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The main theme of these notes is Grothendieck's expose 182 at the Seminaire Bourbaki
[G]. Most of the material in (loc. cit.) has been treated at length in [EGA III] and [SGA 1].
Our purpose here is to provide an introduction, explaining the proofs of the key theorems,
discussing typical applications, and updating when necessary. The central results are the
comparison theorem between formal and algebraic cohomology for proper morphisms and
the existence theorem for formal sheaves. We give the highlights of the proofs in §§2, 4
after recalling some basic terminology on formal schemes in §1 (sticking to the locally
noetherian context, which suffices here). In §3 we revisit some points of [EGA III 7] : base
change formula and cohomological flatness. We believe that the use of derived categories
and, especially, perfect complexes, simplifies the exposition. This section, however, is not
essential for the sequel. In §5 we discuss several applications to the existence of formal
or algebraic liftings, by combining Grothendieck's theorems of the preceding sections with
basic results of deformation theory, mostly in the smooth case.

I am very grateful to Serre for a conversation about his examples in [S2] and for sending
me a copy of Mumford's unpublished letter to him [M5]. Raynaud and Messing read a
preliminary version of these notes and suggested several corrections and modifications. I
thank them heartily, as well as the students of the school for numerous questions and
comments.
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1. Locally noetherian formal schemes

1.1. An adic noetherian ring is a noetherian ring A which is separated and complete
for the I-adic topology, i. e. the topology given by the I-adic filtration, consisting of the



powers of an ideal / , in other words, A = l imn>oA//n + 1 . With such a ring is associated a
topologically ringed space

(1.1.1) X = (SpiA,Ox),

defined as follows. For nef f , let Xn = Spec(y4//n+1). These schemes form an increasing
sequence of closed subschemes of Spec A, (with closed, nilpotent immersions as transition
maps)

Xo = SpecA/I ^X±^ > Xr,Ln

They all have the same underlying space X, called the formal spectrum of A. Note that /
is contained in the radical of A [EGA Oi 7.1.10], i. e. 1 —a: is invertible for all x e / , which
means that X, as a closed subspace of Spec A, contains all its closed points. Every open
subset of Spec A containing X is equal to Spec A. The sheaf of rings Ox is defined to be
the inverse limit of the sheaves Oxn on X, equipped with the natural topology such that
on any open subset U of X, T(U, Ox) = limnr([/, Oxn), where T(U, Oxn) has the discrete
topology. In particular, T(X,Ox) = A, and for f £ A, and T>(f) = Xf the open subset
of X where the image of / in Ao is invertible, T(Xf, Ox) = 4̂{/}> the completed fraction
ring Iimn5'71y4/5'71/n+1. The stalks Ox,x = c°lim/eA,/(a;)^o^-{/} a r e local (noncomplete)
rings.

The topologically ringed space (1.1.1) depends only on A as a topological ring. It doesn't
change if one replaces / by any ideal of definition J of A1 i. e. an ideal J such that
J Z> Ip D Jq for some positive integers p, q, or, equivalently, which is open and whose
powers tend to zero for the /-adic topology. The space X is the subspace of Spec A
consisting of open prime ideals, and Ox is the inverse limit of the sheaves (A/J)~ where J
runs through the ideals of definition of A.

An affine noetherian formal scheme is a topologically ringed space isomorphic to one of
the form (1.1.1). A locally noetherian formal scheme is a topologically ringed space such
that any point has an open neighborhood which is an affine noetherian formal scheme. It
is called noetherian if its underlying space is noetherian. A morphism f : X —>• y between
locally noetherian formal schemes is a morphism of ringed spaces which is local (i. e. such
that for each point x 6 X, the map Oyj(x) ~^ @x,x is local) and continuous (i. e. for
every open affine V C y, the map T(V,Ov) —>• F(f~1(V), Ox) is continuous). Locally
noetherian formal schemes form a category in an obvious way.

As in the case of usual schemes, one checks that if ^ = Spf (̂ 4) is a noetherian affine
formal scheme (in the sequel we will usuallly omit the sheaf of rings from the notation)
and X is any locally noetherian formal scheme, then we have

(1.1.2) Kom(X,y) = Romcont(A,T(X,Ox)),

where HomCOIi( means the set of continuous ring homomorphisms. In particular, if X is
affine, of ring B, then

1.2. Let X = Spf A be an affine noetherian formal scheme, and let / be an ideal of
definition of A. Let M be an ^l-module of finite type. With M is associated a coherent



module NT on X = Spec^4. In an analogous way, one associates with M a module MA on
X, defined as follows. For n E N, let Xn = SpecA/J n + 1 as in 1.1. We put

MA = limnMn ,

where Mn = M/In+1M. It is easily checked that MA does not depend on the choice of / ,
that the functor M \—>• MA is exact, that

T(X,MA) = M,

and that the formation of MA commutes with tensor products and internal Horn. The
main point is that, if

i: X ^X

is the natural morphism, defined by the inclusion on the underlying topological spaces
and the canonical map Ox —> Ox on the sheaves of rings, then, since M is of finite type,
Krull's theorem implies that

MA = i*M.

Since, for any f E A, -4{/} is adic noetherian, it follows that Ox is a coherent sheaf of
rings, MA is coherent, and the coherent modules on X are exactly those of the form MA

for M of finite type over A.

1.3. Locally noetherian formal schemes are more conveniently described - and in practice
usually appear - as colimits of increasing chains of nilpotent thickenings. By a thickening
we mean a closed immersion of schemes X —>• X' whose ideal / is a nilideal ; the schemes
X and X' then have the same underlying space. If X' is noetherian, so is X, and / is
nilpotent ; conversely, if X is noetherian and I /I2 coherent (as an 0x-niodule), X' is
noetherian [EGA 0 / 7.2.6, I 10.6.4]. If X' is noetherian, X' is affine if and only if X is
[EGA I 6.1.7]. We say that a thickening is of order n if In+1 = 0.

Let X be a locally noetherian formal scheme. It follows from the discussion in the affine
case that Ox is a coherent sheaf of rings, and that the coherent modules on X are exactly
the modules which are of finite presentation, or equivalently, which on any affine open
U = Spf A are of the form MA for an ^4-module M of finite type.

An ideal of definition of X is a coherent ideal X of Ox such that, for any point x E X,
there exists an affine neighborhood U = Spf A of x such that I\U is of the form IA for
an ideal of definition I of A. A coherent ideal X is an ideal of definition if and only if the
ringed space (X, Ox/I) is a scheme having X as an underlying space. Ideals of definition
of X exist. In fact, there is a largest one,

(1.3.1) T=Tx,

which is the unique ideal of definition X such that (X, Ox/X) is reduced. If U = Spf A is
an affine open subset, then T\U = TA, where T is the ideal of elements a of A which are
topologically nilpotent, i. e. whose image in A/1 is nilpotent. If X is an ideal of definition
of X, so is any power Xn for n > 1. If A' is noetherian, then, as in the affine case, if X and
J are ideals of definition of X, there exists positive integers p, q such that J D Xp D Jq.



Fix an ideal of definition X of X. For n G N, the ringed space (X1Ox/In+1) is a locally
noetherian scheme Xn, and we have an increasing chain of thickenings

(1.3.2) X. = (X0^X1^ > * „ - > • • • ) ,

whose colimit (in the category of locally noetherian formal schemes) is X : the thickenings
induce the identity on the underlying spaces, which are all equal to the underlying space
of X1 and we have

= limnOXn,

as topological rings (T(U, Oxn) having the discrete topology on any afflne open U). Let Jn

be the ideal of Xo in X n , i. e. Jn = Ker Oxn —> Ox0 • Then, for m < n, the ideal of Xm in
Xn is J™+1 (in particular, J™+1 = 0), J\ is a coherent module on Xo, and Jn = X/Xn + 1 .

Conversely, consider a sequence (1.3.2) of ringed spaces satisfying :
(i) Xo is a locally noetherian scheme,
(ii) the underlying maps of topological spaces are homeomorphisms and, using them to

identify the underlying spaces, the maps of rings Oxn+1 —>• Oxn are surjective,
(iii) if Jn = KerC X n -> OXQ, then for m < n, the KeiOXn ->• OXm = J™+1

(iv) J\ (as an C?x0-module) is coherent,
Then the topologically ringed space X = (Xo,l imn0xn) is a locally noetherian formal

scheme, and if X = Ker Ox —>• Ox0 = lim Jn , X is an ideal of definition of X, and

The verification is straightforward [EGA I 10.6.3 - 10.6.5], by reduction to the case
where Xo is affine, of ring AQ, in which case every Xn is automatically afflne noetherian,
of ring An, and X = Spf A, where A = limnAn.

1.4. Let X be a locally noetherian formal scheme, X an ideal of definition of X, and
consider the corresponding chain of thickenings (1.3.2). For m < n denote by

the canonical morphisms. If E is a coherent module on X, then En := v*nE is a coherent
module on Xn, and these modules form an inverse system, with Oxn -linear transition
maps En —> Em inducing isomorphism u*mnEn —> Em, and E = limn£"n. Conversely,
let F. = ( i ?

n , / m n : Fn —>• Fm) be an inverse system of Oxn-modules, with transition
maps fmn which are Oxn -linear. We will say that F. is coherent if each Fn is coherent
and the transition maps fmn induce isomorphisms u*mnFn -—^ Fm. If F. is coherent, and
F := rimn.Fn is the corresponding C^r-niodule, then F is coherent and F is canonically
isomorphic to the inverse system (u^F). The functor

(1.4.1) Coh(#) -^ Coh(X.), E i->- « ^ )

from the category of coherent sheaves on X to the category Coh(X.) of coherent inverse
systems (Fn) is an equivalence. For E = limn En e Coh(Af) as above, the support of E is
closed (as E1 is coherent) and coincides with that of EQ. By (a special case of) the flatness
criterion [B, III, §5, th. 1], E is flat (equivalently, locally free of finite type) if and only if
En is locally free of finite type for all n.



1.5. Let / : X —>• y be a morphism of locally noetherian formal schemes, and let J
be an ideal of definition of y. Since J C Ty, the continuity of / implies that the ideal
f*(J)Ox is contained in Tx (1.3.1). Fix an ideal of definition X such that f*{J)Ox C X
(e. g. 1 = Tx), and consider the inductive systems X , Y defined by X and J respectively,
as in (1.3.2). Then, since f*{Jn+1)Ox C Xn+1, / induces a morphism of inductive systems

(1.5.1) / . : * . - • Y,

i. e. morphisms of schemes fn : Xn —> Yn such that the squares

(1.5.2) X

fm

Y

m

m

n

fn

~^Yn

are commutative, and / is the colimit of the morphisms fn, characterized by making the
squares

(1.5.3)

fn

commutative. It is easily checked [EGA I 10.6.8] that />->•/. defines a bijection from
the set of morphisms from X to y such that f*(J)Ox C X to the set of morphisms of
inductive systems of the type (1.5.1).

In general, f*{J)Ox is not an ideal of definition of X. When this is the case, / is called
an adic morphism (and X a 3 -̂adic formal scheme). One can then take X = f*(J)Ox, and
the squares (1.5.2) are cartesian. Conversely any morphism of inductive systems (1.5.1)
such that the squares (1.5.2) are cartesian define an adic morphism from X to y.

Let / : X —>• y be an adic morphism, and let £ be a coherent sheaf on X. Then the
following conditions are equivalent :

(i) E is flat over y (or JMlat), i. e. for every point x of X, the stalk Ex is flat over

(ii) with the notations of (1.5.3), En = u*nE is Yn-fiat for all n > 0 ;
(iii) Eo is Yo-flat and the natural (surjective) map

grnOy ®gro0y gr°E -> grn£,

where the associated graded gr is taken with respect to the ^T-adic filtration, is an
isomorphism for all n > 0.

This is a consequence of the flatness criterion [B, III, §5, th. 2, prop. 2].
When E = Ox satisfies the above equivalent conditions, we say that / is flat.

1.6. Let X be a locally noetherian scheme, and let X' be a closed subset of (the
underlying space of) X. Choose a coherent ideal / of Ox such that the closed subscheme
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of X defined by / has X' as an underlying space. Such ideals exist, there is in fact a
largest one, consisting of local sections of Ox vanishing on X' ; for this one, X' has the
reduced scheme structure. Consider the inductive system of (locally noetherian) schemes,
all having X' as underlying space,

Xo ->• Xi ->• > X
n

where Xn is the closed subscheme of X defined by In+1. It satisfies the conditions (i) -
(iv) of 1.3 and therefore the colimit

(1.6.1) X/x> ••= colimnXn

is a locally noetherian formal scheme, having X' as underlying space, called the formal
completion of X along X'. It is sometimes denoted simply X, when no confusion can arise.
It is easily checked that X/x> does not depend on the choice of the ideal / . In fact, O-^ is
the inverse limit of the rings Ox/J, where J runs through all the coherent ideals of Ox
such that the support of Ox/J is X' (on any noetherian open subset of X, the powers of
/ form a cofinal system). If X is affine, X = Spec A, and I = J, then X = Spf A, where
A is the completion of A with respect to the J-adic topology.

The closed immersions in : Xn —>• X define a morphism of ringed spaces

(1.6.2) ix:X^X

(or i), which is flat, and for any coherent sheaf F on X, the natural map

(1.6.3) i*F -> FiX, := l i m ^ F .

is an isomorphism. When X = Specyl and F = M, with M an A-module of finite
type, then F/X' = MA (1.2). The above assertion follows from Krull's theorem : if yl is
noetherian, and J is an ideal of A, then the J-adic completion A is flat over A, and for
any A-module M of finite type, M = M ® A. One writes sometimes F for F/X' when no
confusion can arise. Note that if F is not coherent, (1.6.3) is not in general an isomorphism.
One checks similarly that the kernel of the adjunction map

(1.6.4) F->i*i*F

consists of sections of F which are zero in a neighborhood of X'.
Let / : X —>• Y be a morphism of locally noetherian schemes, X' (resp. Y') a closed

subset of X (resp. Y) such that f(X') C Y'. Choose coherent ideals J C Ox, K C OY

defining closed subschemes with underlying spaces X' and Y' respectively and such that
f*(K)Ox C J (one can take for example for K any ideal denning a closed subscheme
with underlying space Y' and for J the ideal of sections of Ox vanishing on X'). Then /
induces a morphism of inductive systems



where Xn (resp. Yn) is denned as above. By the correspondence explained in 1.5 we get
from /. a morphism

(1.6.5) f:X/x,^Y/Y,,

which does not depend on the choices of J, K, and is called the extension of / to the
completions X/X' a nd YJYI. This morphism sits in a commutative square

(1.6.6) X/x, - ^ X ,

Y/Y' > _

where the horizontal maps are the canonical morphisms (1.6.2). When X' = f~1(Y'), one
can take J = f*(K)Ox, all the squares

•y -y

f

Y s- V

are cartesian, hence the same holds for the square (1.5.2), and therefore / is an adic
morphism.

2. The comparison theorem

2.1. Let / : X —>• Y be a morphism of locally noetherian schemes, let Y' be a closed
subset of Y, X' = /^(Y1). Write X = X/x,, Y = Y/Y,. If F is an Ox-module, the
square (1.6.6) defines base change maps (see 2.19)

(2 1 1) i*Rq f F —> Rq f (i*F)

(for all q G Z), which are maps of 0^>-modules. If F is coherent, then i*F can be identified
with F = F/X, by (1.6.3), and similarly i*Rqf*F can be identified with (Rqf*F)/Y, if
Rqf*F is coherent : this is the case when F is coherent and / is proper (or / is of finite
type and the support of F is proper over Y, which means ([EGA II 5.4.10]) that there
exists a closed subscheme Z of X which is proper over Y and whose underlying space is
the support of F), by the finiteness theorem for proper morphisms [EGA III 3.2.1, 3.2.4].
In this case, (2.1.1) can be rewritten

(2.1.2) (Rqf*Fy^Rqf*F.

On the other hand, the squares (1.5.3), with X = X, y = Y define OYn-linear base change
maps



where Fn = u^F = i^F (in the notation of (1.6.2)). By adjunction, these maps can be
viewed as OY -linear maps

hence define OY -linear maps

(2.1.3)

Note that the base change map (2.1.1) is denned more generally for F E D+(X,Ox), as
induced on the sheaves T-Lq from the base change map in D+(Y, Oy)

(2.1.4) i*Rf*F -> RfJ*F.

Theorem 2.2. Let f : X —>• Y be a finite type morphism of noetherian schemes, Y' a
closed subset ofY, X' = f~1(Y'), f : X —>• Y the extension of f to the formal completions
of X and Y along X' and Y'. Let F be a coherent sheaf on X whose support is proper
overY. Then, for all q, the canonical maps (2.1.2), (2.1.3) are topological isomorphisms.

Remarks 2.3. (a) Under the assumptions of 2.2 on / , it follows that for any F G
D+(X, Ox) such that, for all i, WF is coherent and properly supported over Y, (2.1.4)
is an isomorphism. Using that the natural functor from the bounded derived category
£>5(Coh(X)) of coherent sheaves on X to the full subcategory Db{X)coh of Db{X) :=
Db(X1 Ox) consisting of complexes with coherent cohomology is an equivalence [SGA 6
II 2.2.2.1], one can extend the isomorphism (2.1.3) of 2.2 to the case F e Dh(X)coh. We
omit the details.

(b) By considering a closed subscheme Z of X whose underlying space is the support
of F, 2.2 is reduced to the case where / is proper.

(c) Grothendieck's original proof has not been published. From [G, p. 05], one can guess
that it consisted of two steps : (i) proof in the case where / is projective, using descending
induction on q (see [H, III 11.1] for the case where Y' is a point) ; (ii) proof in the general
case by reducing to the projective case via Chow's lemma and noetherian induction. The
proof given in [EGA III 4.1.7, 4.1.8] follows an argument due to Serre.

(d) It is easily seen that 2.2 is actually equivalent to the following special case :

Corollary 2.4. Under the assumptions of 2.2, suppose that Y = Spec A, with A a
noetherian ring, let L be an ideal of A such that Supp(CV/Z) = Y', where 1 = 1. Let
Yn = Spec(^ / J n + 1 ) ; Xn = Yn xY X, Fn = i*nF = F/In+1F. Then, for all q, the natural
maps

(2.4.1) <pq : Hq(X,Fy^ \imnH
q(X, Fn),

defined by the composition of (2.1.2) and (2.1.3), and

(2.4.2) Vg : Hq(X, F) - • l im n J ^(X, Fn),

defined by (2.1.3), are topological isomorphisms.
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The proof of 2.4 ([EGA III 4.1.7]) uses two ingredients, the first one is standard,
elementary commutative and homological algebra, the second is much deeper : (a) the
Artin-Rees lemma and the Mittag-Leffler conditions ; (b) the finiteness theorem for proper
morphisms [EGA III 3.2], especially a graded variant [EGA III 3.3.2]. We will briefly review
(a) and (b) and then give the highlights of the proof of 2.4.

2.5. Artin-Rees and Mittag-Leffler.
2.5.1. Let A be a noetherian ring, / an ideal of A, M a finitely generated ^4-module

endowed with a decreasing filtration by submodules (Mn)nG^. The filtration (Mn) is called
I-good if it is exhaustive (i. e. there exists n\ such that Mni = M) and it satisfies the
following two conditions :

(i) IMn C Mn + i for all n e Z (which means that M, filtered by (Mn) is a filtered
module over the ring A filtered by the J-adic filtration) ;

(ii) there exists an integer no such that Mn+i = IMn for all n > no.
For example, the I-adic filtration of M, defined by Mn = M for n < 0 and Mn = InM

for n > 0 is /-good. All J-good nitrations define on M the same topology, namely the
/-adic topology.

Assume that condition (i) holds. Consider the graded ring

A' . n\ Tn

A .= ©ngN^ ,

sometimes written ©Jntn, where t is an indeterminate, to make clear that In = Intn is
the n-th component of A1, and the graded module over A1,

M' = ©nGNMn,

also sometimes written (BnenMnt
n. A basic observation [B, III, §3, th. 1] - whose proof is

straightforward - is that condition (ii) is equivalent to
(ii)' M' is a finitely generated ^/-module.
Since A' is noetherian, this immediately implies the classical Artin-Rees theorem : if

N is a submodule of M, then the filtration induced on N by the /-adic filtration of M is
/-good, in other words, there exists no > 0 such that, for all n > no,

InM HN = In~no (InoM n N).

That (ii)' implies (ii) is a particular case of the following (equally straightforward)
property [EGA II 2.1.6] :

(iii) Let A be a commutative ring, S = Qnef{Sn a graded y4-algebra, of finite type over
So and generated by 1S1, and M = ©ngzMn a graded S-module of finite type. Then there
exists no G N such that for all n > no, Mn+i = S\Mn

2.5.2. Let A be a commutative ring. Let M. = (Mn,umn : Mn —>• Mm) be a projective
system of yl-modules, indexed by N. We say that :

(i) M. is strict if the transition maps umn are surjective,
(ii) M. is essentially zero if for each m there exists n > m such that umn = 0, in other

words the pro-object defined by M. is zero,

9



(iii) M. satisfies the Mittag-Leffler condition (ML for short) if for each m there exists
n > m such that, for all n' > n, l~mumni = lm.umn in Mm.

It is sometimes useful to consider the following stronger conditions : we say that :
(ii)' M. is Artin-Rees zero (AR zero for short) if there exist an integer r > 0 such that

for all n, unjn+r = 0,
(iii)' M. satisfies the Artin-Rees-Mittag-Leffler condition (ARML for short) if there exists

an integer r > 0 such that, for all m and all n' > m + r, Im umni = Imumjm+r.
We refer to [EGA 0/// 13] for a discussion of the Mittag-Leffler condition. Let us just

recall two basic (easy) points :
(a) If M. is essentially zero, then limn Mn = 0.
(b) The functor M. i->- limn Mn is left exact. Moreover, let

0 -> • L . - > • M. - > • N. - > • 0

be an exact sequence of inverse systems of A-modules ; if L. satisfies ML then the sequence

0 ->• HmnLn ->• limnMn ->• UmnNn ->• 0

is exact.
The stronger condition (iii)' (sometimes called uniform Mittag-Leffler condition) has a

close relationship with the Artin-Rees theorem. See [SGA 5 V] for a discussion of this.
The terminology AR zero, ARML is taken from there.

We will need a (very) particular case of a general result [EGA OJJJ 13.3.1] of commu-
tation of Hq(X, —) with inverse limits :

Proposition 2.5.3. Let X be a scheme, and let (Fn)ne^ be an inverse system of quasi-
coherent sheaves on X with surjective transition maps. Assume that, for all i E 7L, the
inverse system (ofL-modules) Hl(X, F.) satisfies ML. Then, for all i G Z7 the natural map

H\X, limnFn) -> \imnH\X, Fn)

is an isomorphism.

The proof of the (more general) result of (loc. cit.) is elementary. One can give a
shorter (but less elementary) proof of 2.5.3 using the derived functors of lim. The sheaves
Rq l imi^ are associated with the presheaves U >->• Rq limr(C7, Fn). Since the Fn are quasi-
coherent and the transition maps are surjective, if U is affine, the inverse system T(U, Fn)
is strict, hence RqlimT(U, Fn) = 0 for q > 0, so the natural map F = limFn —>• i?lim_Fn

is an isomorphism. Now, we have

(*) RT(X, R\imFn) = R\imRr(X, Fn).

Since the inverse systems H'\X,F.) satisfy ML, we have Rp lim.Hq(X,Fn) = 0 for all
p > 0, so the spectral sequence associated with (*) degenerates at £2 and yields the
desired isomorphisms.

2.6 The finiteness theorem.
The fundamental finiteness theorem for proper morphisms [EGA III 3.2.1] asserts that

if / : X —> Y is a proper morphism, with Y locally noetherian, and F is a coherent sheaf
on X, then, for all q G Z, the sheaves Rqf*F on Y are coherent. We will need the following
variant [EGA III 3.3.1] :
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Theorem 2.6.1. Let f : X —>• Y is a proper morphism, with Y noetherian. Let
S = (Bnef-i^n be a quasi-coherent, graded Oy-algebra of finite type over So and generated
by S\. Let M = ®n^iMn be a quasi-coherent, graded f*(S)-module of finite type. Then,
for all q e Z7

is a graded S-module of finite type, and there exists an integer no such that, for any n > no,

Here the structure of graded S'-module on Rqf*M comes from the multiplication maps,
which are the composites

Sk 0 Rqf*Mn -• UrSk 0 RqUMn -• RqM(f*Sk) 0 Mn) -> Rqf,Mn+k.

The last assertion in 2.6.1 is a consequence of the first one (thanks to 2.5.1 (hi)), and the
first one follows from the finiteness theorem applied to the (proper) morphism / : X —> Y
denned by the cartesian square

X^ X ,

Y^ y

where Y = Spec S, X = Spec/*(5f), and to the coherent module M on X.

Corollary 2.6.2. Under the assumptions of 2.4, let B := ®n^In. Then, for all q,
, InF) is a finitely generated graded B-module, and there exists no > 0 such

that, for all n>n0, W{X,InF) = In-noHi(X, In°F).

2.7. Proof of 2.1
In contrast with Grothendieck's original proof, the proof given in [EGA III 4.1.7] does

not go by descending induction on q. The integer q remains fixed in the whole proof, which
consists of a careful analysis of the inverse system of maps

(2.7.1) Hq(F)^Hq(Fn),

where Hq = Hq(X,—) for brevity. The map (2.7.1) sits in a portion of the long exact
sequence of cohomology associated with the short exact sequence

0 ->• In+1F ->• F ->• Fn ->• 0 ,

namely

(2.7.2) Hq(In+1F) ->• Hq(F) ->• Hq{Fn) -> Hq+1(In+1F) ->• Hq+1(F).

We deduce from (2.7.2) an exact sequence

(2.7.3) 0 -> Rn -> Hq(F) -> H«(Fn) -+ Qn -+ 0,
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where
Rn = Im Hq(In+1F) ->• Hq(F),

and
Qn = Im Hq(Fn) -> Hq+1(In+1F) = Ker Hq+1(In+1F) -> Hq+1(F).

The main points are the following :
(1) The filtration (Rn) on Hq(F) is /-good (2.5.1) ; in particular, the topology denned

by (Rn) on Hq(F) is the i-adic topology.
(2) The inverse system Q. = (Qn) is AR zero (2.5.2 (ii)').
(3) The inverse system Hq(F.) = (Hq(Fn)) satisfies ARML (2.5.2 (ill)').
Let us first show that (1), (2), (3) imply 2.4. Consider the exact sequence of inverse

systems defined by (2.7.3) :

(*) 0 - • Hq(F)/Rn -> Hq(Fn) ^Qn^0.

By (2) we have limnQn = 0 (2.5.2 (a)). By the left exactness of the functor limn we thus
get an isomorphism

(**) limnH
q(F)/Rn ^ \imnH

q(Fn).

By (1) the map

(* * *) Hq(Fj = ]imnH
q(F)/In+1Hq(F) ->• UmnH

q(F)/Rn

deduced from the surjections Hq(F)/In+1Hq(F) ->• Hq(F)/Rn is an isomorphism. Putting
(**) and (***) together, we get that (2.4.1) is an isomorphism. By definition, we have

Thanks to (3), the assumptions of 2.5.3 are satisfied, therefore 2.4.2 is an isomorphism.
It remains to show (1), (2), (3).
Proof of (1). We have R_x = Hq(F). The inclusions

follow from the fact that the natural map

®n&]H
q(In+1F)tn -> ®nmHq(F)tn

is a map of graded 5-modules, where B = ®n&iI
ntn (2.6.2). By 2.6.2 (applied to IF),

®nenHq(In+1 F)tn is of finite type over B, and therefore so is its quotient R := ©n-Rn,
which proves (1), thanks to the equivalence between conditions (ii) and (ii)' in 2.5.1.

Proof of (2). This is the most delicate point. By 2.6.2 again, N := ®nH
q+1(In+1F)

is finitely generated over B. Since B is noetherian, Q := ®nQn, which is a (graded)
sub-5-module of N is also finitely generated, and therefore there exists r > 0 such that
Qn+i = IQn for all n > r. Since Qk, as a quotient of Hq(Fk) is killed by Ik+1 (as
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an ^4-module), each Qn is therefore killed by Ir+1 (as an A-module). Now, for a G Ip,
the composition of the multiplication by a from Hq+l(In+1F) to Hq+l(Ip+n+1F) with
the transition map from Hq+1(Ip+n+1F) to Hq+1(In+1F) is the multiplication by a in
Hq+I(r+1F). Since Qn+r+i = Ir+1Qn for n > r, it follows that, for all n > r, the
transition map Qn_|_r_|_i —>• Q n is zero, and hence, if s = 2r + 1, for all n the transition map
Qn+S ->• Q s is zero.

Proof of (3). This is a formal consequence of (2). In the exact sequence (*), the left
term has surjective transition maps (thus trivially satisfies ARML) and the right one is
AR zero so they both trivially satisfy ARML. Therefore the middle one satisfies ARML
in view of the second assertion of the following lemma [SGA 5 V 2.1.2], whose proof is
elementary :

Lemma 2.7.4. Let
0 ->• L[^ L. -> L" ->• 0

be an exact sequence of inverse systems of A-modules. If L. satisfies ARML, so does L[',
and if L[ and L". satisfy ARML, so does L.

Remarks 2.8. (a) Property (2) in 2.7 is the key technical point in Deligne's construction
of the Rf\ functor from proDfc'(X)coh to proDb(S)coh for / : X —> S a compactifiable
morphism of noetherian schemes (i. e. of the form gi with g proper and i an open
immersion) [Dl, Prop. 5] (more precisely, if, in the situation of 2.4, / is assumed to induce
an isomorphism from X — X' to Y — Y', then what is shown in (loc. cit.) is that the
inverse systems Hq(In+1 F) are AR zero for q > 0, as follows from the fact that, for q > 0,
Hq(F) is killed by a power of / .

(b) The proof of 2.2 shows that if / : X ->• Y, Y', X' are as in 2.2 and F is a
coherent sheaf on X such that, for some integer q, the graded modules OnR

qf*(InF) and
®nR

q+1f*(InF) over the graded Oy-algebra ®nI
n are finitely generated, then Rqf*F is

coherent and (2.1.3) and (2.1.4) are isomorphisms. See [SGA 2 IX] for details and examples.
This refined comparison theorem is a key tool in Grothendieck's Lefschetz type theorems
for the fundamental group and the Picard group [SGA 2 X, XI].

The comparison theorem 2.2 has many corollaries and applications. We will mention
only a few of them. The following one (for r = 0,1) is the main ingredient in the proof of
Grothendieck's existence theorem, which will be discussed in §3.

Corollary 2.9 [EGA III 4.5.1]. Let A be a noetherian ring, I an ideal of A, f : X —> Y
a morphism of finite type, f : X —> Y its completion along Y' = V(I) and X' = f~1(Y')
as in 2.4- Let F, G be coherent sheaves on X whose supports have an intersection which
is proper over Y. Then, for all r £ Z , Extr(i7', G) is an A-module of finite type, and the
natural map Extr(F, G) —>• Ext r(.F,G) induces an isomorphism

(2.9.1) Ex t r (F ,G)T^»Ext r (F ,G) .

We have
Extr(F, G) = HrRHom{F, G) = HrRT{X, RHom(F, G)).
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The hypotheses on F, G imply that the cohomology sheaves of R'Hom(F1 G) are coherent
and have proper support over Y. Therefore, by the finiteness theorem, the cohomology
groups of RHom(F,G) = RT(X,R'Hom(F,G)) are finitely generated over A, and by 2.3
(a), the base change map

RT(X, RUom{F, G))T->- RT(X, RUom{F, GJ),

where (—f= i*, is an isomorphism. But, since i is fiat,

RUom{F, GJ= Rnom(F, G),

and the conclusion follows.

The next corollary is very useful in geometric applications :

Corollary 2.10 [EGA III 4.2.1] (theorem on formal functions). Let f : X ->• Y be a
proper morphism of locally noetherian schemes, y a point of Y, Xy = X Xy Spec £;(?/)
the fiber of f at y, F a coherent sheaf on X. Let Fn = F (g> Oy/my

+1 on Xn =
X xY SpecOy/m.y+1. Then, for all q e Z, the stalk Rqf*(F)y is an Oy-module of finite
type, and the natural map

(2.10.1) (Rqf*(F)y}= \imn(R
<1MF)y/in;+1R<1UF)y) -> l im n^(X y , Fn)

is an isomorphism.

The map (2.10.1) is defined by the base change maps (Rqf*(F)y/m
n+1Rqf*(F)y) ->•

Hq(Xy, Fn), where in the right hand side, Xy is viewed as the underlying space of the
scheme Xn. When y is closed, 2.10 is a special case of 2.2. One reduces to this case by
base changing by Spec Oy —>• Y.

2.11. Let / : X —> Y be a proper morphism of locally noetherian schemes. Then f*Ox
is a finite CV-algebra. Its spectrum Y' = Spec f*Ox is a finite scheme over Y, and the
identity map of f*Ox defines a factorization of / into

X - ^ Y' - ^ Y ,

with / ' proper and g finite, called the Stein factorization of / . Its main property is
described in the following theorem :

Theorem 2.12 [EGA III 4.3.1] (Zariski's connectedness theorem). With the assump-
tions and notations of 2.11, f'^Ox = Oy<, and the fibers of f are connected and nonempty.

The first assertion follows trivially from the definitions. For the second one, one first
reduces to the case where Y' = Y and y is a closed point of Y. Then, if X is the completion
of A" along Xy, by 2.10,

OY,y = (f*OX)y= H°(Xy, Ox),

which cannot be the product of two nonzero rings.

In particular, if Y' = Y, i. e. f*Ox = Oy, the fibers of / are connected and nonempty.
It is not hard to see, using the base change formula 3.3 below, that they are in fact
geometrically connected (i. e. are connected and remain so after any field extension) [EGA
III 4.3.4].

The following corollaries are easy, see [EGA III 4.3, 4.4] for details.
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Corollary 2.13. Under the assumptions of 2.12, for every point y ofY, the connected
components of the fiber Xy correspond bijectively to the points ofY' i. e. to the maximal
ideals of the finite Oy-algebra f*(Ox)y-

This is because the underlying space g~x(y) of Yy is finite and discrete.

Corollary 2.14. Let f : X —>• Y be a proper and surjective morphism of integral
noetherian schemes, with Y normal. Assume that the generic fiber of f is geometrically
connected. Then all fibers of f are geometrically connected.

Let ( (resp. 77) be the generic point of X (resp. Y) (so that /(£) = 77). The hypothesis
on the generic fiber means that the algebraic closure K' of K = k(rj) in k(Q is a (finite)
radicial extension of K [EGA IV 4.5.15]. Let y 6 Y. Since Oy is normal et K' is radicial
over K, the normalization A of Oy in K' is a local ring, and the residue field extension
is radicial [B chap. 5, §2, n°3, Lemme 4]. Since A contains (f*Ox)y, the same holds
for (f*Ox)y Therefore, by 2.12 (and the remark after it) the fiber Xy is geometrically
connected.

Corollary 2.15. Under the assumptions of 2.12, a point x of X is isolated in its fiber,
i. e. is such that there exists an open neighborhood V of x such that V fl -X"/(K) = {%}, if
and only if f'~1(f'(x)) = {x}. The set U of such points is open in X, U' = f'(U) is open
in Y', and f : X —tY' induces an isomorphism fjj, : U ^ > f'(U).

Let y = / (x) , y' = f'{x). Since g~1{y) is finite, discrete, x is isolated in f~1(y) if and
only if it is in f'~1(y')- So we may assume Y' = Y, i.e. f*Ox = Oy, and hence, by 2.13,
f~1(y) = {x}- Choose open affine neighborhoods U = Spec B, V = Spec A of x and y
respectively, such that f(U) C V. Since / is closed, f(X — U) is a closed subset of Y
which does not contain y. Therefore, there exists an open affine neighborhood of y of the
form V8 = Spec A for some s E A such that f'1^) C U. Then f'1^) = Us = Spec5 s .
Since f*Ox = Oy, f induces on Vs an isomorphism Us —> Vs.

Corollary 2.16. Let f : X —>• Y be a proper morphism of locally noetherian schemes.
If f is quasi-finite (i. e. has finite fibers), then f is finite.

Corollary 2.17 (Zariski's Main Theorem). Let f : X —> Y be a compactifiable
morphism of locally noetherian schemes (2. 8 (a)) (e. g. a quasi-protective morphism,
with Y noetherian [EGA II 5.3.2]). If f is quasi-finite, then f can be factored as f = gj,
where j : X —> Z is an open immersion and g : Z —> Y is a finite morphism.

If Y is noetherian, one can remove the hypothesis that / should be compactifiable,
provided that / is assumed to be separated and of finite presentation, see [EGA IV 8.12.6],
whose proof makes no use of the comparison theorem 2.2 but relies on deeper commutative
algebra.

Finally, we mention a useful application of 2.13. If X is a locally noetherian scheme, we
denote by TTO(X) the set of its connected components.

Corollary 2.18. Let A be a henselian noetherian local ring, S = Spec A, s its closed
point, X a proper scheme over S. Then the natural map

7TO(XS) ->• TTQ(X)
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is bijective.

Consider the Stein factorization

x —f-+ s' — ^ s

of the structural morphism / : X —>• S. We have S' = Specyl', where A' is a finite
yl-algebra. Since A is henselian, A' decomposes as a product of local A-algebras Ai,
parametrized by the points i of S's. Let S^ = Spec Ai and Xj = S[ Xs X, so that X is the
disjoint union of the Xj's. By 2.13 the fiber (Xj)j = / / - 1 ( i ) of Xj at i is connected. Since
Xj is proper over S^ and S^ is local, no component of Xj can be disjoint from its special
fiber, hence Xj is connected. Hence the Xj's are the connected components of X and they
correspond bijectively to the connected components of Xs by associating to a component
its special fiber.

2.19. Base change maps. Let

(2.19.1) x'-
1

Y'-

h

9

- X

^ f

- X

be a commutative square of ringed spaces and let F be an 0x-module . Then there is a
canonical map of 0y-modules

(2.19.2) 7 : g*f*F - • f',h*F,

called the base change map, which is defined in the following two equivalent ways. Let
a = gf' = fh.

(a) By adjunction between g* and #*, defining 7 is equivalent to defining

One has a*h*F = f*h*h*F, and one defines 71 by applying /* to the adjunction map
F^h*h*F.

(b) By adjunction between / '* and /^, defining 7 is equivalent to defining

72 : f'*9*UF = a*f*F -> h*F.

One has a*f*F = h*f*f*F, and one defines 72 by applying h* to the adjunction map
f*f*F ^ F.

That these two definitions are equivalent is a nontrivial fact, proved by Deligne [SGA 4
XVII] in a much more general context.

Along the same lines, one defines, for all q G Z, a canonical map

(2.19.3) 7 : g*RqUF ->
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also called base change map. Again, by adjunction between g* and #*, it is equivalent to
define

One defines 71 as the composition vu of the following two maps :

The map u is the classical functoriality map on cohomology. Namely, we have an adjunction
map in D+(X) :

a : F ->• Rh*h*F,

defined as the composition F —>• h*h*F —> h*C(h*F), where the first map is the classical
adjunction map and the second one is given by the choice of a resolution h*F —>• C(h*F)
of h*F by modules acyclic for h*. Applying i?/* to a, we get a map

Rf*(a) :Rf*F^ Rf*Rh*h*F = Ra*h*F,

giving u by passing to cohomology sheaves. In other words, if V is an open subset of Y
and U = f-x{V), U' = a'^V) = h'1^), Rqf*F is the sheaf associated to the presheaf
V ^ Hq(U, F), Rqa*(h*F) is the sheaf associated to the presheaf V ^ Hq(U', h*F), and
u is associated to the functoriality map Hq(U, F) —> Hq(U', h*F).

The map v is an edge homomorphism Hq —>• E%% —>• E2
q for the spectral sequence

More explicity, with the above notations and V' = g~1(V), v is associated to the map

obtained by restricting an element of Hq(U',h*F) to open subsets f'~1(W) for W open
in V.

Under suitable assumptions of cohomological finiteness, it is possible to define a base
change map in D(Y'),

(2.19.4) Lg*Rf*F ->• RflLh*F,

inducing (2.19.3) (cf. [SGA 4 XVII 4.1.5]). However, when (2.19.1) is a cartesian square of
schemes and F is a quasi-coherent sheaf, this map has no good properties in general (see
3.5).

3. Cohomological flatness
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3.1. The results of this section will not be used in §4. They complement those of §2.
More precisely, following [EGA III 7] we address the following question : in the situation
of 2.10, with F flat over Y, when can we assert that the individual base change maps

Rq f (F) /ran+1Uqf (F) —)• Hq(X F )

are isomorphisms ? More generally, when can we assert that the formation of Rqf*(F)
commutes with any base change, when is Rqf*(F) locally free of finite type ? As was
shown in [SGA 6 III], the use of derived categories simplifies the presentation given in
[EGA III 7]. Other expositions are given in [H, III 12] and [Ml, 5].

In what follows, if X is a scheme, we denote by D(X) the derived category of the
category of 0x-modules. The main tool is the following base change formula :

Theorem 3.2. Let

(3.2.1)
I
/'

be a cartesian square of schemes, with X and Y quasi-compact and separated. Let F (resp.
G) be a quasi-coherent sheaf on X (resp. Y'). Assume that F and G are tor-independent
on Y, i. e. that for all points x G X, y' G Y' such that g(y') = f(x) we have

for all q > 0 (this is the case for example if F or G is flat over Y). Then there is a natural
isomorphism in D(Y') :

(3.2.2) G®$Rf*F^>Rfl(G®YF),

where G ®Y Rf*F := G ®L Lg*Rf*F and G ®Y F = f'*G ® h*F.

When Y = Y' (resp. G = Oy1), the isomorphism (3.2.2) is called the projection
isomorphism (resp. the base change isomorphism). When G = Oy>, one deduces from
(3.2.2) a canonical map, for g e Z ,

(3.2.3) g*Rqf*F ^Rqfl{h*F).

This map is the composition of the canonical map g*Rqf*F —> Hq(Lg*Rf*F) and the
isomorphism Hq(Lg*Rf*F) ^ Rqfl(h*F) deduced from (3.2.2) by applying Hq. It will
follow from the construction of (3.2.2) that this map is the base change map defined in
(2.19.3). It is not an isomorphism in general. This question is addressed in 3.10-3.11.

The following corollaries are the most useful particular cases :
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Corollary 3.3. //, in the cartesian square (3.2.1), g is flat, then (3.2.2) gives a base
change isomorphism

and the induced base change maps (3.2.3) are isomorphisms.

Corollary 3.4. Let f : X —>• Y be a morphism between quasi-compact and separated
schemes. Let y be a point ofY, denote by Xy the fiber of f aty, i. e. Speck(y) X y l , and
let F be a quasi-coherent sheaf on X, flat over Y. Then (3.2.2) gives a natural isomorphism
(in the derived category of k(y)-vector spaces)

k(y) <S>oY Rf*F -^ RT(Xy, Oxv ®ox F).

Let us prove 3.2. First, consider the case where X, Y, Y' are affine, with rings B7 A,
A' respectively, so that X' is affine of ring B' = A' ®A B, and F = M, G = N for some B-
module M and yl'-module N. Then Rf*F is represented by the underlying yl-module M[Aj
of M, and Rf'^{G®YF) by the underlying ^'-module (N®AM)[AI] of {N®B')®B> (B'®M).
On the other hand, G®YRf*F is represented by N®\M^ := TV®^, (A'®^M[A]), which
can be calculated as N ®A P where P is a flat resolution of M\Ay The tor-independence
hypothesis says that Tor£(N, M[Aj) = 0 for q > 0, i. e. the natural map

(*) N ®\ M[A] -^ N ®A M[A]

is an isomorphism (in D(A')). The isomorphism (3.2.2) is the composition of (*) and the
(trivial) isomorphism

(**) N ®A -M[A] ^ (N <g)A M)[An.

Assume now that the morphism / (but not necessarily the scheme Y) is affine. Then
X = Spec B for a quasi-coherent CV-algebra B, and F = M for a quasi-coherent 5-module
M. We have again Rf*F = / *F , which is represented by the underlying (quasi-coherent)
CV-module M[Aj of M. The preceding discussion, applied to affine open subsets of Y'
above affine open subsets of Y, shows that we have natural identifications

Their composition defines the isomorphism (3.2.2).
In the general case, choose a finite open affine cover U = (Ui)i£i of X (/ = {1, • • •, r}.

Since X and Y are separated, any finite intersection Uio...in = Ui0 fl • • • Pi Uin (IQ < • • • < in

of the t/i's is affine over Y [EGA II 1.6.2]. Therefore (by fEGA III 1.4]) we have

where C(U,F) is the alternating Cech complex of U with values in F. By the discussion
in the case / is affine, we get isomorphisms

(***) G®
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where W is the cover of X' formed by the inverse images of the t/j's. It is easy to check
that the composition (***) does not depend on the choice of U. We take this composition
as the definition of the isomorphism (3.2.2).

The compatibility between (3.2.3) and (2.19.3) is left to the reader.

Remark 3.5. It is easy to generalize 3.2 to the case Y is quasi-compact and / is quasi-
compact and quasi-separated (in the last part of the argument, the intersections Uio...{n

are only quasi-compact, and one has to replace the Cecil complex by a suitable "hyper
Cech" variant).

It seems difficult, however, to get rid of the tor-independence assumption. For example,
when (3.2.1) is a cartesian square of affine schemes, as in the beginning of the proof of
3.2, and F = Ox, but no tor-independence assumption is made, we do have a base change
map of the form (2.19.4), namely, the map corresponding to the map

A' ®h B ->• A' ®A B

in D(A'), but this map is an isomorphism if and only if A' and B are tor-independent over
A.

In order to obtain a satisfactory formalism one has to use some tools of homotopical
algebra, such as derived tensor products of rings. No account has been written down as
yet.

3.6. The main application of 3.2 is to the case / is a proper morphism of noetherian
schemes and F is a coherent sheaf on X, which is flat over Y. In this case, the complex
Rf*F has nice properties, namely it's a perfect complex, and the base change formula
3.4 enables one to analyze the compatibility with base change of its cohomology sheaves
Rqf*F around a point y of Y.

We first recall some basic finiteness conditions on objects of D(X), where X is a locally
noetherian scheme. These are discussed in much greater generality in [SGA 6 I, II, III].
There are three main conditions : pseudo-coherence, finite tor-dimension, perfectness, the
last one being a combination of the first two.

3.6.1. Pseudo-coherence. A complex E £ D(X) is called pseudo-coherent if it is in
D~(X) (i e. Hq(E) = 0 for q » 0) and has coherent cohomology (i. e. Hq(E) is
coherent for all q). One usually denotes by D*(X)coh the full subcategory of D*(X)
(* = — ,6) consisting of pseudo-coherent complexes. It is a triangulated subcategory. If X
is affine and Hq(E) = 0 for q > a, then E is pseudo-coherent if and only if E is isomorphic,
in D(X), to a complex L such that Lq = 0 for q > a and Lq is free of finite type for all q.
In particular, on any locally noetherian scheme X, a pseudo-coherent complex is locally
isomorphic, in the derived category, to a bounded above complex of 0-modules which
are free of finite type, and for any point x of X, the stalk Ex, as a complex of Ox,x~
modules, is isomorphic (in the derived category D(Ox,x)) to a bounded above complex of
0x,x"modules which are free of finite type.

The above assertion is proven by an easy step by step construction [EGA 0/7/11.9.1].
3.6.2. Finite tor-dimension. Let a, b E Z with a < b. A complex E G D(X) is said to

be of tor-amplitude in [a, b] if it satisfies the following equivalent conditions :
(i) E is isomorphic, in D(X), to a complex L such that Lq = 0 for q £ [a, b] and Lq is

flat for all q ;
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(ii) for any £>x-module M, one has Hq(M ®L E) = 0 for q £ [a, b].
The proof of the equivalence of (i) and (ii) is straightforward. A complex E is said to be

of finite tor-dimension (or of finite tor-amplitude) if it is of tor-amplitude in [a, b] for some
interval [a, b\. The full subcategory of D(X) consisting of complexes of finite tor-dimension
is a triangulated subcategory.

For a complex E to be of tor-amplitude in [a, b] it is necessary and sufficient that, for
all x G X, the stalk Ex, as a complex of 0x,arm°dules, be of tor-amplitude in [a, b], i.
e. isomorphic, in D(Ox,x), to a complex L concentrated in degree in [a, b] and flat in
each degree, or, equivalently, such that, for any Ox, a;-module M, Hq(M ®L Ex) = 0 for
q <£ [a, 6] .

3.6.3. Perfectness. A complex E G D(X) is called perfect if it is pseudo-coherent and
locally of finite tor-dimension. It is said to be of perfect amplitude in [a, b] (for a, b G Z with
a < b) if it is pseudo-coherent and of tor-amplitude in [a, b\. A strictly perfect complex is
a bounded complex of locally free of finite type modules. The full subcategory of D(X)
consisting of perfect complexes is a triangulated subcategory.

Since an 0x-niodule is locally free of finite type if and only if it is coherent and flat,
it follows from 3.6.1 and 3.6.2 that a complex E is perfect if and only if it is locally
isomorphic, in the derived category, to a strictly perfect complex. In the same vein, we
have the following useful criterion :

Proposition 3.6.4. Let x be a point of X and E be a pseudo-coherent complex on X
such that Hq(Ex) = 0 for q ^ [a, b], for some interval [a, b\. Then the following conditions
are equivalent :

(i) locally around x, E is of perfect amplitude in [a,b] ;
(ii) Ha-1(k(x)®L E) = 0 ;
(Hi) locally around x, E is isomorphic, in the derived category, to a complex of free of

finite type O-modules concentrated in degree in [a, 6].

By 3.6.1 we may assume that E has coherent components and is concentrated in degree
in [a, b], with Eq free of finite type for q > a. We have to show that (ii) implies that Ea is
locally free of finite type around x. From the exact sequence

0 ->• E[a+1'b] -^E^ Ea[-a] ->• 0,

where E^a+ljb^ is the naive truncation of E in degree > a + 1, we deduce that

By the standard flatness criterion [B, III, §5, th. 3], this implies that E% is free of finite
type, hence that Ea is free of finite type in a neighborhood of x.

Corollary 3.6.5. Let x be a point of X, q e 1>, and E be a pseudo-coherent complex
on X such that HlE = 0 for i > b for some integer b. For i G Z7 let

a\x) : k(x) <g> W(E) ->• W{k{x) ®L E)

denote the canonical map.
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(a) The following conditions are equivalent :
(i) aq(x) is surjective ;
(ii) T>qE is of perfect amplitude in [q + 1,6] in a neighborhood of x.
When these conditions are satisfied, there is an open neighborhood U of x such that

aq(y) is bijective for all y EU, and such that for all quasi-coherent modules M on U, the
natural map

aq(M) : M <g> Hq{E) ->• Hq(M ®L E)

is bijective.
(b) Assume that (a) (i) holds. Then the following conditions are equivalent :
(i) aq~1(x) is surjective ;
(ii) Hq(E) is locally free of finite type in a neighborhood of x.

Here, if L is a complex (in an abelian category) and i E Z, r>jZ/ denotes the canonical
truncation of L in degree > i, defined as 0 —>• Ll jdL%~x —> Ll+1 —>••••, and r>j = r>i+i.

Let us prove (a). The projection E —>• r>qE induces an isomorphism

(*) Hq{k{x)®L E)^Hq{k{x)®Lr>qE).

Consider the canonical distinguished triangle

(**) Hq(E)[-q] - • r>qE - • T>qE -> .

Taking (*) into account, we get from (**)

(* * *) Coker aq(x) = Hq(k(x) ®L T>qE).

The equivalence between (i) and (ii) thus follows from 3.6.4. Assume that these conditions
hold. It suffices to show the last assertion of (a). Let U be an open neighborhood of x
such that r>qE\U is of perfect amplitude in [q + 1,6]. Let M be a quasi-coherent sheaf
on U. Applying M ®L - to (**), and taking into account that H^M ®L r>qE) = 0 for
i < q7 we get that aq(M) is bijective. Let us prove (b). Since r>qE is of perfect amplitude
in [q + 1, b] in a neighborhood of x, the triangle (**) shows that Hq(E) is locally free of
finite type in a neigborhood of x if and only if r>qE is of perfect amplitude in [q, b] in a
neighborhood of x. But, by (i), this condition is equivalent to the surjectivity of aq~1(x).

3.7. Let / : X —>• Y be a morphism of locally noetherian schemes and let F b e a coherent
sheaf of X. As said earlier, the main applications of 3.2 deal with the case where F is fiat
over Y. By definition, F is flat over Y if and only if for all x G X, the 0x,x-m°dule FX is
flat over Oy,y, where y = f{x). It is often convenient to express this in the following way,
given by the flatness criterion [B, III, §5, th. 3] : F is fiat over Y if and only if, for all
y EY, the natural (surjective) map

(3.7.1) ginOY,y ®k{y) gr°Fy -> ginFy

is an isomorphism for all n > 0, where gr means the associated graded for the m9-
adic filtration on Oy,y ( % being the maximal ideal) and Fy, the inverse image of
F on Spec Oy,y Xy X. The bijectivity of (3.7.1) is also equivalent to the fact that

Torx
 Y'y (k(y), Fy) = 0, i. e. the natural map k(y) ®L F —>• k(y) <g> F is an isomorphism, or

to the fact that, for each n > 0, Fy/m.y+1F is flat over Spec CV,y/m™+1.

22



Theorem 3.8. Let f : X —> Y be a proper morphism of noetherian schemes, and let F
be a coherent sheaf on X. Then Rf*F is pseudo-coherent (3.6.1) on Y. If F is flat over
Y, Rf*F is perfect (3.6.3).

The first assertion is just a rephrasing of Grothendieck's finiteness theorem [EGA III
3.2.1], which says that the sheaves Rqf*F are coherent, together with [EGA III 1.4.12],
which implies that Rf*F belongs to Dh(Y). To prove the second assertion, we may assume
that Y is affine. Let N be an integer such that Rqf*E = 0 for all quasi-coherent sheaves
E on X and q > N (one can take N such that there is a covering of X by N + 1 open
affine subsets [EGA III 1.4.12]). By (3.2.2), for any quasi-coherent CV-module G, we have

and in particular,
Hq(G®LRf*F) = 0

for q ^ [0, N]. A fortiori, for any point y of Y and any CV^-module M, we have

L (Rf*F)y) = Q

for q y^ [0, N]. By 3.6.2, this means that Rf*F is of perfect amplitude in [0, N],

3.9. Under the assumptions of 3.8, with F fiat over Y, assume Y affine, Y = Spec A, and
let Y' be a closed subscheme of Fdefmed by an ideal / . As explained in [EGA III 7.4.8],
the pseudo-coherence of Rf*F, together with the base change formula 3.2, gives another
proof (in this particular case) of the fact that the maps cpq (2.4.1) are isomorphisms.

By 3.2, whe have, for n > 0,

L RT(X, F) ^ > RT(X, Fn).

The map (pq is the inverse limit of the maps

+1 ® H«(X, F) -> H«{X, Fn),

obtained by composing the natural map A/In+l <g> H«(X, F) ->• Hq(A/In+l ®L RT(X, F))
with the isomorphism Hq(*). Since Rf*F is pseudo-coherent, RT(X,F) is isomorphic to
a complex P of ^4-modules, which is bounded above and consists of free modules of finite
type. The maps <pq!n can be rewritten

Hq(P)/In+1Hq(P) ->• Hq(P/In+1P).

In general, none is an isomorphism, but it follows from Artin-Rees that the limit

lim Hq(P)/r+1Hq(P) ->• lim Hq(P/In+1P).

is an isomorphism.
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3.10. Let / : X —> Y be a proper morphism of separated noetherian schemes, and let
F be a coherent sheaf on X, flat over Y. Let q e Z . We say that F is cohomologically flat
over Y in degree q if, for any morphism g : Y' —>• Y, the base change map (3.2.3)

(3.10.1) g*RqUF - • R«flFf

is an isomorphism, where, in the notations of (3.2.1), F' = h*F. When F = Ox (i- e. /
is flat), we just say that / is cohomologically flat in degree q.

If y is a point of Y and Xy = Spec k(y) Xy X is the fiber of / at y, the map (3.10.1)
reads

(3.10.2) k{y) 0 Rqf,F -> Hq(Xy, F/myF).

We shall denote it by aq(y) by analogy with the notation used in 3.6.5. The following
criterion is a simple consequence of 3.6.5, applied to the pseudo-coherent complex E =
Rf*F on Y (cf. [EGA III 7.8.4], [H, III, 12.11]) :

Corollary 3.11. With f : X —>• Y and F as in 3.10, let q G Z and let y be a point of
Y. Let b be an integer such that Rl f*F = 0 for i > b.

(a) The following conditions are equivalent :
(i) the map ofl(y) (3.10.2) is surjective ;
(ii) r>qRf*F is of perfect amplitude in [q + 1,6] in a neighborhood ofy.
When these conditions are satisfied, there is an open neighborhood U of y such that

aq(z) is bijective for all z G U and such that F\f~1(U) is cohomologically flat over U in
degree q.

(b) Assume that (a) (i) holds. Then the following conditions are equivalent :
(i) aq~1(y) is surjective ;
(ii) Rqf*F is locally free of finite type in a neighborhood of y.

Remark 3.11.1. Since condition (a) for q = —1 is trivially satisfied for all y1 we get that
Rf*F is of perfect amplitude in [0, 6], as already observed at the end of the proof of 3.8.

On the other hand, condition (b) for q = b is trivially satisfied for all y. Hence F is
cohomologically fiat in degree b.

Remark 3.11.2 (cf. [EGA III 4.6.1]). The following criterion is very useful : if
Hq+1(Xy,F/myF) = 0, then aq(y) is surjective ; in particular, as follows from (b), if
H1(Xyi F/uiyF) = 0, then, in a neighborhood ofy, f*F is locally free of finite type and
commutes with base change.

Indeed, if Hq+1(Xy, F/myF) = 0, then the theorem on formal functions 2.10 implies
that (Rqf*(F)yy= 0, hence Rqf*(F)y = 0, so that r>qRf,(F)y = r>q+1Rf*(F)y. Since
(trivially) aq+i(y) = 0, by (a) we have that T>qRf*F is of perfect amplitude in [q + 2, 6],
hence a fortiori in [q + 1, 6], and therefore aq(y) is surjective.

3.12. Assume that (a) (i) of 3.11 holds for all y 6 Y, i. e. that T>qRf*F is of perfect
amplitude in [q + 1, 6]. The dual

K = RUom{T>qRf*F, OY)
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is a perfect complex, of perfect amplitude in [—b, — q — 1]. Let

Q.-H-q-\K).

Then, for any quasi-coherent CV-module M, there is a natural isomorphism

(3.12.1)

Moreover, the formation of Q commutes with any base change. (This is the so-called
exchange property, cf. [EGA III 7.7.5, 7.7.6, 7.8.9].)

The proof is again a simple application of 3.2. By 3.2, we have

L Rf*F).

The projection Rf*F —> T>qRf*F induces an isomorphism

(**) Hq+1(M <g>L Rf*F) -^ Hq+1(M 0

Let L := T>qRf*F, so that K = Rl-iomiL^Oy). Since L is perfect, we have a natural
biduality isomorphism

which induces an isomorphism

(***) M®L L -^ RUom{K,M).

Composing (*), (**) and Hq+1(* * *), we get

Rq+1f*(M ®Y F) ^ Hq+1R-Hom(K, M) = Sxtq+1(K, M).

But, since K is of perfect amplitude in [—b, —q — 1], i. e. locally isomorphic to a complex
of free modules concentrated in degree in [—6, — q — 1], we have

£xtq+1(K,M) = •Hom(H-q-1K,M),

which gives (3.12.1). The proof of the compatibility of Q with base change is left to the
reader.

3.13. Under the hypotheses of 3.8, the perfectness of Rf*F implies nice properties of
the functions on Y :

(for a fixed q), and

5^ Hq(Xy,F/myF).

The first one is upper semicontinuous, while the second one is locally constant. This follows
from 3.4. The verification is left to the reader. For a detailed discussion of these questions,
see [EGA III 7.7, 7.9] and [SGA 6 III].
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4. The existence theorem

4.1. Let A be an adic noetherian ring (1.1), / an ideal of definition of A, Y = Spec A,
Yn = SpecA/ / n + 1 , Y = colimnl^, = Spf(^4). The problem which is addressed in this
section is the following : given an adic noetherian ^-formal scheme 2 = colimn Zn (1.5),
when can we assert the existence (and uniqueness) of a (suitable) locally noetherian scheme
X over Y whose /-adic completion X = colimn Xn, where Xn = X Xy Yn, is isomorphic
to Z ? This is the so-called problem of algebraization. As for the analogous problem
in complex analytic geometry (Serre's GA GA)7 Grothendieck's approach consists in first
fixing X and comparing coherent sheaves on X and X. The fundamental result is the
following theorem :

Theorem 4.2 [EGA III 5.1.4]. Let X be a noetherian scheme, separated and of finite
type over Y, and let X be its I-adic completion as in 4-1- Then the functor F i—>• F (1.6)
from the category of coherent sheaves on X whose support is proper over Y to the category
of coherent sheaves on X whose support is proper over Y is an equivalence.

Recall that the support of a coherent sheaf £ on X is the support of Eo = £ ® Ox0 on
XQ (1.4). It is called proper over Y if it is proper over Yo as a closed subset of Xo .

4.3. Proof of 4-2. Let F, G be coherent sheaves on X with proper supports over Y. By
2.9, Hom(i7', G) is an A-module of finite type, hence separated and complete for the /-adic
topology, and therefore the natural map

Hom(F, G) ->• Hom(F, G)

is an isomorphism. This proves that the (—)" functor is fully faithful. It remains to prove
that it is essentially surjective. This is done in several steps. We will outline the main
points.

(a) Projective case. Assume / : X —>• Y to be projective. Let L be an ample line bundle
on X. If M is an Cx-niodule (resp. 0^-module) and n G Z, write, as usual, M(n) for
M 0 L®n (resp. M 0 L®n). The main point is the following result, which is a particular
case of [EGA III 5.2.4] :

Lemma 4.3.1. Let E be a coherent sheaf on X. Then there exist nonnegative integers
m, r and a surjective homomorphism

Assuming 4.3.1, let us show how to prove the essential surjectivity in this case. Let E
be a coherent sheaf on X. By 4.3.1 we can find an exact sequence

for some nonnegative integers mo, mi, ro, r\. By the full faithfulness of (—f, there exists
a unique morphism v : 0 x ( - m i ) r i —>• 0 i ( - m o ) r ° such that u = v. Let F := Cokerw.
Then, by the exactness of (-J (on the category of coherent sheaves on X)1 E = F.
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Let us now prove 4.3.1. Since L is ample, so is Lo = Ox0 (1) on Xo. Consider the graded
o-algebra S = gr7 Oy = ®n&Jn/In+1 = ®n&Zn/Zn+1, and the graded /0*(S)-module

M = gijE = ®n&}l
nE/ln+1E, where 1 = IA. Since gr0 E is coherent on XQ and the

canonical map gr7 Oy 0grooY Sro E ~^ STi E is surjective, M is of finite type over /Q (5),
hence corresponds to a coherent module M on X' := Spec/^S1). Since the inverse image
0X'(1) of Cx(l) on X' is ample, applying Serre's vanishing theorem [EGA III 2.2.1] for
M, Ox1 (I) and the morphism f':X'—>Y' = Spec S deduced from /o by base change by
Y' = SpecS* —>• Y, we find that there exists an integer no such that, for all n > no, all
k e N, and all g > 0,

It follows that, for all n > no and all fc > 0, the transition map H°(Xo,Ek+i(n))
H°(X0, Ek(n)) is surjective, and consequently the canonical map

is surjective. Since Ox0 (1) is ample, we may assume that no has been chosen large enough
for the existence of a finite number of global sections of Eo(no) generating Eo(rio). Lifting
these sections to H°(X,E(no)), we find a map

u: Ox(-nQ)r -+E,

such that UQ = u ® Ox0 '• Ox0(—no)r —>• E$ is surjective. By Nakayama's lemma (since /
is contained in the radical of A (1.1)), this implies that u is surjective.

Remark 4.3.2. The above proof shows that the conclusion of 4.3.1 still holds if X is
replaced by an adic F-formal scheme X such that Xo = X Xy Yo is proper and Ox(l)
by an invertible O^-module L such that Lo = L ® Ox0 is ample. It also shows that,
under these hypotheses, there exists an integer no such that T(X, E(n)) —>• T(XOl E0(n))
is surjective for all n > no, with the usual notation E(n) = E ® L®n .

(b) Quasi-projective case. Assume that we have an open immersion j : X —>• Z1 with
Z projective over Y. Let E be a coherent sheaf on X whose support To is proper over
Y. Then, the extension by zero j\E is coherent on Z, hence, by (a), of the form F for a
coherent sheaf F on Z. The support T of F is contained in X (because X n T is open in
T and contains To hence is equal to T), so that F = j\j*F, and E = (j*Ff.

(c) General case. We proceed by noetherian induction on X. We assume that for all
closed subschemes T of X distinct of X, all coherent sheaves on T whose support is proper
over Y are algebraizable, i. e. of the form F for some coherent sheaf F on T with proper
support over Y, and we show that every coherent sheaf on X whose support is proper
over Y is algebraizable. The main tool is Chow's lemma [EGA II 5.6.1] : assuming X
nonempty, one can find morphisms

such that g is projective and surjective, fg quasi-projective, and there exists an open
immersion j : U —>• X, with U nonempty, such that g induces an isomorphism over U. Let
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T = X — U with the reduced scheme structure, and J be the ideal of T in X. Let E be a
coherent sheaf on X whose support is proper over Y. Consider the exact sequence

(*) 0 - > # - > • .E->• &,0*.E->• C->• 0.

It suffices to show the following points :
(1) g*g*E is algebraizable.
(2) K and C are killed by a positive power JN of J , hence can be viewed as coherent

sheaves on T", where T" is the thickening of T defined by JN.
(3) K and C, as coherent sheaves on T' are algebraizable.
(4) For a coherent sheaf on X whose support is proper over Y the property of being

algebraizable is stable under kernel, cokernel and extension.
For (1), note that by case (b), g*E (which has proper support over Y, g being proper)

is algebraizable. The fact that g*g*E is algebraizable then follows from the comparison
theorem 2.2.

To prove (2), one may work locally on X. One may replace X by Spec B with B adic
noetherian such that IB is an ideal of definition of B. Then E = F for a coherent sheaf
F on Spec B, and by 2.9, (2) follows from the fact that the kernel and the cokernel of
F —>• g*g*F are killed by a positive power of J.

In view of (2), (3) follows from the noetherian induction assumption.
In (4), the stability under kernel and cokernel is immediate, and the stability under

extension follows from 2.9 for r = 1.
This completes the proof of 4.2.

4.4. We will first give applications of 4.2 to the algebraization of closed formal
subschemes, finite formal schemes, and morphisms between formal schemes. We need
some definitions.

(a) Closed formal subschemes. Let X be a locally noetherian formal scheme. If A is
a coherent ideal of Ox, the topologically ringed space y consisting of the support y of
Ox /A, which is a closed subset of X, and the sheaf of rings Ox /A, restricted to y, is a
locally noetherian formal scheme, adic over y (1.5), called the closed formal subscheme of
X defined by A. If X is an ideal of definition of X (1.3) and Xn = (X, Ox/l

n+1), so that
X = colimn Xn, then y = colimn Yn, where Yn is the closed subscheme of Xn such that
Oyn = Oxn ®ox Oy. Conversely, any morphism of inductive systems Y. —>• X. such that
Yn —>• Xn is a closed subscheme and Yn = Xn X j n + 1 Yn+i (cf. 1.5) defines a closed formal
subscheme y = colimn Yn of X such that Xn Xx y = Yn. If X is affine, X = Spf A, then
A = aA for an ideal a of A, and y = Spf (A/a). Finally, if X is a locally noetherian scheme
and X is its completion along a closed subscheme Xo, then if Y is a closed subscheme of
X and Y its completion along YQ = Xo Xx Y, Y is a closed formal subscheme of X.

(b) Finite morphisms. Let X = colimXn be a locally noetherian formal scheme as in
(a). A morphism / : Z —>• X of locally noetherian formal schemes is called finite [EGA III
4.8.2] if / is an adic morphism (1.5) and /o : ZQ —>• Xo is finite. By standard commutative
algebra [B, III §2, 11] (or [EGA 0/ 7.2.9]), this is equivalent to saying that locally / is of
the form Spf(B) —>• Spf (A) with B finite over A and /5-adic, / being an ideal of definition
of A, or that / is adic and each fn:Zn = Xn Xx 2 —> Xn is finite. If / is finite, f*Oz is
a finite O^-algebra B such that OXn ®ox B = f*OXn for all n. If X = X with X as in
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(a), and Z is a finite scheme over X, then the completion Z of Z along ZQ = XQ X J Z is
finite over X.

Corollary 4.5. Le£ X / Y be as in 4-2. Then Z i->- Z is a bijection from the set of closed
subschemas of X which are proper over Y to the set of closed formal subschemas of X
which are proper over Y (4-4 (a))-

The nontrivial point is the surjectivity. Let Z = colimZn be a closed formal subscheme
of X which is proper over Y. It corresponds to a coherent quotient Oz of Ox which has
proper support over Y. By 4.2 there exists a unique coherent Cx-niodule F such that
F = Oz- The problem is to algebraize the surjective map u : Ox —> Oz- One cannot
apply 4.2 because the support of Ox is not necessarily proper over Y. But the support of
F, which is the intersection of the supports of Ox and F, is proper over Y. By 2.9, this
is enough to ensure that the map Hom.(Ox,F) —>• Hom(Ox,Oz) is bijective. Therefore
there exists a unique v : Ox —>• F such that v = u. Since VQ = UQ is surjective, so is v,
hence F = Oz for a closed subscheme Z of X which is proper over Y and such that Z = Z.

Corollary 4.6. Let X/Y be as in 4-2. Then Z i—>• Z is an equivalence from the category
of finite X-schemes which are proper over Y to the category of finite X-formal schemes
which are proper over Y (4-4 (b)).

By Z —>• g*Oz (resp. Z —>• g*Oz), where g is the structural morphism, the first (resp.
second) category is anti-equivalent to that of Ox (resp. C^)-algebras which are finite
and whose support is proper over Y (resp. Y). If A and B are finite Cx-algebras with
proper supports over Y, and if u : A —>• B is a map of Cx-niodules such that u is a map of
0x-algebras, then, by 4.2, u is automatically a map of 0x-algebras. The full faithfulness
follows. If A is a finite 0^-algebra with proper support over Y, then by 4.2, there exists
a coherent C?x-rnodule A with proper support over Y such that A = A as (^-modules.
But by g, the maps A ® A —> A and Ox —>• A giving the algebra structure on A uniquely
algebraize to maps giving to A a structure of 0x-algebra such that A = A as O^-algebras.

Corollary 4.7. Let X be a proper Y-scheme and let Z be a noetherian scheme,
separated and of finite type overY. Then the application

Homy (X, Z) ->• Hom f (X, Z) , / ^ /

is bijective. In particular, the functor X i->- X from the category of proper Y-schemes to
the category of Y-formal schemes is fully faithful.

If / = g, the remark about the kernel of (1.6.4) shows (cf. [EGA I 10.9.4]) that f = g
in a neighborhood of Xo, hence everywhere since X —>• Y is proper (and, in particular,
closed) and / is contained in the radical of A. To show the surjectivity, one applies 4.5 to
the graph of a given morphism X —>• Z, viewed as a closed formal subscheme of (X x y Zf.

Remark 4.8. If, in 4.7, one drops the hypothesis of properness on X, the conclusion no
longer holds in general. For example, if X = Z = Spec^4[t], then X = Z = Spf A{t}1

and Hom r (X, Z) = A[t], while HomY(X,Z) = RomAjCont(A{t},A{t}) = A{t}, where
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A{t} = A[t]"is the ring of restricted formal series J^an£n , i. e. such that an tends to 0 for
the /-adic topology as n tends to infinity.

4.9. If X is a proper ^-scheme, X is a noetherian adic Y-formal scheme, which is proper
over Y (by which we mean that Xo = X Xy YQ is proper over YQ = Spec (A/1)). If X
is a proper adic y-formal scheme, and if X is algebraizable, i. e. is of the form X for
a proper ^-scheme, then by 4.7, X is unique (up to a unique isomorphism inducing the
identity on X). Deformation theory can produce proper adic Informal schemes which are
not algebraizable, cf. 5.24 (b). This, however, cannot happen in the projective formal case,
as is shown by the next result, which is extremely useful.

Theorem 4.10 [EGA III 5.4.5]. Let X = colimXn be a proper, adic Y-formal scheme,
where Xn = X xyYn. Let L be an invertible Ox-module such that Lo = L® Ox0 = L/IL
is ample (so that Xo is projective over Yo). Then X is algebraizable, and if X is a proper
Y-scheme such that X = X, then there exists an unique line bundle M on X such that
L = M, and M is ample (in particular, X is projective over Y).

Using 4.3.2, choose n such that :
(i) L®n is very ample, i. e. of the form IQOPO (1) for a standard projective space P$ = I"y-0

and a closed immersion i$ : XQ —>• PQ.
(ii) T(X,L®n) -> r(X0 ,L®n) is surjective.
Using (ii), lift the canonical epimorphism UQ : O1^1 —>• L®n given by ig to an ©^-linear

map u : Or
x
+1 ->• L®n. By Nakayama, each uk =u® OXk • O g 1 ->• L®n (k e N) is

surjective, hence corresponds to a morphism i^ : X& —>• Pk = ~PYk °^ ^fc-schemes. such that
L®n = i%.Opk(l). By 4.4 (b) ik is finite, hence a closed immersion by Nakayama. These
closed immersions ik form an inductive system i. : X. —> P., with cartesian squares of the
type (1.5.2), hence define a closed formal subscheme (4.4 (a)) i : X —>• P , where P is the
completion of the standard projective space P = VY over Y = Spec A, and L®n = i*Op(l).
By 4.5, there exists a (unique) closed susbscheme j : X —> P such that X = X. Moreover,
by 4.2, there exists a (unique) line bundle M on X such that L = M. Since L®n = i*Op(l)
and (M®nJ= M®n, we get (M®nJ = (j*OP(l)y, hence (by 4.2) M®n = j*OP(l)), and
therefore M is ample.

Remarks 4.11. (a) The main theorems in §§2, 4 are analogous to the results of Serre
on the comparison between algebraic and analytic geometry (GAGA). See [SI] and [SGA
1 XII].

(b) The results of §§2, 4 have been generalized by Knutson to algebraic spaces [K, chap.
V]. It seems, however, that a generalization to stacks (Deligne-Mumford's stacks, or Artin's
stacks [A2], [LM]) is still lacking. For a generalization of Zariski's main theorem (2.17),
see [LM, 16.5]. For a generalization of the fmiteness theorem for proper morphisms, see

5. Applications to lifting problems

5.1. Let A be a local noetherian ring with maximal ideal m and residue field k = A/m.
Let S = Spec^4, with closed point s = Spec A;. Here is a prototype of lifting problems.
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Given a scheme Xo of finite type over s, can one find a scheme X, of finite type and
flat over S, lifting Xo, i. e. such that Xs ~ Xo ? For example, A could be a discrete
valuation ring of mixed characteristic, with k of characteristic p > 0 and the fraction
field K of characteristic zero, and a scheme X as above would provide a "lifting of Xo

to characteristic zero" (namely, the generic fiber Xv, r\ = Specif). Usually Xo satisfies
additional assumptions (e. g. properness, smoothness, etc.) and is sometimes endowed
with additional structures (e. g. group structure), which are to be preserved in the lifting.
We ignore this here for simplicity. Grothendieck's strategy to attack the problem consists
of several steps.

(1) Try to lift Xo to an inductive system of (flat and of finite type) schemes Xn such
that Xn_|_i Xsn+i Sn = Xn. The closed immersion Sn —> <Sn+i 1S a thickening of order 1
(1.3) : its ideal m n + 1 0 s n + 1 is killed by m, and a fortioriis of square zero. Suppose X m has
been constructed for m < n. To lift Xn to Xn+i over <Sn+i, then one usually encounters
an obstruction in a cohomology group of Xo, and when this obstruction vanishes, the set
of isomorphism classes of such Xn+i is in bijection with another cohomology group of Xo.
Automorphisms of a given Xn+i inducing the identity on Xn can also be described by a
suitable cohomology group of Xo. Such a study is the object of deformation theory.

(2) Suppose that an inductive system X. as in (1) has been found. It defines an adic
(locally noetherian) formal scheme X over the completion S = Spf A of S at s, which is
(by definition) flat and of finite type over S (1.5). The next problem is to algebraize X
over Spec A, i. e. find X of finite type over Specyl such that X = X. Here one can try to
apply the existence theorems of §4, assuming Xo proper, in which case the algebraization
is unique if it exists. The main tool - not to say the only one - is 4.10. For this we have
first to assume that Xo is projective. Let LQ be an ample invertible sheaf on Xo. If such
an LQ can be chosen such that it lifts to X, namely that there exists a projective system
Ln of invertible sheaves on the Xn ' s such that Ln = Ln+i ® Oxn, then by 4. 10, we are
done : there exists a projective scheme X over Spec A such that X = X. Supposing that
Lm has been constructed for m < n, there is a cohomological obstruction to lifting Ln to
Ln_i_i, similar to that alluded to in (1) and closely related to it.

(3) Having found X over Spec A, one cannot in general go further, i. e. descend
X to S = Spec A. But sometimes, in moduli problems, one encounters a situation
where X / Spec A enjoys a versa! property. If moreover k is separably closed, then
Artin's approximation theory [A 1], [A 2] usually enables us to descend X at least to
the henselization Sh of S, i. e. find Z over Sh such that X = Spec A xSh Z. In a sense,
Artin's theory answers Grothendieck's question in [G, p. 15] : "Pour passer de resultats
connus pour le complete d'un anneau local a des resultats correspondants pour cet anneau
local lui-meme, il faudrait un quatrieme "theoreme fondamental", dont l'enonce definitif
reste a trouver".

In this section we recall basic facts on deformation theory and give applications to
problems related to (1) and (2).

A. Deformation of vector bundles

5.2. The simplest deformation problem is the problem of deformation of vector bundles,
i. e. locally free sheaves of finite rank. Let i : Xo —>• X be a thickening of order one
(1.3), defined by an ideal / of square zero. Let Eo be a vector bundle on Xo. We want
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to "deform" (or "extend") Eo over X, i. e. find a vector bundle £ on I such that
Ox0 <8> E = EIIE = Eg. More precisely, by a deformation of Eo over X we mean a pair
of a vector bundle E on X and an Ox-linear map E —> i*Eo inducing an isomorphism
i*E ^ > EQ. By a morphism u : E' —> E of deformations we mean a morphism w such that
i*u = Id,E0- Such a morphism is automatically an isomorphism.

Theorem 5.3. Let i : Xo -^ X be as in 5.2.
(a) Let E, F be vector bundles on X, Eo = i*E, Fo = i*F, and u0 : Eo —>• Fo be an

Ox0 -linear map. There is an obstruction

o(uQ,i) eH1(XoJ®Uom(Eo,Fo))

to the existence of an Ox-linear map u : E —>• F extending UQ. When O(UQ, i) = 07 the set
of u extending uo is an affine space under H°(X0,I ®'Hom(EQ1Fo)).

(b) Let Eo be a vector bundle on Xo. There is an obstruction

o(E0, i) € H2(X0,1 <g> £nd(E0))

whose vanishing is necessary and sufficient for the existence of a deformation E of Eo

over X. When o(E0,i) = 0, the set of deformations of Eo over X is an affine space
under H1(Xo, £nd(Eo) ® / ) , and the group of automorphisms of a given deformation E is
identified by a 1—>• a — Id with H°(XQ, £nd(Eo) ® / ) .

The proof is elementary and would work in a more general context (ringed spaces
or topoi). One first proves (a). The second assertion is clear. Moreover, extensions u
of UQ exist locally. Therefore we get a torsor P under / 0 'Hom{Eo,Fo) on Xo, whose
sections over an open subset U of Xo are the Cx-hnear extensions of uo\U. The class of
P in H 1(Xo, / ® /Hom(Eo, Fo)) is the obstruction O{UQ,I). TO prove (b), assume first, for
simplicity, that Xo (or X, this is equivalent) is separated. Choose (U = (JJi)i£Ki (Ei)ieK,
where U is an affine open cover of Xo and Ei a deformation to I f l t / j of Eo\Ui.
Since Xo is separated, Uij = Ui C\ Uj is affine, so by (a) one can find an isomorphism
gij : Ei\Uij —> Ej\Uij (inducing the identity on Xo). Such an isomorphism is unique up
to the addition of hi:j e H°(11^,1 ® £nd(E0)). Then

(i,j, k) ^ cijk = gijg^gjk e H°(Uijk} I <g> £nd(E0))

is a 2-cocycle of U with values in / ® £nd(Eo), which is a coboundary dh, h = (h^j) if and
only if the g-bj can be modified into a gluing data for the (Ei), in other words if and only
if EQ can be deformed over X. Thus the class of c,

[c] = o(E0, i) EH2(Xo,I® £nd(E0))

is the desired obstruction, which can be checked to be independent of the choices. If E\
and E2 are two deformations of Eo over X, then by (a) the local isomorphisms from E\
to E2 form a torsor under / ® £nd(Eo), whose class

[E2] - [Ex] E Hl(Xo,l0£nd(Eo))
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depends only on the isomorphism classes \Ei\ of E\ and E2, and is zero if and only
if [Ei] = [E2]. One checks that this defines the desired affine structure on the set of
isomorphism classes of deformations. That finishes the proof in the case XQ is separated.
In the general case, the data (Ui), (Ei), (gij) have to be replaced by data (Ui), (Ei), (gfA
where gf, is an isomorphism from Ei\U^j to Ei\U^7 for an open cover (U^)a G Aij of Uij.
Then the gfj provide a 2-cocycle of the hypercovering defined by (Ui), (U^) (cf. [SGA 4
V 7]) whose cohomology class in H2(X0,I ® £nd(E0)) is the desired obstruction, and the
rest of the proof goes on with minor modifications.

A more intrinsic way of presenting the proof is to use Giraud's language of gerbes [Gi].
The deformations U >->• S(U) of EQ over variable open subsets U of XQ form a stack in
groupoids, which is in fact a gerbe, i. e. has the following properties : two objects of £(U)
are locally isomorphic, and for any U, there is an open cover (Ui) of U such that £(Ui)
is nonempty. The sheaves of automorphisms of objects of £(U) form a global sheaf on
XQ, namely / ® £nd(Eo), called the band ("lien") of the gerbe £. The obstruction O(EQ,I)

is the cohomology class of £. When this class is zero, the gerbe is neutral, which means
that the choice of a global object E (a deformation of Eo over X) identifies £ to the gerbe
of torsors under / ® £nd(Eo) (over variable open subsets of XQ). See [Gi, VII 1.3.1] for
a generalization of the preceding discussion to the case GL(n)) is replaced by a smooth
group scheme G (and locally free sheaves of rank n by torsors under G).

Remarks 5.4. (a) The construction of the cocycle c in 5.3 (b) shows that if LQ, MQ are
line bundles on XQ, then

o(L0 <g> Mo, i) = O(LQ, i) + o(M0, i)

in H2(XQ, I). Thus, on line bundles, the obstruction behaves like a first Chern class. In
fact, the class O(EQ,Z) in 5.3 (b) can be viewed as a kind of Atiyah class, similar to that
defined by Atiyah in [At] to construct Chern classes in Hodge cohomology, see [II, chap.
IV, V] and [Ka-Sa, 1.4.1].

(b) In practice, the ideal / is killed by a bigger ideal J . More precisely, changing

notations, let XQ >• X\ —x—^ X2 be closed immersions, / (resp. J) the ideal of X\

(resp. XQ) in X2, and suppose that / • J = 0. In particular, I2 = 0 and / can be viewed
not just as an 0Xi-module, but as an Ox0(= Ox 2 /^)-m°dule. For vector bundles E, F
on X2 , the groups Hq(Xi, I 0 %om(Ei, i*\)) appearing in 5.3 (a), with i replaced by ii
and Ei = i*E, F\ = i\F, can then be rewritten

Uom(E1,F1)) = m(X0,I ®OXQ Uom(EQ,F0)),

with EQ = Ox0 <8> E, FQ = Ox0 ® F. Similarly, for a vector bundle E\ on X\, the groups
Hq(Xi,I ®ox £nd(Ei)) appearing in 5.3 (b) (with i replaced by ii), can be rewritten

Hq(XuI®Oxi £nd(Et)) = Hq(XQ,I®Qxo £nd(E0)),

with EQ = 0Xo ®EX.
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Corollary 5.5. Let A be a complete local noetherian ring, with maximal ideal m
and residue field k. Let S = Specyl, S = colimSn, where Sn = Specy4/mn+1 . Let
X = colimXn, Xn = Sn Xg X, be a flat adic locally noetherian formal scheme over S
(1.5), and assume that H2(X0, Ox0) = 0. Then any line bundle Lo on Xo can be lifted to
a line bundle L on X. If moreover H1(X0, Ox0) = 0, then such a lifting L is unique up to
a (non unique) isomorphism (inducing the identity on Lo).

Suppose that Lo has been lifted to Ln on Xn. Let In be the ideal of Xn in Xn+i. By
the flatness of X over S, we have

In = 0Xo ®k m n + 1 / m n + 2 .

Taking 5.4 (b) into account, we see that the obstruction to lifting Ln to L n + i on Xn+i
lies in

tl {Ao,ln) = Ii [AQ, UX0) Qi>k m / m = U,

whence the first assertion. For the second one, suppose L and V are two liftings of
Lo on X. Assume that an isomorphism um : L m -̂ ->- L'm has been constructed for
m < n, with UQ = Id. Then, since H1(X0,Ox0) = 0, by 5.3 (a) there is an isomorphism
un+i : L n + i ^ > L'n+i extending un, and u = \imun is an isomorphism from L to L'
inducing the identity on Lo.

Corollary 5.6. Let X be a proper, flat adic locally noetherian formal scheme over S.
Then :

(a) If X/S is a proper scheme such that X = X, X is flat over S. Moreover, if
H2(Xo, Ox0) = 0, any line bundle Lo on Xo can be lifted to a line bundle L on X, which
is unique (up to an isomorphism) if H1(XQ, OX0) = 0

(b) If XQ is projective and an ample line bundle Lo on Xo can be lifted to a line bundle
£ on X, there exists a projective and flat scheme X/S such that X = X and an ample line
bundle L on X such that L = £.

Let us prove (a). Let 1 be a point of Xo = Xs (s = So = Specfc). For all n > 0,
Ox,x/xn-n+1Ox,x = Oxn,x is flat over An = A/mn+1, hence Ox,x is flat over A by the
usual flatness criterion. As the set of points at which a morphism is flat is open, X is flat
over S in a neighbordhood of the special fibre Xs, hence everywhere since X is proper over
S. The second assertion follows from 4.2 and 5.5. Assertion (b) follows from (a) and 4.10.

B. Deformation of smooth schemes

5.7. We now turn to the problem of deforming schemes. Let i : So —>• S be a thickening
of order one (1.3), defined by an ideal / of square zero, and let Xo be a flat scheme over
So- By a deformation (or lifting) of Xo over S we mean a cartesian square

(5.7.1)

v

So
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with X flat over S. The flatness condition is expressed by the fact that the natural map

(5.7.2) f*I -> J,

where /o : XQ —>• SQ is the structural morphism and J the ideal of XQ in X, is an
isomorphism. By a morphism of deformations we mean an S'-morphism u : X —> X' such
that uj = j ' (where j ' : XQ —>• X'). Such a morphism u is necessarily an isomorphism.

5.8. We will first discuss the smooth case, which is elementary. Let / : X —> Y be a
morphism of schemes. Recall that / is called smooth if / is locally of finite presentation (i.
e., locally of finite type if Y is locally noetherian) and satisfies the equivalent conditions :

(i) / is flat and the geometric fibers Xy of X/Y are regular (here y —> y e Y runs
through the geometric points of Y, with k(y) algebraically closed) ;

(ii) (jacobian criterion) for every point x £ X there exist open affine neighborhoods U of
x and V of y = f(x) such that f(U) C V and U is the closed subscheme of a standard affine
space Ay- = Spec A[ti, • • •, tn] (where V = SpecA) defined by equations g\ = • • • = gr = 0
(<7i G A[ti, • • •, tn]) such that rk(dgi/dtj)(x) = r ;

(iii) (formal smoothness) for every commutative square

X ,

where j is a thickening of order 1, there exists, Zariski locally on S, a Y-morphism
g : S —> X extending g0, i. e. such that gi = go.

(For the equivalence of these conditions and basic facts on smooth and etale morphisms,
see [BLR], [12], and [EGA IV §17], [SGA 1 I, II, III] for a more comprehensive treatment.)

Suppose / is smooth. Then the sheaf of relative differentials fi^/y is locally free of
finite type, as well as the tangent sheaf

Tx/Y=Hom(Q}x/Y,Ox).

Their common rank r(x) at a point x of X is the dimension at x of the fiber Xfrx), the
relative dimension of X at x. It is a locally constant function of a;. A morphism / : X —> Y
is called etale if / is smooth and of relative dimension zero at all points, in other words,
/ is smooth and QX/Y = ^' o r ' ecLurvalently, / is flat, locally of finite presentation, and
QX/Y = 0- Smoothness (resp. etaleness) is stable under composition and base change.

We will also need the definition of smoothness in the context of formal schemes. Let
y = colimYn be a locally noetherian formal scheme, with the notations of 1.5. An adic
morphism / : X —>• 3̂  is called smooth if / is flat (1.5) and each Xn is smooth over Yn (or,
equivalently, by 5.8 (i), if XQ is smooth over YQ). We will refer to X as a smooth formal
scheme over y lifting XQ.

The main results about deformations of smooth schemes are summed up in the following
theorem.
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Theorem 5.9. (a) Let X and Y be schemes over a scheme S, with Y smooth over
S, and let j : XQ —>• X be a closed subscheme defined by an ideal J of square zero. Let
g : XQ —> Y be an S-morphism. There is an obstruction

o(g,j)eH1(X0,J®0xog*TY/s)

whose vanishing is necessary and sufficient for the existence of an S-morphism h : X —> Y
extending g, i. e. such that hj = g. When o(g,j) = 0, the set of extensions h of g is an
affine space under H°(XOl J ®OXQ 9*Ty/s)-

(b) Let i : So —>• S be a thickening of order one defined by an ideal I of square zero, and
let XQ be a smooth So-scheme. There is an obstruction

(where /o : Xo —> So is the structural morphism) whose vanishing is necessary and suffi-
cient for the existence of a deformation X of Xo over S (5.7). When o(X0,i) = 0, the set of
isomorphism classes of such deformations is an affine space under HX(XQ, f^I ®TXo/sQ)>
and the group of automorphism of a fixed deformation is isomorphic to H°(XQ, f^I ®
TXo/so)- In particular, if Xo is etale over So, there exists a deformation X of Xo over S,
which is unique up to a unique isomorphism.

Note that if Xo is smooth (resp. etale), any deformation of Xo over S is smooth (resp.
etale). This follows from 5.8 (i).

The proof of 5.9 is similar to that of 5.3. One first proves (a). Since Y is smooth over
S, an extension h of g exists locally on XQ. Moreover, two such extensions differ by an
S'-derivation of Oy into g*J, i. e. a section of J ®ox 9*Ty/s- Therefore, the extensions
h over variable open subsets of X form a torsor on X under J ®oXo 9*Ty/s, a n d o(g,j)
is the class of this torsor. To prove (b), one first observes that deformations of XQ exist
locally on Xo. This follows from 5.8 (ii) (lift the polynomials g^s). Moreover, (a) implies
that two deformations are locally isomorphic, and that, for any open subset UQ of Xo,
the sheaf of automorphisms of a deformation U of UQ is identified by a \-> a — Id with
fo*I®Txo/so- Therefore (cf. [Gi, VII 1.2]) by associating to each open subset UQ of X O the
groupoid of deformations of UQ, we define a gerbe Q = Qx0 whose band is f^I 0 TXo/so-
The class O(XQ, i) of Q in H2(XQ, f^I ® TXo/so)

 IS the obstruction to the existence of an
object of Q(XQ), i. e. a deformation of Xo. When O(XQ,I) = 0, Q is neutral, i. e. a (global)
deformation X of Xo exists. Once such an X has been chosen, one can identify Q to the
gerbe of torsors on Xo under /Q / (8> TXo/so by associating to a deformation U of an open
subset UQ of Xo the torsor of local isomorphisms between U and X\UQ. In particular, the
set of isomorphism classes of deformations of Xo is then identified to HX(XQ, / Q / ® T X O / S O ) .

As in the proof of 5.3 one can exhibit a 2-cocycle defining o(X0,i). Suppose, for
simplicity, that Xo is separated. Choose (U = ((f7o)i)ie.K> (Ui)i£K) where U is an affine
open cover of Xo and Ui a deformation of (£/o)i- Since Xo is separated, (UQ)^ =
(Uo)i fl (UQ)J is affine, so by (a) there is an isomorphism of deformations g^ : Ui\(Uo)ij ^ >
Uo\(Uo)%r Then

(i,j, k) i-)- cijk = gijg^gjk - Id e H°((U0)ijk, f*I ® TXo/So)
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is a 2-cocycle of U with values in ffil ® TXo/So, whose class in H2(X0l ffil ® TXo/so)
represents o(Xo,i).

Remarks 5.10. (a) The obstruction O(XQ, i) satisfies the following functoriality property.
Let go : Yo —> So be a smooth morphism and let ho : Xo —>• Yo be an So-morphism
(so that /o = po^o : Xo —>• So). Then o(X0,i) and o(Yo,z) have the same image in
H2(Xo, fo*I ® h^TYo/so) under the canonical maps

H2(X0J*I®TXo/So) ^H2(X0J*I®h*0TYo/So) ^H2(Y0,g*I®TYo/So).

Moreover, if Xo, YQ are smooth So-schemes, the obstruction O(XQ Xg0 Yn,i) to the lifting
of XQ x s0 YQ to S satisfies the formula

o(X0 xSo Y0,i) = prlo(X0,i) + prlo{Y0,i),

where pr\ (resp. pr<i) is the projection from XQ XS0 YQ to Xo (resp. Yo) and pr\ is the
composite

H2(Xo,I®TXo/So) -+ H2(X0 xSo YoJ®prlTXo/So) -> H2(X0 xSo Yo, I <

of the functoriality map and the inclusion of the first direct summand, and similarly for

The obstructions o(g,j) satisfy a compatibility with respect to the composition of
morphisms : in the situation of 5.9 (b), if X, Y, Z are smooth schemes over S, and
/o : Xo —>• Yo, go : Yo —>• ZQ S'o-morphisms between their pull-backs to So, then the
obstruction to lifting ho = gofo to h : X —>• Z is the pull-back by g^ of the obstruction to
lifting g0 to g : Y —>• Z.

(b) As in 5.4 (b), suppose So >• S± ——>• S2 are closed immersions, where the ideal
/ of i\ is killed by the ideal J of So in £2. Then, if /1 : X\ —>• Si is a smooth morphism,
the groups appearing in 5.9 (b) relative to the deformation of X\ over S2 can be rewritten
Hq(XOl /o*/ (8> TXo/So) where /o : Xo —>• So is deduced from /1 by base change.

C. Specialization of the fundamental group

5.11. The combination of the existence theorem 4.2 with 5.3 and 5.9 has powerful
applications. We will first discuss those pertaining to the fundamental group.

Let X be a locally noetherian scheme. By an etale cover ("revetement etale" [SGA 1
I 4.9]) of X we mean a finite and etale morphism Y —>• X. A morphism Y' —> Y of etale
covers is defined as an X-morphism from Y' to Y. It is automatically an etale cover of Y.
We denote by

(5.11.1) Et(X)

the category of etale covers of X. Suppose X is connected and fix a geometric point x of X,
localized at some point x, i. e. a morphism Specfc(x) —>• Specfe(x), with A;(of) a separably
closed field. Then there is defined a profinite group

(5.11.2) vn(X,x),
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called the fundamental group of X at x, and an equivalence of categories

(5.11.3) Et(X) ^ > {TTI(X,X) - fsets},

where {TTI(X,X) — fsets} denotes the category of finite sets on which TTI(X, X) acts
continuously [SGA 1, V 7]. More precisely, the functor

Et(X) ->• {fsets}, Y i-). Y(x) = Yw,

associating to an etale cover Y of X the finite set of its points over x, called fiber functor
atx, is pro-representable : there is a pro-object P = (Pj)jej of Et(X), called a universal
(pro-) etale cover of X, and an isomorphism

(5.11.4) Hom(P, Y) = colimiHom(Pi, Y) ^^ Y{x)

functorial in Y G Et(X). The identity of P corresponds by (5.11.4) to a point £ G
P(x) = ]imPi(x), which in turn defines (5.11.4) by (u : P ->• Y) ^ u(£) 6 F(x). The
Pj's which are Galois, i. e. are connected, nonempty and such that the natural map
Aut(Pj) = Hom(Pj,Pj) —>• Hom(P, Pj)(~ Pj(^)) is bijective form a cofinal system, and
therefore we have

Hom(P,P) = Aut(P) = lim iGJAut(Pj),

where J is the subset of / consisting of indices i for which Pj is Galois. The group opposite
to the group Aut(P) of automorphisms of P is by definition TTI(X,X). In other words, it is
the group of automorphism of the fiber functor at x. It acts continuously and functorially
(on the left) on Y(x), and this defines the equivalence (5.11.3). An etale cover Y is
connected if and only if TTI(X, X) acts transitively on Y(x).

lioZ ^ X,b ^ X are two geometric points, then, as X is connected, the fiber functors
F^ at a and F^ at b are isomorphic [SGA 1 V 5.6]. The choice of an isomorphism from Fa
to Fj; is called a path from a to b. Such a path induces an isomorphism

(5.11.5) vri(X,a) ^ T T I ( X , 6 ) .

If X is not assumed to be connected, one defines the fundamental group of I at s
as the fundamental group of the connected component containing x. The fundamental
group is in a natural way a functor on geometrically pointed locally noetherian schemes. If
/ : X —>• Z is a morphism between connected locally noetherian schemes, then the inverse
image functor

/* : Et{Z) ->• Et(X), Z' i->- X xz Z'

is an equivalence if and only if the homomorphism

/* : TTI(X,X) -4- T:\{Z,t)

is an isomorphism, where ~z is the geometric point x —> x —>• z image of x by / . The
homomorphism /* is surjective if and only if the functor /* is fully faithful, or equivalently,
if for any connected etale cover Z' of Z, f*Z' is connected [SGA 1 V 6.9]. It is injective
if and only if, for any etale cover X' of X, there exists an etale cover Z' of Z and a map
from a connected component of f*Z' to X' [SGA 1 V 6.8].

The following result complements 2.18.
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Theorem 5.12 [SGA 1 IX 1.10]. Let A be a complete local noetherian ring, with
maximal ideal m and residue field k. Let S = Spec A, S = Spf A = colimSr

n7 where
Sn = Spec A/mn+1. Let X be a proper scheme over S. Then the inverse image functor

Et(X) ->• Et(Xs),

where s = So = Spec A;, is an equivalence. In other words, for any geometric point x of
Xs, the natural homomorphism

7Ti(X,x)

is an isomorphism.

Let X be the formal completion of X along Xs, so that X = colimnXn , where
Xn = Sn Xs X, Sn = Specy4/mn+1. Consider the natural morphisms

We have inverse image functors

Et{X) - ^ Et(X) -Jl^ Et(Xs) ,

where Et(X) denotes the category of etale covers of X, i. e. of finite formal schemes
y = colimYn over X (4.4 (b)) which are etale, i. e. such that Yn is etale over Xn for all
n > 0. By 5.9 (b), i* is an equivalence. On the other hand, by 4.6, (ji)* is fully faithful.
It remains to show that j * is essentially surjective. Let y be an etale cover of X. By 4.6
there exists a unique scheme Y finite over X such that Y = y. If y is a point of Ys and
n > 0, OY,y/mn+1OY,y = OYn,y is flat over Ox,x/mn+1Ox,x = OXn,x, where x is the
image of y in Xs. Therefore Y is flat over X in a neighborhood of Ys, and consequently
flat over X since Y is proper over S. Moreover,

fnY/x = iimn^n/Xn = o

since Yn is etale over Xn. Hence, by 4.2, QY/x = *-*' anc^ therefore Y is etale over X (5.8).

Remark 5.13. It follows from Artin's approximation theorem that the conclusion of
5.12 still holds if A is only assumed to be henselian instead of complete, see [SGA 4 1/2,
Cohomologie etale : les points de depart, IV 2.2]. Statements 2.18 and 5.12 are crucial in
the proof of the proper base change theorem in etale cohomology ((loc. cit.) and [SGA 4
XII]).

5.14. Theorem 5.12 is the starting point of Grothendieck's theory of specialization for the
fundamental group [SGA 1 X]. Let / : X —>• Y be a proper morphism of locally noetherian
schemes, with connected geometric fibers. Let s and r\ be points of Y, such that s G {//},
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s (resp. rj) a geometric point over s (resp. 77), a (resp. b) a geometric point of X-g (resp.
X^). Then there is denned (loc. cit. 2.1, 2.4) a homomorphism

(5.14.1) Kl(Xrj, b) ->• 7Ti(Xj, a),

called the specialization homomorphism. This homomorphism is well denned up to an
inner automorphism of the target. If Y is the spectrum of a henselian local noetherian
ring A, with closed point s such that s = s, (5.14.1) is the composition

7Ti (Xjf, b) ->• 7Ti (X , 6) - ^ > 7Ti (X , a) - ^ > 7Ti ( X s , a) ,

where the first map is the functoriality map, the second one an isomorphism associated
to a path from a to b (5.11) (such a path exists because the hypotheses imply, by 2.18,
that X is connected), and the last one is the inverse of the isomorphism of 5.12, 5.13.
The definition in the general case is more delicate, see (loc. cit.). It uses the fact that
for a proper and connected scheme X over an algebraically closed field fc, the fundamental
group of X is invariant under algebraically closed extension of k (this fact is a (nontrivial)
consequence of 5.12). Grothendieck's main result about (5.14.1) is the following theorem :

Theorem 5.15 [SGA I X 2.4, 3.8] (Grothendieck's specialization theorem). Let
f : X ->• F be as in 5.14-

(a) If f is flat and has geometrically reduced fibers (i. e. for any morphism y —> y E Y
with y the spectrum of an algebraically closed field, Xy is reduced), then (5.14-1) is
surjective ;

(b) If f is smooth and p is the characteristic exponent of s, then (5.14-1) induces an
isomorphism on the largest prime to p quotients of the fundamental groups

(We use the notation trf to denote the largest prime to p quotients ; this notation has

become more common than the notation TÎ  used in (loc. cit.).)

Let us prove (a) in the case Y is the spectrum of a henselian local noetherian ring A,
with algebraically closed residue field k and s = Spec k (the general case can be reduced to
this one). We have to show that if Z is a connected etale cover of X, then Z^ is connected.
Note that Z is again proper and flat over Y with geometrically reduced fibers. As Z is
connected, so is the special fibre Zs by 2.18. Therefore H°(Zs,Ozs) is an artinian local
fc-algebra with residue field k. Since Zs is reduced, H°(Zs,Oze) = k. The composition of
the canonical maps

OY 0 k -> g*Oz ® k -> H°(Z8, OZs) = k,

where g : Z —> Y is the structural morphism, is the identity, in particular

is surjective. Since Z is flat over Y, it follows from 3.11 that this map is in fact an
isomorphism and that g*Oz is free of rank 1 and its formation commutes with arbitrary
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base change, in other words, g*Oz = Oy holds universally (i. e. after any base change).
In particular, Zjj is connected. The proof of (b) is more delicate. It relies on Abhyankar's
lemma and Zariski-Nagata's purity theorem. See [SGA 1 X 3 ] for details and [O-V] for a
survey.

The argument sketched for the proof of (a) gives in fact the following result ([SGA 1 X
1.2], [EGA III 7.8.6]) :

Proposition 5.16. Let f : X —>• Y be a proper and flat morphism of locally noetherian
schemes, having geometrically reduced fibers, and let

be its Stein factorization (2.11). Then Y' is an etale cover of Y, and its formation
commutes with any base change. In particular f is cohomologically flat in degree zero
(3.-), and the following conditions are equivalent :

(i) f,Ox = OY ;
(ii) the geometric fibers of f are connected.

Remarks 5.17. (a) Under the assumptions of 5.15 (a), i. e. for / : X —>• Y proper and
flat, with geometrically reduced and connected fibers, the specialization homomorphism
(5.14.1) has been extensively studied in the past few years, especially in the case of relative
curves. See [BLoR] for a discussion of some aspects of this.

(b) A variant of the theory of the fundamental group in "logarithmic geometry" has
been constructed by Fujiwara-Kato [FK]. See [I]3 for an introduction and [Vi, I 2.2] for
a generalization of Grothendieck's specialization theorem 5.15 in this context and an
application [Ki] to the action by outer automorphisms of the wild inertia on the prime
to p fundamental group of varieties over local fields.

D. Curves

5.18. We now turn to applications to liftings of curves. Let F b e a locally noetherian
scheme. By a curve over Y we mean a morphism / : X —> Y which is flat, separated
and of finite type, with relative dimension 1. Assume / is proper. Then, for any coherent
sheaf F on X, Rqf*F = 0 for q > 1 by 2.10, and if moreover F is fiat over Y, e. g.
F = Ox, the complex Rf*F is perfect, of perfect amplitude in [0,1] (3.11). In general, /
is cohomolologically flat neither in degree 0 nor 1, as simple examples show [H, III 12.9.2].
However, if / has geometrically reduced fibers, / is cohomologically flat in degree 0 by
5.16, hence also in degree 1 by 3.11, i. e. Rqf*Ox is locally free of finite type for all q.
When, moreover, / has connected geometric fibers, so that f*Ox = OY, the rank of the
locally free sheaf R1 f*Ox is called the (arithmetic) genus of the curve X over Y. If / is
proper and smooth, then, by Grothendieck's duality theorem, the sheaves Rqf*Q}x,Y are
also locally free of finite type, and there is defined a trace map

and the pairing
} > oY
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obtained by composing the natural pairing to i i ^ / ^ x / y with Tr is a perfect pairing
between locally free sheaves of finite type. In particular, if / has connected geometric
fibers and is of genus g, f*QX/Y is locally free or rank g. Finally, recall that any curve
over a field is quasi-projective. See [H, III Ex. 5.8] for the case the curve is proper over an
algebraically closed field (the general case can be reduced to this one).

The main result on liftings of curves is the following theorem :

Theorem 5.19 [SGA 1 III 7.3]. Let A be a complete local noetherian ring, with residue
field k. Let S = Spec^47 s = Spec k, and let Xo be a projective and smooth scheme over s
satisfying

(0 H2(X0,TXo/s) = 0.

Then there exists a proper and smooth formal scheme (5.8) X over S lifting Xo. If, in
addition to (i), XQ satisfies

(u) H2(X0,0Xo) = 0,

then there exists a projective and smooth scheme X over S such that Xs = XQ.

Conditions (i) and (ii) are satisfied, for example, if Xo is a proper and smooth curve
over s. Note that, if Xo is a proper, geometrically connected, smooth curve of genus g,
then the same is true for the fibers of X over S.

Let S = Spf A = colimSr
n, where Sn = Spec A/mn+1, m denoting the maximal ideal

of A. Let us show that, under the assumption (i), there exists a (proper) and smooth
formal scheme X = colimXn over S lifting XQ. Assume Xm, smooth over Sm, has been
constructed for m < n such that Xm = Sm Xgn Xn, and let in : Sn —> Sn+x be the
inclusion. Then, by 5.9, 5.10 (b), there is an obstruction

o(Xn,in) e H2(X0,TXo/s <g> m " + 1 / m n + 2 )

to the existence of a smooth lifting Xn+i of Xn over <Sn+i- But

n \XQ, lXo/s ® m / m ) = ti {XQ, ±X0/S) ® m /m ^ ),

which is zero by (i). This shows the existence of X. As for he second assertion of 5.19, we
deduce from 5.6 the existence of a projective and flat scheme X over S such that Xs = Xo.
Then X is smooth over S at each point of Xs, hence in an open neighborhood of Xs, which
has to be equal to X since X is proper over S.

By 5.19, proper smooth curves in positive characteristic can be lifted to characteristic
zero "without ramification" : if A; is of characteristic p > 0, one can take for A a
Cohen ring for k, i. e. a complete discrete valuation ring with residue field k, fraction
field of characteristic zero, and maximal ideal generated by p (the ring W(k) of Witt
vectors on k when k is perfect). Using this and the known structure of the (topological)
fundamental group of compact Riemann surfaces, Grothendieck was able to deduce from
the specialization theorem 5.15 the following results about the (algebraic) fundamental
group of proper smooth curves in positive characteristic :
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Theorem 5.20 [SGA 1 3.9, 3.10]. Let k be an algebraically closed field of characteristic
exponent p and let C be a proper, smooth and connected curve over k, of genus g. Let x
be a rational point of C. Denote by Iig the group defined by generators ai, hi (1 < i < g),

subject to the relation Y\i<i<q(
ai-> M = -*-> where (a, b) := aba~1b~1, and let Iig be its

profinite completion. Then there exist a surjective homomorphism

Ug

inducing an isomorphism

on the largest prime to p quotients.

Here is a sketch of the argument. One first treats the case where k = C Let Can be
the (compact, connected and of genus g) Riemann surface associated to C. By Riemann's
existence theorem, the functor C i—>• C'an from the category of finite etale covers of C to
that of finite etale covers of Can is an equivalence. It follows that %i(C,x) is the profinite
completion of %i(Can,x). Topological arguments, using the representation of Can as the
quotient of a polygon with Ag edges (ej,e^~ , fi, f~ ) (1 < * < g by the identification
specified by the word Y\i<i<Q(ei^ fi) shows that 7Ti(Can,x) = Ug. So the result is proven
in this case. The case where p = 1 is reduced to this one by standard limit arguments using
the invariance of the (algebraic) fundamental group (of proper schemes) under arbitrary
extension of algebraically closed fields. Finally, suppose p > 2. In 5.19, take Xo = C and
A = W(k) the ring of Witt vectors on k. Let X be a projective and smooth scheme over S
such that Xs = C. Then, by 5.18, X/S is a projective and smooth curve with connected
geometric fibers of genus g. The conclusion thus follows from the case p = 1 and 5.15.

Remarks 5.21. (1) If g = 0, then C is isomorphic to PjJ,, hence simply connected (by
Riemann-Hurwitz). More generally, all projective spaces P^ are simply connected [SGA 1
XI 1.1].

(2) If g = 1, then C is an elliptic curve and TTI(C) is the Tate module of C,
T(C) = limnC(A;), where n runs through all integers > 1, nC(k) denotes the kernel of the
multiplication by n on C(k), and for m = nd, mC(k) is sent to nC(k) by multiplication by
d. More generally, if A is an abelian variety over k, then

where T(—) is the Tate module, defined similarly [Ml, IV 18].
(3) By 5.20, TTI(C,X) is topologically of finite type. As Grothendieck observed in [SGA

1 X 2.8] It seems unlikely that TTI(C, X) could be topologically of finite presentation, but
the question is still open. Using some Lefschetz type arguments for hyperplane sections,
Grothendieck shows that more generally, for any proper connected scheme X over k, TTI(X)

is topologically of finite generation [SGA 1 2.9].
(4) There is a variant of the last assertion of 5.20 for affine curves. More precisely, let C

be a proper, smooth and connected curve of genus g > 0 over k. Let n be an integer > 1,
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xi, • • •, xn be distinct rational points of C, let X = C — {x\, • • •, xn}, and pick a rational
point x of X. Then there is an isomorphism

where Tlg,n is the prime to p quotient of the profinite completion of the (free) group
^g,n denned by generators aj, bi (1 < i < g), Sj (1 < z < n, subject to the relation
ni<i<(7(a«5 h) rii<i<n Si = -*- [SGA 1 XIII 2.12]. However, 7Ti(X,x) is not topologically of
finite type, even for X = A],. A finite group G is the Galois group of a connected etale
cover of A^ if and only if its largest prime to p quotient is trivial (Abhyankar's conjecture,
proven by Raynaud [R2]).

(5) For C proper, connected and smooth of genus g > 2, the (full) fundamental group
of C encodes an amazingly deep information about C. For example, let me mention the
following striking result of Tamagawa :

Theorem [A. Tamagawa, Finiteness of isomorphism classes of curves in positive
characteristic with prescribed fundamental groups, to appear in J. Alg. Geometry]. Let
k be an algebraically closed field of characteristic p > 0, A = Spec k[[t\], and X a proper
and smooth curve over S with connected geometric fibers of genus g > 2. Let s = Speck.
Assume that the special fiber Xs can be defined over Spec UQ, where ko is a finite subfield
of k. Let fj be a geometric point over the generic point r\ of S. Then, if the specialization
homomorphism

TTl(Xrj,b) -> TTi(Xs,a),

of (5.14-1) is an isomorphism, X is constant over S, i. e. is isomorphic to Xs xs S.

E. Abelian varieties

5.22. Let me now come to liftings of abelian varieties. Let S be a scheme. Recall that
an abelian scheme over S (abelian variety when S is the spectrum of a field) is an S'-group
scheme, which is proper and flat, and whose geometric fibers are reduced and irreducible.
Let X be an abelian scheme over S. Then X is automatically smooth and commutative, see
[Ml, II 4] for the case S is the spectrum of an algebraically closed field, and [M2, 6.5] for
the general case. It is also known that if S is normal, or even geometrically unibranch, X
is protective over S [Mu]. Counter-examples outside of these hypotheses have been given
by Raynaud [Rl].

Grothendieck has shown (unpublished) that abelian varieties admit formal liftings :

Theorem 5.23. Let S = Spf A be as in 5.12, and let XQ be an abelian variety of
s = Spec k. Then :

(a) There exists a proper and smooth formal scheme X over S such that s x ̂  X = XQ
and a section e of X over S extending the unit section eo of XQ.

(b) Let (X, e) be a lifting of (Xo, eo) over S as in (a), and let Xn = Snx^X, with Sn as
in 2.12. One can, in a unique way, inductively define a structure of abelian scheme on Xn

over Sn having en as unit section and such that Xn = Sn Xsn+1 Xn+x as abelian schemes.

Assuming that, for a fixed integer n, an abelian scheme Xn lifting XQ has been
constructed (with unit section en), we have to show that :
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(i) there exists a smooth scheme Xn+i over Sn+i lifting Xn and a lifting en+i of en ;
(ii) given a smooth lifting Xn+i of Xn as a scheme and a lifting en+i of en, there exists

a unique group scheme structure on Xn+i over Sn+i lifting that of Xn over Sn and having
en_|_i as unit section.

The proofs of (i) and (ii) are similar. In both cases one encounters an obstruction, which
lives in a nonzero cohomology group. Using the functoriality (5.10 (a)) of the obstruction
with respect to a suitable morphism, one shows that it is zero.

Let us sketch the proof of (i) (cf. [O, p. 238]). Consider the obstruction

o(Xn)eH2(X0,TXo)®I

to the lifting of Xn to Sn+i (5.9 (b)), where we write TXo for TXo/s
 a n d / for m n / m n + 1

for brevity. Consider, too, the obstruction

o(Xn x Xn) E H2(X0 x Xo,TXoxXo)®I

to the lifting of Xn x Xn to Sn+i. By the compatibility of obstructions with products
(5.10 (a)) we have

(1) o(Xn x Xn)=pr*lO(Xn)+pr*2o(Xn).

Let
s : Xn x Xn -> Xn , (x, y) i->- x + y

be the sum morphism. By functoriality of the obstructions (5.10 (a)), o(Xn) and
o(Xn x Xn) have the same image by the two maps

®I^ H2(X0 x X0,s*TXo) <g> / <r- H2(X0 x Xo, TXoXXo)

These two maps can be rewritten

H2(X0) ® tXo ® / ^ ^ H2(X0 x Xo) ® tXo ® / - ^ H2(X0 x Xo) <g) tXo
xXo

where we have written H*(—) instead of H*(—, O)1 and t means the tangent space at the
origin, pull-back of the tangent bundle T by the unit section. In other words, we have

(2) (s* ®Id)(o(Xn)) = (Id®s)(o(Xn x Xn).

On the other hand, we know [S3, VII 21] that

and that
s* : Hl(X0) -> H\X0 x Xo) = H\X0)
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is the diagonal map. Choose a basis (e^) (1 < i < g) (g = dimX0) for iJ1(Xo) and a basis
£fc (1 < k < g) for tx0 (actually, H1(Xo) and tx0 are naturally dual to each other, and we
could take dual bases, but we don't need this). Write

o(Xn) = ^2 aijei A e
ej

with a£- € / . Let e\ = prje i5 e? = pr\e^ e'k = (ek, 0), e'k' = (0,ek). By (1) we have

(3) o(Xn xXn) = YJ a^e'i A ej <g> 4 + ^ 4 e i ' A ei ® efc-

Using that s* is the diagonal map, hence sends ê  to ê  + e", we get

(s* (g) Id)(o(Xn)) = ^2 aij(ei A e'j + e i ' A e i + ei A e i + e i ' A e i ) ® £fc-

Finally, since s : txoxxo —>• ^x0 sends ê . and ê ' to er̂ , we deduce from (2) :

^ â - (e'i A ej + ej' A ej + ê  A ej + e? A ej') ® efc = ^ 4 (ei A ej + ej' A ej) ® efc.

Therefore
aj = 0

for all i, j , k, i. e. o(Xn) = 0. The existence of a lifting e n + i of the unit section en is
immediate.

For the proof of (ii), see [M2, 6.15] : one first shows that the obstruction to lifting the
difference map /in : Xn Xsn Xn —>• Xn, (x, y) i->- x — y is zero, using its compatibility (5.10
(a)) with composition with the diagonal map x i->- (x,x) and the map x i->- (x,0) ; one
normalizes the lifting of \in using en_|_i and one concludes by a rigidity lemma.

Remarks 5.24. (a) Using the arguments above, Grothendieck actually proved a more
general and precise result than 5.23, namely : if So —>• S is a closed immersion of affine
schemes, defined by an ideal / of square zero, and if if XQ is an abelian scheme over So,
then there exists an abelian scheme X over S lifting XQ ; moreover, the set of isomorphism
classes of abelian schemes X over S lifting Xo is an affine space under T(SQ, tx ®tx0 ®I),

where Xo 1S the dual abelian scheme, and the group of automorphisms of any lifting X
(inducing the identity on Xo) is zero. A different proof is given in [14, A 1.1], using the
theory of the cotangent complex, which provides an obstruction to the lifting of Xo as a
flat commutative group scheme, living in a cohomology group which is zero.

(b) Consider a formal abelian scheme X = colimXn as in 5.23 (b). It is not true in
general that X is algebraizable : using the theory of formal moduli of abelian varieties,
one can construct examples of nonalgebraizable X already for k = C, A = C[[t]] and
g = dimXo = 2. In contrast with the case of curves, it is indeed not always possible to lift
an ample invertible sheaf LQ on Xo to X (or even to Xi). The step by step obstructions
to such liftings lie in a group of the form H2(X0, O) ® / , which is not zero for g > 2, and
they can be nonzero.
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On the other hand, Mumford has proven that any abelian variety in positive character-
istic can be lifted to characteristic zero [M3]. More precisely, if k is an algebraically closed
field of characteristic p > 0 and X$ is an abelian variety over k, there exists a complete
discrete valuation ring A having k as residue field and with fraction field of characteristic
zero and a (projective) abelian scheme X over Spec A such that X 0 k = Xo (the ring A
is a finite extension of the ring W(k) of Witt vectors on k, which is in general ramified).

F. Surfaces

5.25. Let Y be a locally noetherian scheme. By a surface over Y, we mean a scheme
X over Y, which is flat, separated and of finite type and of relative dimension 2. We will
be concerned only with proper and smooth surfaces. By a theorem of Zariski ([Z], [HI]), a
proper, smooth surface over a field is projective. In contrast with the case of curves and
abelian varieties, there are proper, smooth surfaces over a field which do not lift formally.
More precisely, let k be an algebraically closed field of characteristic p > 0. There are two
kinds of nonliftability phenomena.

(a) Nonliftability to W2. Let W = W(k) be the ring of Witt vectors on k, Wn = W/pnW
the ring of Witt vectors of length n. Let Xo be a proper and smooth surface over k
having nonclosed global differential forms of degree 1. Examples of such surfaces have
been constructed by Mumford [M4] and, later on, by Lang [L], Raynaud and Szpiro (see
[Fo]). By a theorem of Deligne-Illusie [DI, 2.4] this pathology prevents Xo from being
liftable to W2.

(b) Nonliftability to characteristic zero. Improving a result of Serre [S2], Mumford [M5]
has constructed examples of proper and smooth surfaces Xo over s = Spec k having the
following property. Let A be any integral, complete local noetherian ring with residue field
k and fraction field of characteristic zero. Then there exists no proper and smooth scheme
X over Spec^4 such that Xs = Xo .

Using Hodge-Witt numbers, which are fine invariants of Xo defined in terms of the de
Rham-Witt complex, Ekedhal [E, p. 114] observed that similar examples are provided by
suitable Raynaud's surfaces as mentioned in (a).

The relation between phonomena of types (a) and (b) is not well understood.

5.26. Here are some results in the positive direction. As in 5.12, let A be a complete
local noetherian ring, with maximal ideal m and residue field k. Let S = Specyl,
S = SpiA = colimS'n, where Sn = Spec^4/mn+1 . Let Xo be a proper and smooth
surface over s = Spec k. Using 5.19 and the general results of [H, IV 2, 5] it is easy to see
that if Xo is rational or ruled, then Xo lifts to a projective surface over S. On the other
hand, we have seen that if Xo is an abelian surface, then Xo admits a formal smooth lifting
X over S. The same is true if Xo is a K3 surface, i . e. a proper, smooth, connected surface
such that Q?x , is trivial and i7 1 (X o , 0x o ) = 0- More precisely, we have the following
result, due to Rudakov-Shafarevitch and Deligne :

Theorem 5.27 [D2, 1.8]. With the notations of 5.26, let Xo be a K3 surface over an
algebraically closed field k.

(a) There exists a proper and smooth formal scheme X over S lifting Xo.
(b) Let Lo be an ample line bundle on Xo. Then there exists a complete discrete valuation

ring R finite over the ring of Witt vectors W(k), a proper and smooth scheme X over
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T = Speci? lifting Xo, and a lifting of Lo to an ample line bundle L on X.

Let us prove (a). By a basic result of Rudakov-Shafarevitch [RS] (see also [N]), we have

H°(X0,TXo/k) = 0.

Since £lx ,fc is trivial, we have TXo/k = ^x /fc> hence by Serre duality, H2(X0, TXo/k) = 0.
Therefore the conclusion follows from 5.19. The proof of (b) is much more difficult, since
H2(XQ,O) = k and one cannot apply 5.19. See [D2] for details.

Remarks 5.28. (a) As in the case of abelian varieties, in the situation of 5.27 (a) it may
happen that a given polarization of Xo can't lift to X, see [D2, 1.6] for a more precise
statement.

(b) For p = 3, M. Hirokado [Hi] has constructed a Calabi-Yau threefold X0/k (i. e.
a smooth projective scheme of dimension 3 such that £lx ,k ~ Ox0 and H 1(Xo, Ox0) =
H2(X0,0Xo) = 0) having b3 = 0, where b3 = dimH3(X0, <&),£ ^ p. By Hodge theory,
such a scheme admits no smooth projective lifting to characterisic zero. This Calabi-Yau
threefold is constructed as a quotient of a blow-up of P^ by a certain vector field. Thus, as
Calabi-Yau threefolds can be considered as analogues of K3 surfaces, Deligne's result 5.27
does not extend to dimension 3.

G. Cotangent complex

5.29. So far we have considered deformations of smooth morphisms only. To deal with
more general morphisms, one must use the theory of the cotangent complex [II]. For an
extensive survey, see [15]. We will just give very brief indications.

Let / : X —>• Y be a morphism of schemes. The cotangent complex of / (or X/Y),
denoted

is a complex of Ox-niodules, concentrated in < 0 degrees, defined as follows. The pair
of functors : free /~1(CV)-algebra generated by a sheaf of sets, sheaf of sets underlying
an /~1(Cy)-algebra, defines a Godement style, standard simplicial /~1(0y)-algebra P,
augmented to Ox, whose components are free /~1(Oy)-algebras over sheaves of sets,
and such that the chain complex of the underlying augmented simplicial /~1(0y)-module
is acyclic. Applying the functor H1 (Kahler differentials) componentwise, one obtains a
simplicial /~1(CV)-module Q\>/t-i(Q \ ® P OX, whose corresponding chain complex is

- This complex has a natural augmentation to QX,Y, which defines an isomorphism

^ s c o m P o n e n t s are flat Ox-modules. It depends functorially on

X/Y. Moreover, a sequence of morphisms X ^Y ^Z gives rise to a distinguished
triangle in D(X), called the transitivity triangle

f*Ly/z —>• Lx/z —>• LX/Y —> •

Suppose / is a morphism locally of finite type between locally noetherian schemes.
Then LX/Y is pseudo-coherent (3.6.1). If / is smooth, the augmentation LX/Y -^
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is a quasi-isomorphism. If / is a closed immersion, defined by an ideal /, then there is a
natural augmentation LX/Y ~* -̂ /-̂ 2[1]> which is a quasi-isomorphism when / is a regular
immersion, i. e. is locally defined by a regular sequence ; in this case I /I2 is locally free.
If / is locally of complete intersection, i. e. is locally (on X) the composition of a regular
immersion and a smooth morphism, then LX/Y is perfect, of perfect amplitude in [—1,0]
(3.6.3).

5.30. The relation between cotangent complex and deformation theory comes from the
following fact. Let / : X —> Y be a morphism of schemes. If i : X —> X' is a closed
immersion into a F-scheme defined by an ideal / of square zero, / is a quasi-coherent
module on X. We call i (or X') a Y-extension of X by I. For fixed /, these F-extensions
form an abelian group, which is shown to be canonically isomorphic to Ext1 {LX/Y'•> I)- This
isomorphism is functorial in I. Using the transitivity triangle (5.29), one easily deduces
the following generalization of 5.9 :

Theorem 5.31. (a) Let X and Y be schemes over a scheme S, and let j : Xo —>• X be a
closed subscheme defined by an ideal J of square zero. Let g : Xo —>• Y be an S-morphism.
There is an obstruction

o(g,j)EExt1(g*LY/s,J)

whose vanishing is necessary and sufficient for the existence of an S-morphism h : X —> Y
extending g, i. e. such that hj = g. When o{g,j) = 0, the set of extensions h of g is an
affine space under Ext1{g*LY/s, J) = Hom{g*QY,s, J).

(b) Let i : So —>• S be a thickening of order one defined by an ideal I of square zero, and
let XQ be a flat S^-scheme. There is an obstruction

o{X0,i)eExt2{LXo/SoJ*I)

(where /o : Xo —> So is the structural morphism) whose vanishing is necessary and suffi-
cient for the existence of a deformation X of Xo over S (5.7). Wheno{X0li) = 0, the set of
isomorphism classes of such deformations is an affine space under Ext1 {LxQ/soi /o-O? and
the group of automorphism of a fixed deformation is isomorphic to Ext°{Lxo/soi /o-O =

Here is an application to liftings of certain singular curves (generalizing the smooth
case, dealt with in 5.19) :

Corollary 5.32. Let S = Spec^4 be as in 5.19. Let Xo be a proper curve over s (5.18).
We assume that Xo is locally of complete intersection over s and is smooth over s outside
a finite set of closed points. Then there exists a protective and flat curve X over S such
that Xs = XQ.

Note that such a lifting X is automatically locally of complete intersection over S [EGA
IV 11.3.8, 19.2.4], and is smooth over S outside a finite subscheme (the nonsmoothness
locus of X/S is closed and its special fiber is finite, hence is finite by 2.15).

As in the proof of 5.19, we first show that there exists a (proper) and flat formal scheme
X = colimXn over S lifting Xo. Assume Xm, flat over Smi has been constructed for
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m < n such that Xm = Sm Xsn X n , and let in : Sn —>• S^+i be the inclusion. Then, by
5.31, there is an obstruction

o(Xn, in) E Ext2(LXo/s, Oxo <g> m.n+1/mn+2) = Ext2(LXo/s,0Xo) 0k m.n+1/rn.n+2

to the existence of a flat lifting Xn+i of Xn over SVi+i. Therefore it suffices to show

(*) Ext2(LXo/s,0Xo) = 0.

We have
Ext2(LXo/s,(DXo) = H2(X0,Rnom(LXo/s,0Xo)).

Since LXQ/S is of perfect amplitude in [—1,0], R'Hom(LXQ/s,0Xo) is of perfect amplitude
in [0,1], in particular,

£xti(LXo/s,0Xo) = 0

for i ^ 0,1. Hence it suffices to show

(1) H2(X0l'Uom(LXo/s,0Xo)) = 01

(2) H1(X0,£xt\LXo/siOXo)) = 0.

(1) trivially holds because XQ is of dimension 1. Since XQ is smooth over s outside a finite
closed subset E, Ext1^^^, 0Xo) is concentrated on S, which implies (2), hence (*).

It remains to show that X is algebraizable to a projective scheme over S. If D is
any effective divisor supported on the smooth locus of Xo and meeting each irreducible
component of Xo, then 0Xo(D) is ample, and since H2(X0,0Xo) = 0, the conclusion
follows from 5.6.

6. Serre's examples [S2]

6.1. Let k be an algebraically closed field of characteristic p > 0, n > 0, r > 1 integers,
G a finite group, and

A) : G -> PGLn+1(k) (= GLn+1(k)/k*)

a representation. Let PQ = P£. Since the group of fe-automorphisms of PQ is PGLn+i(k)
[H, II 7.1.1], pQ defines an action of G on Po- For g e G7 denote by Fix(p) the (closed)
subscheme of fixed points of g (intersection of the graph of g and the diagonal in Po x^Po)-
Let Qo C Po be the union of the Fix(</)'s for g / e. Consider the condition

(6.1.1) r + dim(Q0) < n.

The starting point of Serre's construction is the following result [S4, Prop. 15], which Serre
attributes to Godeaux :
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Proposition 6.2. Assume that (6.1.1) holds. Then there exists an integer do > 1
such that, for any integer d divisible by do, one can find a smooth complete intersection
Yo = Y(hi, • • •, hn-r) of dimension r in PQ, with deg(/ij) = d for 1 < i < r, which is stable
under G, and on which G acts freely.

By [SGA 1, V 1.8] the action of G on PQ is admissible, in particular, the quotient
Zo = Po/G exists. The projection / : Po ->• Zo is finite, and (f*0Po)

G = OZQ. By [EGA
II 6.6.4], ZQ is projective (indeed, condition (II bis) of [EGA II 6.5.1] is satisfied : as
Po is normal, ZQ is normal, too, as follows from the above formula for Oz0)- Choose an
embedding i : Zo —>• P | . Then (z/)*C?ps(l) = Op0(d0) for some integer d0 > 0. For any

integer m > 1, denote by im : Zo ->• Pf (m) (N(m) = (s+m) - 1) the m-th multiple of i.
Then (im/)*(9piv(m)(l) = Op0(d) where d = mdo. Since / is finite, f(Qo) is closed in Zo

and dim(/(Qo)) = dim(Qo)- Since (6.1.1) holds, by a theorem of Bertini [ ], there exists a
linear subspace LQ = V(£i,. • • • ,£n-r) of !& °f codimension n — r (with deg(^) = 1),
such that LQ fi Zo is contained in U$ = ZQ — f(Qo) and Lo is transversal to [To- Since
f\U0 : f^iUo) ->• C/o is etale, the forms ^ = (imf)*£i 6 r (P 0 , C?(d)) (1 < i < n - r ) define
a smooth complete intersection Yo

 m -Po, which is stable under G, and does not meet Qo,
hence on which G acts freely.

6.3. Let d and Yo be as in (6.2), and let

Xo = YQ/G

be the quotient of Yo by G. As G acts freely on Yo? Xo/k is a smooth, projective scheme
of dimension r, and the projection

is an etale cover of group G [SGA 1, V 2.3]. Moreover, since Yo is a complete intersection
of dimension r > 1, Yo is connected [FAC, no 78, Prop. 5].

The main point in Serre's construction is the following result.

Proposition 6.3. Assume r > 3, or r = 2, (p, n + 1) = 1, and p\d. Let A be a complete
local noetherian ring, with residue field k. Let X be a flat, formal scheme over A lifting
XQ. Then X is algebraizable, i. e. (4-9) there exists a (unique) proper scheme X/A such
that X = X. Moreover, X is projective and smooth over A and the representation po (6.1)
lifts to a representation

p:G^ PGLn+1(A) (= GLn+1(A)/A*).

The case r > 3 is dealt with in [S2]. The case r = 2 is due to Mumford [M5].
By 5.9 (b), Yo lifts uniquely (up to a unique isomorphism) to a formal etale cover

y = colimYm of X = colimXm, i. e. such that Ym is finite etale over Xm for all m > 0
(where Xm = X ® A/mn+1). By 5.9 (b) again, the action of G on Yo extends (uniquely)
to an action of G on y, making y an etale Galois cover of X of group G (i. e. an inductive
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system of G-Galois etale covers Yn —>• Xm). Since r > 2, we have H1(Y0,Oy0) = 0 and
H°(YQ, 0Yo) = k ([FAC no 78] or [SGA 7 XI ]), so 3.11.2 implies that H°(Ym, OXm) = Am

for all m.
Let i : Yo —>• Po be the inclusion and Lo = Oy0(l) = z*(9po(l). We shall show :
(*) I/0 lifts to an invertible sheaf £ on ^ , unique up to a (non unique) isomorphism

(inducing the identity on Lo).
Assume first that r > 3. Then, by (loc. cit.), H2(Y0, OYQ) = 0. Since H1^, 0Yo) = 0,

too, (*) is true by 5.5. Assume now that r = 2. Then it is no longer true that iI2(Yo, OY0) =
0. To show that Lo lifts (in which case it will lift uniquely as H1(YOl Oy0) = 0), Mumford
argues as follows. We have

(**)o ^Y0/k = ®YO(N),

with N = (n — r)d — n — 1. The hypotheses imply (p, N) = 1. Assume that, for m > 0, Lo

has been lifted to an invertible sheaf L m on Xm, and the isomorphism (**)o lifted to an
isomorphism

Let im : Ym —>• Ym+i be the inclusion. Consider the obstruction o(Lm,im) to lifting L
to Ym+1 (5.3 (b)). By 5.4 (a), we have

o(L^N,im)=No(L ,i

Since V& ,A lifts V& , , , the isomorphism (**)m implies that o(L®NAm) = 0,
hence o(Lm,im) = 0 as well, since p does not divide N. Hence Lm lifts to an invertible
sheaf Lm_j_i on Ym+\. Since H1(YQ, OYQ) = 0, by 5.3 (a) the isomorphism (**)m lifts to an
isomorphism (**)m+i. Therefore Lo lifts to an invertible sheaf C on y.

Since Lo is ample, by 5.6 there exists a projective and flat scheme Y over A such that
Y = y and an ample line bundle L o n F such that L = C By [EGA II 6.6.1], the norm
EQ = NY/XLQ of LQ is an ample line bundle on XQ. For m e N , let Em = NYrn/xrnLm and
£ = \imEm. Then £ lifts Eo, so by 4.10 there exists a projective scheme X/A such that
X = X and an ample line bundle E on X such that E = £. By 5.6 (and the argument
at the end of the proof of 5.19), X is smooth over A. Moreover, by 4.7, the etale Galois
cover Y —> X is deduced by completion of a (unique) etale Galois cover Y —> X of group
G, and by 4.2, E = NY/XL.

It remains to show that p0 lifts to A. By ([FAC no 78] or [SGA 7 XI ]), we have
H°(YOlLo) = kn+1, H^YO.LQ) = 0. Therefore, by 3.11.2, H°(YmiLm) = A7^1 for all m,
hence H°(Y, L) = An+1 by 2.4. Let geG. Since i f 1 ^ , OYQ) = 0, by 5.3 (a) and 4.2 there
is an isomorphism a(g) : L ^ > L above g : Y —> Y, i. e. an isomorphism g*L ^ > L,
unique up to an automorphism of L, such that a(g)o is the isomorphism Lo —>• Lo above
g : Yo —> YQ given by the action of g on YQ (which is well defined up to an automorphism
of Lo)- For g and h in G, we have a(h)a(g) = a(gh) and a(e) = Id up to an automorphism
of L. Therefore we get a representation

p : G -> PGL(H°(Y, L)) = PGLn+1{A)}
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associating to g the automorphism p(g) of H°(Y, L) = An+1 induced by the pair (g1 a(g)),
which automorphism is well defined up to multiplication by an element of A*. This
representation lifts PQ.

6.4. Let now r and n be integers with 1 < r < n, and let Gbea group of type (p, • • • , p)
of order ps, i. e. G ~ F£, with s > n + 1. Assume moreover that p > n + 1. Choose
an injective homomorphism h : G —> k (where & is considered as an additive group). Let
N = (v,ij) be the nilpotent matrix of order n +1 denned by u^j = 1 if j = i +1 and u^j = 0
otherwise. For g £ G, let

/5O(0) = exp(h(g)N) e GLn+1(k)

(which makes sense since p > n + 1), and let po(g) be the image of po(g) in PGLn+i(k).
We thus get a representation

(6.4.1) p o i G ^ P G L ^ A ; ) ,

which is faithful, as ft, is injective. For any g E G, g ^ e, Fix(#) consists of the single
rational point (1, 0, • • •, 0) of Po- In particular, dimQo = 0, with the notations of 6.1, so
the condition (6.1.1) is satisfied.

Proposition 6.5. Assume that p > n + 1. Let A be an integral, complete, local
noetherian ring with residue field k and field of fractions K of characteristic zero. Then
there exists no homomorphism p : G —> PGLn+i(A) lifting po (6-4-1)'.

The following argument is due to Serre (private communication). Suppose that such a
homomorphism p exists. Since po is injective, p is injective, too, and so is the composition,
still denoted p, with the inclusion PGLn+i(A) —> PGLn+i(K). Since K is of characteristic
zero and p does not divide n + 1, this representation lifts to a (faithful) representation
p' : G —>• SL(V), where V = Kn+1. As G is commutative and K is of characteristic zero,
up to extending the scalars to a finite extension of K, V decomposes into a sum

V =

of 1-dimensional subspaces stable under G, corresponding to characters x-i '• G —>•
Aut(Vi) = K*, whose product is 1. The kernel Z of p is the intersection of the kernels Hi
of Xi, for 1 < i < n. Each Xi IS a homomorphism from G to nv(K), so can be viewed as a
linear form on G considered as a vector space over ¥p. Since G is of dimension s > n + 1
over Fp, Z cannot be zero, which contradicts the faithfulness of p.

Corollary 6.6. Letr, n be integers such that 2 <r<n andp > n + 1 . LetG = F* with
s > n + 1. There exists a smooth, protective complete intersection Yo of dimension r in Po,
stable under the action of G on Po defined by the representation po constructed in (6.4-1),
and on which G acts freely, and such that the smooth, projective scheme XQ = YQ/G has
the following property. Let A be an integral, complete, local noetherian ring with residue
field k and field of fractions K of characteristic zero. Then there exists no formal scheme
X, fiat over A, lifting Xo.
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Let do be an integer > 1 having the properties stated in 6.2. If r > 3, take any nonzero
multiple d of do, and if r = 2, take any nonzero multiple d of do which is divisible by p. By
6.2, choose a smooth, complete intersection YQ in PQ, of degree (d, • • •, d), stable under the
action of G on Po denned by the representation p0 constructed in (6.4.1), and on which
G acts freely. Let Xo = Yo/G. Assume that there exists a formal scheme X, flat over A,
lifting Xo- Since p > n + 1 and, if r = 2, p divides d, the assumptions of 6.3 are satisfied,
and its conclusion, together with 6.5, yields a contradiction.

The minimal examples are obtained for r = 2, n = 3, s = 4, p = 5. (In [S2], the minimal
ones were fore r = 3, n = 4, s = 5, p = 7).

Remark 6.7. Let Xo be the scheme considered in 6.6. Let A be a complete, local
noetherian ring with residue field k, which is the base of a formal versal deformation X of
Xo [Sc]. Such a ring A is a VF-algebra which is formally of finite type, where W = W(k)
the ring of Witt vectors on k. Let Ko = W[l/p] be the fraction field of W. It follows from
6.6 that A ®w Ko = 0, in other words there exists an integer no > 1 such that pn° A = 0.
Otherwise, one could find an integral closed subscheme T = Spec B of Spec A with generic
point of characteristic zero. By pulling back X to Spf B, we would obtain a contradiction.

We have the following question : can one have no = 1 ?
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