHENOMENOLOGICAL THEQRY

2.1 Transition Probabilities and Relaxation Times

Transitions between the states ¥, and Yy, oceur through the perturba—
tion of the potential well of Fig, 1.6a by a photon or phonon with energy
‘hw = E. This perturbation can change A or A, (or both) but, of the two,
changes in A are much more important.

The reason for this is twofold. The first is that the wavelength of
the perturbing ejectric or strain field is much greater than the separation
of the wells. As in the electric dipole approximation in semiclassical
radiation theory, this leads to a perturbing potential which is essentially
antisymmetric, equivalent to a change in 4 and not in A,. Secondly, the
matrix elements, calcualted in the localised basis |1> and [2», are relatively
much smaller for a symmetric perturbation. (The use of the words symmetric
and antisymmetric is of course not exactly correct, because the poteatial
well of Fig. 1.6a is not symmetric. It is, however, a useful approximation,
identifying perturbations that tend to change A or Ag separately.)

The secontl effect can be illustrated by comparing the matrix elements
for two perturbing potentials Ax and BxZ for the cne-dimensional double
harmonic escillator of Fig. l.6a with A = 0, The appropriate quantity for
comparison is the ratio of the matrix element to the change in energy of
each well {Ad/2 and Bd2/4 in the two cases, where d is the separation of the
minima), For the antisymmetric perturbation this ratio is *1 for the
diagonal matrix elements and zero for the off-diagonal. In the case of the
symmetric perturbation Bx? the diagonal elements are equal in both magnitude
and sign and so give simply a shift in the zero of energy, while the ratic
of the off-diagenal matrix elements to Ba2/4 is Chw, /5V)exp(~2V, Muw) .
V,#w, is considerably greater than unity fop the low temperature application
of this model, and so the off-diageral terms in the |1>, |2> basis can be
neglected [uotice that for A = O the functicns ¢, and 4, defined by (1.11)
and (1.12) are orthogonal, and so no particular precautions need be taken in
the calculationl]. l

The result has general validity. If the potentizl wells are mot
equivalent, or if A is not equal to zero, the antisymmetric perturbation
will give cff-diagonal terms and the symmetric perturbation will give, in
addition to the off-diagonal terms, uncqual diagenmal terms. However, all
these matrix elements are proportional to a factor of the general Form
exp(-2V_fw,) and so will be relatively unimportant, The perturbation to

be included in the Hamiltonian (l.4) is therefore diagenal in the basis |1>,

— -

|2>. Using the transformation defined by (1.11) ard (1.12), the perturba~

tion in the ¥;s ¥z basis has the form

cos28 sin20 4/E AOIE

8in20 ~cos28 AofE -A/E

The interaction Hamiltonian can therefore be written in terms of the Pauli

operators as

1-lim: =(% 9 +%qu)pu - F +(% o * %Ux)\'e 2.1
in the presence of an eleciric field ¥ and a strain field e. p, and y are
defined as 1/23A/3F and 1/234/3e respectively, and are therefore also equal
to the eletric and elastic dipole moments of the equivalent classical
potential. The vector character of F is here preserved, but the quantity ye
has been written as an average over orientations (it can also be averaged
over polarizations, although transverse and longitudinal models are usually
considered separately). The off-diagonal term o, produces transitions
between ¢, and §, while the diagonal term g, changes their relative energies.

In the simpler two-level system model the relationship between the
diagonal and off-diagonal terms is ignored. The interaction Hamiltonian

becomes

Hint = (-%- Da, + Mcx)e +(% ug, + u'cx)F 2,2
where the diagonal and off-diagounal terms are specified independently,

The interaction between tunneling states of two-level systems and photons
can conveniently be described by the use of the Einstein coefficients,
Consider first the interaction of two-level systems with thermal phonons.

Each two~level system is continually absorbing and emitting thermal phonons.
The rate equation for the probability p; of finding the system in the ground
state | can be written

dpl
Fr = P Be(E) + pyla + Bp(E)] 2.3
where A and B are phonon Einstein coefficients and p(E) is the phonon-energy
density (per unit volume)} evaluated at an energy E equal to the two-level
system energy. p(E) is given in terms of the density of states g(E) by

+ | Eg(E) ‘
p(E) = ;E?%T_:—- . 2.4

1
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In thermal equilibrium dp;/dt = 0, and siace p} + py = 1
A _
7 = Ee(E) . : 2.5

For small departures from equilibrium eq. 2.3 defines a relaxation time T,

where

1l = [A + 2Bp(E}] , 2.6
which can be rewritten usiag eq. 2.4 as

17! = A coth(E/2kT) . 2.7

1/4 is the natural lifetime of the system at absolute zero, and at any tempera-—
ture ht~! is the uncertainty in the energy E.
The analysis can be continued to calculate the rate at which phenons are
scattered by the two-level systems, If the density of states of the two~
level systems i¢ n(E) per unit volume, the éhange in the phonon energy
density is given by
3
2@ _ g oam 7;} 2.8

g0 that using eq. 2.3

p{E)
dt

+ u(E)BE(p; - pye(E) = n(E)EAp, .

The phonon liferime is given by

_l-

n(E)A
Toh

g(E}

tanh(E/2kT) . 2.9

+

n(E)BE(p, - p,) =

The coefficient B can be calculated starting from eq. 2.11 using a derivatio;\
equivalent to that of the correspounding optical problem. However, unlike
the optical case, the form chesen for the density of states g(E) must be
specified for phonons, as must the polarization. The Debye approximation
can be used at temperatures of 1 K and below, so that the phonen dénsity
of states has a quadratic dependence on energy, Further, the phonon polariza-
tion can be classified as either longitudinal I of transverse t, For a
single polarization a, B is given by

nﬁi

- 2.1
B FE o
G a

where p, is the density of the solid and v, is the velocity of sound for
polarization a. M, as discussed in connection with eq. 2,1, is an average
over orientations, The relaxetion times can now be written for the

two-lavel system as

M2 3
-1 ., o _EF E
T (Ti vg W coth(sz 2.11
and
1 "Mi E
Tph = _WE n(E)E tanh(m 2.12

where both longitudinal and transverse contributions have been included in
the expression for 11, but T;é is written for a single polarization a.
For the tunneling states these formulae must be modified to take account

of the explicit form of M,. The tunneling state relaxation.time is

Y2 A% E

-1 2 L

vl =1 coth{=r=) 2,13
vi Znpght 2kT

but the expression for the phonon scattering time is more complicated because,
for a given phonon energy E, each tunneling state scatters phonons at a rate
determined by Hg, propertional to Ag. In an amorphou§ solid, as opposed to

a erystal, there will in general be a wide range of local enviromments and

hence a range of values of 4,. The exact expression for 17} involves the

ph
distribution function for A, but for the moment it is sufficient to write
w1§ .
-1 =
Tph ;h?o—vg n{E)E tanh(E/k2T} 2,14

. where n{E) is an effective density of states, 1In principle, the coupling para-—

meter Y, also varies from tunneling state te tunneling state, and it too
should be represented by an average, although this can be incorporated into
a(E). "
One important difference between the two—level system model and the
tunneling-state model should be noticed. As described in section 1.4 the

specific heat can be calculated from n(E}, In the two-level system model
=1

ph’
tunneling model this is not¢ so, and the relaticnship between the heat

the same parameter enters directly into the expression for 1 but in the
capacity and 15& depends on an unknown distribution function.

A description of absorption and emission in terms of the Einstein co—
efficients and semiclassical radiation theory is obviously oversimplified,
and it is important to consider the extent to which it is valid, The

semiclassical appreach can be replaced by a quantized field calculation

without changing the results. Meore important is the neglect in the Einstein

treatment of coherence between the wave functions of the two energy levels,

-4 -



The two-level system is here characterised by two parameters, the
occupation probabilities, instead of the three that a full quantum
treatment requires, This limitation means that the Einstein approach

cannot provide a detailed explanation of non-linear and ccherent effects
(including higher-order transitions involved in Raman scattering). It

does, however, give an accurate description of one-phonon or photon emission
and absorption, although even simple scattering needs to be treated more
carefylly,

2,2 Heat Capacity

The results developed in section 2.1 can be used to discuss the
dependence of the heat capacity on the time scale to of the measurement. It
was mentioned in connection with the derivation of n(E) that the integration
of g(Ao) needs care. The upper limit to 84 is obviously given by E, but in
principle the lower limit is not well defined but depends on the way in
which n(E) is measured. The rime scale ty of the experiment determines the
minimum value of A, through the formula for the relaxation time, eq. 2.13.
Defining a distribution function g(E,T)dE dt, and writing it in terms of

£(4) and g(a) gives (using eq. 2.13)
ACE
B(E,T)dE dt = £(4) g(Ag) T dEdr . 2.15

A minimum relaxation time Tuin is defined by putting Ay = E in eq. 2,13, Using
£(A) constant, g(Ao) o /A, gives

A

8(E,7) = ———a— 2.16
(1l - "%‘E)i
Equation 2.16 can in turn be used to give the denmsity of states

t dr
o
n(E) = A -[ m)é—ﬂn(ﬂlto/l'min) . 2.17
T3 min
min
The tunnelling model therefore predicts nat only that there is a wide distribu-
tion of relaxation.times but also that the heat capacity depends on the time
scale t, en which it is measured, Of course, the precise forms of eqs 7,16
and 2.17 depend on the form chosen for g(AOJ.
Over the last few years considerable effort has been devoted to experi-
mental verifications of these predictions., The existence of a wide range
of relaxation times has been conclusively demonstrated, but until recently the
measurcments of the heat capacity on short time scales have been uareliable
and contradictory. The twe mosg recent experiments indiecate the kind of

information that can now be obtained,

If a sample of glass at a temperature Ty, is suddenly connected to a
thermal reserveir at temperature I, (TD > Tl) by a thermal link of
conductance a, in the absence of a distribution of relaxation times the
temperature of the sample will decrease exponentially with time. As the
temperature of the sample approaches T,, the temperature-time curves can
be superposed as shown in Fig. 2.1. The observed behaviour is quite ¢ifferent:
as shown in Fig. 2.2 the temperature varies much more slowly with time than
in Fig. 2.1,

These results can be understood on the basis of an idealized model of
the experiment. The rate at which heat is evolved from the sample is given
by af and at long times this will be the result of the slow evolution of
energy from tunnelling states with long relaxation times., Ordinary phonens
relax rapidly and can be neglected except in so far as they define the
temperature. Using the distribution function defined in eq. 2,16 the

instantaneous rate of energy loss is

le «©

§ = [ ]‘ E e et gpar . 2.18
T 1
kT T
o n ] )
This can be integrated if t>»> Toin (which is certainly true) to give

g = A2 2 g2y 2,19
Q- 2t (TI To) *

Equaticn 2.19 agrees well with the results and illustrates an important aspect
of the amorphous state, Amorphous solids centain a large range of relaxation
times and under very general assumptions (such as those outlined in comnection
with eq. 15) this leads to non—expomential relaxation, In particular, integra-
tion of functions similar to that used in eq. 2,13 leads to relaxation as
1/t.

The main conclusion of the experiments shown in Fig. 2.2 is that there
is a broad distribution of long (50s < T < 50008) relaxation times, in
agreement with low frequency acoustic measurements. A probe of much shorter
relaxation times is provided by heat pulse propagation. A pulse of heat
is applied to one side of a thin glass slide, and the temperature is monitored
as a function of time at the other. By comparing the temperacure—timg response
with solutions of the diffusion equation, a value for the heat capacity on
a time scale corresponding to the thermal diffusion time cam be measured.
Values of this characteristic time varying from 1 ps te a few seconds have
been chrained by using slides of different thicknesses. The results of two
of these studies are shown in Fig. 1.3, where the decrease in heat capacity
is clear. However this figure demonstrates equally well the uncertainty of

the results. At least five sets of experiments have been performed, with
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2,3 Heat capacity of vitreous silica measured on different
time scales. (M. Meissner and K. Spitzmann, Phys. Rev.

2.1  Exponentjal decays expected on cooling from dif- Lect., 46, 265, 1981.)

ferent initial temperatures to T, if no relaxation

effects are present,

0.205}F T T Y T
TIK) - 300
0.204} £ L
T 200 .
- )
0.203} v T
g 100+ -
i
0.202f =
'E I J, J 1
0 1 2 3 ltr 5
0.201 . 10%K/
\T.:O‘IOSK
0.200 L 1 A : 1 Llg
’ 200 1060 1500 2000 2500*(5)3000 2.4 Temperature dependence of the measured phonon [ree

path. The solid curves are £°1 = {51 tanh fw/2kT {after
B. Golding, J.E. Graecbner and R.J. Shutz, Phys. Rev.,
Bl4, 1660, 1976).

2.2  Thermal relaxation in vitreous silica between

0.205 and 0.200 K. (J. Zimmermann and G. Weber, Phys.
Rev, Lett., 46, 661, 1981,)
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inconsistent results, aithough all show the existence of relaxation time

effec;s.

2.3 Phonon Scattering

The phonon scattering time defined im eq. 2.14 can be applied both
to thermal conductivity and to acoustic experiments. In general the acoustic
experiments are used to measure the parameter n v2 (and v) which can then
be used to calculate the thermal conductivity below 1 K.

The temperature dependence of x follows from application of the
dominant phoneon approximztion te eqs 1.1 and 2.14. This approximation states
that at a temperature T the relevant phonons are those for which fiw ~ kT.
The temperature dependence of ok is obtained by putting E =-fiw ~ kT, so
Toh @ 1/T. Together with -the T? variation of C this gives the T2 dependence
of k. A more careful treatment involves not only the use of the real energy
dependent density of states n in eq, 2.14 but also a generalization of
eq. 1.1 to include an integration over all phonon frequencies. Such a
calculation reproduces the expérimental results more exactly, and shows why
the observed temperature dependence of x is T!+9 and not TZ.

Equation 2,14 has been extensively tested by means of acoustic experi-
ments at low powers. At acoustic frequencies the conditionfiw << kT is
satisfied at all but the lowest temperatures so that E;; o wl/T, the
attenuation increasing at lower temperatures as shown in Fig. 1.5. In fact
the complete expression 2.14 has been shown to give a goed description of
the low power attenuation, as shown in Fig. 2.4,

Associated with this attenuation is a temperature dependent acoustic
velecity. Applying the Kramers-Kronig equations to the acousitc case gives

a value for this contributiom 4v to the velocity

p vr;é duw”
AV=?OW . 2,20

Relative to a reference temperature T, the change in velocity iz given in

the limit fiw << kT, using eq. 2.14, by

iy

wW(T) - v(T,) = - En(T/T) . 2.2

Experimental results, as illustrated in Fig. 2.5, econfirm this behaviour
and give values for the product Ey2. The Togarithmic dependence of the
velocity is a characteristic feature of tunnelling states and has been used
to show the existence of such states in materials, such as amorphous metals,
where the contribution of tunnelling states to the thermal properties is

difficult to identify.
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Perhaps the most important feature of the acoustic experiments is the
phenomenon of saturation, This can be readily understcod on the basis of
the Einstein treatment. Implicit in eq. 2.4 is the fact that trausitions
are induced by phonons from a thermal distributfion, At larger acoustic

powers this will no longer be the case, and p(E)} in eg. 2.3 will be

determined by the acoustic phonon flux. As this increases spontaneous transi-

tions become relatively unimportant, and the populations of the two—levels
will both tend to one half. Stimulated emission processes therefore cou-
pensate for the absorption, and there is very little ner attenuation. An
estimate of the acoustic power at which this occurs can be obtained by
equating the thermal phoron and acoustic phonon concentrations.

Although this appears straightforward one point requires clarification.
The thermal phonon concentration can be expressed per unit frequency (or
energy} range, but a calculation of the corresponding acoustic phonon con—
centration requires a knowledge of the effective bandwidth. This can be
determined either by the length of the acoustic pulse (i.e. an experimental
broadening) or by the intrinsic lifetime of the tunnelling state. This has
been mentioned previcusly in comnection with eq, 2.7, and will be discussed
in much more detail later. At this point it is sufficient to say that most
information is obtainable in the continuous wave limit, where the effective
bandwidth is intrinsic, In this case, if the number of acoustic phonons
per unit frequeney range is equated to the number of thermal phonons, the
critical energy demsity Ec is given by

E 2

e T30 I R !

where TE‘ is the line width of the tumnelling state and the final factor comes

from the low frequency expansion of the Bose factor. This gives

E = wlkT
c m V§T2

or equivalently for the power density J. W n2)

I, = wlkP/aviT,, 2,22

The results shown in Fig. 2.6 imply a value of roughly 10 ns for Té, but this
is not the value predicted by eq. 2.13 in general, Interaction between

tunnelling states gives a line width T;I greater than that predieted from the

relaxation time T].

“~gf*

2.4 Dielectric Absorpticn

There is an exact parailel between the absorption of electromagnetie
and acoustic waves, The dielectric absorption varies in the same way as
the acoustic attenuztion, and the velocity of light in the glass (or the
dielectric comstant) vaties logarithmically with temperature. Results in
vitreous silica are shown in Fig. 2.6,

The main difference between the electronmagnetic and acoustic results
lies in the sample dependence of the results. In the acoustic case all
samples of SiDz, for example, give the same value for ;YZ, but the measure-—
ments of dielactric constant répresented in Fig. 2.6 show an effect pro-
portional to the concentration of water {or hydroxyl ioms) in the silica.
This is not unexpected in view of the large dipole moment of hydroxyl, but

is clear evidence of the rdle of impurities in some of these phenomena.

2.5 Thermal Expansion

Although the range of experimental data is limited, the thermal
expansion B of glasses at low temperatures reflects the other unusual thermal
properties, Results in vitreous silica are shown in Figs 2.7 and 2,8, The
Gruneisen parameter used to describe the expansion is defined from the
experimental results as BVIXTCV wheré x is the isothermal compressibility.
This parameter balances the strong temperature dependencies of B and Cy
to give a quantity which varies slowly with temperature, and which is of
order +1 in ordinary crystalline solids. Microscopically, it is a measure
of the variation of the frequencies of the excitations with volume,
-3fnw/3LnT, as can be seen from a quasi-harmonic treatment, The vibrational
frequencies are assumed to vary with volume but not explicitly with

temperature, so that the entropy S can be written as S(w(V)/T). Then

zs;) .ls-io_»)
aV, T T v T

and

88y _ _ ws’
T v Lt

Using CV = T(BS/BT)V and rearranging gives
v T w \IV, T

(asln\r)T = - (aP/av)T(avr/av)P .

Now
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2.7 Gruneisen parameter as & function of temperature
fer a) RCL, b) erystalline germanium and ¢) vitreous
silica. The dotted lines give the limiting value
calculated from the pressure derivatives of the sound
velocities (W.A. Phillips, Ref 1),
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2.8 Gruneisen parameter as a function of temperature
below 10 K {0.B. Wright, Thesis, 1982).
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S0
BVIXTCV = - afnu/odnvy .

This means that an explanation of the large negative Gruneisen parameter
at 1 K or below requries a demonstration that the total energy of the
tunnelling states decreases dramatically as the volume of the solid is
decreased.

Although no detailed explanation has been attempted it is pessible to
see two ways in which this might occur, Firstly, the tunnel splitting 8,
is exponentially dependent on the barrier height and the separaticn of the
two potential wminima. If these parameters are sensitive to volume changes
(as they are in the case of tuanelling defects in crystals)' a large change
in A, and hence in the energy of the tunnelling state will result. The
main problem with this explanation iz that for most states of a given
energy E, Ao << E,

The second possible explanation involves the large coupling of these
states to strain fields. A typical coupled constant of 1 eV gives a value
of 10% for 3fnw/3fnV. Although this value for a sipgle state is enormous,
states are at first sight equally likely to increase in energy as to
decrease, and it is difficult to see how a2 large resultant value can be

obtainad.
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3.  DYNAMICS OF TWO-LEVEL SYSTEMS

3.1 Quantum Treatment
The Einstein analysis presented in 2.1 neglects am important aspect
of the quantum mechanical theory of two-level systems, the coherence between
the wavefunctions describing the two states. A simple analysis will be
_used in this section to shew that additional detailed inFormation can he
obtained from echo experiments which explore this coherence.
If an alternating electric field is applied to a two-level system the

Hamiltonian is of the form
H=H, +H(t)
where H, has eigenfunctions §; and:y, satisfying

E E
Hovp =~ 3 %1 and  Hyip =+ 3 4

and H](t) = -2e x £, cos wt. The general solution of
e OF
HY ih 3t

can be written

¥ = cl(t) 'R elwotlz + Cz(t) P elwot/2 3.1
where hu, = E. Substituting this solution in Schrodinger’s equation gives

Ho, ¢ (£) +H ., e %% ¢ (r) = #he, ()

| 12 2 1
and St 3.2
o = tat

H21 e c](t) + H22 cz(t) = rhcz(t)

where Hij = <¢ilHI(t)le>.

In the amorphous solid, comtaining a broad distribution of frequencies w,
some states will always be in resonance for any driving frequency wi the
frequency of the electric field selects a-small number of twe—level systems
from the distribution. The most important terms on the left of eqs 3.2 are
therefore those for which w = w, and which give a time independent
contribution to é] and éz. The rapidly varying terms can be neglected just
as they are in the analagous discussion of magnetic resonance. ¥In addition,
since from eq. 2.13 the strongest coupling between tumnnelling states of
energy E and photons (or phonons) occurs in the symmetric case when 4, = E,
the discussion can be limited to these almost symmetric states for which

Hli and sz are very small, With these assumptions eqs 3.2 become

—~45-

H ¢, = ihé
b2 1 3.3
o - ing
H €y 1hc2
where H? = -<w1|esox[w2> = -eop', defining the induced dipole moment p'.
Combining the two egs 3,3 gives equations for ¢, and ¢, of the faorm
202
. ESP
¢ == 2 ey = -wlzc] 3.4
42 :
+.
with solutions e ‘91T,

In all experiments involving coherence the sample must initially be in
a well defined state, and in amorphous solids this is achieved by keeping
the sample as cold as possible (10 mK). A basic experiment consists of
applying two pulses of r.f. electric field, the first of length 1 and the
second, a time t; later, of length 2t. If the two-level system is initially

in the state ¥, the appropriate solution during the first pulse is
= i .5
Y(t) Wiﬂﬂsw!t + wZSan]t . 3

The pulse length (or the magnitude of eo) is chosen seo that w;T o n/4, or

L]
Zeop T o a6
h 2 "
{a 7/2 pulse) so that at the end of the pulse the state of the system is
described by
< 3.7
WO e E Gy vy :

For the symmetyic case, the combination (3.7) corresponds to a state which
instantaneocusly has a large dipole moment, in contrast to the states wl or
¥y which do not. This large dipole moment can be detected experimentally.
During the time interval between the pulses the evolution of the state
function can be followed in the usual way for time independent problems,

so that at time ty after the first pulse (ty >> 1)

+Hugt /2 v, e-imotolz) . 1.8

1
w(to) = J% (¢l e

The second pulse acts exactly as the first, except that the phase change @t

during the pulse is /2 instead of w/4. Chocsing solutions of eq, 3.4 to
match eq. 3.8 gives

lwgt /2 —iw,t/2

Yty = 1 ((w|c0$w L+ wzsinm t)e +(wlsinm]L + ¢2coswlt)e
7z ! !

t <t <t +2t .,
o o
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At the end of the pulse s i

W(t0+21) = l-(¢2elmoto/2 + wlelmotiz) 1.10 .
2 2\
and at a later time t, again taking t »> 1, - j,fr \3‘
. _ s _ .:;‘:2 V'f"{: I Ay
vt + 1) = l(‘P el (e ) /2 | v.e du () t)/?.) . 3.11 Rt /k \\
o 5z 2 1 . i =

Equation 3,11 gshows that at a time ty after the second pulse the system is

again in the state

1 i i B . : . b
¥ - /‘-2“(4,1 * wZ) k P 11 ;\_“J;__..A‘J‘;.‘_m.i!ﬁ-l.--‘t\\—‘ib‘s‘.‘ji‘-MA;:-‘,L‘—'/‘HHAQM.;J
' E
. - - A 1 1
with a large dipole moment. More importantly this is true for all values 1 2

of w,. In an amorphous solid, as a result of the finite lifetime of the
states and the finite length of the exciting pulse, the electric field will
igevitably excite states with a range of energies or frequencies wg. The 3.1 Spontancous electrie echo, pattern (L. Bernard,
effect of this is to give a very sharp 'echo' t when eq. 3.11 is averaged Thése, Grencble, 1979).

over a range of w,. It is interesting that the broad distribution of

energies is responsible for this sharpness of the echo.

3.2 Echo Experiments

This analysis assumes that the phase coherence of the state function

is maintained for the complete time 2t,. Any disruption of this phase wor

coherence will prevent a tunnelling state from contributing to the final ol 1BmK Suprasil 1

echo, and therefore the experiment provides a way of measuring the

dephasing time, known as T,. The echo amplitude in this simple picture is g o

expected to decrease as exP(—ztolTZ), and Ty can be determined by measuring é;

the echo amplitude as a function of tg. g'su— Herasi
These experiments, in which two pulses of acoustic or electrie fields T;

are used to measure T2, are known as spontaeous echo experiments, In the ;ﬁ Lo

ideal photen case two electric field pulses of length 7 and 21 (typically

1 us) at a frequency w/2m of about 1 GHz are applied to a sample held at o J."...-. inresi

a temperature T of a few mK, where T > kT. This low temperature is needed oL st g L ) .

in order ro prepare the system in the ground state V. The amplitude of w2 5 w2 5 !

. i ric Field Amplitude
the echo is measured as a function of the electric field amplitude €, at Relative Electric Field P

fixed pulse separation tys and also as a function of ty at fixed g5, A
typical echo pattern is shown in Fig, 3.1. : ;
e I . g 3 3.2  Amplitude of the spontanecus electric echo in
Results typical of electric echo experiments are shown in Fig. 3.2, vitreous silica samples, pletted as a Eunction of
electric field. (B. Golding, M. v Schickfus,

§. Hunklinger, K. Dransfeld, Phys. Rev. Lert., 43,
to 7/2 and v pulses or e,Tp'/h = w/4, and can be used to evaluata p'. It 1817, 1979.)

The maximum in the echo amplitude as a function of €, corresponds from eq. 3.6

-97 _ -8 -



. . . . . 4 signal (dB)
is clear from Fig. 3.2 that two distinct species of dipole occur in these Floating Scole

glasses, and by choosing €5 appropriately each type can be studied in turn.

A number of complicarions, including the random orientation of the dipoles _ﬂni;jjljﬁLﬂﬂm

-5 |-
relative to the field and the problem of determining the local field, make .“n\

T=4.18mK

precise values of p' difficult to determine, but values are typically of
order 3 x 10730 ¢n (1 Debye). The corresponding phonon experiment in silica
gives values for the coupling constant y of about 1 ev.

10.94 mK

The wvariation of the echo amplitude with t; is shewn in Fig, 3.3 for
a pulse area which corresponds te the first peak of Fig. 3.2 (which turns

out to be the result of OH groups). An expomential variationm is found in

1omK % 1475 mK
this case, although in general more complicated patterns of decay are

A . A . 2316 mK 2T (microsec.)
observed, These non-exponential decays may result from a distribution of. é) éo 1% 700 e

relaxation times similar to that discussed in section2.2, but could also
be characteristic of the molecular process responsible for Ty, to be
discussed in section 3.3, The resuvlts shown in Fig. 3.3 show that T, is 3.3 Decay of spontaneous electric echoes (L. Berpard,
about 70 us at 10 mK, and varies as T”!. Phonon echo experiments show Thgse, Grenoble, 1979).

slightly smaller values of Tyy 10 us at 20 mK, with a temperature variation

of T"2, These phonon experiments are probably observing the second set of

states, but the different temperature dependences may well result from

different experimental conditions.

Hore complicated three pulse sequences of electric and acoustic fields

T T T

1mK
experiment on initial 7 pulse is followed a time ty, later by n/2 and +15 072 GHz

T T
can be used to measure T in 'stimulated' echo experiments. In one such Py Pz P3 Egp
xp

pulses, relatively closely spaced. The analysis of this experiment follows

that given in section 3.1, The system, initially in the ground state Vs w+10

is excited coherently to the state ¥2 by the first 7 pulse. During the time :T

t, a fractionefto/r]ofthe systems will relax back to the ground state Py § +5

The double pulse sequence gives a spontaneous echo just ag before, but the §

contribution of those systems which decayed back to ¥y will be opposite to § 0

that of the systems remaining in Y. The amplitude of the echo will there- & - & INFRASIL

fore be proporticnal to 1 - e t0/T1 and measurements as a function of ¢, =5 o ::E::;t:ou N

can be used to measure T|, Both photon and phonon measurements in vitreous Fﬂp * SUPRASIL T-OH

silica give results in agreement with eq. 2.13, although this experiment _10? 7

is also affected by the wide distribution of tunnelling state relaxation I zéo ; QL:SO l 660
1S

times, Results of stimulated photon experiments are shown in Fig. 3.4.
Measured values of Ty are up to ten times larger than those of T7.
3.4 Amplitude of stimulated echo as a function of
the time between initial and second pulse (B. Gelding,

M. v Schickfus, §. Hunklinger, K. Dransfeld, Phys,
Rev, Lett., 43, 1817, 1979.)
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3.3 Spectral Biffusion

A dephasing time T, much shorterthan an energy relaxation time T,
implies, by analogy with magnetic resonance, interaction between the two—
level systems. This interaction could take two forms. The term proportional
to o, in the Hamiltonain gives rise to a process in which two systems
exchange energy by mutual excitation and de—excitation with exchange of a
resonant phonon, In a glass, however, the density of resonant two-level
systems lying within the band width of a pulse is too small for this to be
an effective dephasing process. Much more effective is the non-resonant
process involving o, ia which a transition of one system, equivalent to a
reorientation of an elastic dipele, gives rise to a strain field which affects
the energy of a neighbour. Since all systems with cnergy less thanabout ZRBT
undergo such transitions the number of effective interactions is much
greater,

A semiquantitative explanation of the effect can be given by means of
a simple physical picture. Each system experiences a fluctuating local
strain field which in equilibrium gives rise to a fluctuating emergy AE,
as shown in the upper half of Fig 3.5. The initial field pulse, of duraticn
less than the time scale of the fluctuations, selects from the distrvibution
a subset which instantaneously have energy E, = fiw,. Because the mean
energy of systems within this subset differ, the energies gradually spread
out over a range determined by the fluctuating fields. This is illustrated
in the lower half of Fig. 3.5b. At times long compared to the average
relaxation time the width of the energy distribution of the subset reaches
AE,, and is then independent of time.

A value for AE, can be evaluated from the strength of the coupling
between the two~level systems and the phonons. The elastic dipole moment is
Y so that the interaction energy is

2
SE A —L

pvzra

f . 3,12

Replacing 1423 by the concentration of thermally excitable two—level systems

gives

2z 2
AE v y¥ o kBTfov . 3.13

In the leng time limit the time interval t, between the two pulses of a

spontaneous echo experiment is much greater than T defined as the shortest

min®
energy rclaxation time for two-level systems with energy E ~ kgT. The

dephasing time can be derived as the time for which the spread in phase,

-3

3.5 Representation ¢f broadening arising from
spectral diffusion.

o] T T T T T T

ACOUSTIC SATURATION RECOVERY
SUPRASIL W
f= 0692 GHz
L= 0635 ¢cm

R EEETIT Lok L ilal
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3.6 Attenuation of a weak probing pulse ?pplied a
time 7y, alter a saturating pulse (B. Gelding and
J.E. Gracbner, Ref 1).
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8B t/h, is of order 7/2, This gives
a=
ol . I.EEE = Y rkgT 3.14
2 2 AN HipvZ *
arnd an exponential decay of the echo amplitude,

In the short time limit, ts << Tpips the width of the energy distribution

increases roughly as AEL(1 ~ e"t/Tmin), 0
SE(t) = 82,e/T . . 3.15
This defines a dephasing time by
T
1 2
n AE(t)d. = 3
o
so
2 = et . 1w 3.16
2 ain’“"o  * .

The decay is non-expomential, varying with t, as
exp(-AE tthT ) 3.17
P 070" " min :

The dephasing time therefore varies with temperature as T for ty > Tpj, and
as T°2 for tg << Tpin, using Thin @ T3, Using numerical values for the
constants in eq, 3.14 the value of T2 at 20 mK can be estimated as 20 1s in
vitreous silica if ;12 is taken as 107 J m'3, a value derived from acoustic
velocity measurements of the kind shown in Fig. 2.5. This is in reasonable
agreement with experiment.

Tt must be emphasized that many complications have been ignored in
this simple argument. 1In particular the broad distribution of relaxation
times T, complicates the analysis, and a rigorous derivation of eq. 3.17
is complicated, However, this analysis does show the underlying physical
principles, and illustrates that this spectral diffusion can explain the

observed interaction between two-level systems,

3.4 Saturation and Linewidth Experiments

The phenomenon of spectral diffusion can be probed by direct measurements
of the linewidth of two-level systems, and indeed such experiments provided
the first evidence that interaction between the systems is important, The
ideal experiment uses a large intensity initial pulse to saturate a2 subset
of two-level systems, followed by a second weaker pulse which monitors the
recovery to thermal equilibrium. This second pulse may have the same

frequency w, as the first, in which case the time delay between the twe is

~33 -

varied, or can be used to examine the frequency dependence. Interpretation
of the various experiments depends critically on the relationship between
the length t of the saturating pulse, and the relaxation times Ty and T,.

Figure 3.6 shows saturation recovery experiments in vitreous silica,
where Tiz is the time delay between the pulses, both a frequency wy. The
temperature is sufficiently low for T, te be comparable tg t (0.06 ws}, and
both are much less than Tl‘ The initial pulse saturates a subset of two-
level systems in a frequency band of widch R/t at Wy, comparable to the
linewidth AE (Fig. 3.5). Spectral diffusion does not therefore have a large
effect, and the second pulse monitors the recovery of equilibrium through
energy relaxation, and hence measures T{. The dashed lines in the figure
correspond to a one phonon process with v = 1.4 eV, At longer times the
recavery shows a much slower time variation, reminiscent of the data shown
in Fig. 2.2, and may be another illustration of the large range of relaxation
times in glasses.

The intrinsic linewidth of the two-level systems can be measured by
working in the Iimic Ty <1 < Ty, and measuring the saturation produced by
an initial pulse of variable frequency w ac fixed intial frequency wy
of the second, (For obvicus experimental reasons it is better to keep the
frequency of the second detected pulse constant.) Experimental results in
vitreous silica are shown in Fig. 3.%, The width of the line is much larger
than 4/t or 4/7|, Biving additional evidence for interaction effects. In
addition the dependence of linewidth on pulse length is direct evidence for
the time evolution of the linewidth implied by spectral diffusion: the longer
the pulse the broader the line (Fig. 3.5). A detailed comparision of line-~
width results with the predictions of specrral diffusion theory is shown in
Fig. 3.8.
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4. MICROSCOPIC IWTERPRETATIONS

4.1  Impurity Effects

It is clear that a wide range of thermal, acoustic and electrical

=
ha
T

measurements can be interpreted in terms of two-level systems, or, more

specifically, in terms of a tunnelling model. The vast majority of the non-

o
-
T

T=042K
thermal experiments have been performed on vitreous silica, and have established

VITRECUS SILICA

t 1 1 1
00 0 800 850 %0 phonon coupling constant are all known. Much less is known about the pra—

FREQUENCY OF THE SATURATING PULSE [MHZ] perties of these states in other amorphous systems such as eorganic polymers,

ABSORPTION [dB/cm]

many important parameters: the density of states, the dipole moment and the

VARIATION OF THE RESCNANT
&

g

chalcogenide glasses or even other oxide glasses. Glassy metals have,
however, been extensively studied and will be discussed in section 4.2.

. Although experiments can be interpreted in terms of a gemeral tumnelling
gé753tﬁ§§i?2§t;z?ssz¥22Ee§Z;b§2§ Eﬁisia;ie: zgnction model, such an approach leaves unanswered two important questions; what is
saturating pulse length, (W. Arnold, C, Martinom and . the microscopic nature of the states and why do (almost?) all amorphous
5. Hunklinger, J. de Physigue, C6, 961, 1978.) solids contain them? In particular one of the more important guestions

concerning the low temperature properties of glasses is whether the effects
are intrinsic, in the sense that they would occur in a fully coordinated

random network model of a glass, or whether defects, in the form of

T T T T Y7 K
incomplete coordination, or water, must be present. To answer this it is
oL  &-0692 GHr T P
F D - 0738 GHz T, ] Lelpful to look at the results shown in Fig. 4.1, Samples of AssS3 were
r o — b . . - . - . .

83 GHz // ? ] prepared with increasing care and decreasing impurity concentrations. The
1 concentrations of impurity in the two purest samples, determined by mass
spectroscopy, were about 1024 m™3 of Ge and less than 1023 m-3, respectively,

Even so, both these samples showed an excess heat capacity, with the order

(MHD
=]

of magnitude reduction in impurity concentration halving the excess heat

capacity. The corresponding additional entropies can be evaluated, and on

] the assumption that two-level systems are involved, lead to minimum numbers

of contributing states which are between 1023 m™3 and 102% n™3 in both cases.

It was concluded from the lack of proportionality between impurity level

LINEWIDTH  Aw/2w

and heat capacity that an Mintrinsic" tern would be left after removal of
all impurities, although this is a slightly dangerous conclusion which
depends crucially on the realiability of the chemical analysis. Measure-

ments of k in the two samples point to an intrinsic effect, since the values

aaal

OBI L4y .zlgl syl o are the same within experimental error.
! I ]
Other evidence is ambiguous. Measurements in the more highly coordinated

smorphous solids As and Ge show a much smaller excess heat capacity, although

, , . ) . the interpretation of these results is complicated by sample inhomopeneities.
3.8 Linewidth ohtained from saturation experiments P P ¥ P 5
plotted as a function of temperature (B. Golding and

J.E. Graebuer, Ref 1}, more rigid networks than in the glasses containing two-fold coordinated

It appears, however, that the density of tunmelling states is less in these
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atoms or groups of atoms.

The effect of one particular impurity, the hydroxyl group OH, has been
studied in some detail. These studies not only identify one particular
impurity which can change the low temperature properties, but also help teo
build up a picture of the microscopic structure of one possible tunnelling
state as discussed in section 4.3. Fig. 4.2 shows the effect of O on the
heat capacity of 8i0j: a sample containing 1200 ppm of OH has a heat capacity

larger by azbout 30% than a sample containing less than 1.5 ppm,

4.2 Merallic Glasses

The existence of free electrons in amorphous metals makes it difficult
to deduce the presence of tumnelling states from the thermal properties. By
estimating the electronic contribution te the thermal conductivity, using
the Weideman-Franz ratio and the measured electrical conductivity, the phonen
contribution to k can be shown to resemble that of amorphous insulators.
Ho@ever, the most direct thermal evidence comes from measurements on amorphous
superconductors, as shown in Fig, 4.3 for Zirconium~Palladium, Below the
transition temperature T. of 2.5 K the electronic contribution to the heat
capacity vanishes exponentially, and the resulting linear term at very low
temperatures can be idemtified with tumnelling states. Below T, heat is
carried only by phonons, and as shown in Fig. 4.4 the temperature dependence
of k is very similar to that found in vitreous silica, The magnitude of «x in
ZryoPdyg is smaller, but if the results are used to calculate ny? uging
eqs 1.1 and 2.14, a value of approximately 5 x 1046 1 w3 is found, half
that of vitreous silica or NiP but typical of other amorphous merals.

As in insulating glasses, acoustic measurements provide the most direct
evidence for two-level systems in metallic plasses. The most straight-
forward experiment, in which effects of saturation can be ignored, is the
measurement of the temperature variation of the acoustic velocity. Results
in NiP are shown in Fig. 4.5. A logarithmie variation of velocity with
temperature is observed, as in silica, although the slope is smaller by an
order of magnitude, and is significantly different for longitudinal and
transverse waves. A value of Eyz of 3 x 1046 J w3 can be calculated from
either slope (unlike silica where ny? is larger by a factor of two for
longitudinal waves), This should be compared with the value of about
15 x 10 3 0”3 estimated from the phonon contribution to k. Tt is clear
that unlike the insulating glasses, where in gencral the values of ny?
derived from thermal and acoustic measurcments are in good agreement, there

is a major discrepancy in amorphous merals,
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Further experimental evidence emphasizes that the tunnelling-state
theory cannot be applied directly to metals, Two-pulse saturatien
experiments as described in section 3, have been completely unsuccessful
even at temperatures of 10 mK. At this temperature T; in silica
is 200 us (at a frequency of 1 GHz) but the failure of attempts to
measure T in PdSiCu imply that it i{s less than 25 ns under these conditions.
If T| were governed by ome phonon processes in this glassy metal, the value
of the coupling constant ¥ would need to be at least an order of magnitude
larger than in silica. This is clearly inconsistent with the thermal
results,

This rapid relaxation is 2 resuli of direct interaction of the tunnelling
states with the electrons. Elegirons are inelastically scattered from
tunnelling systems in a process which is formally equivalent to nuclear
spin relaxation in metals. The magnitude of Ty can be derived from the
Fermi expression for transition probabilities, so that the probability per
unit time of an electron exciting a tumnelling state is

27
ws:s = =N

2
ij = | K glep)

where K is the electron—tunnelling state matrix element and glep) is the
density of electronic states evaluated at the Fermi level. If the energy
splitting E of the tunnelling state is less than kT than the number of
electrons capable of inducing the transitionm is g(EF)kBT,and the time batween

transitions 1/T1 is given by

i%-x %} {Kg(ep) 12 kT 4.1

For E > kpT the kT factor is replaced by one obtained from integrating over

the Fermi factors to give

T—l} = % {Kg(eF)}2 E coth _Z-IL—E;T . 4.2
Estimating K, the difference in potential seen by the electrons in the two
configurations of the tunnelling state, as leV and taking g{ep) as 0.1 (ev)~L
per atom gives T; 4 10 ns at 10 mK, consistent with experiment,

This short relaxation time not only explains the absence of phenon echees

but aiso implies that the acoustic power needed to saturate the tunnelling states

will be much higher thaa in vitreous silica. The interaction with electrons
provides another channel through whieh equilibrium of the tunnelling stareg
can be maintained, and the saturating acoustic power should be larger by

the ratio of electron and phonon scattering rates. Experimental results,

verifying this prediction, are shown in Fig. 4.6.

~ 4=

The magnitude of Tl has an indirect effect on k. In addition to
the resonance scattering of phonons by tunnelling states, it is also pas—
sible to identify a relaxarion contribution., The strain field of a non~
Tesonant phonon of frequency w perturbs the equilibrium of a tunnelling
state through the coupling y. The tunnelling state returns ta eguilibrium
with a relaxation time Ty so that at low frequencies el << 1 equilibrium
is always maintained. At high fregquencies wl; >> 1 the tunmnelling state

does not have time to respend to the strajn field, but for wl, + 1 the .

1
response will lag behind the strain. This phase difference gives rise to
a relaxation loss which can be formally described by means of the Debye

equations, written inslightly simplified form and using t in place of Tl'

»
-1 ay? 2_E wle
Lrel = pv3kBT ‘( sech 2k T Tegzer el{tddr . 4.3
o T .
min
.':'.\.! a EYZ 2 E {1) .
n 20""2_‘, kBT K sech “—ZRBT dE _Lni"‘m - dr 4.4
© Tmin

Physically the first factor in eq. 4.3 is the contribution from a simple
elastic dipole, the first integral excludes all states which have E > kgl
and so remain in thermal equilibrium, while the second integral describes
the relaxation. In general the first integrat gives a factor kgT, and the
dominant factor in g(t) is 1/, following the argument leading to eq. 1.15.

Equations 4.3 and 4.4 become, in this simplified form

o

- 2 -
-ﬁr11=A Y dT=Am(-;l~tantm1.) . 45
e T4uZ 2 min
min
Ly B ! dt = B fn{w?r?, /149272, ) ' 4,6
v T+t )t min min® ° )
Tmin
I .
£ wr e I
£ = A/Tmin » Av/y = —B/széin 4.7
and if wr <1
m
PN bulv = B (w2 , ) . 4.8
mrn

In insulating glasses Toin © aT™3 where a is 1078 sK* 80 that for typical
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acoustic frequencies WL L= 1 at about 2 K. In this temperature region

the rapid variation av/v = -BT7%/a%u2 gives rise to the

'turnover' of the
velocity shown in Fig. 2.5, and £71 = AT3/a to the upturn in attenuation

shown in Fig. 1.5.at higher temperatures.

1
ATTENUATION (dB8/cm)

Pd3p Zryg
In metallic glasses the relaxation time t (or T}) is much shorter,

with Tin bT~! where b = 10710 & in the low temperature regime where Longitudinal waves

electronic processes dominate. Phonon scattering becomes important at a tem- — Theory

INVERSE MEAN FREE PATH fcm™1)

1
Q
o

perature T given by bT;1 = aTSB, or about 10 K.

: t e Experiment
At an acoustic frequency HH L

E=

o

-
T

of 1 GHz Wt 1 at approximately 100 mK. This means that the logarithmic

slope measured in an acoustic experiment contains contributions from both y

1 L I

1 2
resonance and relaxation terms, ac foes the measured attenuation. Since the TEMPERATURE (K}
two contributions are of different sign in the velocity, but add in the attepu—
ation, the values of coupling constant deduced from the velocity variation

are significantly smaller than those deduced from the acoustic attenuation 4.7 Attenuation of sound in superconducting amorphous

. Pdjp2ryg (W. Arnold, P. Doussineau, Ch. Frénois and
or thermal conductivity. Detailed calculation of the relaxation contribution A, Levelut, J. de Physique Lett., 42, L289, 1981).

have been made in Pd$iDu, and agree well ° with experiment.
The effects of electrons in determining Ty are dramatically confirmed

by acoustic measurements in amorphous superconductors. Attenuation as a

function of temperature is shown in Fig. 4.7 for Pd_.Zr

307 70"
can be explained by noting that from eq. 4.8 the attenuation £71 is noc

These results

sensitive to the details of the relaxation precess if wrt << 1, but depends

{al
only on frequency. In this limit, satisfied above T. in Pb the

Zr llii
Iy i 3
attenuation is constant even though the phonon and electren contributions teo
[ E—

fia]

the tunnelling state lifetimes are varying as T~3 and T-1 respectively.

Below T, the number of effective electrons drops as a result of the super-

1}

conducting energy gap, but in the amorpheus superconductor, where the direct

101]
electron-phonon interaction does not give significant attenuation, this is b =3074
not immediately effective.

Only when T, has ircreased to such an extent that

{b)
wTy > 1 does the attenuation drop following eq. 4.7. This will occur at —{=054 b

approximately T,/2, where the electron contribution to T) becomes negligable
in comparision to the phonon. Below To/2 the attenvation will decrease as
T3, characteristic of phonon processes.

The most complete microscopic description of a possible intrinsig tunnelling L— 1 Lo L —

state comes from results on Nb/Zr alloys. Although crystalline, this material

is disordered in the sense that it contains small amounts of the w phase in

a matrix of the B phase. In a 207 Nb sampie isolated regions of w phase,

about 5 g in dismeter, are formed at a concentration of about 1025 =3,

Results for the heat capacity and ¢ show that glassy behaviour can be obtained

in this disordered crystal, and furthermore that this behaviour can occur {8 Schematic Tep

Se resentation of the f-gu phase
transition in Zb/Zr

o - (L.F. Lou, Solid Srate Com., 19,
where the disorder is localised to very small regions separated by about 100 A, 335, 1976.) -
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The microscopic picture of the states responsible for the additiomal
heat capacity and the T? variation of is reasonably well established in
the Nb/Zr alloy. The B-w transformation occurs by moving two atoms
simultanecusly through a distance of about 0.5 g as shown in Fig, 4.8.
The potential for each atom can be described by a double potential well,
and it appears on the basis of electron microscopy, inelastie neutron and
Méssbauer measurements, that a large range of potential barriers V must
exist in the solid. Such a microscopic state could eagily exist in the glassy

metals, and is exactly of the form suggested by the tunnellinrg model.

4.3 OH in Vitreous S5ilica

The effect of hydroxyl, OH, on the low temperature properties of
vitreous silica has been investigated in a wide range of experiments com~
paring commercial 'water free' and 'wet' samples. An example is given in
Fig. 4.2, The various experiments can be related and lioked to form a
consistent picture of ome particular impurity tunnelling state.

The chemistry of OH in silica has been extensively studied in connection
with the growth of 'wet' oxide films on silicon and with the optical absorp—
tion arising from OH stretching vibrations, of particular importance in
applications of optical fibres. The general conclusion of these studies is
that the chemical reaction Si-0-%i + Ho0 -+ 2810H gives rise to OH groups
chemically bonded to the silica network. The intensity of the fundamental
OH stretching vibration is preportional to OH concentration, but the width
of the absorption line is constant, indiecating that in general interactions
between OH groups can be neglected. However, the absorption line is broad
(&vfv v 5%) indicating that interactions between OH and the silica host are
imporcant. Each OH group can therefore be treated independently of the
others, moving in a potential which varies considerably from site to site,

In organic compounds an OH group bonded to a carbon atom can rotate
in a twofold (phenols) or threefold (tertiary alcohols) symmetric potential,
although the ideal symzetry is of course modified in the solid state bf
intermolecular interactions. A similar picture can be used for OH in silica
with the choice of ‘syrmetry! left to. experiment: because the interactions
between OH and its surroundings are large, there is no a priori reason for
preferring the threefold potential given by the tetrahedral coordination of
the Si atom,

Figure 4.9 shows that the effect of 1200 ppm OH on the dielectric loss
of vitreous silica 1is to produce a broad low temperature relaxation peak,
The physical interpretation of relaxation losses is as described in the

last section, but in this case the information is suificiently complete ko

..11{; —
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4.9 The contribution of 1200 ppm OH to the dielectric
loss of vitreous silica. (W.A. Phillips, Phil. Mag.,
B43, 747, 1981.)
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4.10 The contribution of 1200 ppm OH to the heat
capacity of vitreous silica. The solid line is

calculated. (W.A. Philiips, Phil. Mag., B43, 747, 1981.)
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allow the distribution Ffunction g(1) to he derived. Ar high temperatures

a classical theery can be used to deduce the distribution of energy barriers
from g(t), and this in turn can be used to derive g(ao). It turns out that
the real g(Ao) differs from eq. 1.15 by having fewer small values of Ao’
and corresponds to the proton 'rotating' in an approximately two-fold
symmetric potential.

Knowing g(AO) together with the dipole moment Po of eq. 2.1 allows the
temperature variation of the veloeity of light, skown in Fig. 2.6, to be
calculated. The departure of g(Ao) from I/&D means that the logarithmic
slope, given by eq. 2.21, depends on measuring frequency: the availahle data
can be well fitted by the calculation. In addition the density of states
can be caleulated, following eqs 2.15 to 2.17, and this leads to a calculated
value of the heat capacity which agrees with the difference between the
two sets of data shown in Fig, 4.2, This is shown in Fig. 4.10. Finally,
the idea of OH as a discrete turnelling state is consistent with photon
echo experiments, although precise numerical calculations. are difficult,

This detailed analysis of one kipd of impurity is useful in that it
shows how impurities can contribute to the low temperature properties but
it is equally clear, from Figs 4.2 and 3.2, that other, posaibly intrinsic,
two-level systems are present. The nature of these intrinsic states is
unknown, although a number of possibilities have been proposed, and will

be discussed in the next section.

4.4 The Structural Origin Of Tunnelling States

Sections 1, 2 and 3 described the theory of the tunnelling model and
how it accounts for a variety of experiments on amorphous solids at iow
temperatures. This section attempts to identify the possible atowmic scale
origins of the tunnelling states in simple covalently bonded inorganic
glasses such as vitreous silica, elemental amorphous semiconducters Se, As,
P, Ge and Si and chalcogenide glasses such as Gey Sey_y AsZS3 and AsaSeq.
The structure of all these materials seems to be best described by the
continuous random network (CRN) model, and models for the origin of double-
well potentials usually involve atomic motion without bond-breaking. The
double-well is often associated with a two-fold cocrdinated atom, e.g.
oxygen in silica, or with similar displacements to those observed in transi-
tions between two crystalline forms, There is a strong case for the
existence of double-well potentials from the ultrascnic attenuation peak
at around 50 K and from tha onset of large atomic movement near the glass
transition Tg.

~47-

It a defect-free CRN, each atom forms the same number of covalent
bonds with its neighbours (often 8-N, where N is the group in the
periodic table). If more than one type of atom is present, chemical
ordering is possible, X-vay diffractien and other structural studies
demonstrate that long range order is abgsent, but short range order is
eoften similar to that of the corresponding crystal. The radial distribution
(r.d.f.) gives the coordination number and demonstrates that the bond length
is fixed, variations arising thiefly from thermal vibrations. On the other
hand, the bond angle generally has a spread of 10 - 20° about a mean value.
The r.d.f. does show broad peaks at larger distances, but often features
present in the crystalline form are completely absent. In the CRN model,
this is achieved by allowing the dihedral angle (defining rotation about a
bond)} to take a continuous spectrum of values.

The tunnelling model attributes the low temperature behaviour of glasses
to the existence of double—well potentials., From their energy possible
combinations of the parameters ¥V, d and m {barrier height, width and mass
of tunnelling species) can be deduced. Por example, an oxygen atom tunnel-
ling 0.1 nm through a potential barrier of height 8 x 10722 7 (5 x 1073 ev
or 60 K) gives a state of energy equivalent to 1 K, assuming that the
vibraticn frequeney 2 is given by the Debye frequency (8p = 495 K in
vitreous silica). A state of emergy 0.05 K requires a barrier of twice
the height.

Some of the proposed origins of the double-well potentials were
originally advanced in connection with the ultrasonic attenuation peak at
50 K in vitreous silica. Anderson and Bommel proposed that the relaxing unit
was an oxygen atom "flipping" between two equilibrium positioms transverse
to the 81 - 0 - Si bond. This change does mot preserve the 0 - 81 - 0
bond angles at the two silicon atoms involved, and so the true equilibrium
configuration must involve a local rearrangement of the network to minimise
the strain energy of the bonds., This model is attractive for the majority
of amorphous solids, which contain two~fold coordinated atoms. However, the
three—fold coordinated materials a-As and a-P both show a similar peak in
the ultrasonic attenuation and a small excess low temperature heat capacity
although the structure of these two materials is much lesa perfect than
that of most bulk glasses. Low temperature heat capacity experiments give
no clear evidence for a linear term in amorphous Ge and surface wave
attenuation measurements are consisrent with the absence of double-well
potentials: in a~Si the logarithmic sound velecity variation indicates

that ny? is at least a factor of 12 lower than in an 5109 film,
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Estimates of the total number of double well potentials from the 50 K

ulerasonic attenuation peak lead to typical values of I per 100 atoms in
$i03, a-As, a-P and many other materials. The required potential barrier
in vitreous silica is obtained from an initial Si - 0 - $i angle of 1749,
The experimental r.d.f. shows around 1% of the Si - 0 - Si bond angles in
this range,in good agreement. In three-fold coordinated materials, if the
model appiies, the pyramidal unit must be rather flatter than usual, with
the bond angles larger than their usual values, probably close to 1200,

Vukcevich developed a model for vitreous silica which also invokes a
potential function which possesses two minima separated by a barrier. Whole
5i0; tetrahedra can assume one of two equilibrium positions, the fraction
in each varying with temperature. The model seems difficult to recencile
with the random network model, as the four Si atoms at the centres of the
neighbouring tetrahedra need to be situated so that a rotation of the central
tetrahedron changes all feur Si - @ - Si bond angles in the same sense, but
is based on the structural changes seem in the -8 displacive transition in
quartz at 545°C.

Mon and Ashcroft gave essentially the same argument for the origin of
double-well potentials. They also comnected the occurrence of the amorphous
state and crystal polymorphism with the existence of low temperature thermal
anomalies. _

A useful step would be to search CRN models by computer for double-
well potentials. Smith used a four-fold coordinated model representing
a~Ge and a=5i. One atom at a time was moved and the energy calculated, but
the surrounding network was not allowed to relax. Many large barriers and
large asymmetries were found (4 per atom) but the numbers at low b, and A
were of the right order of magnitude to give a typical execess specific hear.
Similar, but more realistic calculations would give a wvery useful guide to
the microscopic nature of the tunnelling systems.

A variety ‘of electrical and optical measurements on amorphous
semiconductors suggests a broad division inte two types of material.’ Both
pessess mobility edges separating extended from localised states in the
valence and conductior bands, and the Fermi level is pinned at around mid-gap,
i.e. it does not shift with temperature or on the addition of impurities.
This suggests a density of localised defect states in the band gap. The first
group of materials includes a~Ge and a-5i prepared in the absence of hydrogen
and oxygen and at low temperatures shows an e.s.r. signal in the dark aund
d.c, conductivity proporticna) to exp(-T/Tn)ll& where T, is 2 comstant, This
law can be derived for variable range hopping of electrons between lecalised

states at Ep, Both cbservations suggest that defect states at the Fermi level

are singly occupied at absolute zero,

~Lq_

The second group encompasses the chalcogenide glasses; most work has
been performed on Ag284, AsySey and Se. Variable range hopping and a dark
e.s.r. sigral are not observed. There are, therefore, no single electrons
at Ep to give a linear heat capacity in chalcogenide @nd oxide) glasses.
However, an e.s.r. signal (and optical absorption at mid-~gap) can be
induced by irradiation with slightly sub-band-gap light, and remcved by
annealing above typically 100 K or by irradiation with infra-red radiation
at around half the band gap, These materials alsc show photoluminescence
at about half the band gap when irradieted with band-gap light,

These and other experimental results were brought together and
explained using a simple model by Street and Mott based on a spin pairing
idea of Anderson. The model assumes the presence of defects in amorphous
materials above their Tg: in much the same way as a thermal equilibrium
concentration of vacancies and other defects exists in crystals. These
defects are "frozen in" during quenching or deposition. The simplest
defect imaginable is a "dangling bond" where the coordination is not
satisfied at one atom in an otherwise perfect random network. Such a
structure can be constructed with a variety of local eunviromments and the
dangling bond orbital can be unoccupied (D), single occupied (D) or doubly
occupied (D7), This notation of Street and Mott is used to specify the
charge state of the defect. In 2-5i and a-Ge, the centres in the gap are
singly occupied (D°) giving rise to the e.s.r. signal. In chalcogenides,
however, Street and Mott proposed that equal numbers of D* and D™ states
are energetically favoured to D®, accounting for the absence of unpaired
electrons. The correlation emergy, usually positive due to clectron-electron
tepulsion favouring singly occupied levels, is effectively negative due
to lattice relaxation arcund the D* defect. The stability of the charged
defect states is confirmed by theoretical studies and chemical bond arguments
which can also predict the coordination and position in the band-gap. Other
support for the existence of under-coordinated and over—coordinated atoms
has come from the observation of small sharp features in the infra~red and
Raman spectra of several amorphous solids, notably silica and a-As.

One modification of this model is to suppose that oppositely charged
defects do not occur at random but form preferentially in clase proxiﬁity,
gaining electrostatic enmergy and producing a neutral centre (the "intimate
valence alternation pair" or IVAP of Kastner). In a model for the a.e,
conductivity of chalcogenide glasses based on thermally activated hopping
of electron pairs frem D™ to DY, Elliott found that pairs of defects ounly
0.5 nm apart dominate, in contrast to the 10 nm mean separation. As

discussed below, it is iikely that if electron tunnelling between charged



defects is responsible for the formation of the two-level systems, the
defects need to be closely spaced.

At least one experiment on As,8, reveals interesting correlations
between charged defects and two—level systems. This used electric echoes
to probe tumnelling states in As,S3. After irradiation with band gap
light (2.41 eV) the echo signal is reduced but can be progressively
restored by annealing at increasingly higher temperatures or by irradia-
tion with mid-gap (1 - 2 eV) radiation. The magnitude of the echo signal
therefore corresponds to the population of the DY (or D™) centre;
excitation to D° reduces the echo signal,

However, the link between charged defects and two-level systems is
uncertain. Single electron hopping, either thermally activated or by
phonon assisted tunnelling, is excluded at low temperature owing to the
large energy required (about half the band-gap) to transfer the electron
to another site, Hopping of two electrons together is therefore the only
possibility, but the rate for phonon assisted tunnelling is vanishingly
small ynless the separation betweem sites is of order 0.1 nm, corresponding
to the IVAP. Structural relaxation around the initial and final positions
of the electron pair therefore involves esssentially the same atoms, and
the transition can be equally well described in terms of a potential
barrier to atomic motion. The transition may involve interchange of D*
and D7 centres as in the Elliott model, or the other bond rearrangements.
Alternatively, the coordination of each atom may remain fixed and the
charged defect (presumably an under-coordinated atom in this case) merely
makes the lattice locally less rigid allowing a double potential well to
form.

Whilst the electric echo experiments of Golding in AsyS3 clearly
demonstrate a link between the charged defect centres and two-level systenms,
a structural model based on atomic tunnelling still appears preferable.
The existence of potential barriers of the required height and width seems
very plausible based on current views of the glass transition: tunnelling
states are a necessary comsequence of their existence, Two-level systems
also occur in polymers and amorphous metals: the only commeon feature is
structural disorder. It is attractive to believe that this results generally

in double potential wells.,



