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3. MICROSCOPIC DYNAMICS AND TRANSPORT.

In this lecture we introduce a certain number of tools, mainly time-
dependent correlation functions and their associated memory functions, which
serve in a quantitative analysis of single-particle and collective morions in
neytral or charged fluids, and which lead to transport coefficients within cthe
framework of linear response theory. Many of the concepts of this lecture have
already been introduced in the lectures by Gerl, and can be found in numerous
textbooks or review articles [? 11,30- 32] Consequently we shall be very
brief as regards generalities, and concentrate on aspects which are specific
for charged fleids [i2,19].

3.1. Time-dependent correlations : a brief reminder.

A microscopic dynamical variable will be any sca]ar vectorial or temso-
rial function of the instantaneous positions and (or) momenta (or velocities)
of some, or all, particles of a many-particle system. Examples are the partial
mlCrDBCQPlC densities {2.1) or their Fourier components (2.2). The time evolu—

tion of a dynamical variable A is governed by
. . )
A:O‘-A :.,{,LA
—E{q;

where L denotes the Liouville operator; in Quantum Statistical Mechanies I is

3.1

the commutator :
L' = %I—[:H) ] (3.2a)

while in classical Statistical Mechanics, to which we shall henceforth restrice
ourselves, L is the Poisson Bracket

,L{I—I }—/L (P_f'l_._'a_,_"a .2 Y 5.om)
(3.1) is formally solved as H
A (i: = -67‘/5 {« Lt} A (3.3)

where A= A{o) denotes the initial value of the dynamical variable.

The equilibrium time correlation function (TICF) of two dynamical
variables 4 and B is defined as

Cue (£, £') = <ALE) BX (19
= LA (H-£") B>

where the angular brackets denote an ensemble average over the initial phase,

(3.4)

and advantage is taken of the stationarity of equilibrium averages. More pre-

cisely, if ¢ = t'-t"

-{-

CAB (t) fdwﬂjd ‘;L t'q ) Bxf‘f)ﬁ? 7;9 (3.5)

where f denotes the equilibrium distribution functien in 6N dimensional
phase space. More generally, if the dynamical variables vary in space (like)
the partial densities (2.1), and if the fluid is homogeneous {translational-
ly invariant in space), the corresponding TCF will also depend on the
spatiale variable T=T- . .

Cap (M, t) = <AL E)BY (X" 0)>
<AL B (500> 6.6

It is clear that spatial homogeneity implies that only Fourier components

of cpposite wave numbers have non-vanishing correlations, so that :

Cap (£4) = [ ET Cupiiyy
= <Ag(t) B;- (0) >

We shall only consider dynamical variables of zero mean, <A> = 0. After a

(3.7)

sufficiently lonmg time interval, any dynamical variable will be completely
decorrelated from the initial value of the szme, or any other, variable,

" o Con (t)= LAULI BX0)>
f?‘i'aé ’ - <::/¥ j:> <:‘ fa'*'j:> -0 (3.8)

This property allows us to define the spectral functionm {or power spectrum)

of any TCF as its Fourier transform in ti;; :
,\ ’lC&)
Chp () = zrf .f { Cra(Z) OJLL 3.9)

It is also convenient to 1ntroduce the Laplace transform :
A -] -
- A <F
CAB(Q)" fo £ ﬁtcﬁg (‘f}#/ J'm.%)o(z.m)
which is related to the spectrum by a Hilssrt transformation :
— =
R o (C¢9
C —_ A _f Ol(,QA__L (3.11)
ap (%) 2S5
Inversely :

(CO) ’6"“4, —r CﬁB ((’31'-/(,6) (3.12)

where the prime denotes a real part (a double prime will denote an imagina-
ry part). If A and B are both either even or odd functionms of the mementa,
their TCF is an even function of time and the spectrum is an even function

of frequency. CAB(t) admits then a Taylor expansion in even powers of t :



‘ e ﬁ?% \Z’U
e L G (9
= I 8 () = o

=z Tg_)_ ~1* < A% () BT

= E s L(EMA)LT B> sy

where (n) denotes an nt order derivative with respect to time. Differentia-
ting the inverse Fourier transform of eq.(3.9) 2n times with respect to t
vields upon setting t = o : 9 N
@n +-e ”
Qpa o C,}B(co)dw
—y ?t)

- (_4) n C ._p/ (3.14)

Thus the frequency moments of the spectral function are directly related to

derivatives of the TCF taken at t = §. The latter are static {equal time)
correlation functions, similar to the static structure factors introduced in
the preceding chapter. The short time expansion of CAB(t) in eq.(3.13)
implies, via eq.(3.11), the following high frequency expansion for the

Laplace transform : . ex (911)

o 0
Chp (%) = —’%— %0-—%%—- (3.15)

The exact time evolution of any dynamical variable is described by
eq.(3.1), For pratical purposes, a more phenomenological approach is widely
used. We start from the familiar Langevin equation for the velocity of a
Brownian particle ; if u denotes one of its cartesian compcohents, E; the
friction coefficient and R{t) a component of the stochastic random force,

this equation reads :
’}'Ylbz.(t) = _'74"% {'{.(t) +R(f) (3.16)

Equipartition of energy and the assumption that R(t) is orthognnal to u{a)

for all t, lead to the following relation between % and R E.l]

g w f <R(£) Rio)> At (3.17)

Taking into account retarded effects and the action of an external force

field X{t}, eq. (3.16) is generalized to

wlt)= j (f—A)M(A};’QJ+4_1L'Ka)+4J¢TX[f)

(3.18)

Considering first the case X = 0, projecting both sides of equation (3.18)

untce the initial veloeity w(0), and making the usual assumption :

LRt U()> =0 - Nt

(3.19)

we immediately derive an expression for the Laplace transform (3.10) of the

velocity autororrelation function {ACF) C (t)
Cmmb(’é) - __Cuy (f o) _ ‘g?T/’WL
'—/(,5 + 5[5) —13 +§(§,) (3.20)

[
%(’3,) is given by a generalization of equation (3.17)
(

%2 3/ :—/nﬁg_'? J < K{f) K(0j>,€ L-é tdz_ (3.21)

The generalized Langevin equation (3.20) can be extended to any
dynamical variable, and the generalized "random force" can be given a precise
statistical Mechanics interpretation in terms of a projected time evolution
E 33,3 ] - If A denotes a set of dynamical variables, the correlation

function matrix obeys the "memory" function equation'

. . t
cﬁk (t}""’—ﬂ-c/m (@"',( M(,tvﬁcﬁﬁ(d)dd: O Gy
whare the frequency matrlxlﬁ.ls given by : _
= <AAY> (<AnrDY?

and the memory function matrix M plays the role of the generalized frictiom

coefficient 5 . Taking Laplace transforms, eq.{3.22) yields

€AA (3) = Cyu(t=0) E’“":g) -4 12 +ﬁfﬁ)]—i (3.23)

The practical interest of eq.(3.22) or (3.23) lies in the fact that for a
judicious cheice of the set of dynamical variables A, the memory functions
have a simpler structure (in particular a faster decay) than the correspon—
ding correlation functions, and are hence more easily amenable to simple

relaxation-time approximations.



3.2. Mobilities and conductivities.

If an ensemble of brownian particles is initially (t=o) located at
the origin, their mean square deviation in the x-direction is given by

Einstein's law :

<z > = 21

where D is the self-diffusion constant which is given by the time integral

(3.24)

of the veleocity ACF : - -
D ,L Cuu (t}dt = CH.L(_ (320} (3.25)

If a periodic external force is applied to the brewnian particles {cf. eq.
(3.18)) : .
X s R Xt
=

the mean velocity at time t (which measures the response of the system to

i

the external field) is given by : . 15
<(’L u:)> = i/"((("J)Xr-v e-—M«u (3.26)

where the expression for the frequency dependent mobilitx/};(aJ) is easily

derived from eq.(3.18)
1

-_1 p - _1
M) == A0+ EW ~ ZeT el o

In particular the static mﬂbility/}(t/u(&J=o) and the self diffusion constant

D obey the Einstein relation :

/b( = 2%—;’ ' (3.28)

@) is the simplest example of a linear response function (or dynamical
susceptibility))and eq.(3.27) is a special case of the fluctuation-dissipa~
tion theorem 1 1].

These tesults for a particle are easily generalizable to the

case of a multicomponent charged fluid. With each species we associate a

Clt)= Co g )= <Wult) Tot0)> i)

— : . :
where Ve denotes the velocity of any one of the N, particles of species .

The corresponding self-diffusion constant is given by :
=
=% (%)
=% Tc (t)dt

and the (static) mobility of ions of species o follows from the Einstein

/u,t =~ _Z.eD
45T (3.31)

where the factor %x e arises because we adopt the convention that the mobili-

(3.30)

relation :

ty meassures the response of a single iom to an applied electric field rathex
than to the corresponding force. The collective response to a (local) perio-
dic field is characterized by the (complex) frequency-dependent electric

Tlg=oldr o) <l [ et

where sz(t) is the ACF of the fluctuating microscopic charge current in the

absence of an external electric. field :

C—‘—B-;z (t} = ﬁ. <}2 (t) ‘ ?27 (D)> (3.33a)
4—2 UE/ = % =) ?:( [f) (3.33b}
ﬁ&* —_3 : .33c
()= £ Focthy o
The usual static electrical conductivity ¢ can then be identified as :

e e IR

3.34)

where :

e 2
Gfe 5 wf = X Tl s
o oL /7?LCK ¢
is the square of the plasma frequency, and Jz(t) = sz(:)lczz(o) is the
normalized ACF of the fluctuating charge current. From eqs. (3.32) and (3.35)
the following sum rule for the real part of the frequency-dependent conducti-
vity is easily verified :

o0 2
L7 &) =g

An approximate relation between the static conductivity and the mobilities

{3.136)

-



of the various ionic species follows from egs.(3.30), (3.31) and (3.34) if
all cross~correlations between the velocities of different ions {of the same
or of different species) are neglected, i.e. if one assumes :
) — - -
. . . = A
LA () 'vj'lg(o)> o +t¥g
In classical Statistical Mechanics this assumption is exact enly for t = o ;
if it is generalized to all times, it leads to a simple relation between
(L) and Cp (£}

3(,0-23 22 ¢, (t)

from which the familiar Nernst-Einstein relation follows immediately :

Z 2
=£_2>n 2 M, 2
g = ", D = “» e
TB'T' i S e vy el x (3.3D
This approximate relation is well verified in electrolyte solutions, but in

molten alkali halides, formuia (3.37) overestimates @ by typically 20%.

The formulae of this section are directly applicable to the study of

ionie conductivity. In liquid metals and alloys the much larger conductivity

is due to the degenerate Fermi gas of conduction electrons. For simple metals,

like the alkali, the conductivity is accurately calculared from Ziman's for-
mula in the framework of a Lorentz model, where the mutually nom—interacting
electrons are individually scattered by the spatially correlated ions ; the
relatively weak electron~ion interaction is treated in Born approximation
EBA] . The resulting formula for the resistivity (f’= 1/q) of a liquid
metal teads :

iy
F e |

=]

24
F"';(‘&) 1& S[‘ﬁj ’ﬁsdﬁ (3.38)

where v(k) is the Fourier transform of the electron—ion pseudo-potential,
S(k) is.the ionic structure factor and kg is the Fermi momentum of the elec-
tron gas. Excellent results for the temperature variation of the resistivity
oE liquid alkall have been obtained from eq.(3.38) on the basis of the OCP

model for the static structure factor [35:]

3.3. Density and current correlation functicns.

In the study of wave-number dependent collective modes, the basic
dynamical variables are the Fourier components (2.2) of the partial micros-—

copic densities, and the associated partial particle currents :

Aj (iJ -€ ) }bﬁx (tJ

(3.39)

j«,—toc (t) =
The two are related by the continuity equations expressing particle conserva-
> ¥ T (E)
Fi’a( (zt)—i(' g a{"ﬂ?rx (3.40)
We define the partial demsity TCF's :

F"(P (’ﬁ‘n’t) _(N L< 2% (t) P;;r]z. (©> @

which depend only on k = \i?L due to the rotational invariance of an isotro-

tion :

pic fluid. Their spectra (3.9) are the so-called dynamical structure factors :

A

S"(P (.ﬁ W= F.x]s('ﬁ w)
The initial values of the F,cP are clearly the static structure factors
defined in eq.(2.15) :

F‘*P (/ﬁ' L= O) - Wﬁ(&)"' -'( S"(P(’ﬁuydw(s 42)

From eqs.(3.14) and (3.40) it is immediately clear that the dynamical struc~

ture factors obey the £ - sum rules :

2 =g z fx
—fl:<} (’&) = iba CA)Z Siqg(?%(«ﬂCﬂkJ:%—zaéhiﬁyz<211229;3€t>
= 4% Ao

. 2 . .
where v denotes the thermal vel!i1ty (kahn“}l/ . The longitudinal and

o
transverse partial current TCF's are defined in terms of the projections of

- R —
ji?d(t) parallel and perpendicular to the wave vector k @

“P (‘ﬁ £)= ( ) <;ﬁ'6"’ﬁ°‘( ) ’tﬂﬁ[" (o)> (3.46a)
o(P (’£ /f) Wﬁ{<@'/\gf {t)]EfAJ"tP{aﬂg (3.44b)

From the continuity equations (3.40) we immediately deduce :
-~ 1 d? )
(4{)1’,’} =T hE FE EP ('é,i (3.45)

L . . T
50 that the C“F' do not contain any new information. The CKP are, however,



independent functions, since the tranverse currents are completely decoupled

from the longitudinal currents.

3.4, Concentration fluctuations.

In many situations, certain linear combinations of the partial densitie:

er currents have a physically more transparent significance, as was already
stressed in section 2.2 for static fluctuations. For binary mixtures and
alloys we have introduced the variables PN and !OC defined by eqs.(2.18) and
(2.22). The corresponding number-number, number—concentration and concentra-
tion-concentration dynamical structure factors are linear combinaticons of the

SO(P (k,4) which are obvious generalizations of eqs.(2,23),

The hydrodynamic (i.e. small k and®) limit of Scc (iian can be easily

inferred from the macroscopic Fick's law :

—_

7’0 (/?/f) = “DV}OC (/?,f) (3.46)

—_  ar —
where jc= xzjl-xljz is the interdiffusion eurrent, D is rhe {mutual) diffu-

sion constant and f? is the local concentration variable which is also rela-~

ted to'gz by the continuity eguation :
[ d Py P — —
LR+ T (F,t) = ©

It should be noted that on a macroscopic scale, the local variables fi and

(3.47)

- . . : N

J. are averages of the corresponding microscopic variables over a small (but
: . .. e

macroscopic) volume element of the fluid, Eliminating i, between eqs. (3.46=

47) we obtain a closed equation for (CZ

Pe B 1) =DV R (7 ¢ 480
f ED=-£Dr i) (s.aam

Going to Lapiace transforms we obtain :

' .F;.:, ('ﬁf ér) = __f%(,i; 51‘?7_) (3.49)

The long wave—length)low frequency concentration correlation function reads

oY

then :

Fec (B3 = T < B (£,3) pd (£ t=9>
_ -1
= _1,(" < \Pc,("tJO) \Z> L_’{’% 'Fb‘ﬁ_—, {3.50)

In the small k limit we have E13]: 92 -1
1 z\ —
Scc (£) = <Ife (£,9)) >ﬁ:;o [ﬁ%{ TN

where g = G/NkBT denotes the reduced Gibbs free epergy per ion. In the

{3.51)

"hydrodynamic limit", the resulting dynamical structure factor is

See (‘E; ) = ‘%;cc (%;13: ;))ﬁ_g_
= ..%__ <2 G T (D'aa)z (3.52)

2
9=,

(3.52) shows that the mutual diffusion comstant can be calculated from the

limit :
?? - \ 2

D= M\l Lo Lo o (A ) e
PEy Jowo f>o FZ Zec (T

Remembering eq,(3.44a) this relation can be cast in a standard Kubo form,

similar to eq.({3.34) for the conductivity :

2= (E) 5 L <F Y Foo> o,

where—I:(t) = x;};(t)—x£52(t) is the fluctuating interdiffusion current. Note
that for an ideal mixture, b%g/axi = (xlxz)—l 3 most alloys of simple metals
are fairly close to ideality. Finally, by making the same assumption leading
to the Nernst-Einstein relation (3.37), we arrive at the approximate rela-

tion :

D= =, Dy + x4 Dy

which is fairly well verified for mixtures of neutral fluids ESé], but

remains to be checked for alloys.

3.5, Charge density fluctuations.

We now examine the case of a binary ioniec fluid containing ions of
opposite charge. The important dynamical variables are now the Fourier compo-

nents of the charge density (2.19) and of the associated electric current

17:#2 = 24 ﬁi (£) 4+ 2, ?ﬁ'g H') (3.55)

~]0 -



P Covivialion | idoale

i-'2?: (’ﬁ f)" —“'<['7$2 t)/oﬁ?g (O)> (3.56)

and the longitudinal and tranverse charge current correlation functions
L

sz(k,t) and Ciz(k’t) defined as in eqs. (3,44},

The response of the fluid te a time-dependent external potential is
measured by the dynamic (frequency-dependent) generalization of the static
charge response function introduced in eq.(2,31) ; by virtue of the fluctua-
tion-dissipation theerem this complex dynamic response function is entirely

determined by the equilibrium charge fluctuatiom spectrum, i.e,

7(” (1@ )= ___%1%_522[,/2[(0) (3.57)

while the real part follows from the standard Kramers—Kronig relation :

2 (ﬁ w=7 j Lo 7(”{,,6_ Ndeo! 6w

The longitudinal complex dielectric function is determined by the dynamical

generalization of eq.(2.34)

s = 1+ 4 Koz (4,00)

The function;(zz and E_ measure the linear response of the plasma to an
external field. As was already pointed out for the static case, this external
field polarizes the fluid and creates a local internal electrie field which
is the super-positicn of the external field (or electric displacement field)
and of the field due to the induced charge density ; this local {(or screened)
electric field is of course the field experieunced by the particles ; the
response of the fluid teo the local electric field is characterized by the
screened response function;ggk,bﬁ) which is related to the dielectric func—
tion by { cf, eq.{(2.40})

E(‘&,LO): 1 - 4”‘6 'X ('ﬂ,(,a) (3.60)

The electrical conductivity tensor reelates the Fourier components of the

induced electrical current to the Fourier components of the local electric

ield : jo‘lf 40—_.({,/ f-t’}' E’Ct‘ ‘1’9

T (£%)
Bt = FoBEw)
—=

(3.61})

. - = . . - .
The decomposition of E into its legitudinal and transverse parts leads to a
similar distinction between longitudinal and transverse conductivities ot
and g7 . The former is directly related to the (lengitudinal) dielectric

function via rhe familiar expression :

5(&,@): 1+ _L'Lg)_‘;_o'/‘(,@,w)

(3.62)

In the long wavelength limit, spatial isotropy imposes that longitudinal and

transverse conductivities become equal

ah(0,w)= aT(o,k) = d(v (3.63)

and in particular comparison of eqs.(3.60) and (3.62) shows that the static

conductivity is given by :
Y 4 xS
g =—z (,lgL'—y)-Lo o [‘6'-\4/(. ‘&2_ XZE («ﬁ,to)—_‘ (3.64)

Note that 07 @) is mot directly related to the k>0 limit of the charge
density fluctuation spectrum, (see eq.(3.57)) or, equivalently, of the longi~-
tudinal current fluctuation spectruz {cf. eq.(3.45)!), but rather to the
corresponding spectrum of the transverse current correlatiom function, a fact

intimately related to the k>0 singularity of the Coulemb potential [ﬁ?,il,

127].

To obtain the k00 limit of the charge fluctuation spectrum, we procced as
in section 3.4 for the case of the concentration fluctuations. The contiunity

eq.(3.40) reads (with z =W) here :
. [ ) 1
- A WF, (tfw) = sz(’?’%fzo)"‘/"i" ?z (’t,w) (3.65)
while Poisson's equation is written in the form :
- ?gd —= et
~ AR E(F) = hT 5, (K 0)
These two equations are combined with the longitudinal projection of Ohm's

law (3.61?, yielding :
\(5\ ,ﬁ"/w - Fé(éjf:c’)
Z (f /) —L 00 + LFTT(T'L.(ﬁath)

(3.66)

(3.67)

— ] -



L * . . (1)’-17@
Upon multiplication of eq.(3.67) by f’z_('E',O) and statistical averaging we .
o ()=

QCLT
S0 (4) )

arrive at :

‘-'222 ('af CO) =

(3.68)
_LCO '+ L"TU'LF#’ w) a straighforward calculation ]:6 j leads to the result :
which shows that d"(k,w) is the memory function for the charge density corre- ,& [‘ 2 2 ] 2
(o _ ; =
lation Eunctmn Taking the limit k>0 15- "’MO L ('ﬁj ('OT C’ft) 'f’ (3.7
/eLM Fii (‘& (-0} _ i : (3.69) which gemeralizes the Lyddane-Sachs-Teller sum rule for ionic crystals.
4207, k) -2 — :
22 (&) Ao+ Lra(w)
The corresponding spectrum (3.12) takes the form : 3.6, Mass density fluctuarions.
{L{M_ S &l E‘ (’O) ‘fn- G'J(CO) (3.70) Another, physically important, linear combination of the partial
£=>0 S&?—(‘E) ECO lfﬂ'ﬂ'”(w)] DHT(T {Lo)]i densities is the mass density :

(3.74)

which 2ssumes the following low frequency limit (97 (@)—og~ io’"@) >0 /0 (’f} _ Z e (f)
2 £M = o o ,
o (k)= & AT T E /(47 3T) = " Jr
f U c* + (lrrr a)< p £
a result te be contrasted with the hydrodynamic limit (3.52) for Scc(k,w) : FMM (’ﬁ,{) = T\]— <F‘f‘!‘1 (t) P‘tm [°)>
whereas the width of the concentration fluctuation spectrum vanishes with k, - % (3.75)
;% My Mp (X, xp)* a4, t)

j%“"’oe.n)

The corresponding mass density correlation function is :

it stays finire for the charge fluctuation spectxum in the limit k—» 0.

The long wavelength high frequeney dielectriec behaviour, on the other hand, The hydrodynamic limit of the associated spectrum can be derived from the
follows directly from the sum rule (3.36) and the high frequency expansion Navier-Stokes equations and lead im particular, to the following Kubo limic
(3.15) which leads immediately to : [3 8]

) = g [+ 0 (&)] L, o G S i9)= 2T (e 5) 0

Using (3.62) we find :

2. where Pl and gare the shear and bulk viscosities, respectively. The result

W 1
o ) _ —_— —_— (3.76) is the same for charged and for neutral fluids.
&(o,w 1 sz t O(E (3.72) . ' ; fons (3
The coupling between mass and concentration fluctuations (in the case

A i . ; \ A i of binary alloys), or between mass and charge fluctuations (for ionic 11qu1ds),
which indicates the possible existence of a high frequency "optic mode" in
L, L. L. i L is characterized by the cross correlation function F (k,t) or F,__(k,t).
ionic liquids , similar to the optic mode observed in ionic crystals, or to MC MZ

the familiar plasma oscillations in plasmas.

To conclude this section we stress once more the fact that the long
range of the Coulomb interaction leads to different k-»0 limits of the longi-
tudinal and transverse electric current correlation functions. This is exem—
Plified by the different ke-»0 limits of the longitudinal and transverse
frequency moments (3.14). Defining the characteristic longitudinal and trans-

verse "optic mode" frequencies via :

=13 - - 14—




4. SELECTED APPLICATIONS (PART 1).

In this and the following chapter we briefly review some salienmt
features of a few typical Coulombic fluids in the light of the more general
framework introduced in the preceding lectures. The present chapter will be
mostly devoted te the "ene component plasma" (OCP) medel and some of its
extensions and applications ; the last chapter will be mostly devoted to two-
component ionic liquids. These lectures should only be considered as a brief
jntroductory guide to a few aspects of this rich variety of charged fluids,
and the reader shculd consult the (incomplete) list of references for more

details.

4.1, The one component plasma.

The OCP model has been ‘defined in section 1.3. Its essential virtue
is its simplicity, but the model does exhibit some of the essential characte-
ristics of Coulombic f£luids, despite some very unphysical features associated
with the rigid uniform background ; in particular mass and charge density
flucruations coincide in the OCP, so that the electrical conductivity is zero,
due to total momentum conservation. The model is thoroughly reviewed in
reference [1Q] which contains,in particular, a rather complete list of original

references.

The OCP thermcdynamics and static structure are very accurately known
from computer simulacions [}9] : these static properties are accurately repro-
duced by HNC theory and its extensions. The igothermal compressibility goes
negative for, [7 2, 3, without any incideace on thermodynamic stability, due the
local electric field fluctvations which inhibit large scale (small k) density
fluctuations [}4] , Short range order (i.e., an oscillatory g(r)) appears for
[*> 2. In the strong coupling limit (T>> 1) the excess internal energy is

within a few percent of the simple ion-sphere result *

C U _ ___?__ I—,
NEgT do
which represents in fact an exact lower bound to the energy. The OCP crystal-
lizes into a BCC lattice at [Tx 170 [39].

The dynamical properties of the OCP have been extensively studied by
"molecular dynamics" simulations [ho,ig] . The most striking features are the

following :

a) The velocity ACF exhibits marked oscillations at roughly the plasma
frequency @p, for sufficiently strong couplings {([*> 10) ; these oscillations
are more and more pronounced and long-lived as 7 increases ; they are a clear
manifestation of a strong coupling of the single particle motion to the collec-

tive charge density fluctuatioms [1{] .

b) The shear viscosity first decreases with Increasing coupling, goes through

a minimum at [?%! 20 and then increases gradually until erystallization [42:].

¢) Conservation of total momentum implies that the high frequency plasmon
mode is uﬁdamped in the k=» 0 limit. This mode exhibits negative dispersion
(i.e, deo/ dk < 0 ) for r= 1ﬁ. The simulaticn results are surprisingly
well reproduced by a simple memory function analysis of the density ACF
F(k,t) ; Erom equatioms (2.23) and (3.42)

= _ S(4)
FH2)= =3+ M,0h3)

+ 1} - M
Comparing the high frequency expansions (3.15) ¢f F and

_o) - i 3 A
e f=2) = Jlf"’(a-)) - "’;Mfi =og (4) w2

(6.1}

v R
M1 we find that

where v, = (kg T/‘m)”fZ is the thermal velocity. The first order memory
function M1 can itself be expressed in terms of a second order memary functien
M, via equation (3.23). For the later we make a single relaxation time

Mtk ) = My (4 =) esph—HER)]

L _ My (£ £=o0
M L(’g'; 43) -~ ._,{;é:__'_ 1/%—[4;)) (4.3)

The initial value of M, is again easily derived from the high frequency

expansion (3.15) with the result :

Mo (#,t=0)= Wi¢ (4) —ta,s (4) s

~16—



where

) &)
w-ife— (#)= ﬁ&)((f)) :,,fag_gz L (@ (.3)

This static quantity is expressible in terms of the pair disbritution func-

tion BO] :

coe )= wf[1+ %‘%ﬁ +2 f—ﬁf_"(?"i)“i)?'z(flﬂ[‘*-“

where i2 denotes the second order spherical Bessel function.

Inserting equations (4.2-4.4} into equation (4.1), and zaking the real part,

we obtain the following expression for the dynamical structure factor
1/
4
S(/Q,Lo) =% T (4, 00)

_A__cwigt Jose (k)= 0op (4)]
T eT @) o e ol

Following Lovesey féﬁj we construct the L.mknown relaxation Cime T(k) from
the two characteristic frequencies wo{(k) and £ 1€ (k), by. choosing
that combination which ensures that feor large k (wavelengths much shorter
than the interparticle spacing), 5(&, W= O) goes over correctly to

its free particle limit

: -%
i S(h,0) = [Zmvier]™*

This leads immediately to :

T )= Y [ - w1 %

The dielectric function is then derived from 3(£I (,o) via equations
(3.57-3.59). The plasmon dispersion curve (O = w(ﬁ.) is determined by

the equation :

SR W) =0

(4.9)

-1~

For small wave-numbers the damping of the plasmon mode is negligibly small
and DO(‘E) is practically determinéd by the position of the plasmon peak
in the charge fluctuation spectrum S(f&‘ (,Q) . The dispersion relation

reads

Colk) = w}a [1 127 _% + O(/{U*):I (4.10)

L3
with }'—: '97_2 + 2(“ /M&-BT)/iS . Bince the excess internal energy
behaves essentially as = 0-9]" R ”‘ changes sign for P:' 13 , in

agreement with the negative dispersion observed in the computer simulations

Cao] .

4.2. Liquid metals

The OCP model is a reasonable starting point for the description of
very dense coulombic matter occurring in extreme astrophysical situations.
For instance in a white dwarf star, densities are of the order of 106 -

108 grlcm3 and temperatures are typically 107 - 108 K. Under such conditions

matter is metallic and made up of fully stripped ions (e.g. C6+ nuclei)
and highly degenmerate electrons (the Fermi temperatute TE’ =2 100 ).
The electron screening length (1.9) far exceeds the inter-ionic spacing, so
that the electron gas can, to a good approximation, be looked upon as provi-
ding & rigid, uniform background in which the classical positive ions move.
Under typical white dwarf conditions the ionic coupling constant is large
(P > 10) and during the cooling process, the ionic plasma will finally
cristallize ("diamonds" in the sky [44]).

When the density decreases (and hence the parameter g increases),
the electron gas is increasingly polarized by the ionic charge distribution
and electron screening effects must be taken into account. If the screening
remains moderate (rs< 1}, these effects can be treated by thermodynamic
perturbation theory EﬁSj + Such calculations show that the thermodynamic
properties and the pair structure are surprisingly little affected by eiectron
screening, as long as lTF = a . The OCP is hence a reasonable model for
metallic hydrogen under physical conditions occurring in the iaterior of

Jupiter or Saturn.
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When the density is further decreased, some of the electrons recom—
bine with the muclei to form ions having a finite core (rc‘;‘ 18 inthe
alkali) ; the nearly free conduction electrons interact with these ions via
relatively weak pseudopententials, which can be treated by perturbation
theory. The OCP has been used as a successful starting point for the descrip-
tion of simple liguid metals [j&ﬁtj . The success of this approach is linked
to two simple observations. Under triple point conditicns the Coulomb coupling
paramecer [° for the liquid alkali, as determined from their density and
temperature, is typically of the order of 180-200, strikingly close to the
OCP melting conditons { ['&£317 C }. By a simple density scaling of the wave-
numbers, the static structure factors of the alkali just ahove melting are
practically undistinguishable, and are surprisingly well represented by the
OCP structure factor raken under the same temperature-density conditions
ESS,&?:} ; the only disagreement is at long wavelengths (k< 0} where the
ionic structure factor of the alkali tends towards the isothermal compres-
sibility (cf. eq. (2.45)), while the OCP structure factor vanishes as k2
(cf. eq. (2.42)).

This defect can be overcome by accounting for electron polarization
effects through perturbatioa theory [ﬁéj . A fluctuation in the ion density
induces a fluctuation in the electron density ; within the linear response

relation (2.29) this reads

Bpe ) = Aep (B) e(F)
:,Xee (/ﬂ) ’5‘\{,( ('i) Bh(/&)

(4.11)

A
where Vot (k) is the (weak) electron—ion potential. The Fourier components
of the effective potential acting on the ions due to the fluctuation arid(qﬁj

-{g (B3P (£) = w0, (8) 3P, () 452 ) Foe (B
=R i X B 8]} 3o

ST, P

Consequently
Ar% = /GL/J (4) + /P/“)‘(’ﬁ)

/% = E’\J‘{ *&
/Y\J'(} iff“@;/('ﬁz— L—f(é) i] (4.13)

where Et ( ‘ﬁ_ ) is the dielectric constant of the degenerate Fermi gas

of interacting conduction electrons, which is related to tha static response
function 7{,c(k) by equation (2.34). In equation (4.13), ﬁ;i (k) is the
direct ion-ion interaction ; this reduces tc the Coulomb repuls);.on lf‘nzz{-/éz
which is sufficient to prevent the ion cores from touching ; MU (k) is the
electron-induced indirect ion-ion interaction which will be treated as a
perturbation. The ion-electron pseudopotential vei(r) can be approximated

with reasonable accuracy by the Ashcroft empty-core model [ﬂB]
Vel = © , 2 < RQ
2
A
Ar, — - 2-
e (&) = %‘lm(&&c)

where the core radius is fitted to solid state date.

(4.14)

The ionic structure factor is finally calculated by a generalized
RFPA CdS] L1 SR, Eo[&} and S(4) , _E_‘(k) are the structure
factor and the direect correlation function for a reference system (in the
present case the OCP) and of the system of interest, these quantities are

related by the exact expression (which follows trivially from equation (2.16b).

SC’&) = SO ('ﬁ)
1-[2W-.2,¢]]S.4)

i) A
The RPA (2.55a) is now applied to the difference ,-C,(‘E) —-—Cc(ﬁ),
resulting in :

S(4) = >0 (4)
1 + F /‘W"('E') (4.16)

(4.15)




The small k limit of the resulting structure factor is obtained from eqs.

(4.13), (4.14) and the limiting forms : Collaids cover a wide range of colloidal particles, containing
g{ (/&} - i + i;_ a large number of ionizable sites, dispersed in a solvent {generally water}.
Z (4.17a) Typical examples are organic colloids, like certain globular viruses or
-1 polymer microspheres (e.g. polystyrene balls) or inorganic crystallites,
So('&) = [ + ‘EL ] (4.17b) like the Ag I sol or certain suspended silica. Colloidal particles have

Q
sizes ranging between 102 and 104 A and acquire a large clectric charge in

where k, is the inverse screening length of the electron gas, k_ is the selution. Because of the large size of the colloidal particles, interfacial

inverse screening lemgth of the OCP, given by eq.(2.51), and ky = (“"T’h 2%71@31’) phemomena play a dominant role. The main characteristic of this interface
is the Debye wave number. The resulting expression for the isethermal compres= is its electrical polarization : the charged colloidal particles are sur-
sibility reads : rounded by a cloud of counterions, thus giving rise to an electric double

i i i i i length
’a)M S ,ﬁ L layer having a spatizl extension determined by the Debye screening
i £ T Yo = ( ) ,ﬁz +’£ n (4.18) 3

()b is typically of the order of 10~ = 10& %in colloids, depending onm the

. . , counterion concentration), The colloidal particles interact hence via
which leads to values for liquid alkali in satisfactory agreement with experi-

- screened electrostatic repulsion. It is this repulsion which stabilizes
ment (typically a; kBTZ.F—O.OZ) Eﬂ&] .

the suspension and prevents agglomeration. The addition of small amounts

Historically the point of view of considering a simple liquid metal of electrolyte to the suspenmsion results in a decrease of the screening
as a perturbed OCP goes back to Bohm and Staver [ 49] who identified sound length, and hence of the Coulomb repulsion, and can provoke coagulation
waves in liquid metals with screened plasmons. The screened iomic plasma (or flocculation) of the suspension. In this section we restrict ourselves
frequency yields an acoustic phonon-like dispersion : to monodisperse colloids, made up of spherical particles of practically

= to such an ideal situation. Light or small angle neutron scattering experi-

ME(R) ] g0

where, in view of the limit {4.17a), the speed of sound is given by :

’ ? / ident:i.cal diameters 3 Sus i 4
- pensions of olyst rene balls come ver close
E , /C—
£ (

ments of the static structure factor of such colloids have revealed a comsi-

derable amount of liquid-like short range order [50_] and in many situations

P P such suspensions have been observed to solidify into colloidal crzstals[S]J.

— L!.T(' 4{ Z e J t 4 2 me_ Z This crystallization is a Coulomb correlation effect, because the particles
ie

/m}' f are observed to occupy regular lattice sites long before they are closely
Vg is the Fermi valocity and the inverse screening length ke is taken to be

packed.

that of an ideal Fermi gas. In the immediate vicinity of a large colloidal particle its cur-
’ vature can be neglected in first approximation and the double layer can be

4.3, Charged colloidal dispersions. considered as planar. The electric potential in the double layer and the

. charge profile of the counterions can be determined from the one-dimensional
Macroionic sclutions contain large ioms, carrying up to several A .

& ] ' ] i . Poisson-Beltzmann equation (Gouy-Chapman theory [52:]). If x denovtes the
hundred elementary charges, and small counterions which form essentially -

coordinate perpendicular to the surface,?(x) the electrostatic potential

a screening cloud around the much larger macroicns. Typical examples are . i
andf(x) the charge profile, the Poisson eq.(2.56b) takes here the form :

polyelectrolytes,miceiles and colloids. In this section we briefly examine

the latter which have been the object of intense experimental investigations d @( 4]76
in recent years. _ xZ F[X) (4.19)




where £ is the dielectric constant of the medium. Assuming that the positive , . i . X .
£ g Before closing this section it must be emphasized that the dynamics
and negative counterions have the same absolute valence Z, the density

of colleidal particles in suspension, i.e. the dynamics of interacting
profile is related to the potential by :

Brovnian particles, represents a fascinating subject of much current

f(‘Z}-_—_ 2[P+(I)——P—(1)] interestfsé].
2mn 4k [ 2e C}F(I)/wgs"l’] (4.20)

Contrarily to their three-dimensional counterpart, the set of equations

(4.19-20) can be solved analytically without linearization [Bi] . For large
distances x the potential decays exponentiatly, and the écreening length
is the Debye length :
2 &/ -
Yp = [hrmon2te”/(64:T)

4
7.
(4.21)

The mutual interaction of two inter—pemetrating double layers (and hence
of two colloidal particles surrounded by their clouds of conterions) is
then calculated to be (Si] H

)= TE gt ¢ W{—(A—G*)/}D} //L (4.22)

where q@ is the potential at the surface of the colloidal particles, and I
their diameter. The potential {(4.22) is of the screened Coulomb form, as
expected. The simplest model of a colloid is consequently a collection of
hard spheres interacting via the potential (4.22) ; the counterions appear
only through the screening length XD and the solvent through the dielectric
constant : such semi-macroscopic assumptions are justified in view of the
large size of the colloidal particles compared to that of the counterions
and the solvent molecules. The MSA, introduced in section 2.3, has been
solved apalytically for that medel CSB]. However, since the MSA yields poor
results for low packing fractions {f] = Tih, 0'3/64!1 , where a, is the
number of colloidal particles per unit volume), the physical diameter o is
increased to an effective diametercfi> @ , which does not affect the
structure (because of the strong Coulomb repulsion which prevents the
particles from coming inte contact} but strengly improves the accuracy of
the MSA ;q’is chosen such that v(f'} remains large compared to kBT [35).
This procedure yields colloid structure factors in excellent agreement

with experimental data Bd].
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