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ABSTRACT. We will first introduce some elementary deformation
theory and use this to study the local properties of the Hilbert and
Quot scheme, like tangent space, dimension and nonsingularity.

In the second half we will study the Hilbert scheme of points
which parametrizes finite subschemes of length n on a smooth
quasiprojective variety. We will construct the Hilbert-Chow mor-
phism from the Hilbert scheme of points to the symmetric power
that sends a scheme to its support with multiplicities. We study
some simple cases for small n and we show that the Hilbert scheme
of points on a smooth curve is isomorphic to the symmetric power.
We then study a natural stratification of Hilbert scheme of points
and use it to sketch the computation of the Betti numbers. Fi-
nally we give a brief outline of the Heisenberg algebra action on
the cohomology of Hilbert schemes of points.
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CHAPTER 1

Elementary deformation theory

In this section we will give an elementary introduction to the be-
ginnings of deformation theory. Deformation theory is also treated in
lecture 5 of the lectures of Illusie [111] from a somewhat more advanced
point of view.

Let k be a field. In this section we will assume all schemes to be
schemes over k.

Let Y be a scheme and p G Y a point. We want to study the
local properties of Y near p like tangent space, (non)singularity and
dimension. It turns out that this can be done via studying morphisms
/ : Spec(A) —>• Y, where A is a local Artin algebra and / maps the
closed point to p.

In particular we are interested in the case of the Hilbert scheme.
Let X be a projective scheme over a field k and let Z C X be a closed
subscheme (or more generally X quasiprojective and Z C X closed and
proper), and we want to study the local properties of Hilb(X) near the
point [Z] given by Z. Then the above means that we have to study
infinitesimal deformations of Z, i.e. flat families over Spec(A) with the
closed fibre equal to Z.

1. Infinitesimal study of schemes

CONVENTION 1.1. For a local ring A we denote by UIA its maximal
ideal. Let (Art/k) be the category of local Artinian fc-algebras with
residue field k. For the rest of this section let D be a covariant functor
(Art/k) —> (Sets) such that D(k) is a single point.

The idea is that D(k) is the object that we want to deform (e.g.
D(k) consists of a closed subscheme Z C X). For A G (Art/k) an
element of D(A) should be an infinitesimal deformation over Spec(A)
of the element of D(k), (e.g. it is a subscheme W C X x Spec(A) which
is flat over Spec(A) and whose fibre over the closed point of Spec(A)
isZ).

To understand the functor D it is crucial to understand what hap-
pens for surjective morphisms a : B —>• A in (Art/k).



2 1. ELEMENTARY DEFORMATION THEORY

(1) What deformations F G D(A) lift to elements in D(B), i.e.
what is the image of D(a) : D(B) -» D(A)1

(2) How unique is such a lift, i.e. how big is a fibre of D(a) when
it is nonempty?

Let M := ker(a) C B. By factoring a into a sequence of morphisms
we can assume that at each step M • TUB = 0.

DEFINITION 1.2. A small extension

0^ M -+B^ A^O

is a surjection B —>• A in (Art/k) with kernel M such that M • TTIB = 0.

REMARK 1.3. Let 0 —>• M -> B —>• ft -> 0 be a small extension
of ft. Then D(B) —>• ft is surjective (i.e. -D(B) is nonempty). In fact
D(B) contains a distinguished element 0. As B is a ft-algebra we have
a homomorphism ft —> B, such that ft —>• B —>• ft is the identity, thus 0
is the image of the unique element of D(k) under D(k) -> D(B).

Our main example of a functor D : (Art/k) —>• (Sets is the one
defined by a complete local ring.

DEFINITION 1.4. Let R be a complete local ft-algebra with residue
field ft and with tangent space of finite dimension (embedding di-
mension). Then we define hR : (Art/k) —>• (Sets) to be the functor
A 4 Horrik(R,A).

REMARK 1.5. The case that we have mostly in mind is that R =
Ox,P, where X is a scheme and p is a point of X. Let A be a local Artin
ring. Then hR(A) is the same as the set of morphisms Spec(A) —>
X sending the closed point to p. This is because such a morphism
corresponds to a homomorphism A —> Ox,P and this has to factor
through Ox,P/rrip for ft sufficiently large, thus is factors through the
completion.

REMARK 1.6. Let d be the embedding dimension of R. We put
S := k[[t\,..., td]] and let n be the maximal ideal of S. Then we can
write R = k[[xi,..., Xd]]/J, where J is an ideal contained in n2. Let
T = (mR/mRy = (n/n2)w be the tangent space of R.

We now want to see that the behaviour of hR under small extensions
can be nicely described in terms of T and and J/nJ. This also means
that we can find out a lot about R by looking at hR.

THEOREM 1.7. For every small extension 0 - > M ^ J 5 - > y l - ) - 0
there is a natural exact sequence of sets

^ hR(B) -+ hR(A)-^(J/njy ®k M.
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Furthermore this sequence is functorial in small extensions.

REMARK 1.8. (1) The exactness of the sequence at hR(A) means
that an element a € hR(A) lifts to B if and only if ob(a) — 0,
i.e. ob(a) is an obstruction to the lifting. The exactness at
hR(B) means that, if a lifting exists, T ®kM acts transitively
on the liftings. Finally that the sequence starts with 0 means
that the liftings form an affine space under T ®kM.

(2) Functoriality of the sequence means the following: For any
morphism of small extensions, i.e. a commutative diagram

0 —y M —y B —y A —y 0

0 —> M' —» B' —> A' —>• 0,

we get a commutative diagram

0 —y T®kM —y hR(B) —y hR(A) —y (J/nJ)v®kM

I I I
0 —> T®kM' —> ^ ( B ' ) —). ^ ( ^ ' ) —).

P R O O F . Let 0—y M —y B —>A->0bea small extension. Assume
given a /c-algebra homomorphism tp : R —y A. This induces a homomor-
phism cp' : S —> A (by composing with the natural map S —»• S/J = R).
As S is a power series ring, this lifts to a homomorphism ip : S —> B.
The lifts ij) : R —y B of ip correspond bijectively to the lifts <p : S -> B
with tp\j = 0.

Fix a lifting a : S —y B of (p and let ft : S —y B be another lifting.
Then h := (/? — a) is a linear map 5 —> M. As M • mB = 0, we see
that a(f)x = P(f)x = f(0)x for any / G 5", x G M, where /(0) is the
residue class of / in k. Let f,g £ S. Then

- Kf)<*(g)

Thus h is a derivation from S to M, and we get that the set of liftings
(p : S —y B of cp is an affine space over the space of derivations from S
to M i.e. under (n/n2)v ®k M.

As h is a derivation and J C n2, it follows that h\j = 0. Thus (p\j
does not depend on the lifting £>, and by ra# • M = 0 it has n J in its
kernel. Let ob((p) : J/nJ —» M be the induced map. Then the liftings
(p : S —> -B of </? give homomorphisms R -^ B if and only if o6(y?) = 0.

The functoriality of the exact sequence is an exercise. •
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REMARK 1.9. We see that the tangent space T of R can be read of
from h,R. We have a small extension 0 -» M —)• k[e]/e2 —> k —> 0. By
Remark 1.3 we see that hji(k[t]/e2) has a distinguished element 0, thus
by Theorem 1.7 it is a vector space isomorphic to T.

2. The case where X represents a functor

Assume a scheme X represents a moduli functor F : (Schemes) —>
(Sets). Let [a] € X corresponding to a G F(k). Then we can look at
the corresponding deformation functor Fa : (Art/k) —> (Sets), which
maps A to the the set of all elements in F(Spec(A)), whose fibre over

the closed point is a. Let R := Ox,[a]- Then we get a canonical isomor-
phism of functors between Fa and HR.

Let again D : (Art/k) —>• (Sets) be a covariant functor with D(k)
a point.

DEFINITION 2.1. D is called pro-representable if there exists a com-
plete local algebra R of finite embedding dimension with residue field
k such that D is isomorphic to h^. We say then that R pro-represents
D.

Assume D is obtained as above from a moduli functor F. Then
the infinitesimal study of F often leads in a natural way to a tangent-
obstruction theory as follows.

DEFINITION 2.2. Let D : (Art/k) ->• (Sets) be a pro-representable
functor with D(k) a point. We say D has a tangent-obstruction theory
if there exist finite-dimensional vector spaces T\ and T2 such that the
following holds.

(1) For all small extensions 0—> M —> B ^ A -+ 0 there is an
exact sequence of sets

0 -> 71 <g>fc M ->• D(B) -^ D(A) A r 2 ®fc M.

(2) This exact sequence is functorial in small extensions.

We call Ti the tangent space, T<i the obstruction space and ob the
obstruction map.

Thus Ti and T2 behave like T and (J/nJ)y in Theorem 1.7. So we
can use T\ and T2 to study R.

THEOREM 2.3. Let D : (Art/k) ->• (5ets) 6e represented by a com-
plete local ring R = S/J with S = k[[xi,..., xd]], J e n 2 w/iere n zs t/ie
maximal ideal of S. Assume that D has a tangent obstruction theory.

Then T\ ~ (n/n2)y and there is a canonical injective linear map
jy -> T2.
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PROOF. By Remark 1.3 D(k[e]/e2) — hR(k[e]/e2) is a vector space
isomorphic to T. The same argument shows that it is also a vector
space isomorphic to 7\.

So we only need to construct the injective linear map (J/nJ)v —y T2.
Step 1. To make the idea of the proof clear, we first make the

(wrong) assumption that T2 is also an obstruction space for small ex-
tensions of complete local rings. In the second step we indicate the
necessary changes.

Let M := J/nJ, B := S/nJ. Then we have a small extension
0->M-+B^-R^0. The obstruction to lifting id : R -» R to a
map cp : R —y B is a canonical element

o = ob{id) e (J/nJ) ®fc T2 = Hom((J/nJ)w, T2).

Assume o is not injective. Then there exists a sub-vectorspace V C
J/nJ of codimension 1, such that TT(O) = 0 under the projection ?r :
M -> M/V. Thus there exists a lifting R -> B/V of id : R -> R. On
the other hand in the diagram

0 —> J —> S —y R —> 0

0 —> JjnJ = M —> B —y R —> 0

0 —->• M/V —>• S / F —>- R —> 0

we see that the map J —y M —>• M/V^ is just the canonical quotient
map. In particular it is nonzero. Thus by Theorem 1.7 no lift exists.
Thus {J/njy -y T2 is injective.

Step 2. We have instead to work with small extensions of Artin
algebras. We can still use basically the same argument with some minor
changes.

By the theorem of Artin Rees ([AM] Proposition 10.9), there exists
an i > 0, such that rfflJc nJ. Let M = (J + ri) /(nJ + nl) = J/nJ,
B := S/(nJ + nl). Thus we have a small extension 0 -» M -> B -y
R/nl —» 0. The obstruction to lifting the quotient map p : R —y R/nl

to (p : R —y B is o := ob(p) G Hom((J/nJ)v,T2). If o is not injective,
there exists again a subvector space V C M of codimension 1 such that
there exists a lifting R —y B/V of p. On the other hand the induced
map J —y M/V is again as above just the canonical quotient map, and
thus nonzero. Thus by Theorem 1.7 no lift exists and o is injective. •

Now we want to show that the tangent-obstruction theory can be
used to get information about the structure of R.
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Recall that a scheme X is called a local complete intersection, at
p if there is a smooth variety Y such that TY/x is generated at p by
codimp(X,Y) elements. A local ring A is called complete intersection
if A = R/I for R a regular local ring and / an ideal generated by
codim(A, R) elements.

COROLLARY 2.4. Under the assumptions of Theorem 2.3, let d :=
dim(Ti) and r := dim(T2).

Then d > dim(R) > d — r. Furthermore if dim(R) = d — r, then R
is a complete intersection. Ifr = 0, then R ~ k[[x\,..., xd\].

PROOF. By Theorem 2.3 we get dim(J/nJ) < r. Thus, by Nakayama's
Lemma, J has at most r generators. This implies all the statements.

D

REMARK 2.5. If i? is the completion Ov,p of the local ring of a
scheme at a point, then we get under the assumptions of the Theorem
d > divripiy) > d — r. Furthermore, if dimp(V) —d — r, then V is a
local complete intersection at p and if r = 0, then V is nonsingular at
P-

PROOF. We know that dim(R) = dim(OVjP) = dimp(V) ([AM]
Corollory 11.19). Furthermore Oy,p is regular if and only if Oy,p is
regular ([AM] Corollary 11.24). Finally assume that Oy,P = A/1 where
A is a regular local ring and / is an ideal. Then R = A/1 with / the
m,4-adic completion of /. Then I/TUAI = / /m^J. By Nakayama's
Lemma, if / is generated by s elements, so is / . •

3. Non pro-representable functors

We have assumed that our functor D : (Art/k) —> (Sets) is pro-
representable, but many functors occurring in deformation theory are
not (basically because the objects that we want to deform might have
infinitesimal automorphisms, i.e. the tangent space to the space of
automorphisms is nonzero). Also in this case D often has a tangent-
obstruction theory, but we have to weaken the axioms a little bit, as
one can show that our original axioms imply pro-representability.

DEFINITION 3.1. A functor D : (Art/k) ->• (Sets) with D(k) a
point is said to have a tangent-obstruction theory if there exists finite
dimensional k-vector spaces Ti, T2 such that the following holds.

(1) For all small extensions 0—)• M —>• B ^ A -^ 0 there exists
an exact sequence of sets

Tx®kM -+ D(B) -)• D ( i ) A r 2 ®fc M.
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(2) In case A = k, the sequence becomes

0 -+ Ti ®fc M -> £>(£) -»• L>(A)-^>T2 ®fc M.

(3) The exact sequences in (1) and (2) are functorial in small ex-
tensions.

DEFINITION 3.2. Let a : F —y G be a morphism of functors:
(Art/k) —y (Sets), a is called smooth if for all small extensions 0 —y
M —y B —y A —y 0 the canonical map F(B) XG(A) G(B) is surjective.

Under this condition F is called a hull for G, if F(k[e]/e2) —>•
G(A;[e]/e2) is bijective.

REMARK 3.3. (1) Note that by the above G(k[e]/e2) can viewed
as the tangent space to the functor. Thus a : F —y G is a hull if
and only if it is smooth and an isomorphism of tangent spaces.

(2) The formal criterion for smoothness says that a morphism / :
X —y Y of Noetherian schemes is smooth at a point p G X if
and only if the corresponding morphism of functors KQ —y
hp. is smooth.

The main result is now that functors D : (Art/k) —>• (Sets) that
have a tangent-obstruction theory have a pro-representable hull.

THEOREM 3.4. Let D : (Art/k) —y (Sets) have a tangent-obstruction
theory. Then there is a pro-representable functor fiR which is a hull for
D.

Furthermore R = k[[xi,... ,Xd]]/J, where d = dim(T\) and J has
at most dim(T2) generators.

The precise story is as follows. Schlessinger [Schl] gave axioms for
functors D : (Art/k) —y (Sets) and showed that they are equivalent
to the existence of a pro-representable hull. It is rather easy to prove
that our axioms imply Schlessinger's axioms. Our axioms are stronger
but usually easier to check. The last part of the theorem is an easy
consequence, as it follows from the definitions that 7\ and T2 give also
a tangent-obstruction theory for the pro-representable hull.

The existence of a hull for D is the infinitesimal counterpart to
the Kuranishi family or a miniversal deformation in complex-analytic
deformation theory.

For pro-representable functors we used a slightly stronger version
of the axioms of a tangent-obstruction theory. We can now see that
these imply that the functor is pro-representable.

EXERCISE 3.5. Let D : (Art/k) -y (Sets) be a functor with a
tangent-obstruction theory where we replace parts (2) and (3) by part
(2) of Definition 2.2
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Using Theorem 3.4 show that D is pro-representable.

As said before, most functors appearing in deformation theory are
not pro-representable. Roughly speaking pro-representablilty is the
infinitesimal version of a fine moduli space and a pro-representable hull
that of a chart of an Artin moduli stack. We give without proof some
examples of non pro-representable functors with a tangent-obstruction
theory. The statements are proved in a slightly different language in
the lectures [111] of Illusie.

EXAMPLE 3.6. (1) Let X be a smooth variety. The functor of
deformations of X is given by putting Defx{A) to be the set of
isomorphism classes of flat schemes W over Spec(A) together
with an isomorphism of the closed fibre with X.

In this case 7\ = H\X, Tx) and T2 = H2{X, Tx) (see [111]
Section 5.B).

(2) Let £ be a coherent sheaf on a variety X. The functor of
deformations of £ is given by putting Defs (A) to be the set of
isomorphism classes of coherent sheaves f o n l x Spec(A) flat
over Spec(A) together with an isomorphism of the restriction
of T to the closed fibre with 8.

In this case 7\ = Ext 1^,^) and T2 = Ext2(£,£) and in
case £ is locally free Tx = HX{X, End{£)) and T2 = H2(X, End{£))
(see [111] Section 5.A).

As one can see in these examples, usually the T* are homology
groups or Ext groups of some sheaves. It usually happens that if
7\ is the group with index i, then T2 is the group with index i +
1. In this case usually the group with index i — 1 is the group of
infinitesimal automorphisms, e.g. H°(X,TX) is the tangent space to
the automorphisms of X.

4. The local structure of the Hilbert scheme

We want to use the previous results on deformation theory to study
the local structure of the Hilbert scheme at a point. The same argu-
ments also give the local structure of the Quot scheme.

Let X be a scheme over k and let Y C X be a closed subscheme.
Let T be a scheme such that Tred ~ Spec(k) (hence OT{T) is a local
Artin ring with residue field k). Let S C T be a closed subscheme
with ideal M such that M • TUT — 0. Thus we have a small extension
0 ->> M ->• OT ->• Os ->• 0. Let 7T : OXxT -> OXxS be the natural
projection. Let Ys C X x S be a, closed subscheme, flat over S with
fibre Y over the closed point.
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Let y T C l x T b e a closed subscheme such that YTn(X x S) = YS.
We first want to find a criterion for YT to be flat over T

PROPOSITION 4.1. We have a commutative diagram of coherent
sheaves on X x T.

(*) 0 0 0

I T i I
0 —> XY®kM -h Ox®kM —> OY®kM (a) —> 0

8

0 —> IYT (b) — • OXXT —> OYT —> 0

0 —» Xrs —* (9xx5 - ^ ^y s —* 0

0 0 0

with exact rows. The columns are exact except possibly in (a) and (b).
They are exact in (a) if and only if they are exact in (b).

P R O O F . ROWS (2) and (3) are exact by definition. Row (1) is
applied to 0 -» XY -> Ox ->• OY -> 0 and M is A;-flat.

Column (2) is ®kOx applied to 0 -> M ->• OT -> O s -> 0 and Ox

is A;-flat. Column (3) is ®OTOYT applied to 0 ->• M -> OT ->• (9S -> 0
and thus it is right exact.

CK and ̂  are defined by easy diagram chasing, a is injective since 7
and 5 are. /3 is injective by diagram chasing. That the exactness of the
columns at (a) and (b) is equivalent is also shown by diagram chasing.
The diagram chasing is left as an easy exercise. •

Now we show our criterion for flatness.

PROPOSITION 4.2. The following are equivalent.

(1) YT is flat over T.

(2)
TY®kM Q. 1YT C 7T-1(Xys)

and the map vf : XYT/{TY ®k M) —> XYs induced by IT is an
isomorphism.

LEMMA 4.3. Let T be an OT module. Then T is T-flat if and only
if

(1) T ®oT M —>• T is injective.
(2) T®oTOs is Os-flat.
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P R O O F . It is a standard fact that T is T-flat if and only if for all co-
herent ideals A C OT the map T®oT —> ^ is injective ([Hartshorne]

"=>•" (1) is the special case A = M. (2) follows because flatness is
compatible with base extension. ([Hartshorne], III,9.1A(b)).

" <=" Let A C OT be an ideal. We have an exact sequence

O^MnA^ A^OS

Let B C Os be the image of ip. We apply <g)oT.F to get

T ® { A n M ) * F ® A + { T ® O ) ® B 0

T —> T ®OT Os

7 is injective, because T ®oT Os is 5-flat. Thus a injective implies j3
injective. Because TUT • M = 0, we see that as an (D^-module M is a
vector space and so is An M. Therefore there is a sub-vector space
C so that M = {AnM)@C. Hence T®OT (A n M) -> T®OT M is
injective and T <8> M —> T is injective. D

P R O O F , (of Proposition 4.2). "(1)=4>(2) " By (1) there exists a
diagram (*). Thus Xy ®k M C XyT C 7r~1(2ys). The diagram is exact
in (a) because OYT is T-flat, hence it is exact in (b) and (2) follows.

"(2)=>(1)" (2) implies the diagram (4.1) is exact in (b) and hence
in (a). Therefore OyT is T-fiat by Lemma 4.3. •

We want to use Proposition 4.2 to determine tangent and obstruc-
tion space for the Hilbert scheme in terms of extension classes.

REMARK 4.4. There is an exact sequence

0 -+ Oy ®k M -)• 7T-1(Xys)/(Xy <g> M)^rXys ->• 0

of coherent sheaves on X x T.

P R O O F . This is by putting together standard exact sequences: By

0 - • Ox ®k M -> OXxT^OXxS -> 0

we get
0 -> Ox ®fc M -> TT-^JYS) ->• Jy s -> 0,

and thus

•
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COROLLARY 4.5. To give XYT such that YT is T-flat and YTn(X x
S) = Ys is equivalent to finding a section of

7f : TT-\TYS)I{1Y ®k M) -> XYs.

P R O O F . The existence of a section a of H is equivalent to the exis-
tence of a coherent subsheaf Q C 7r~1(Xys)/(Jy ®k M), such that TT|G is
an isomorphism. Given IYT we can define Q := XYT/(XY <S>k M). Given
G, IYT is its inverse image via rK~l{XYs) —> /K~1{XYS)/{XY <S>k M). D

We recall a standard lemma about extensions (see e.g. [Hartshorne]
Ex. III.6.1).

LEMMA 4.6. Let 0 —>• £ —> T^-^G —> 0 be an exact sequence of
coherent sheaves. W has a section if and only if the extension class of
the sequence in Ext1(^,^ r) vanishes. In this case the sections of If are
and affine space over

Finally we can put the results together.

THEOREM 4.7. (1) There is an obstruction to the existence of
YT flat over T in Extl

Oy(XY, OY) ®k M.
(2) / / YT exists, the set of all possible YT is an affine space under

P R O O F . By the Corollary 4.5 and Lemma 4.6 this holds for the
Extl

OxxT(XYs,0Y ®k M). Since XYs is 5-flat and OY ®k M is annihi-
lated by ms there is a natural isomorphism Flxtl

OxxT(XYs, OY ®^ M) ~

} ) M . D

It is also easy to see that the corresponding exact sequence of sets
is functorial in small extensions. Applying Theorem 4.7 and Remark
2.5 now gives the local structure of the Hilbert scheme.

THEOREM 4.8. Let X be quasiprojective and [Z] e Hilb(X). Let
d := dim(B.omox(Xz, Oz)) and r := dim(Ext1

Ox(Xz, Oz))-
Then d > dirri[z}Hilb(X) > d — r. Furthermore if dini[z]Hilb(X) =

d, then Hilb(X) is nonsingular at [Z\. If dim[z]Hilb(X) = d — r, then
Hilb(X) is is a local complete intersecion at [Z].

REMARK 4.9. In the proof we dealt with the Hilbert scheme instead
of the Quot scheme. But we can deal in the same way with the Quot
scheme. Let X be projective and let Q be a coherent sheaf on X. Let
Q —> T be a coherent quotient with kernel /C. Then we can replace in
our arguments Ox by G, OY by T and XY by K to get that

Theorem 4.8 applies to the local structure of Quot(Q/X) at [G —>
T\ if we put d := dim{Romox{JC: J-)) and r := dim(Extl

Ox(K,, T)).
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A subscheme Z of a scheme X is called a local complete intersection
in X, if at all points p & Z, TZ/X is locally generated by codimp(Z, X)
elements. In the case of local complete intersections in X we can replace
the Ext groups by cohomology groups. Let Z C X is a local complete
intersection in X. Let Nz/x = C£z/^l)v be the normal bundle of Z in
X, which is locally free.

COROLLARY 4.10. Theorem 4.8 holds for Z with d = H°(Z, Nz/X),
r = Hl(Z,Nz/x).

PROOF. By definition Extj
Ox(lz,Oz) = Ext*o (X z /X| ,0 z) . As

X z / 2 | is locally free, we get Ext*Oz(Xz/2|, Oz) = H\Z, {IZ/J?ZY). U

Finally we want to study the local structure of the space of mor-
phisms from a projective variety to another. Let X, Y be projective
and assume Y is nonsingular. Let Mor(X, Y) C Hilb(X x Y) be the
Hilbert scheme of morphisms. Let / : X —> Y be a morphism.

COROLLARY 4.11. Theorem 4-8 holds for Mor(X,Y) at f, if we
put d := dim(H°(X, f*TY)) and r := dim{Hl(X, f*TY)).

PROOF. Recall that Mor(X,Y) is identified with an open sub-
scheme of Hilb(X xY) via sending a map to its graph. Let Ay cYxY
be the diagonal. Then A is a local complete intersection inY xY be-
cause A and YxY are nonsingular. The ideal of Fy := (/ x^dy)~1(Ay)
in X x Y is locally generated by the preimages of the generators of X^Y.
Thus Tf is a local complete intersection in X x Y, and we see that
Xrj/Z?, = (/ x idY)*NZY/YxY. Thus NTf/XxY = (/ x idY)*NAY/YxY.
Under the isomorphism Tf —> X (by projection to the first factor)
(/ x idY)*NAY/YxY becomes f*TY. D



CHAPTER 2

Hilbert schemes of points

1. Introduction

Let X be a quasiprojective scheme over a field k with an ample
line bundle O(l). The Hilbert scheme Hilb(X) of X parametrizes all
closed, proper subschemes of X. We know that Hilb(X) can be written
as a disjoint union

of quasiprojective schemes where Hilbp(X) parametrizes the subschemes
with Hilbert polynomial P [Nit] (i.e. it represents the contravari-
ant functor sending a scheme T to the set of all closed subschemes
Z C X x T, which are flat over T and the Hilbert polynomial of the
fibres is P)

We want to deal with the simplest case that P is the constant
polynomial n. As the degree of the Hilbert polynomial is the dimension
of the subscheme, we see that Hilbn(X) parametrizes O-dimensional
subschemes of length n of X. In other words this means that

dimH°{Z,Oz)= ] P dimk{Oz,P) = n.
pEsupp(Z)

len(Z) := dim(H°(Z, Oz) is the length of Z as module over itself. In
future we will also write X^ for Hilbn(X) The simplest example of an
element in X^ is just a set {pi,..., pn} of n distinct points on X. It is
easy to see that these form an open subset of X^n\ X^ parametrizes
sets of n not necessarily distinct points on X: with additional non-
reduced structure when some of these points come together. Another
space that parametrizes in a different way sets of n points on X is
the symmetric power X^ of X, the quotient of Xn by the action
of the symmetric group G(n) in n-letters by permuting the factors,

parametrizes effective 0-cycles of degree n on 1 , i.e. formal sums
pi G X, rii € Z>0 and Ylni — n- There is an obvious

13
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set-theoretic map

p : X™ ->

Z is sent to its support with multiplicities. We shall see below that
this is indeed a morphism of schemes.

In case X is a nonsingular curve, we will show that p is an iso-
morphism for all n, and if X is a nonsingular surface, p is a birational
resolution of singularities, in particular X'n ' is nonsingular. This is not
true for X of dimension at least 3.

The Hilbert scheme of points on a surface has recently received a
lot of interest both in mathematics and in theoretical physics. Par-
tially this is because it is a canonical resultion of singularities of the
symmetric power, but also because of its relations to moduli of vec-
tor bundles and to infinite dimensional Lie algebras. See [G2] for an
overview of some of these relations. A nice and very readable intro-
duction to Hilbert schemes of points and some of the newer results is
[Nakajima].

2. The symmetric power and the Hilbert-Chow morphism

As said in the introduction, the Hilbert scheme X^ of n points on
X is closely related to the symmetric power X^ = Xn/G(n). We first
need to know that the symmetric power exists as an algebraic variety.

DEFINITION 2.1. Let X be a quasiprojective variety over k, and let
X be a group acting (by automorphisms) on X. A variety Y together
with a surjective morphism TT : X —> Y is called a quotient of X by G
if and only if the following holds.

(1) The fibres of vr are the orbits of G.
(2) Any G-invariant morphism ip : X —> Z to a scheme Z factors

through IT.

It follows that the quotient is unique up to isomorphism, if it exists.
We denote it by X/G.

In general it is a difficult question whether a quotient exists. How-
ever if G is finite and G quasiprojective, the problem is easy.

THEOREM 2.2. Let X be a quasiprojective variety with an action
of a finite group G. Then the quotient X/G exists as a quasiprojective
variety.

P R O O F . (Sketch) First assume that X is affine. Let k[X] be the
affine coordinate ring. Condition (2) in the definition of the quotient
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implies that k[X/G] should be the ring of invariants fc[X]G C k[X]. It
is easy to see that A;[X]G is a finitely generated A;-algebra, so we define
X/G := Spec(k[X]G), which is an affine variety. Let -K : X —> X/G
be the morphism induced by the inclusion fc[X]G c k[X]. It is not
difficult to show that it is surjective and the fibres are the G-orbits.

If X is not affine, it has an open cover ([/;) by affines, and as G
is finite, we can choose the affine sets in such a way that each orbit
is contained in one of the Ui. Replacing the Ui with Wi = {^\geGg{Ui)
we get an open cover of X by G-invariant affine open subsets (as X is
a variety the intersection of affine open sets is affine). Then it is not
difficult to show that the Wi/G glue to give the quotient X/G. •

In particular if X is a quasiprojective variety, then the symmetric
power X^ := Xn/G(n) (where the symmetric group G(n) acts by
permutation of the factors) exists as a quasiprojective variety.

EXAMPLE 2.3. (1) By the fundamental theorem on symmetric
functions k[x\,..., xn]

G^ = k[si,..., sn] where the Sj are the
elementary symmetric functions in the Xj. Thus (A1)^) = An.
Similarly one shows (P1)^) = P \

(2) Show as exercise that (A2)^ ~ A2 xSpec(k[u, v, w]/(uw—v2)).
Thus (A2)(2) is singular.

By definition the points of the symmetric power X^ are the orbits
of the n-tuples of points on X under permutation, i.e. they are the
effective 0-cycles ^nj fo] with xi G X, rii > 0 and Ylni = n- This
allows to give a different description of X^ as a Chow variety of 0-
cycles.

Let X C Pd be locally closed. We see that X^ is a locally closed
subvariety of (F**)^. Let F* by the dual projective space of hyperplanes
in P*. Let Div^t*) ~ pl"^)"1 be the space of effective divisors of
degree n o n P 1 . For any p e F* let

pel}.

Thenp •->• Hp defines an isomorphism P* ~ Div1^). For (xi,..., xn) €
(P*)" let

ch(xu . . . , x n ) :

Then ch : (Pd)n -> Dwn(Prf) is a G(n)-invariant morphism, and thus
gives a morphism ch : (F*)(n) —> Div71^). One checks that the image
is closed (exercise) and that ch is an isomorphism onto its image. In
particular we can also identify X^> with its image in
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Now we want to define the Hilbert-Chow morphism p :
as a morphism X^ —» Div71^). Div71^) represents the contravari-
ant functor associating to each scheme T the effective relative Cartier
divisors D C Ir x T. Relative means equivalently, either that D is
fiat over T or that the restriction to each fibre over a point t € T is a
Cartier divisor. Thus in order to construct p we need a way to obtain
effective Cartier divisors.

For this we first review a construction of Mumford which associates
under suitable conditions to a coherent sheaf f o n a scheme Y an
effective Cartier divisor div{T) on Y. We will not carry out the con-
struction in full detail or in full generality but only give a sketch in the
case of interest to us. The general construction can be found in [GIT]
Chap. 5 Sec. 3.

We first deal with a special case. Let X be a smooth connected
variety over k and let T be a coherent sheaf on X with supp{T) ^ X.
For an irreducible hypersurface V C X let [V] be its generic point,
and put R := Ox,[v]- Let M be the stalk of T at [V]. Then R is a
discrete valuation ring, and by [Hartshorne] III.6.11 A, III.6.12A, M
has homological dimension 1, i.e. there exists a free resolution

0 -> Rn-^Rn -> M -> 0.

Note that the two modules on the left have the same rank, because
supp(!F) ^ X. Let mv € Z>0 be the valuation of det(< )̂ € R. (More
geometrically we can describe this as follows: There is an open sub-
set U C X whose intersection with V is open, on which we have a
resolution

0 -» On^On -)• T -* 0.

Let ray be the order of vanishing of det(cp) on an open subset of V.)
We need to see that my is independent of the choice of the reso-

lution. Fixing the map Rn-^M -+ 0 the possible y' : Rn -> Rn are
obtained from tp by composing with an automorphism a of Rn. Thus
det((p') = det(a)det(ip) and det(a) € R*. Thus the valuation does not
change. The map ip : Rn -> M corresponds to the choice of a set of
generators of M as i?-module. We obtain any other choice by succes-
sively adding and removing generators. Thus let ij) : Rn —> M be given
b y m l r . . , m n 6 M and ijj' : Rn+1 —> M given by mi,..., mn, x € M.
Then in M we have a relation

4- x = 0, ai G R,
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and given a resolution 0 —»• Rn-^Rn—>M - > 0 w e get a resolution

i...an

and det((p') = det(<p). Thus my is well-defined.

DEFINITION 2.4. Let div(F) := XV m v ^ - This is by definition an
effective Cartier divisor on X. The sum is finite because my can only
be nonzero if V C supp(T).

We need this divisor div(T) in a relative situation.

THEOREM 2.5. Let X be a smooth irreducible variety. Let S be a
scheme and let T be a coherent sheaf on X x S, flat over S. Assume
that supp(Ts) / X for all s E S. Then there exists an effective Cartier
divisor div^) on X x S such that

(1) The formation of div(F) commutes with base change.
(2) If S is a point, then div(J-) is the same as in Definition 2.4-

P R O O F . (Sketch). First note the following: if 0 ->• S2 ->• £i ->• £o ->
0 is a short exact sequence of locally free sheaves with rk{Si) = ri: then
there exists a canonical isomorphism

(Locally on an open set choose a basis fi, • • •, fr2,gi, • •. ,gro °f £i s u c h
that the /» are the image of a basis of £2 and the gi map to a basis of
<?o (both denoted by the same letters). Then the isomorphism is given
by

(/i A . . . A fr2) <g> (f/i A . . . A gro) H-> / i A . . . A fr2 A gx A . . . A gro.

This is independent of the choice of the gi and thus glues to a global
isomorphism.)

If 0 —>• £n —>• ^n_i —>• ...—>• ^o —> 0 is an exact sequence of locally
free sheaves we can split it up into two exact sequences of locally free
sheaves

and obtain by induction a canonical isomorphism &)n
=0 ( A^

Now let

be a locally free resolution of T on X x S (this exists because of flat-
ness). Let U C X x S be an open subset such that the Si are free on
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U. Let V := U \ supp^). Then by the above we have a canonical
isomorphism

On the other hand, as the £{ are free, there is an isomorphism
n ri

/<~>v I A \ (—1)*

i=0

unique up to a unit. The composition defines a nonzero section / E
T(V, Oy), giving a rational function (/) on U.

Let [V] E X x £ be a point of depth 1. Let 0 -» £n —>-...—)• £0 -)•

.T-" —» 0 be a free resolution in a neighbourhood of [V]. Let £ be the

kernel of £o —)• JF —>• 0. Then £ is free in a smaller neighbourhood f/o

of [V]. Thus we have exact sequences

r O —T OQ —T J —T U, U —7 On —T • • • r O\ —T O T U.

Therefore on UQ we have a canonical isomorphism
ro n Ti

and div[T) is on C70 defined by 0 -> £ -> £Q ->• J7 -> 0.
As two Cartier divisors are equal if they coincide at points of depth

1, this shows first that (/) is independent of the choice of the resolution
and thus glues to give an effective Cartier divisor Div(T) on X x T.

Secondly, as the points of depth 1 on a smooth variety are precisely
the generic points of prime divisors, it also shows that in case S is a
point we get the same definition as in Definition 2.4.

Let h : T —> S be a morphism. For a sheaf S on X x S we denote
by ST its pullback via idx x h. Using flatness of T, one checks that if
0—>-£n—>...—> £0 -^- J7 —>0isa resolution of T on X x S, then

0 -)- {£n)T - + . . . - > (£O)T -> (^ ) r -> 0

is a resolution of (^")r- It follows that the pullback oidiv^F) is
thus div^) is compatible with base change. •

Finally we can construct the Hilbert-Chow morphism. Let H C
P^ x P be the incidence correspondence. H is a fibre bundle over Prf

with fibre IP**"1. Let S be a scheme, and let Z C Pd x S be a closed
subscheme, flat of degree n over S. We denote by p, p the projections
to IP** and F* respectively. Let ^5 : = p x zGfo, ps := p x ic/5. Let
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Z* •= p^{Z) c H x 5 . Let T := {ps)*{pz*). Then T is a coherent
sheaf on F* x S, flat over S. Let Zs be the fibre of Z over s 6 S. Then

= {i e
in particular supp(J-s) =fi P^. Thus div(J-) is a relative Cartier divi-
sor on P^ x S. Thus we have constructed a morphism p : X ^ —»•

^ Finally we can check from the definitions that div(JFs) =
len{@z,P)Hp- Thus we see that the support of the image

of X^ is X(n\ so if we give X^ the reduced structure, the morphism
will factor through X^n\ Thus we have shown the following theorem.

THEOREM 2.6. Let X be a smooth quasiprojective variety. There
is a surjective morphism p : X^Jd —> X^n\ given on the level of points

3. Irreducibility and nonsingularity

We will show that, if X is a nonsingular quasiprojective curve or
surface over k, then X^ is irreducible and nonsingular.

LEMMA 3.1. Let X be a connected variety over k, then X^ is
connected for all n> 0.

P R O O F . First we recall that the Quot scheme allows us to define
the projectivization of any coherent sheaf on a X.

For a coherent sheaf f o n l let P(JF) := Quot1^), thus P(JF)
parametrizes 1-dimensional quotients of the fibres of T. P(^r) is a
quasiprojective scheme with a morphism to X, and the fibre of P(JF)
over x € X is

P({A : F(x) -»• k(x) surjection}) ~ P(F(x)).

Now we want to show the claim by induction on n. X^ is one point
corresponding to the empty set. Assume we have shown that X^ is
connected. Then X x X^ is connected. Let Zn(X) C X x 1 ^ be the
universal family with ideal sheaf XZn{X). Let P := F(TZn(x)), with the
projection IT : P —> X x X^n\ The fibre of P over (x, Z) is a projective
space and thus connected. Thus P is connected.

On X x P we have a universal exact sequence

In particular X is an ideal sheaf on X x P defining a subscheme Z C
X x P. The above exact sequence gives rise to an exact sequence

0 -> Q -> Oz -> On-iZn{x) -> 0.
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As O^-izn{x) is flat of degree n over P and Q is flat of degree 1, we
see that Z is flat of degree (n + 1) over P. Thus we have a morphism
tp : P —> X^n+1\ which on points is given by sending (A : Xz —>• k(x))
to the subscheme of X with ideal ker(X). We want to see that ip is
surjective. Let W e X^n+l\ Let p € supp(W). Choose / € Ow an
element in the kernel of the multiplication by the maximal ideal m at
p. Let Z CW be the subscheme with ideal (/). Then Z G X H Let
/ — do, <7i5 • • •) 9k be a basis of Xz/mTz and define A : Xz —> k(p) by
Y^ OLi9i !->• ao- Then J ^ = ker(X). Thus ?/> is surjective, and thus X^n+1^
is connected. •

Let X be a nonsingular quasiprojective variety of dimension d. Let
XQ C X n be the dense open set of (pi,... ,pn) with the pi distinct.
Let XQ be its image in X^n\ which parametrizes effective zero cycles
X)i[P*] w ^ h the pi distinct. This is also open and dense. As G{n) acts
freely on (Xn)o we see that XQ is nonsingular of dimension nd. Let
XQ be the preimage in X^n\ One checks that at any point of X^ the
dimension of the tangent space is nd and that p\ Y[n\ is an isomorphism.

Thus X^ contains a nonsingular open subset which is isomorphic to
an open subset of X^n\ In the case that X is a curve or a surface one
can use this to show that X^ is nonsingular and irreducible.

THEOREM 3.2. (1) Let C be an irreducible nonsingular quasipro-
jective curve and n > 0. Then C ^ is nonsingular and irre-
ducible of dimension n.

(2) (Fogarty [F]) Let S be an irreducible nonsingular quasiprojec-
tive surface and n > 0. Then S^ is nonsingular and irre-
ducible of dimension 2n.

P R O O F . Let X = C or X = S and let d = dim(X). As X[n] is
connected and contains a nonsingular open subset of dimension nd, it
is enough to show that the dimension of the tangent space TJ^X^ is nd
for all [Z] £ X\-n\ This will first show the nonsingularity of X^ at any

point in the closure XQ. If X^ was reducible, then by connectedness

there would be another irreducible component intersecting XQ, and
the intersection point would be a singular point of X^.

We know T[Z]X[n] = Rom0x{Iz,Oz). Applying Eom{;Oz) to
0 ->• Xz ->• Ox ->• Oz -» 0 we obtain

, Oz) -> H o m O x ( J z , Oz)
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The first map is an isomorphism kn —> kn. Thus Hom(Xz, Oz) C
Ext1 (Oz, Oz), and it is enough to show that extx{Oz, Oz) < nd.

In the case of a curve C we have Hom(Oz, Oz) = H°(OZ) = kn,
and by Serre duality Ext\Oz, Oz) = H°(OZ <g> Kc)

v = kn.
In the case of a surface S we have Hom(Oz, Oz) = H°(Oz) = kn

and by Serre duality Ext2{Oz,Oz) = H°{OZ ® Ks)
v = kn. Thus it

suffices to show that

i=0

Let 0 -> 5j -»• . . . ->• So ->• O 2 -> 0 be a locally free resolution of Oz

on 5. Then £i(-l)V"M£) = 0 and

Oz) =

D

REMARK 3.3. Note that in this proof we do not show that the
obstruction space Ext]yx(Tz,Oz) vanishes; in fact it usually will not.

REMARK 3.4. Let X be a nonsingular variety. Then X^ is non-
singular for n < 3.

PROOF. Let d — dim(X). It is enough to show that homox (%z, Oz) <
dn for all [Z] e j W . Obviously

H.om0 x(lz,Oz) —

Thus we can reduce to the case that supp(Z) is a point p. Let m be the
maximal ideal at p. Is is easy to show that there are local parameters
Xi,...,xa at p such that Oz,p is of the form.

k[x\,... ,Xd]/m n = 1,

[,...,xd]/(m2 + (x2,...,xd)) n = 2 ,

i3 + (x2,. •• ,xd)) n = 3.

In all cases one easily checks that home>x i^z,p-,Oz,p) = dlen(Oz,P)-
' •

REMARK 3.5. Let X be nonsingular of dimension 3. Then X^ is
singular.
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PROOF. Let [Z] e X® be the point Oz = Op/m
2. Then

Hom0x(Tz,Oz) = Homk{m2/m3,m/m2) = kls.

So the dimension is bigger then dn — 12. •

An example of Iarrobino shows that if X is nonsingular of dimension
d > 3 and n is sufficiently large, then X^ is reducible.

4. Examples of Hilbert schemes

Let X be a nonsingular projective variety of dimension d. We give
some examples of X^ for small values of n.

EXAMPLE 4.1. (1) X ^ is one reduced point, corresponding to
the empty subscheme of X.

(2) Subschemes of length 1 of X are just points of X and X ^ = X.
The universal family is just the diagonal A c l x l .

(3) Points in X ^ are either a set {pi,^} of distinct points on X
or a subscheme Z of length 2 concentrated in one point p. Let
m be the ideal of p. Then m D lz D m2. Thus Xz is given
by a one-codimensional subspace of m/ra2, i.e. by a point in
P(Tx,p) = P71"1. In other words a point in X ^ is either a set
of two points in X or a point p and a tangent direction at p.

This allows us to describe X ^ globally as follows: Let X2

be the blowup of X x X along the diagonal. Let E be the
exceptional divisor. The action of G(2) on X2 extends to X2.
Let Y be the quotient. E is the fixlocus of the nontrivial ele-
ment of G(2). As this is a divisor, we see that Y is nonsingular.
It is easy to see that vr : X2 —> Y is flat of degree 2. This gives
a morphism Y —>• X^ , which is birational and an bijective.
Thus it is an isomorphism.

For general n we can say something about X ^ if X has dimension 1
or 2. In the case of a nonsingular curve we see that the Hilbert scheme
of points is just the symmetric power.

PROPOSITION 4.2. Let C be a nonsingular quasiprojective curve.
Then p : C ^ -» C^ is an isomorphism.

PROOF. AS the local ring of C at a point p is a discrete valuation
ring, all ideals in Oc,p are powers of the maximal ideal mp. Thus for
all [Z] e C[n] we have

U = n.
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Then the p sends Z to X)ini[P«]- Thus p is bijective. As it is also
birational, it is an isomorphism by Zariskis Main Theorem.

Alternatively one can see that

n : C x C^"1) -> C<»>, (p,

is flat of degree n over C^, defining an inverse to p. •

THEOREM 4.3. (Fogarty [F]) Let S be a nonsingular quasiprojective
surface. Then p : S^ —> S^ is a resolution of singularities.

P R O O F . S^ is nonsingular and irreducible, and p is an isomor-
phism over the open subset SQ . Thus it is a resolution of singulari-
ties. •

REMARK 4.4. Example 4.1 can easily be generalized to show that
S^ is singular for all n > 2. Thus p is not an isomorphism.

One of the reasons for the interest in the Hilbert scheme of points
on a surface is that it gives a canonical resolution of the singularities
of the symmetric power.

5. A stratification of the Hilbert scheme

For the rest of these lectures let S be a smooth projective surface
over the complex numbers. We want to study a natural stratification
of SW a n d S H

DEFINITION 5.1. For any partition v = (n i , . . . ,n r) of n (i.e. n\ >
n2 > •.. > nr > 0 and J2 rii = n), we define a locally closed subset

S£0 : = { ^mlxi] e S{n) \xiES distinct points}

of S^. We have thus a stratification

into locally closed strata. Putting Si" '•= p~1(Sl ) we obtain a strati-
fication of S^ into locally closed strata.

Now we want to study these stratifications. First we note that
the strata Sln' are nonsingular. Let u = ( n i , . . . , n r ) . Write u =
(lai, 2 ° 2 , . . . , sQs) where a; is the number of times i occurs in ( n i , . . . , nr).
Let (Sai x . . . x Sar)* be the open subset where all components pi E S
are distinct. Then Sln' is the quotient of (Sai x . . . x Sar)* by the action
of G{a\) x . . . x G(as), where each G{a,i) permutes the factors of Sai.
As this action is free, Su is nonsingular. We also see that Si is an
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open subset of 5 ( a i ) x . . . x S^ar\ One can show that 5 ( Q I ) X . . . X 5 ( Q r )

is the normalization of Sv .
Now we want to see that over any stratum Si , the Hilbert-Chow

morphism p is a locally trivial fibre bundle (in the strong topology).
First we look at the worst stratum p : Sr i —> Sf"j ~ S. For a point

p in S the fibre p~1(n\p]) is the set of subschemes Z of length in S
with support p. The ideal of any such scheme is contained in m™. We
denote

Hn:=Hilbn(C[x,y}/(x,yr).

Then the choice of holomorphic local coordinates x, y in a neighbour-
hood £/ of p determines an isomorphism

Thus p : SW —> 5 is a locally trivial fibre bundle in the strong topology
with fibre Hn. In fact being a bit more careful, we can replace in
this argument local coordinates by local parameters in a Zariski open
neighbourhood of p (i.e. x, y, s.th dx, dy span the cotangent space
at every point of U). Thus this is even a Zariski locally trivial fibre
bundle.

Now let v = (ni,..., nr) be a partition of n. Let £ := ni[pi] + . . . +
nr\pr] G S ^ . Then the fibre p~l{£) is just Hni x . . . x ifnr. In fact we
can choose (in the strong topology) disjoint open neighbourhoods Ui
of the pi in S, and these give rise to an open neighbourhood U of £ in
Sv such that

p-
1{U)~UxHnix...xHnr.

Thus p : Sv —>• S1^^ is a locally trivial fibre bundle in the strong
topology with fibre Hni x . . . x Hnr. Again being more careful one can
prove slightly more: the bundle is locally trivial in the etale topology.

Now we want to have a look at the fibres of p. By the above, we
only need to look at

Hn = p-\n\p}) ~ Hilbn(k[x,y]/(x,yr)

Hn called the punctual Hilbert scheme. It has been studied quite ex-
tensively (see for instance [la], [Br]).

It is clear that H\= p and we have seen that H^ — Pi.
For n > 3 we have to distinguish two cases depending on the em-

bedding dimension dim(TpZ) of the scheme Z. A scheme Z G Hn is
called curvilinear if its embedding dimension is 1. This means that it
locally lies on a smooth curve in S. We denote H^ c Hn the open
subscheme of curvilinear subschemes.
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If Z € Hn is curvilinear, then in suitable local coordinates we can
write

Iz = {y + aix + • • • + an^xx
n~l, xn).

We can see that these schemes form a locally trivial An~2 -bundle over
P1. In the case n = 3 we see that the only subscheme which is not
curvilinear is the scheme with ideal m2 and iJf is dense in H^. In fact
this is true in general.

THEOREM 5.2. [Br] H% is open and dense in Hn.

6. The Betti numbers of the Hilbert scheme of points

Now I want to summarize what we have shown so far and put it
into context.

DEFINITION 6.1. Let / : X -» Y be a projective morphism of
varieties over C. Suppose that Y has a stratification

into locally closed subvarieties. Write Xa := f~1(Ya). Assume that for
all a the restriction / : Xa —> Ya is a locally trivial fibre bundle with
fibre Fa in the strong topology.

Then / is called strictly semismall (with respect to the stratifica-
tion) if for all a

2dim(Fa) = codim(Ya)

Thus we have shown:

PROPOSITION 6.2. p : 5 M ->• 5 ( n ) is strictly semismall with re-
spect to the stratification by the Su • Furthermore the fibres of p are
irreducible.

This can be used to compute the Betti numbers of the Hilbert
schemes: For proper morphisms of complex varieties, there is the de-
composition theorem of [BBD] for the intersection homology complex.
This becomes much simpler simple for semismall morphisms and com-
putes the intersection homology of X in terms of the intersection ho-
mologies of the closures Ya of the strata of Y. If X is nonsingular
and projective, then its intersection homology groups coincide with
the usual homology groups of X (with Q coefficients). Thus we can
compute the cohomology groups of X in terms of the intersection ho-
mology of the Ya. In the case of the Hilbert scheme of points on a
surface this has been carried out in [GS]. The proof is explained in
section 8 of [EG]. If v = ( l Q l , . . . , sa°) the fact that S<Ol> x .. . x S^
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is the normalization of Si will imply that the the intersection ho-
mology groups of Sv are equal to the usual cohomology groups of
S^ x . . . x S(Qs) which are know by Macdonalds formula [Md].

The final result is best stated in terms of generating functions. We
write bi(X) := dim^H^X^)) for the Betti numbers, and p(X) :=
*Yjbi(X)zl for the Poincare polynomial. Then the result is the follow-
ing.

t}(lz

This result can also proved in other ways. For instance in [Gl] the
fact that s£J ->• S is Zariski locally trivial and 5(

["j -> S$ is etale
locally trivial is used to compute the numbers of points of S^ over
finite fields and then compute the Betti numbers of the 5 ^ using the
Weil conjectures.

7. The Heisenberg algebra

In this section all the cohomology that we consider is with Q-
coefficients. The last formula suggests that somehow all the coho-
mology groups of S^ for different n are tied together, and that one
should try to look at all of them at the same time. So we denote
H,j := H*(S^) and consider the direct sum of all these cohomologies

H:=0H,,.

We want to see that this carries an additional structure: H carries an
irreducible representation of the Heisenberg algebra modelled on the
cohomology of 5^1 This was conjectured by Vafa and Witten [VW]
and proven by Nakajima and Groijnowski [N], [Gr]. The main purpose
of the lectures [EG] was to explain this result and its proof. In this
lecture I will just try to briefly explain the result. For simplicity of
exposition we will assume that H1^) = H3(S) = 0.

We want to relate the Hilbert schemes S^ for different n. Thus we
need to find a way to go from S™ to S^n+m\ To relate S^ and S^n+1^
the obvious thing is to add to any subscheme Z 6 5 ^ a point in S.
This can be done by looking at the incidence correspondence, i.e. the
closed subscheme

S[n,n+i]._ {(Z,w) e S[n] x 5[n+1l | Z c W},

where we mean by Z c W that Z is a subscheme of W. Then S^Uyn+l^
parametrizes all ways to obtain a subscheme of length n + 1 by adding
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a point to a subscheme of length n. We used S^n'n+1^ before to show
that S[n] is connected: one can show that S[n'n+1] = ¥(lZn(s)).

Thus to relate S^ to S^n+m^ we also want to use an incidence cor-
respondence. The obvious generalization would be to use just the inci-
dence variety of S^ and S^n+m\ which parametrizes all ways to obtain
a subscheme of length n + m by adding a subscheme of length m to a
subscheme of length n, but it turns out that we want the difference to
be supported at a point of S. Thus we put

Zn,m := {(Z,p, W) e S™ x S x S ^ | p(W) - p(Z) = n[p]},

with the projections pri,pr2,prs to S^n\ S, £[n+ml respectively.
This correspondence defines for each a G H*(S,Q) a map

where [ZnjTn] is the fundamental class of Zn^m and F D denotes Poincare
duality. We call the pm(a) the creation operators. Intuitively this map
can be described as follows: Assume that a and y can be represented
as the cohomology classes Poincare dual to the fundamental class of
submanifolds A C S and Y C S^. Then pm(a)y will be the class of
the closure of

{Z U P | [Z] e Y, P G 5|"]
} with supp(P) € A}.

Thus pm(oi) is the operation of adding a fat point in A. Thus for all
m > 0 and all a G H*(S) we obtain operators pm(a) : H —>• H, sending
En to H n + m . Note that S[o] is a point, and thus Ho = Q. Let 1 be its
unit element.

A weak version of the result of Nakajima and Groijnowski says
that all the cohomology of the Hilbert schemes can be obtained by just
applying the creation operators to 1. In fact given a basis of H*(S)
this gives a canonical basis of H*(S^).

THEOREM 7.1. The pm{®), with m > 0 and a G H*(S) commute.
Let {cLi}ieL be a basis of H*(S), then the set all monomials

pni(ah)...pnk(aik)l, ,k>0,

is a basis

This means that, given the intuitive description of the pm{pt) above,
we get at least intuitively a very explicit description of the cohomolo-
gies of the Hilbert scheme: Assume that the CKJ are represented by
submanifolds Ai C S. Then a basis of H*(S^) is given by the closures
of the classes of subsets of 5 ^ of the form

{P1 U P2 ... U Pt | Pj G Sf^J with support in A
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In order to get the Heisenberg algebra, we also need to consider
annihilation operators, p-m(a) : Mn+m —>• E^. We define po(a) = 0
and let p-m(a) be the adjoint operator of pm(a) with respect to the
intersection pairing on the cohomology of S^ and S^n+n^.

Again one can get an analoguous intuitive interpretation. If y is
the class of Y C S^n+m\ and a the class of a submanifold A C S, then
P-m(a)y should be the class of the closure of

{Z e S^ | 3w<zYW differs from Z in only one point of A}.

Thus p_m(a) is obtained by subtracting a fat point in A.
We denote by ( , ) the intersection pairing on S. Denote by

\Pn{a),Pm((3)] •= Pn(a)Pm{/3) ~ Pm{(3)Pn(a) the commutator. Then
the main result of [N],[Gr] is:

THEOREM 7.2. \pn{a),pm(P)] = n5n_m(a, f3)idm

Thus all the creation operators pn (a) commute with each other, and
also all annihilation operators p_m(/3) commute. Furthermore pn(a)
and p_TO(/3) commute unless n = m, when we just get a multiple of the
identity. From our intuitive description this is quite plausible: Adding
a fat point of length n in A and a fat point of length m in B should
commute and similarly for subtracting fat points. Also adding a fat
point of length n in A and subtracting a fat point of length m in B
should commute unless n = m. However if n = m this will no longer
be true, because we get an extra term from subtracting the point that
we have just added, and this extra term will just be a multiple of what
we started with. Obviously this is not a proof, but still it gives the
basic idea.

How does Theorem 7.1 imply Theorem 7.2, and what does it have
to do with the Heisenberg algebra? Let V be a Q-vector space with
a nondegenerate bilinear form ( , ). Let T be the tensor algebra on
V[t, t~1]. Elements of T are of the form

vi?1 <g>... <g> vkt
ik, Vj e V, ij e z , j > o.

Let e be the neutral element of the tensor algebra corresponding to
the empty tensor product. We have T = 0n e ZT'2 , where the grading
is determined by giving f the degree i. The Heisenberg algebra H(V)
modelled on V is obtained from T by imposing the relations

The Fock space F(V) is the subalgebra of H(V) obtained by re-
placing V[t, t"1} by tV[t). F(V) becomes an H(V)-modu\e, by putting
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ut° -w:=0 for all w <E F(V) and ut'1 • e := 0 for all i > 0. Then one
can show that F(V) is an irreducible module for H(V) and

n>0

Now let V = H*(S) with the intersection pairing. Then Theorem 7.2
says that there is an H(V)-modu\e homomorphism

F(V) -+B,utf ^pi(u)l.

As F(V) is irreducible and both have the same Poincare series, this is
an isomorphism. This implies in particular that H*(S^) has the basis
given in Theorem 7.1. Note that the fact that Pi(u) and P-i(u) are
adjoint operators for the intersection pairings on the Hilbert schemes,
also makes it easy to determine the intersection pairing in this basis.

This Heisenberg algebra action has been further used to study the
ring structure of the H*(S[n]), see e.g. [L],[L-S].
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