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Introduction

Descent theory has a somewhat formidable and totally undeserved repu-
tation among algebraic geometers. In fact, it simply says that under certain
conditions local homomorphisms between quasicoherent can be constructed
locally and then glued together if they satisfy a compatibility condition,
while quasicoherent sheaves themselves can be constructed locally and then
glued together via isomorphisms that satisfy a cocycle condition.

Of course, if “locally” were to mean “locally in the Zariski topology”
this would be a formal statement, certainly useful, but hardly deserving the
name of a theory. The point is that “locally” here means locally in the
flat topology; and the flat topology is something that is not a topology, but
what is called a Grothendieck topology. Here the coverings are, essentially,
flat surjective maps satisfying a finiteness condition. So there are many more
coverings in this topology than in the Zariski coverings, and the statement
becomes highly nontrivial.

There is also an abstract notion of “category in which descent theory is
possible”; the category of pairs consisting of a scheme and a quasicoherent
sheaf on it is an example. These categories are known as stacks. The general
formalism is quite useful, even outside of moduli theory, where the theory
of algebraic stacks has become absolutely central.

The purpose of these notes is to provide an exposition of descent theory,
to supplement my lecture on Grothendieck topologies and descent theory
in the Advanced School in Basic Algebraic Geometry, 7-18 July 2003 at
I.C.T.P., with a stress on the general formalism. They are not yet in finished
form; section 4.2.3 on descent for morphisms of schemes is still only a rough
sketch, and the proof of Lemma 4.12 is still incomplete. In the final version
they should contain many more examples and explanatory material, and
also a section on group actions and descent along torsors.

They are, undoubtedly, full errors of various levels of gravity.

All of the ideas and the results contained in these notes are due to
Grothendieck. There is nothing in here that is not, in some form, either in
[SGAL1] or in [SGA4], so I do not claim any originality at all.

We will assume that the reader is acquainted with the language of
schemes, at least at the level of [Hart77]. I use some concepts that are
not contained in [Hart77], such that of a morphism locally of finite presen-
tation; but I recall the main properties of these in Chapter 1.



6 INTRODUCTION

We make heavy use of the categorical language: I assume that the reader
is acquainted with the notions of category, functor and natural transforma-
tion, equivalence of categories. On the other hand, I do not use any advanced
concepts, nor do I use any real results in category theory, with one single
exception: the reader should know that a fully faithful essentially surjective
functor is an equivalence.

The reader should also recall that a groupoid is a category in which every
arrow is invertible.



CHAPTER 1

Preliminary notions

1.0.1. Algebraic geometry. In this chapter we recall, without proof,
some basic notions of scheme theory that are used in the notes. All rings
and algebras will be commutative.

We will follow the terminology of [EGA], with the customary exception
of calling a “scheme” what is called there a “prescheme” (in [EGA], a scheme
is assumed to be separated).

We start with some finiteness conditions. Recall if B is an algebra over
the ring A, we say that B is finitely presented if it is the quotient of a
polynomial ring A[zy,...,z,] over A by a finitely generated ideal. If A is
noetherian, every finitely generated algebra is finitely presented.

If B is finitely presented over A, whenever we write B = A[zy,...,z,)/I,
I is always finitely generated in A[z, ..., z,] ((EGA IV, Proposition 1.4.4]).

DEFINITION 1.1 (See [EGA IV, 1.4.2]). A morphism of schemes f: X —
Y is locally of finite presentation if for any z € X there are affine neighbor-
hoods U of z in X and V of f(z) in V such that f(U) C V, and O(U) is
finitely presented over O(V).

Clearly, if Y is locally noetherian, then f is locally of finite presentation
if and only if it is locally of finite type.

DEFINITION 1.2 ((EGA IV, 1.4]).

(i) If f: X — Y is locally of finite presentation, U and V are an open
affine subsets of X and Y respectively, and f(U) C V, then O(U) is
finitely presented over O(V).

(ii) The composition of morphisms locally of finite presentation is locally
of finite presentation.

(iii) Given a cartesian diagram

X —X
Y—Y
if X — Y is locally of finite presentation, so is X' — Y".

DEFINITION 1.3 (See [EGA 1, 6.6.1]). A morphism of schemes X — Y is
quasi-compact if the inverse image in X of a quasi-compact open subscheme
of Y is quasi-compact.
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A scheme is quasi-compact if and only if it is the finite union of open
affine subschemes; using this, it is easy to prove the following.
PROPOSITION 1.4 ([EGA I, Proposition 6.6.4]).
Let f: X — Y be a morphism of schemes. The following are equivalent.
(i) f is quasi-compact.
(ii) The inverse image of an open affine subscheme of Y is quasi-compact.

(iii) There exists a covering Y = N;V; by open affine subschemes, such that
the inverse image in X of each V; is quasi-compact.

PRrOPOSITION 1.5 ([EGA 1, 6.6]).

(i) The composition of quasi-compact morphisms is quasi-compact.
(ii) Given a cartesian diagram

X

Y

if X =Y is quasi-compact, so is X' - Y.

! —

T

—

Let us turn to flat morphism.

DEFINITION 1.6. A morphism of schemes f: X — Y is flat if for any
z € X, the local ring O, is flat as a module over Oy (.

PROPOSITION 1.7 ((EGA IV, Proposition 2.1.2]). Given a morphism of
schemes f: X — Y, the following are equivalent.

(i) f is flat.
(ii) For any z € X, there are affine neighborhoods U of z in X and V of

f(z) in V such that f(U) C V, and O(U) is finitely presented over
o).

(iii) For any open affine subsets U in X and V in V such that f(U) CV,
O(U) is flat over O(V).

PRroPOSITION 1.8 ([EGA IV, 2.1]).

(i) The composition of flat morphisms is flat.
(ii) Given a cartesian diagram

X —X

|

Y—Y
if X =Y is flat, sois X' - Y.

DEFINITION 1.9. A morphism of schemes f: X — Y is faithfully flat if
it is flat and surjective.

Let B be an algebra over A. We say that B is faithfully flat if the
associated morphism of schemes Spec B — Spec A is faithfully flat.
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PROPOSITION 1.10 ([Mat86, Theorems 7.2 and 7.3]). Let B be an alge-
bra over A. The following are equivalent.
(i) B is faithfully flat over A.
(ii)) A sequence of A-modules M' — M — M" is exact if and only if the
induced sequence of B-modules M' @ B - M @4 B — M" ®4 B is

ezact.
(iii) B is flat over A, and if M is a module over A with M ®4 B = 0 we
have M = 0.

(iv) B is flat over A, and mB # B for all mazimal ideals m of A.
The following fact is very important.

PRrROPOSITION 1.11 ([EGA IV, Proposition 2.4.6]). A flat morphism that
is locally of finite presentation is open.

This is not true in general for flat morphisms that are not locally of
finite presentation; however, we have a weaker version of this fact.

ProrosITION 1.12 ([EGA IV, Corollaire 2.3.12]). If f: X —» Y is a
faithfully flat morphism, a subset of Y is open if and only its inverse image
in X 1is open in X.

In other words, Y has the topology induced by that of X.

PROPOSITION 1.13 ([EGA IV, Proposition 2.7.1}). Suppose that we have
a cartesian diagram of schemes

X — X

|

Y —Y
in which Y' =Y is faithfully flat, and either quasi-compact or locally of fi-
nite presentation. Suppose that X' — Y’ has one of the following properties:

(a) separated,
quasi-compact,
locally of finite presentation,

étale.
Then X — Y has the same property.
In [EGA] all these statements are prove when Y/ — Y is quasi-compact.

Using Proposition 1.11 it is not hard to prove the statement also when
Y’ =Y is locally of finite presentation.
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1.0.2. Category theory. We will assume that the reader is familiar
with the concepts of category, functor and natural transformation. The
standard reference in category theory is [MalLl].

We will not distinguish between small and large categories. More gen-
erally, we will ignore any set-theoretic difficulties.

If F: A — B is a functor, recall that F is called fully faithful when for
any two objects A and A’ of A, the function

Hom 4(A, A') — Homp(FA, FA)

induced by F is a bijection. F' is called essentially surjective if every object
of B is isomorphic to the image of an object of A.

Recall also that F' is called an equivalence when there exists a functor
G: B — A, such that the composition GF: 4 — A is isomorphic to id 4,
and F'G: B — B is isomorphic to idg.

The composition of two equivalences is again an equivalence. In partic-
ular, “being equivalent” is an equivalence relation among categories.

The following fact will be used very frequently.

PRrROPOSITION 1.14. A functor is an equivalence if and only if it is both
fully faithful and essentially surjective.

We will also make considerable use of the notions of fibered product and
cartesian diagram in an arbitrary category.

Also, we will manipulate some cartesian diagrams. In particular the
reader will encounter diagrams of the type

A —— B — ("
A—B——C

we will say that this is cartesian when both squares are cartesian. This is
equivalent to saying that the right hand square and the square

A,__>CI7

I

A—C

obtained by composing the rows, are cartesian. There will be other state-
ments of the type “there is a cartesian diagram ...”. These should all be
straightforward to check.

For any category C and any object X of C we denote by (C/X) the
comma category, whose objects are arrows U — X in C, and whose arrows
are commutative diagrams

U——™V.

N
X
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In what follows there will usually be a base category C. We will always
assume that C has fiber products.



CHAPTER 2

Contravariant functors

2.1. Representable functors and the Yoneda lemma

2.1.1. Representable functors. Let us start by recalling a few basic
notions of category theory.

Let C be a category; we will always assume that C has fiber products.
Consider functors from C°P to (Set). These are the objects of a category,
denoted by

Func(C°P, (Set)),
in which the arrows are the natural transformations. From now on we will
refer to natural transformations of contravariant functors on C as morphisms.

Let X be an object of C. There is a contravariant functor

hy: C? — (Set)
to the category of sets, which sends an object U of C to the set
hxU = Hom¢(U, X).

If a: U' — U is an arrow in C, then hyoa: hxU — hxU’ is defined to be
composition with a.

Now, an arrow f: X — Y yields a function hyU: hxU — hxU for each
object U of C, obtained by composition with f. The important fact is that
this is a morphism hx — hy, that is, for all arrows «: U’ — U the diagram

hyU
hxU ——— hyU

lhxa lhya
/

hU
hxU' —— hyU’

commutes.
Sending each object X of C to hx, and each arrow f: X — Y of C to
hy: hx — hy defines a functor C — Func(C‘)p, (Set)).

YONEDA LEMMA (WEAK VERSION). Let X and Y be objects of C. The
function

Hom¢(X,Y) — Hom(hx, hy)
that sends f: X — Y to hy: hx — hy is bijective.

In other words, the functor C — Func (COP, (Set)) is fully faithful. It fails
to be an equivalence of categories, because in general it will not be essentially

12
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surjective. This means that not every functor C°° — (Set) is isomorphic to
a functor of the form hx. However, if we restrict to the full subcategory of
Func(C°P, (Set)) consisting of functors C° — (Set) which are isomorphic to
a functor of the form hx, we do get a category which is equivalent to C.

DEFINITION 2.1. A representable functor on the category C is a functor
F: C°° — (Set)

which is isomorphic to a functor of the form hx for some object X of C.
If this happens, we say that F' is represented by X.

Given two isomorphisms F' ~ hx and F' ~ hy, we have that the resulting
isomorphism hx ~ hy comes from a unique isomorphism X ~ Y in C,
because of the weak form of Yoneda’s lemma. Hence two objects representing
the same functor are canonically isomorphic.

2.1.2. Yoneda’s lemma. The condition that a functor be representable
can be given a new expression with the more general version of Yoneda’s
Lemma. Let X be an object of C and F': C°? — (Set) a functor. Given a
natural transformation 7: hy — F, one gets an element ¢ € F' X, defined as
the image of the identity map idx € hx X via the function 7x: hx X — FX.
This construction defines a function Hom(hx, F) —» FX.

Conversely, given an element ¢ € FX, one can define a morphism
7: hx — F as follows. Given an object U of C, an element of hxU is
an arrow f: U — X; this arrow induces a function Ff: FX — FU. We
define a function 7U: hxU — FU by sending f € hxU to Ff(£) € FU.
It is straightforward to check that the 7 that we have defined is in fact a
morphism. In this way we have defined functions

Hom(hy, F) — F(X)

and
F(X) — Hom(hyx, F).

YONEDA LEMMA. These two functions are inverse to each other, and
therefore establish a bijective correspondence

Hom(hy, F) ~ FX.

The proof is easy and left to the reader. Yoneda’s lemma is not a deep
fact, but its importance cannot be overestimated.

Let us see how this form of Yoneda’s lemma, implies the weak form above.
Suppose that F = hy: the function Hom(X,Y) = hy X — Hom(hy,hy)
constructed here sends each arrow f: X = Y to

hyf(idy) =idy o f: X = Y,

so it is exactly the function Hom(X,Y) — Hom(hx,hy) appearing in the
weak form of the result.

One way to think about Yoneda’s lemma is as follows. The weak form
says that the category C is embedded in the category Func(C°P, (Set)). The
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strong version says that, given a functor F': C°? — (Set), this can be ex-
tended to the representable functor hp: Func(CP, (Set)) — (Set).

We can use Yoneda's lemma to give a very important characterization
of representable functors.

DEFINITION 2.2. Let F: C°? — (Set) be a functor. A wuniversal object
for F is a pair (X, £) consisting of an object X of C, and an element £ € FX,
with the property that for each object U of C and each o € FU, there is a
unique arrow f: U — X such that Ff({) =0 € FU.

In other words: the pair (X,§) is a universal object if the morphism
hx — F defined by £ is an isomorphism. Since every natural transformation
hy — F is defined by some object £ € F X, we get the following.

PROPOSITION 2.3. A functor F': C°P — (Set) is representable if and only
if it has a universal object.

Also, if F has a universal object (X&), then is represented by X.

Yoneda’s lemma insures that the natural functor C — Func(C°P, (Set))
which sends an object X to the functor hy is an equivalence of C with the
category of representable functors. From now on we will not distinguish
between an object X and the functor hx it represents. So, if X and U are
objects of C, we will write X(U) for the set hxU = Hom¢(U, X) of arrows
U — X. Furthermore, if X is an object and F: C°? — (Set) is a functor,
we will also identify the set Hom(X, F) = Hom(hy, F'} of morphisms from
hx to F with FX.

2.1.3. Examples. Here are some examples of representable functors.

(i) Consider the functor P: (Set)°® — (Set) that sends each set S into the
set P(S) of subsets of S. If f: S — T is a function, then P(f): P(T) —
P(S) is defined by P(f)r = f 7 forall 7 C T.

Given a subset 0 C S, there is a unique function x,: S — {0,1}
such that x;({1}) = o, namely the characteristic function, defined by

(s) = 1 ifseo
X =0 ifs¢o.

Hence the pair ({0,1},{1}) is a universal object, and the functor P is
represented by {0, 1}.

(ii) This example is similar to the previous one. Consider the category
(Top) of all topological spaces, with the arrows being given by continu-
ous functions. Define a functor F: (Top)°? — (Set) sending each topo-
logical space S to the collection F(S) of all its closed subspaces. Endow
{0,1} with the coarsest topology in which the subset {1} C {0,1} is
closed; the closed subsets in this topology are (, {1} and {0,1}. A
function S — {0,1} is continuous if and only if f~1({1}) is closed in
S, and so one sees that the pair ({0,1},{1}) is a universal object for
this functor.
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(iii) The next example may look similar, but the conclusion is very different.
Let (HausTop) be the category of all Hausdorfl topological spaces, and
consider the restriction F: (HausTop) — (Set) of the functor above. I
claim that this functor is not representable.

In fact, assume that (X, &) is a universal object. Let S be any set,
considered with the discrete topology; by definition, there is a unique
function f: § — X with f~¢ = S, that is, a unique function S — ¢.
This means that £ can only have one element. Analogously, there is a
unique function S — X \ &, so X \ £ also has a unique element. But
this means that X is a Hausdorff space with two elements, so it must
have the discrete topology; hence ¢ is also open in X. Hence, if S is
any topological space with a closed subset o that is not open, there is
no continuous function f: § — X with f~1¢ = o.

(iv) Take (Grp) to be the category of groups, and consider the functor
Sgr: (Grp)°® — (Set) that associates to each subgroup G the set of
all its subgroups. If f: G — H is a group homomorphism, we take
Sgr f: SgrH — SgrG to be the function associating with each sub-
group of H its inverse image in G.

This is not representable: there does not exist a group I', together
with a subgroup I'y C I', with the property that for all groups G
with a subgroup G; C G, there is a unique homomorphism f: G —
I' such that f'I'; = G1. This can be checked in several ways; for
example, if we take the subgroup {0} C Z, there should be a unique
homomorphism f: Z — T such that f~T'; = {0}. But given one such
f, then the homomorphism Z — I" defined by n — f(2n) also has this
property, and is different, so this contradicts unicity.

(v) Here is a much more sophisticated example. Let (Hot) be the category
of all CW complexes, with the arrows being given by continuous func-
tions modulo homotopy. There is a functor H": (Hot) — (Set) that
sends a CW complex S into its n'® cohomology group H"(S,Z). Then
it is a highly nontrivial fact that this functor is represented by a CW

complex, known as a Eilenberg-Mac Lane space, usually denoted by
K(Z,n).
But we are really interested in algebraic geometry, so let’s give some

examples in this context. Let S = Spec R (this is only for simplicity of
notation, if S is not affine, nothing substantial changes).

ExAMPLE 2.4. Consider the affine line A}g over a base scheme S. We
have a functor

O: (Sch/S)® - (Set)

that sends each scheme S to the ring of global sections O(S). Then z €
O(AL), and given a scheme S over S, and an element f € O(S), there is a
unique morphism § — AL such that the pullback of z to S is precisely f.
This means that the functor O is represented by Al.
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More generally, the affine space A% represents the functor O™ that sends
each scheme S into the ring O(S)".

EXAMPLE 2.5. Now we look at Gy, s = AL \ Os. Here by Og we mean
the image of the zero-section S — A}g. Now, a morphism of S-schemes
Gm,s — S is determined by the image of z € O(Gn 5) in O(S); therefore
Gm,s represents the functor O*: (Sch/°P) — (Set) that sends each scheme
S to the group O*(S) of invertible sections of the structure sheaf.

A much more subtle example is given by projective spaces.

EXAMPLE 2.6. On the projective space P = Proj R[xzy, ..., zy] there is
a line bundle O(1), with » sections zi, ..., £, which generate it.
Suppose that S is a scheme, and consider the set of sequences

(ﬁ, S0,... ,Sn),

where L is an invertible sheaf on S, sg, ..., s, sections of £ that generate it.
We say that (L, sg,...,Spn) is equivalent to (L', sg, ..., s},) if there exists an
isomorphism of invertible sheaves ¢: £ ~ £’ carrying each s; into s]. Notice
that, since the s; generate L, if ¢ exists than it is unique.

One can consider a function @y : (Sch/ —)(Set) that associates to each
scheme S the set of sequences (L, sg, ..., S,) as above, modulo equivalence.
If f: T — S is a morphism, and (L, sq,...,8,) € F(S), then there are
sections f*sg, ..., f*s, of f*L that generate it; this gives the structure of
a functor to Q.

Another description of the functor @, is as follows. Given a scheme
Q. and a sequence (L, sg,...,Sy) as above, the s; define a homomorphism
(’)gJr1 — L, and the fact that the s; generate is equivalent to the fact that
this homomorphism is surjective. Then two sequences are equivalent if and
only if the represent the same quotient of OF.

It is a very well known fact, and, indeed, one of the founding stones
of algebraic geometry, that for any sequence (L, sg,...,Sn) over a scheme
S, there is exists a unique morphism f: .S — P% such that (£, sq,...,sn)
is equivalent to (f*O(1), f*wo,...,f*zn). This means precisely that P%
represents the functor Q.

EXAMPLE 2.7. A generalization of the previous examples is given by
grassmannians. Suppose that £ is a locally free coherent sheaf on S, and fix
a non-negative integer r. Here we are not going to assume that S is affine.
Consider the functor G{(r,&): (Sch/°?) — (Set) that sends each scheme
s: S — S over S to the set of all locally free quotients of rank r of the
pullback s*€. If f: T'— S is a morphism from ¢: T — S to s: § = S, and
$: s*€ — Q is an object of G(r, E)(S), then

is an object of G{r, &)(T).
If £ is the trivial locally free sheaf O%, we denote G(r, 0%) by G(r,n).
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Notice that in the previous example we have that G(1,0"t!) is the
functor @, represented by P¢.

REMARK 2.8. There is a dual version of Yoneda’s lemma, that will be
used in Example 3.15. Each object X of C defines a functor

Hom¢(X,—): C — (Set).

This can be viewed as the functor hx: (C°P)°? — (Set); hence, from the
usual form of Yoneda’s lemma applied to C°P for any two objects X and Y
we get a canonical bijective correspondence between Hom¢(X,Y) and the
set of natural transformations Hom¢(Y, —) — Home (X, —).

2.1.4. Group objects and actions. In this section, as usual, the cat-
egory C will have fiber products; we will also assume that it has a final object

pt.
DEFINITION 2.9. A group object of C is an object G of C, together with

a functor C°? — (Grp) into the category of groups, whose composition with
the forgetful functor (Grp) — (Set) equals hg.

Equivalently: a group object is an object G, together with a group
structure on G(U) for each object U of C, so that the function f*: G(V) —
G(U) associated with an arrow f: U — V in C is always a homomorphism
of groups.

This can be restated using Yoneda’s lemma.

PROPOSITION 2.10. To give a group scheme structure on an object G of C
is equivalent to assigning three arrows mg: G X G = G (the multiplication),
ig: G — G (the inverse), and eg: pt — G (the identity), such that the
following diagrams commute.

(1) The identity is a left and right identity:

id id
ptx G %G and Gxpt—5ax@G

R TSR

(ii) Multiplication is associative:

GxGxG me xidg GxG
lingmG lmc
G x @G i > G

(ili) The inverse is a left and right inverse:

G%GXG and GMG—)GXG

N < T A

pt__.__e_g—)G pt_.___e..c_'v____;G
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Proor. It is immediate to check that, if C is the category of sets, the
commutativity of the diagram above gives the usual group axioms. Hence
the result follows by evaluating the diagrams above (considered as diagrams
of functors) at any object U of C. [ )

Thus, for example, a group object in the category of topological spaces
is simply a group, that has a structure of a topological space, such that
the multiplication map and the inverse map are continuous (of course the
identity map is automatically continuous).

There is an obvious notion of left action of a functor into groups on a
functor into sets.

DEFINITION 2.11. A left action « of a functor G: C — (Grp) on a functor
F: C — (Set) is a natural transformation G x F — F, such that for any
object U of C, the induced function G(U) x F(U) — F(U) is an action of
the group G(U) on the set F'(U).

Equivalently, an action of G on F consists of an action of G(U) on F(U)
for all objects U of C, such that for any arrow f: U = V inC, any g € G(V)
and any z € F(V) we have

ffg-f'z=f"(g-z) € F(U).
Right actions are defined analogously.
We define an action of a group object G on an object X as an action of

the functor hg: C — (Grp) on hx: C — (Set).
Again, we can reformulate this definition in terms of diagrams.

PROPOSITION 2.12. To give a left action of a group object G on an object
X 1s equivalent to assigning an arrow p: Gx X — X, such that the following
diagrams commute.

(i) The identity of G acts like the identity on X :

eqXidx

pt Xi@,

(ii) The action is associative with respect to the multiplication on G:

me Xid x

GxGxX——GxX

deg Xp J'p

GxX P > X

ProOF. It is immediate to check that, if C is the category of sets, the
commutativity of the diagram above gives the usual axioms for a left action.
Hence the result follows by evaluating the diagrams above (considered as
diagrams of functors) at any object U of C. A



2.2. RELATIVE REPRESENTABILITY 19

2.2. Relative representability

2.2.1. Fiber products of functors. The category Func(C°P, (Set))
has fiber products. These are defined as follows. Suppose that we are given
three functors Fi, F» and G from C°P to (Set), together with two natural
transformations a;: F1 — G and ay: F» — G. The fiber product Fy x¢g F3
sends each object U of C into the fiber product of sets F1U x gy FoU, where
of course the functions F1U — GU and FiU — GQU are induced respectively
by a; and as. The action of F; Xg Fy on arrows is defined in the obvious
fashion.

Since the category Func(CP, (Set)) has terminal object, the functor that
sends each object to a fixed set with one element, it also has products,
defined by the usual formula (F} x F3)U = F{U x FyU.

If X1 =Y and X2 = Y are arrows in C, hx, — hy and hx, — hy
are the induced morphisms, then the fiber product X; xy X» represents the
fiber product hx, Xy, hx,; so we can write X; Xy X5 to mean either the
fiber product as an object of C or the fiber product of contravariant functors
on C.

2.2.2. Representable natural transformations.

DEFINITION 2.13. Let F and G be functors in Func(CP, (Set)). A mor-
phism of functors ¢: F' — G is representable if for any object Y of C and
any morphism Y — G, the fiber product F X Y is representable.

Equivalently, the morphism 7 is representable if whenever H — Y is a
morphism and H is representable, so is F' xg H.

ProrosiTiON 2.14. If 7: F — G is a morphism of contravariant func-
tors C — (Set) and G is representable, then T is representable if and only if
F is representable.

PROOF. Since the category C has fibered products, the fiber products of
two representable functors is representable; hence if F' is representable so is
the morphism 7.

Conversely, if 7 is representable, so is the fiber product F xgG ~ F. &

DEFINITION 2.15. Let P be a property of arrows in C. We say that P
is stable if whenever
X —X

Il
Y —Y
is a cartesian diagram and f has P, then f' also has P.

Examples of stable properties of continuous maps are being an embed-
ding, being injective, being surjective, being a local homeomorphism, being
open, being a covering map. Being closed, on the other hand, is not a stable
property.
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Any stable property of arrows in C can be extended to a property of
representable morphisms. If P is a stable property of arrows in C, we say
that a representable morphism F — G has P if whenever Y — G is a
morphism, with Y an object of C, then the projection F xg Y — Y has P.
This makes sense, because F' X¢ Y is representable.

Consider a functor F': C°P — (Set); there is morphism dp: F — F X F,
the diagonal of F', defined by sending each object U of C into the diagonal
function FU — FU x FU = (F x F)U.

PROPOSITION 2.16. Let F': C°P — (Set) be a functor. Then the following
three conditions are equivalent.

(i) The diagonal dp: F — F x F is representable.
(ii) If X - F and Y — F are morphisms, where X and Y are objects of
C, then the fiber product X Xp Y is representable.
(iii) All morphisms from representable functors into F are representable.

PROOF. Parts (ii) and (iii) are equivalent by the definition of a repre-
sentable morphism.

Assume that the diagonal dp: F — F x F is representable, and that
X — F and Y — F are morphisms from objects of C. It is a standard fact
that there is a cartesian square

XxpY —XxY,
[
F—X 53 FxF

which shows that the fiber product X xg Y is representable. Hence (ii)
holds.

Conversely, assume that (ii) holds, and that there is given a morphism
X — F x F, where X is an object of C. There is another cartesian diagram

Fxpuyp X — X

L

XxpX—XxX
|,
F—FXxF

showing that F' x pxr X is representable, as required. [

2.3. Sheaves in Grothendieck topologies

2.3.1. Grothendieck topologies. Now we need the notion of a sheaf
on the category (Top). Consider a functor F': (Top)°® — (Set); for each
topological space X we can consider the restriction Fix to the subcategory
of (Top) whose objects are open subspaces of X, and whose arrows are the
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inclusion maps; this is a presheaf on X. We say that F is a sheaf on (Top)
if Fx is a sheaf on X for all X.

For later use we are going to need the more general notion of sheaf in a
Grothendieck topology; in this section we review this theory.

In a Grothendieck topology the “open sets” of a space are maps into
this space; instead of intersections we have to look at fiber products, while
unions play no role. The axioms do not describe the “open sets”, but the
coverings of a space.

DEFINITION 2.17. Let C be a category with fiber products. A Grothen-
dieck topology on C is the assignment to each object U of C of a collection
of sets of arrows {V; — U}, called coverings of U, so that the following
conditions are satisfied.

(i) If V — U is an isomorphism, then the set {V — U} is a covering,.

(i) If {V; — U} is a covering and U’ — U is any arrow, then the collection
of projections {V; xy U’ — U’} is a covering.

(iii) If {V; — U} is a covering, and for each index ¢ we have a covering
{Wi; — Vi} (here j varies on a set depending on ), the collection of
compositions {W;; — V; — U} is a covering of U.

A category with a Grothendieck topology is called a site.

Notice that from (ii) and (iii) it follows that if {V; — U} and {W; — U}
are two coverings of the same object, then {V; xyW; — U} is also a covering.

REMARK 2.18. In fact what we have defined here is what is called a
pretopology in [SGAA4]; a pretopology defines a topology, and very different
pretopologies can define the same topology. The point is that the sheaf
theory only depends on the topology, and not on the pretopology. So, for
example, if two pretopologies on the same category satisfy the conditions
of Proposition 2.30 below, the two induced topologies are the same, so the
conclusion follows immediately.

Despite its unquestionable technical advantages, I do not find the notion
of topology, as defined in [SGA4], very intuitive, so I prefer to avoid its use
(just a question of habit, undoubtedly).

Here are some examples.

EXAMPLE 2.19 (The site of a topological space). Let X be a fixed topo-
logical space; call X the category in which the objects are the open subsets
of X, and the arrows are given by inclusions. Then we get a Grothendieck
topology on X by associating with each open subset U C X the set of open
coverings of U.

In this case if V] — U and Vo — U are arrows, the fiber product V4 xy V5
is the intersection V7 N V5.

EXAMPLE 2.20 (The global classical topology). Here C is the category
(Top) of topological spaces. If U is a topological space, then a covering of
U will be a collection of open embeddings V; — U whose images cover U.
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Notice here we must interpret “open embedding” as meaning an open
continuous injective map V' — U; if by an open embedding we mean the
inclusion of an open subspace, then condition (i) of Definition 2.17 is not
satisfied.

ExAMPLE 2.21 (The global étale topology for topological spaces). Here
C is the category (Top) of topological spaces. If U is a topological space,
then a covering of U will be a collection of local homeomorphisms V; — U
whose images cover U.

Here are the basic examples in algebraic geometry. A scheme is endowed
with the Zariski topology, so it yields a site, according to Example 2.19;
but of course, if this where the only significant example, the formalism of
Grothendieck topologies would be useless.

EXAMPLE 2.22 (The small étale site of a scheme). Consider a scheme X.
We can form a category Xy, the full subcategory of the category (Sch/X)
whose objects are morphism U — X that are locally of finite presentation
and étale.

A covering U; — U is a collection of morphisms of X-schemes whose
images cover U. Recall that if U and each of the U; is locally of finite
presentation and étale over X, then each of the morphisms U; — U is
locally of finite presentation and étale, hence it has an open image.

Here are four topologies that one can put on the category (Sch/S) of
schemes over a fixed scheme S. Several more have been used in different
contexts.

ExAMPLE 2.23 (The global Zariski topology). Here a covering {U; — U}
is a collection of open embeddings covering U. As in the example of the
global classical topology, an open embedding must be defined as a morphism
V — U that gives an isomorphism of V' with an open subscheme of U, and
not simply as the embedding of an open subscheme.

EXAMPLE 2.24 (The global étale topology). A covering {U; — U} is a
collection of étale maps of finite presentation whose images cover U.

EXAMPLE 2.25 (The fpqc topology). The coverings {U; — U} are col-
lections of flat morphisms, such that the induced morphism [[U; — U is
quasi-compact and surjective.

In other words, a fpqc covering {U; — U} is a collection of flat quasi-
compact morphisms, whose images cover U, such that for each affine subset
V C U the inverse image of V in U; is not empty only for finitely many 1.

ExAMPLE 2.26 (The fppf topology). A covering {U; — U} is a collection
of flat maps locally of finite presentation whose images cover U.

The acronyms fppf and fpqc stand for “fidélement plat et de présentation
finie” and “fideélement plat et quasi-compact”.
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The fppf topology is finer than the étale topology, which is turn finer
than the fppf topology. On the other hand the fpqc topology can not be
compared with any of the others.

2.3.2. Sheaves. If X is a topological space, a presheaf of sets on X is a
functor X°? — (Set), where X is the category of open subsets of X, as in
Example 2.19. The condition that F' be a sheaf can easily be generalized to
any site, provided that we substitute intersections, that do not make sense,
with fiber products.

DEFINITION 2.27. Let C be a site, F': C°® — (Set) a functor.

(i) F is separated if, given a covering {U; — U} and two sections a and b
in F'U whose pullbacks to each F'U; coincide, it follows that a = b.

(ii) F' is a sheaf if the following condition is satisfied. Suppose that we
are given a covering {U; — U} in C, and a set of sections a; € FU,.
Call pry: U; xy Uj — U; and pry: U; Xy Uj — Uj the first and second
projection respectively, and assume that prj a; = pr5 a; € F(U; xy Uj)
for all 7 and j. Then there is a unique section ¢ € FU whose pullback
to FU; is a; for all 1.

If F and G are sheaves on a site C, a morphism of sheaves F — G

is simply a natural transformation of functors.

Of course one can also define sheaves of groups, rings, and so on, as
usual: a functor from C°P to the category of groups, or rings, is a sheaf if its
composition with the forgetful functor to the category of sets is a sheaf.

The reader might find our definition of sheaf rather pedantic, and wonder
why we did not simply say “assume that the pullbacks of a; and a; to
F(U; xy Uj) coincide”. The reason is the following: when ¢ = j, in the
classical case of a topological space we have U; xy U; = U; N U; = U;, so
the two possible pullbacks from U; xy U; — U; coincide; but if the map
U; — U is not injective, then the two projections U; xy U; — U; will be
different. So, for example, in the classical case coverings with one subset are
not interesting, and the sheaf condition is automatically verified for them,
while in the general case this is very far from being true.

A sheaf on a site is clearly separated.

An alternative way to state the condition that F' is a sheaf is the follow-
ing.

Let A, B and C be sets, and suppose that we are given a diagram

g
A~—f-+B:h;c.

(that is, we are given a function f: A — B and two functions f,g: B —
C). We say that the diagram is an equalizer if f is injective, and maps A
surjectively onto the subset {b € B | g(b) = h(b)} C B.

Equivalently, the diagram is an equalizer if go f = h o f, and every
function p: D — B such that g o p = h o p factors uniquely through A.
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Now, take a functor F': C°? — (Set) and a covering {U; — U} in C.
There is a diagram

prj
(2.3.1) FU — [[FU: == [[F(U: xv U;)
i P2 iy

where the function FU — [T, FU; is induced by the restrictions FU — FUs;,
while
pr{: HFUz — HF(Uz Xu Uj)
g i,J
sends an element (a;) € [[; FU; into the element pri(a;) € [1; ; F(U; xy Uj)
whose component in F(U; xy Uj) is the pullback pr} a; of a; along the first
projection U; xy U; — U;. The function

prs: [[FU: — [[F(WU: xu U;)
) 1,3
is defined similarly.

One immediately sees that F is a sheaf if and only if the diagram (2.3.1)
is an equalizer for all coverings {U; — U} in C.

There is an interesting characterization of sheaves, that has been taken
as the definition in [ML-Mo092]. Given a covering Y = {U; — U} in C, we
define a subfunctor hyy C hx, by taking hy(T) to be the set of arrows T' — U
with the property that for some i there is a factorization T'— U; — U. In
technical terms, hy is the sieve associated with the covering ¢//. Then we
have the following fact.

PROPOSITION 2.28. A functor F: C°° — (Set) is a sheaf if and only if
for any covering U = {U; = U} in C, the induced function

FU ~ Hom(hy, F') — Hom(hy, F)

is bijective. Furthermore, F is separated if and only if this function is always
mnjective.

In fact, it is not hard to see that Hom(hy,, F') is in a bijective correspon-
dence with the set of elements ({;) of the product [], F(U;), such that for
any pair of indices ¢ and j the restrictions of {; and &; to U;; coincide.

Sometimes two different topologies on the same category define the same
sheaves.

DEFINITION 2.29. Let C be a category, {U; — U} a set of arrows. A
refinement {V; — U} is a set of arrows such that for each index j there is
some index ¢ such that V; — U factors through U;.

PROPOSITION 2.30. Let T and T’ be two Grothendieck topologies on the
same category C. Suppose that every covering in T is also in T, and that
every covering in T' has a refinement in T. Then a functor C — (Set) is a
sheaf in the topology T if and only if it is a sheaf on the topology T'.
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In particular, the sheaves on (Top) in the classical, the étale topology
and the local fibration topology are the same.

PROOF. Since 7' contains all the coverings of 7T, clearly any functor
F: C°% — (Set) that is a sheaf in the topology 7 is also a sheaf in 7. On
the other hand, assume that F: C°? — (Set) is a sheaf in the topology T,
and take a covering {U; — U} of an object U in the topology 7'. There
is a refinement {V; — U} of {U; — U} in T; for each index j choose a
factorization V; — U,; — U. If two section of FU coincide when pulled
back to each FU; they also coincide when pulled back to each FVj;, and
therefore they coincide; hence the functor F is separated in the topology 7.

Now, assume that we are given a collection of sections {a;} € [[, FU;,
such that the pullbacks pr}a; and prjay to F(U; xy Uy) coincide for all
indices ¢ and ¢’. For each j call b; the pullback of q, ; to Vj through the arrow
V; = U,;. I claim that for every pair of indices j and j' the pullbacks of b;
and by to V; Xy Vjr coincide. In fact, the composition of pry: V; xy V; —
V; with the arrow V; — U,; factors through pr;: U,; x ULJ., — U,;; and
analogously for the second projection. Since the pullbacks prj a,; and prj Quy
to F(U; xy Uy) coincide, the thesis follows.

Since F' is a sheaf in 7, there will exist some a in FU whose pullback
to F'V; is b; for all j. Now we need to show that the pullback of a to FUj is
a; for all <. For each 7 and ¢ there is a commutative diagram

VjXUUi-——-——>ULj XUUi—>Ui;

L

since the pullbacks of a,; and a; to F(U,; Xy U;) coincide, this shows that
the pullbacks of a € FU and a; € FU; to F(V; xy U;) are the same. But
{V; xuy U; — U;} is a covering of U; in the topology 77, and since F is
separated in the topology 7’ we conclude that in fact the pullback of a to
FU,; equals a;. [

DEFINITION 2.31. A topology T on a category C is called saturated if,
whenever {U; — U} is a set of arrows, {V;; — U;} is a covering of U; for
each ¢, and the set {V;; = U} of compositions is a covering, then {U; — U}
is a covering. _

If 7 is a topology of C, the saturation of T is the set T of all sets of
arrows {U; — U} with the property that there exists a covering {V;; — U;}
for each 4 such that the set {V;; = U} of compositions is a covering.

PROPOSITION 2.32. The saturation T of a topology T 1is_a saturated

topology. Furthermore, a functor C°P — (Set) is a sheaf under T if and only
if it is a sheaf under T.
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PrROOF. We leave it as an exercise for the reader to prove that T is a
saturated topology. The last statement follows from Proposition 2.30. &

EXAMPLE 2.33. The global étale topology on (Top) is a saturated topol-
ogy. It is the saturation of the classical topology; hence the global étale
topology and the classical topology have the same sheaves.

In the category (Sch/S) the étale topology and the fppf topology are
both saturated. On the other hand, in the category of schemes an étale
morphism is not Zariski-locally an open embedding, hence the global étale
topology is not the saturation of the global Zariski topology.

2.3.3. Sheaf conditions on representable functors.

PROPOSITION 2.34. A representable functor (Top)°? — (Set) is a sheaf
in the classical topology.

The proof is straightforward. It is similarly easy to show that a repre-
sentable functor in the category (Sch/S) over a base scheme S is a sheaf in
the Zariski topology. On the other hand the following is not straightforward.

PROPOSITION 2.35 (Grothendieck). A representable functor in (Sch/S)
is a sheaf in the fpgc and in the fppf topologies.

So, in particular, it is also a sheaf in the étale topology.

DEFINITION 2.36. A topology T on a category C is called subcanonical
if every representable functor in C is a sheaf with respect to 7.
A subcanonical site is a category endowed with a subcanonical topology.

There are examples of sites that are not subcanonical, but I have never
had dealings with any of them.

The name “subcanonical” comes from the fact that on a category C there
is a topology, known as the canonical topology, which is the finest topology
in which every representable functor is a sheaf. We will not be needing this
fact.

PROOF OF PROPOSITION 2.35. We will use the following useful crite-
rion.

LEMMA 2.37. Let S be a scheme, F: (Sch/S)°? — (Set) a functor. Sup-
pose that F satisfies the following two conditions.

(i) F is a sheaf in the global Zariski topology.
(i) Whenever V. — U is a flat surjective morphism of affine S-schemes,
the diagram

pri
FU — FV —= F(V xy V)
pr3

is an equalizer.
Then F is a sheaf in both the fppf and the fpgc topology.
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Conversely, one sees easily that if F' is a sheaf in both the fppf and the
fpqc topology, then it satisfies the conditions of the Proposition.

PROOF. Take a covering {U; — U} of schemes over S, in either the fppf
or the fpgc topology, and set V' = []. U;. The induced morphism V — U
is flat, surjective and either of finite presentation (in the case of the fppf
topology) or quasi-compact (in the case of the fpqc topology). Since F is
a Zariski sheaf, the function FV — [], FU; induced by restrictions is an
isomorphism. We have a commutative diagram of functions

*
pry

FU—— FV __—XF(V xygV)
pr3 J’
\[ pr]
FU — [I; FU; == [1;; F(U; xu Uj)

pr3

where the columns are bijections; hence to show that the bottom row is an
equalizer it is enough to show that the top row is an equalizer. In other
words, we have shown that it is enough to consider coverings {V — U}
consisting of a single morphism. Similarly, to check that F' is separated we
may limit ourselves to considering coverings consisting of a single morphism.

This argument also shows that if {U; — U} is a finite covering, such
that U and the U; are affine, then the diagram

pri
FU — [[Fui == [[FU: xv U))
i P2 i
is an equalizer. In fact, in this case the finite disjoint union [[; U; is also
affine.
Now we are given a morphism f: V — U that is flat and surjective, and
either quasi-compact or locally finitely presented.

LEMMA 2.38. We can write U as an union of affine subschemes U =
UierU;, in such a way that for each i there is a finite number of open affine
subscheme Vi, of in f~1U;, so that that the Vi,, taken all together, form a
covering of V, and {V;q — U;} is a covering for all i.

PRrROOF. This is clear in the quasi-compact case: just write U as a union
of affine subschemes U = U;U;; then each inverse image f~'U; is quasi-
compact, hence it is the union of finitely many open affine subscheme V,.

In the finitely presented case one may need infinitely many affines to
cover each f~1U;; but the projection f~1U; — U; is open, while U; is quasi-
compact, so we can choose finitely many open affine subscheme V;, that
cover U;. These, taken all together, need not cover all of V; but we can
change the set of indices, defining I to be the set of pairs (i, L), where i € I
and L is a finite set of open affine subschemes of V' whose images cover
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U;. The projection I — I is surjective, and we obtain a covering with the

desired properties by setting U = N; 1,c7U; and Vi)t = L. [ )
Now consider the diagram

FU > FV Y F(V xy V)

l | |

[1, FU; ————— T1; 11, FVia ——=¢ [ L; [1op F(Via xv Vip)

I |

IL,; FU:nUj) — 11 ; [1ap F(Via 0 Vj)

Its columns are equalizers, because F' is a sheaf in the Zariski topology. On
the other hand, the second row is an equalizer, because each diagram

FU; — 1 FVie —=3 [1ap F (Vi xv Vin)

is an equalizer, and a product of equalizers is easily seen to be an equalizer.
Hence the restriction function FU — FV is injective, so F' is separated.
But this implies that the bottom row is injective, and with an easy diagram
chasing one shows that the top row is exact. [ )

To prove Proposition 2.35 we need to check that if ' = hy, where X is
an S-scheme, then the second condition of the Proposition is satisfied. First
of all, let us notice that it is enough to prove the result in case S = SpecZ,
that is, when (Sch/S) is simply the category of all schemes.

In fact, suppose that the result holds for S = SpecZ; we need to show
that for any fppf of fpqc covering {U; — U} of S-schemes the sequence

Homg(U, X) — HHoms(Ui,X) _ HHomS(Ui xy Ui, X)
i i.J
is an equalizer. The injectivity of the function

Homs (U, X) — H Homg(U;, X)
i

is clear, since Homg(U, X) injects into Hom U, X), [[; Homg(U;, X) injects
into [], Hom(U;, X), and Hom( U, X) injects into [[; Hom(U;, X), because
Hom(—, X) is a sheaf. On the other hand, let us suppose that we are given
an element (a;) of [[, Homg(U;, X ), with the property that for all pairs 7, j of
indices pr} a; = pr} a; in Homs(U; Xy Uy, X). Then there exists a morphism
o € Hom(U, X) such that the composition U; — U % X coincides with a;
for all, and we only have to check that a is a morphism of S-schemes. But
the composition U; - U % X — § coincides with the structure morphism
U; — S for all i; since Hom(—, S) is a sheaf on the category of schemes. so
that Hom(U, S) injects into [, Hom(U;, S), this implies that U % X — S
is the structure morphism of U, and this completes the proof.
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So for the rest of the proof we only need to work with morphism of
schemes, without worrying about base schemes. We will assume at first
that X is affine. Set U = Spec A, V = Spec B, X = Spec R. In this case
the result is an easy consequence of the following lemma. Consider the
ring homomorphism f: A — B corresponding to the morphism V — U,
and the two homomorphism of A-algebras eg,e1: B — B ® 4 B defined by
e1(b) = b® 1 and es(b) = 1 ® b; these correspond to the two projections
V %y V->V.

LEMMA 2.39. The sequence

€1—€3

0— AL BE=% Bo, B

18 exact.

PRrRoOOF. The injectivity of f is clear, because B is faithfully flat over A.
Also, it is clear that the image of f is contained in the kernel of e; — eg, so
we have only to show that the kernel of e; — eg is contained in the image of
f.

Assume that there exists a homomorphism of A-algebras g: B — A (in
other words, assume that the morphism V — U has a section). Then the
composition go f: A — A is the identity. Take an element b € ker(eg — e1);
by definition, this means that 5® 1 = 1 ® b in B ®4 B. By applying the
homomorphism ¢ ® idg: B®4 B - A®4 B = B to both members of the
equality we obtain that f(gb) = b, hence b € im f.

In general, there will be no section U — V'; however, suppose that there
exists a faithfully flat A algebra A — A’, such that the homomorphism
f®idg : A' - B® A’ obtained by base change has a section BQ A’ — A’ as
before. Set B’ = B® A’. Then there is a natural isomorphism of A’-algebras
B'®4 B'~ (B®4 B) ®4 A', making the diagram

0—— 4 12 S BeuB
” ®id 41 H —e2)R®id 4/ l
0 >A'flA>B' (e1-e2)id »(B®4B) @4 A

commutative. The bottom row is exact, because of the existence of a section,
and so the top row is exact.

But to find such homomorphism A — A’ it is enough to set A’ = B;
the product B®4 A" — A’ defined by b® b’ — bb’ gives the desired section.
In geometric terms, the diagonal V' — V Xy V gives a section of the first
projection V xy V. — V. [

To finish the proof of Proposition 2.35 in the case that X is affine, recall
that morphisms of schemes U —+ X, V — X and V xy V — X correspond
to ring homomorphisms R — A, R —+ B and R — B ®4 B; then the result
is immediate from the lemma above. This proves that hy is a sheaf when
X is affine.
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If X is not necessarily affine, write X = U; X; as a union of affine open
subschemes.

First of all let us show that hx is separated. Given a covering V — U,
take two morphisms f,g: U — X such that the two compositions V — U —
X are equal. Since V — U is surjective, f and g coincide set-theoretically,
so we can set U; = f71X; = g7 X;, and call V; the inverse image of U; in
V. The two compositions

flUi
Vi — U; :; X;
9lu;

coincide, and Xj is affine; hence f |y,= g |y, for all 4, so f = g, as desired.
To complete the proof, suppose that g: V — X is a morphism with the
property that the two compositions

r
VxUV:éﬁ'viSX
2
are equal; we need to show that g factors through U. First of all, I claim
that g factors through U set-theoretically.

For this, take two points v; and vo with the same image « in U. I claim
that there exists w € V xy V such that pr;(w) = v, and pry(w) = vs.
For this, consider the extensions k(u) C k(v1) and k(u) C k(ve); the tensor
product k(v1) ®gy) k(vz) is not 0, hence it has a maximal ideal. If we
call K the quotient field, K is an extension of k(u) containing both k(v;)
and k(ve). The two compositions Spec K — Speck(v;) —» V 9y 4 U and
Spec K — Speck(vy) — V 2y U coincide, so get a morphism Spec K —
V xy V. We take w to be the image of Spec K in V xy V.

But V — U is surjective, so g factors through U set-theoretically, as
claimed. Since U has the quotient topology induced by the morphism V' — U
(Proposition 1.12), we get that the resulting function f: U — X is contin-
uous.

Set U; = f~1X; and V; = g~ 1V; for all i. The compositions

P glv,
VixgVi —3 i —= Vi — X,
pry
coincide, and X; is affine, so g |y;: V; — X factors uniquely through a
morphism f;: U; — X;. We have
fi |UiﬁUj= f] |UiﬁUj: Uuin U] — X’

because hy is separated; hence the f; glue together to give the desired
factorization V — U — X. [

2.3.4. The sheafification of a functor. The usual construction of
the sheafification of a presheaf of sets on a topological space carries over to
this more general context.
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DEFINITION 2.40. Let C be a site, F': C°P? — (Set) a functor. A sheafifica-
tion of F is a sheaf F®: C°? — (Set), together with a natural transformation
F — F?2, such that:

(1) given an object U of C and two objects ¢ and n of F(U) whose images £?
and n? in F2(U) are isomorphic, there exists a covering {o;: U; — U}
such that o;¢ = o}n, and

(ii) for each object U of C and each £ € F3(U), there exists a covering
{o;: U; —» U} and elements ¢; € F(U;) such that €2 = o7¢.

THEOREM 2.41. Let C be a site, F': C°P — (Set) a functor.

(1) If F?: C°? — (Set) is a sheafification of F, any morphism from F to a
sheaf factors uniquely through F?2.

(ii) There exists a sheafification F — F?, which is unique up to a canonical
isomorphism.

(iii) The natural transformation F — F? is injective if and only if F is
separated.

SKETCH OF PROOF. For part (i), let ¢: F — G be a natural transfor-
mation from F' to a sheaf G': C°P — (Set).

Let us prove the first part. For each object U of C, we define an equiv-
alence relation ~ on FU as follows. Given two sections a and b in FU, we
write a ~ b if there is a covering U; — U such that the pullbacks of a and b
to each U; coincide. We check easily that this is an equivalence relation, and
we define FSU = FU/ ~. We also verify that if V' — U is an arrow in C, the
pullback FU — FV is compatible with the equivalence relations, yielding a
pullback F3U — F*®V. This defines the functor F* with the surjective mor-
phism F' — F5. It is straightforward to verify that F® is separated, and that
every natural transformation from F to a separated functor factors uniquely
through F*.

To construct F2, we take for each object U of C the set of pairs ({U; —
U},{a;}), where {U; — U} is a covering, and {a;} is a set of sections with
a; € F3U; such that the pullback of a; and a; to F*(U; xy Uj), along the
first and second projection respectively, coincide. On this set we impose
an equivalence relation, by declaring ({U; — U}, {a;}) to be equivalent to
({V; = U}, {b;}) when the restrictions of a; and b; to F*(U; xyV}), along the
first and second projection respectively, coincide. To verify the transitivity
of this relation we need to use the fact that the functor F*® is separated.

For each U we call F2U the set of equivalence classes. If V — U is
an arrow, we define a function F2U — F?V by associating with the class
of a pair ({U; — U}, {a;}) in F2U the class of the pair ({U; xy V'},pfai),
where p;: U; Xy V. — U; is the projection. Once we have checked that
this is well defined, we obtain a functor F?: C°? — (Set). There is also a
natural transformation F® — F', obtained by sending an element a € FSU
into ({U = U},a). Then one verifies that F® is a sheaf, and that the
composition of the natural transformations F' — F*® and F® — F? has the
desired universal property.
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The unicity up to a canonical isomorphism follows immediately from
part (i). Part (iii) follows easily from the definition. ('



CHAPTER 3

Fibered categories

3.1. Fibered categories

3.1.1. Definition and first properties. In this section we will fix
a category C with products and fiber products; the topology will play no
role. We will study categories over C, that is, categories F equipped with a
functor pr: F — C.

We will draw several commutative diagrams involving objects of C and
F; an arrow going from an object £ of F to an object U of C will be of type
“€ — U”, and will mean that pr¢ = U. Furthermore the commutativity of
the diagram

will mean that pr¢ = f.

DEFINITION 3.1. Let F be a category over C. An arrow ¢: & = nof F
is cartesian if for any arrow ¢: ( = 7 in F and any arrow h: px( — p£€ in
C with pr¢ o h = pr1), there exists a unique arrow 8: { = £ with prf = h
and # o ¢ = (, as in the commutative diagram

C\X
0\\
e
PfC\l I
h\\ T~
pré —— PF7

If £ — 7 is a cartesian arrow of F mapping to an arrow U — V of C, we
also say that £ is a pullback of n to U.

REMARK 3.2. The definition of cartesian arrow we give is more restric-
tive than the definition in [SGA1]; however, the resulting notions of fibered
category coincide.

33
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REMARK 3.3. Given two pullbacks ¢: £ — n and a: §~—> n of n to U,
the unique arrow 6: £ — ¢ that fits into the diagram

¢
U—V
is an isomorphism. In other words, a pullback is unique, up to a unique
isomorphism.

The following facts are easy to prove, and are left to the reader.

PROPOSITION 3.4.

(i) If F is a category over C, the composition of cartesian arrows in F is
cartesian.

(ii) A cartesian arrow of F whose image in C is an isomorphism is also an
isomorphism.

(iii) If € = n and n — ¢ are arrows in F and n — ( is cartesian, then
& — n is cartesian if and only if the composition & — ( is cartesian.

(iv) Let pr: F — C and pg: G — C be categories over C. If F: F — G is
a functor with pgo F = pr, &€ = n is an arrow in F that is cartesian
over its image F¢ — Fn in F, and FE — Fn is cartesian over its
image pgé — pgn in C, then £ — n is cartesian over pgé — pgn.

DEFINITION 3.5. A fibered category over C is a category F over C, such
that given an arrow f: U — V in C and an object n of F mapping to V,
there is a cartesian arrow ¢: £ — n with pr¢ = f.

If 7 and G are fibered categories over C, then a morphism of fibered
categories F': F — G is a functor such that:

(i) F is base-preserving, that is, pg o F = pr;
(ii) F sends cartesian arrows to cartesian arrows.

In other words, in a fibered category F — C we can pull back objects of
F along any arrow of C.

Notice that in the definition above the equality pg o F = pr must be
interpreted as an actual equality. In other words, the existence of an iso-
morphism of functors between pg o F' and pr is not enough.

PROPOSITION 3.6. Let pr: F — C and pg: G — C be categories over C,
F: F — G a functor with pg o F = pr. Assume that G is fibered over C.

(i) If F is fibered over G, then it also fibered over C.
(ii) If F is an equivalence of categories, then F is fibered over C.

PROOF. Part (i) follows from Proposition 3.4 (iv). Part (ii) follows from
the easy fact that if F' is an equivalence then F is fibered over G. A
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3.1.2. Fibered categories as pseudo-functor.

DEFINITION 3.7. Let F be a fibered category over C. Given an object
U of C, the fiber F(U) of F over U is the subcategory of F whose objects
are the objects £ of F with pr& = U, and whose arrows are arrows ¢ in F
with pr¢ = idy.

By definition, if F: F — G is a morphism of fibered categories over C
and U is an object of C, the functor F sends F(U) to G(U), so we have a
restriction functor Fyy: F(U) — G(U).

Notice that formally we could give the same definition of a fiber for any
functor pr: F — C, without assuming that F is fibered over C. However, we
would end up with a useless notion. For example, it may very well happen
that we have two objects U and V' of C which are isomorphic, but such that
F(U) is empty while (V) is not. This kind of pathology does not arise for
fibered categories, and here is why.

Let F be a category fibered over C, and f: U — V an arrow in C. For
each object 1 over V', we choose a pullback ¢, : f*n — nof n to U. We define
a functor f*: F(V) — F(U) by sending each object n of F(V) to f*n, and
each arrow 3: n — 1’ of F(U) to the unique arrow f*8: f*n — f*n' in F(V)
making the diagram

frn——n

|
[ f*B lﬁ
3
fr—n
commute.

DEFINITION 3.8. A cleavage of a fibered category F — C consists of a
class K of cartesian arrows in F such that for each arrow f: U - V in C
and each object n in F(V) there exists a unique arrow in K with target 7
mapping to f in C.

By the axiom of choice, every fibered category has a cleavage. Given a
fibered category F — C with a cleavage, we associate with each object U of C
a category F(U), and to each arrow f: U — V a functor f*: F(V) —» F(U),
constructed as above. It is very tempting to believe that in this way we have
defined a functor from C to the category of categories; however, this is not
quite correct. First of all, pullbacks idj;: F(U) — F(U) are not necessarily
identities. Of course we could just choose all pullbacks along identities to
be identities on the fiber categories: this would certainly work, but it is not
very natural, as there are often natural defined pullbacks where this does
not happen (in Example 3.11 and many others). What happens in general
is that, when U is an object of C and & an object of F(U), we have the
pullback ey (£): id;€ — & is an isomorphism, because of Proposition 3.4 (ii),
and this defines an isomorphism of functors ey : idy; =~ idr(.

A more serious problem is the following. Suppose that we have two
arrows f: U — V and g: V — W in C, and an object ¢ of F over W.
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Then f*¢*¢ is a pullback of { to U; however, pullbacks are not unique, so
there is no reason why f*g*( should coincide with (gf)*¢. However, there
is a canonical isomorphism oy 4(¢): f*9*¢ ~ (9f)*¢ in F(U), because both
are pullbacks, and this gives an isomorphism ay4: f*g* =~ (gf)* of functors
F(W) = FU).

So, after choosing a cleavage a fibered category almost gives a functor
from C to the category of categories, but not quite. The point is that
the category of categories is not just a category, but what is known as
a 2-category; that is, its arrows are functors, but two functors between
the same two categories in turn form a category, the arrows being natural
transformations of functors. Thus there are l-arrows (functors) between
objects (categories), but there are also 2-arrows (natural transformations)
between l-arrows.

What we get instead of a functor is what is called a pseudo-functor, or,
in a more modern terminology, a laz 2-functor.

DEFINITION 3.9. A pseudo-functor ® on C consists of the following data.

(i) For each object U of C a category ®U.
(i1) For each arrow f: U — V a functor f*: @V — @U.

(iii) For each object U of C an isomorphism ep: idj; ~ idgy of functors
oU — dU.

(iv) For each pair of arrows U i) V3 W an isomorphism oy g: f*g* =~
(gf)*: ®W — ®U of functors OW — @U.

These data are required to satisfy the following conditions.
(a) If f: U — V is an arrow in C and 7 is an object of ®V', we have
tidy,f(m) = ev(f*n): idy f*n — fn
and
afidy (1) = frev(n): fridyn — f*n.

(b) Whenever we have arrows U Lv S w2 Tandan object 8 of F(T),
the diagram

h*0
frgthro —220 (gp)he
lf*ag,h(o) lagh,f(a)
w(p oxpg _ Chhg(0) «
F*(hg)*0 —2—— (hgf)*
commutes.

We have seen how to associate to a fibered category over C, equipped
with a cleavage, the data for a pseudo-functor; we still have to check that
the two conditions of the definition are satisfied.

PROPOSITION 3.10. A fibered category over C with a cleavage defines a
pseudo-functor on C.
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PrOOF. We have to check that the two conditions are satisfied. Let us
do this for condition (b) (the argument for condition (a) is very similar).
The point is that f*g*h*( and (hgf)*( are both pullbacks of ¢, and so, by
the definition of cartesian arrow, there is a unique arrow f*g*h*¢ — (hgf)*¢
lying over the identity on U, and making the diagram

f*g *hi—> (hgf)*¢

commutative. But one sees immediately that both agp () 0 ay4(h*¢) and
afng(C) o frogy p(C) satisfy this condition.

A functor @: C°? — (Cat) from C into the category of categories gives
rise to a pseudo-functor on C, simply by defining all €y and all ay 4 to be
identities.

3.1.3. The fibered category associated with a pseudo-functor.
Conversely, from a pseudo-functor on C one gets a fibered category over C
with a cleavage. First of all, let us analyze the case that the pseudo-functor is
simply a functor ®: C°? — (Cat) into the category of categories, considered
as a l-category. This means that with each object U of C we associate a
category ®U, and for each arrow f: U — V gives a functor &f: &V — ®U,
in such a way that ®idy: ®U — ®U is the identity, and ®(go f) = & f o &g
every time we have two composable arrows f and g in C.

To this ® we can associate a fibered category F — C, such that for any
object U in C the fiber F(U) is canonically equivalent to the category ®U.
An object of F is a pair (£, U) where U is an object of C and € is an object of
F(U). An arrow (a, f): (§,U) = (n,V) in F consists of an arrow f: U - V
in C, together with an arrow a: £ — ®f(n) in ®U.

The composition is defined as follows: if (a,f): (¢,U) — (n,V) and
(b,9): (n,V) = (¢,W) are two arrows, then

(b,9) o (a,f) = (®boa,go f): (§,U) — ({,W).

There is an obvious functor F — C that sends an object (£,U) into U
and an arrow (a, f) into f; I claim that this functor makes F into a fibered
category over C. In fact, given an arrow f: U — V in C and an object (n, V)
in F(V), then (®f(n),U) is an object of F(U), and it is easy to check that
the pair (f,ids f(n)) gives a cartesian arrow (®f(n),U) — (n,V).

The fiber of F is canonically equivalent to the category ®U: the equiv-
alence F(U) — ®U is obtained at the level of objects by sending (£,U) to
£, and at the level of arrows by sending (a,idy) to a. The collection of all
the arrows of type ( f,ids f(n)) gives a cleavage.

The general case is similar, only much more confusing. Consider a
pseudo-functor ® on C. As before, we define the objects of F to be pairs
(¢,U) where U is an object of C and ¢ is an object of F(U). Again, an arrow
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(a,f): (§,U) = (n,V) in F consists of an arrow f: U — V in C, together
with an arrow a: £ = f*(n) in @U.

Given two arrows (a, f): (§,U) — (n,V) and (b,g): (n,V) = ((,W),
we define the composition (b, g) o (a, f) as the pair (b-a,gf), where b-a =
afq(C) o f*boa is the composition

* ©)
£ -2 ¢ LB prgr¢ 2122 (g%
in ®U.
Let us check that composition is associative. Given three arrows
,f) (b,g) (c;h)

we have to show that

(c,h) o ((b,9) © (a,)) = (c- (b a), hyf)
equals
((e,h) o (b,9)) © (a, f) & ((c-b) - a,hgf).
By the definition of the composition, we have
¢ (b-a) =agpa(0) o (9f) co(b-a)
= agrn(0) o (gf)*coasy(()o ffboa

while

(c-b)-a=asn(0)ecf*(c-b)oa
= afng(C) o fragn(f) o f*g"co f*boa;

hence it is enough to show that the diagram

* * 2]
frg ¢ —LE s g0 L2220 pring)o

laf,g(C) l%f 1 (0) l"‘f hg(0)
(9f)"e . )
(95) ¢ —2 " (gf) R0 —2 5 (hgf)*0

commutes. But the commutativity of the first square follows from the fact
that ay g is a natural transformation of functor, while that of the second is
condition (b) in Definition 3.9.

Given an object (&,U) of F, we have the isomorphism e (§): idj;€ — &;
we define the identity id ¢): (£,U) — (£,U) as idp) = (er(£)7,idy).
To check that this is neutral with respect to composition, take an arrow

(a,f): (&,U) = (n,V); we have
(a, ) o (er(&)Hidv) = (a-ev(€) ™, f)

and

a-ey(&)7! = gy, (fn) o idfao ey (€)7h.
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But condition (a) of Definition 3.9 says that osq, s(f*n) equals ey (f*n),
while the diagram

ids¢ v (§) ¢

lid;']a \[a
idy e L0y fo
commutes, because €y is a natural transformation. This implies that a -
ey (€)™t = a, and therefore (a, f) o (ey(€)7},idy) = (a, f).
A similar argument shows that (ey (€)™}, idy) is also a left identity.
Hence F is a category. There is an obvious functor pr: F — C sending
an object (§,U) into U and an arrow (a, f) into f. I claim that this makes
F into a category fibered over C.
Take an arrow f: U — V of C, and an object (7, V) of F over V. I claim
that the arrow

(idf"‘na f) : (f*na U) — (777 V)
is cartesian. To prove this, suppose that we are given a diagram

(Ca W) (b,9)

~

(without the dotted arrow); we need to show that there is a unique arrow
(¢, h) that can be inserted in the diagram. But it is easy to show that

(idf*n7 f) o (C, h’) = (ah,f(n) oc, hg)a

and this tells us that the one and only arrow that fits into the diagram is
(Olh,f(ﬂ)_l b, h’)

This shows that F is fibered over C, and also gives us a cleavage.

Finally, let us notice that for all objects U of C there is functor F(U) —
®U, sending an object (£,U) to ¢ and an arrow (a, f) into a. This is an
isomorphism of categories.

The cleavage constructed above gives, for each arrow f: U — V, functors
f*: F(V) = F(U). If we identify each F(U) with ®U via the isomorphism
above, then these functors correspond to the f*: ®V — ®U. Hence if we
start with a pseudo-functor, we construct the associated fibered category
with a cleavage, and then we take the associated pseudo-functor, this is
isomorphic to the original pseudo-functor (in the obvious sense).

Conversely, it is easy to see that if we start from a fibered category
with a cleavage, construct the associated pseudo-functor, and then take the
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associated fibered category with a cleavage, we get something isomorphic to
the original fibered category with a cleavage (again in the obvious sense).
So really giving a pseudo-functor is the same as giving a fibered category
with a cleavage.

On the other hand, since cartesian pullbacks are unique up to a unique
isomorphism (Remark 3.2), also cleavages are unique up to a unique isomor-
phism. This means that, in a sense that one could make precise, the theory
of fibered categories is equivalent to the theory of pseudo-functors. On the
other hand, as was already remarked in [SGA1, Remarque, pp. 193-194],
often the choice of a cleavage hinders more that it helps.

3.2. Examples of fibered categories

ExAMPLE 3.11. Let ArrC be the category of arrows in C; its objects
are the arrows in C, while an arrow from X: S - U toY: T — V is a
commutative diagram

X—>Y .

[ ]
U—V
The functor pay¢: ArrC — C sends each arrow S — U to its codomain U,
and each commutative diagram to its bottom row.
I claim that ArrC is a fibered category over C. In fact, it easy to check

that the cartesian diagrams are precisely the cartesian squares, so the state-
ment follows from the fact that C has fibered products.

EXAMPLE 3.12. As a variant of the example above,let P a class of arrows
that is stable under pullback. This means that if we have a cartesian square
inC

X—Y

| |

U—V
and Y — V is in P, then X — U is also in P. The arrows in P are the
objects in a category, again denoted by P, in which an arrow from X — U
to Y — V is a cartesian square as above.
It is easy to see that this is a category fibered in groupoids over C

EXAMPLE 3.13. Let G a topological group. The classifying stack of G
is the fibered category BG — (Top) over the category of topological spaces,
whose objects are principal G bundles P — S, and whose arrows (¢, f) from
P — U to @ —» V are commutative diagrams

P—¢—>Q

|,

U—V
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where the function ¢ is G-equivariant. The functor BG — (Top) sends a
principal bundle P — U into the topological space U, and an arrow (¢, f)
into f.

Contrary to the usual convention, in a principal G-bundle P — S we
will write the action of G on the left.

It is important to notice that any such diagram is cartesian; so BG —
(Top) has the property that each of its arrows is cartesian.

We are mostly interested in categories of sheaves. The simplest example
is the fibered category of sheaves on objects of a site, defined as follows.

EXAMPLE 3.14. Let C be a site, and call T its topology. For each object
X of C there is an induced topology Tx on the category (C/X), in which a

set of arrows
Ui —U
N
X

is a covering if and only if the set {U; — U} is a covering in C. We will
refer to a sheaf in the site (C/X) as a sheaf on X, and denote the category
of sheaves on X by Sh X.

If f: X — Y is an arrow in C, there is a corresponding restriction functor
f*: ShY — Sh X, defined as follows.

If Gis asheaf on Y and U — X is an object of (C/X), we define
f*GU - Y)=GU — Y), where U — Y is the composition of U — X
with f.

IfU — X and V — X are objects of (C/X) and ¢: U — V is an arrow
in (C/X), then ¢ is also an arrow from U = Y to V — Y, hence it induces
a function ¢*: F*(V - X) =F{U = Y) - F(V - Y) = f*F(V - X).
This gives f*F the structure of a functor (C/X)°® — (Set). One checks
immediately that f*F is a sheaf on (C/X).

If $: F — G is a natural transformation of sheaves on (C/Y’), there is
an induced natural transformation f*¢: f*F — f*G of sheaves on (C/X),
defined in the obvious way. This defines a functor f*: ShY — Sh X.

It is immediate to check that, if f: X - Y and g: Y — Z are arrows in
C, we have an equality of functors (gf)* = f*¢*: (C/Z) — (C/X). Further-
more id%: Sh X — Sh X is the identity. This means that we have defined
a functor from C to the category of categories, sending an object X into
the category of categories. According to the result of 3.1.3, this yields a
category (Sh/C) — C, whose fiber over X is Sh X.

There are many variants on this example, by considering sheaves in
abelian groups, rings, and so on.

This example is particularly simple, because it is defined by a functor. In
most of the cases that we are interested in, the sheaves on a given object will
be defined in a site that is not the one inherited from the base category C;
this creates some difficulties, and forces one to use the unpleasant machinery
of pseudo-functors. On the other hand, this discrepancy between the base
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topology and the topology on which the sheaves is what makes descent
theory for quasicoherent sheaves so much more than an exercise in formalism.

Let us consider directly the example we are interested in, that is, fibered
categories of quasicoherent sheaves.

ExAMPLE 3.15. Here C will be the category (Sch/S) of schemes over a
fixed base scheme S. For each scheme U we define QCoh U to be the category
of quasicoherent sheaves on U. Given a morphism f: U — V, we have
a functor f*: QCohV — QCohU. Unfortunately, given two morphisms

vhvs W, the pullback (gf)*: QCohW — QCohU does not coincide
with the composition f*¢*: QCohW — QCohU, but it is only canonically
isomorphic to it. This may induce one to suspect that we are in the presence
of a pseudo-functor; and this is indeed the case.

The neatest way to prove this is probably by exploiting the fact that
the pushforward f,: QCohU — QCohV is functorial, that is, (¢f)« equals
g+ f+« on the nose, and f* is a left adjoint to f,. This means that, given
quasicoherent sheaves N on U and M on V, there is a canonical isomorphism
of groups

0N, M): Homop,, (N, f+F) ~ Home, (f*N, M)
that is natural in M and A/. More explicitly, there are two functors
QCohU°? x QCoh V' — (Grp)

defined by

(M, N) — Homo,, (G, fr M)
and

(M, N) = Homp,, (f*N, M);
then ©; defines a natural transformation from the first to the second.

Equivalently, if a: M — M’ and 8: N = AN’ are homomorphism of
quasicoherent sheaves on U and V respectively, the diagrams

Homoy, (', fu M)~ Home, (FN, M)

lf*ao— J/QO—
@f(N’,M)

Homov (N, f*MI) —_— HomoU (f*N, M’)

and
O (N, M
Homo, (A", fu M) LM 1ome, (FAN7, M)
|- |
O (N M
Homoy, (W, fiM) 2™, Home, W, £ M)
commute.

If U is a scheme over S and AN a quasicoherent sheaf on U, then the
pushforward functor (idy)«: QCohU — QCoh U is the identity (this has to
be interpreted literally, I am not simply asserting the existence of a canonical
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isomorphism between (idy )« and the identity on QCohU). Now, if M is a

quasicoherent sheaf on U, there is a canonical adjunction isomorphism

B4, (M, =) Homp, (M, (idy)«—) = Homgp,, (M, —) ~ Home,, (idj; M, —)

of functors from QCoh U to (Set). By the dual version of Yoneda’s lemma

(Remark 2.8) this corresponds to an isomorphism ey(M): idpM ~ M.

This is easily seen to be functorial, and therefore defines an isomorphism
ey: idyy ~ idqoon

of functors from QCohU to itself. This is the first piece of data that we
need.

For the second, consider two morphisms U i) V% W and a quasi-
coherent sheaf P on W. We have the chain of isomorphism of functors
QCohU — (Grp)

Homo, ((9f)*P, —) = Homo,, (P, (gf)«—) (this is Og4(P,—)7")

= Homoy, (P, g« fs—)

~ Homp, (¢*P, f«—)  (this is O4(P, fi—))

~ Home, (¢* f*P, —) (this is O(¢*P, -));
the composition

O7(g*P, =) 0 O4(P, fs=)0O4s (P, =) 1:

Homoy, ((9f)"P, —) =~ Homo, (9" f*P, -)

corresponds, again because of the dual Yoneda lemma, to an isomorphism
afg(P): f*g*P ~ (gf)*P. These give an isomorphism ayg4: f*g* ~ (gf)*
of functors QCoh W — QCohU. We have to check that the ey and oy,
satisfy the conditions of Definition 3.9.

Take a morphism of schemes f: U — V. We need to prove that for any
quasicoherent sheaf A/ on V', we have the equality

Qidy f(N) = e (f*N): 1dp f*N — f*N.

This is straightforward: by the dual Yoneda lemma, it is enough to show
that g, f(N) and ey (f*N) induce the same natural transformation

Home, (f*N,—) — Home,, (id;; f*N, —).

But by definition the natural transformation induced by ey (f*N) is ©yq,, (f*N, —),
while that induced by ;4 f(N) is

Oid, (f*N, =) 0 O4(N, (idy)s—) 0 O§(N, =)' = O4q, (f*N, ).

A similar arguments works for the second part of the first condition.
For the second condition the argument is similar, and left to the reader.

There are many variants of this example. For example, one can define
the fibered category of sheaves of O-modules over the category of ringed
spaces in exactly the same way.
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3.3. Categories fibered in groupoids

DEFINITION 3.16. A category fibered in groupoids over C is a category
F fibered over C, such that the category F(U) is a groupoid for any object
U of C.

In the literature one often finds a different definition of a category fibered
in groupoids.

PROPOSITION 3.17. Let F be a category over C. Then F is fibered in
groupoids over C if and only if the following two conditions hold.

(i) Every arrow in F is cartesian.
(ii) Given an object n of F and an arrow f: U — prn of C, there exists
an arrow ¢: &€ = n of F with prod = f.

PROOF. Suppose that these two conditions hold. Then it is immediate
to see that F is fibered over C. Also, if ¢: £ — n is an arrow of F(U) for
some object U of C, then we see from condition 3.17 (i) that there exists
an arrow ¥: n — { with pr9 = idy and ¢9 = id,; that is, every arrow in
F(U) has a right inverse. But this right inverse 1 also must also have a
right inverse, and then the right inverse of ) must be ¢. This proves that
every arrow in F(U) is invertible.

Conversely, assume that F is fibered over C, and each F(U) is a groupoid.
Condition (ii) is trivially verified. To check condition (i), let ¢: & — 1 be
an arrow in C mapping to f: U — V in C. Choose a pullback ¢': ¢ — n
of  to U; by definition there will be an arrow a: & — ¢ in F(U) such that
¢'a = ¢. Since F(U) is a a groupoid, « will be an isomorphism, and this
implies that ¢ is cartesian. o

COROLLARY 3.18. Any base preserving functor from a fibered category
to a category fibered in groupoids is a morphism.

PRroOOF. This is clear, since every arrow in a category fibered in groupoids
is cartesian. [ )

Of the examples of Section 3.1, 3.11 and 3.12 are not in general fibered
in groupoids, while the classifying stack of a topological group introduced
in 3.13 is always fibered in groupoids.

Give a fibered category F — C, the subcategory F.art whose objects are
the same as the objects of F, but the arrows are the cartesian arrows, is
fibered in groupoids. Any morphism G — F of fibered categories, where G
is fibered in groupoids, factors uniquely through Feyt.

3.4. Functors and categories fibered in sets

The notion of category generalizes the notion of set: a set can be thought
of as a category in which every arrow is an identity. Furthermore functors
between sets are simply functions.

Similarly, fibered categories are generalizations of functors.
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DEFINITION 3.19. A category fibered in sets over C is a category F fibered
over C, such that for any object U of C the category F(U) is a set.

Here is an useful characterization of categories fibered in sets.

PROPOSITION 3.20. Let F be a category over C. Then F is fibered in
sets if and only if for any object n of F and any arrow f: U — prn of C,
there is a unique arrow ¢: £ — n of F with prod = f.

PROOF. Suppose that F is fibered in sets. Given n and f: U — pszn as
above, pick a cartesian arrow & — nover f. If ¢ — 7 is any other arrow over
f, by definition there exists an arrow ¢’ — ¢ in F(U) making the diagram

¢t
N
n

commutative. Since F(U) is a set, it follows that this arrow & — £ is the
identity, so the two arrows ¢ — n and &' — 7 coincide.
Conversely, assume that the condition holds. Given a diagram

(— ¥
Imn

¢
T Y T~
pré —— PFN
the condition implies that the only arrow 8: { — ¢ over h makes the diagram
commutative; so the category F is fibered.
It is obvious that the condition implies that F(U) is a set for all U. &

So, for categories fibered in sets the pullback of an object of F along an
arrow of C is strictly unique. It follows from this that when F is fibered in
sets over C and f: U — V is an arrow in C, the pullback map f*: F(V) —
F(U) is uniquely defined, and the composition rule f*¢* = (gf)* holds.
Also for any object U of C we have that idj;: F(U) — F(U) is the identity.
This means that we have defined a functor ®£: C°® — (Set) by sending
each object U of C to F(U), and each arrow f: U — V of C to the function
f*: F(V) = FU).

Furthermore, if F': 7 — G is a morphism of categories fibered in sets,
because of the condition that pg o F' = pg, then every arrow in F(U),
for some object U of C, will be send to F(U) itself. So we get a function
Fy: F(U) — G(U). It is immediate to check that this gives a natural
transformation ¢r: @ — ®¢.

There is a category of categories fibered in sets over C, where the arrows
are morphisms of fibered categories; the construction above gives a functor
from this category to the category of functors C°? — (Set).
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PRrOPOSITION 3.21. This is an equivalence of the category of categories
fibered in sets over C and the category of functors C°P — (Set).

PRrROOF. The inverse functor is obtained by the construction of 3.1.3. If
®: C°? — (Set) is a functor, we construct a category fibered in sets Fg as
follows. The objects of Fg will be pairs (U, &), where U is an object of C,
and £ € ®U. An arrow from (U, &) to (V,n) is an an arrow f: U = V of C
with the property that ® fn = £. It follows from Proposition 3.20 that Fg
is fibered in sets over C.

To each natural transformation of functors ¢: ® — ®' we associate a
morphism Fy: Fo — Fg. An object (U, &) of Fp will be sent to (U, ¢u€).
If f: (U,£) — (V,n) is an arrow in Fg, then f is simply an arrow f: U — V
in C, with the property that ®f(n) = £ This implies that ®'(f)¢v(n) =
du®(f)(n) = ¢pv&, so the same f will yield an arrow f: (U, ¢pé) — (V, dvn).

We leave it the reader to check that this defines a functor from the
category of functors to the category of categories fibered in sets. A

So, any functor C°® — (Set) will give an example of a fibered category
over C.

In particular, given an object X of C, we have the representable functor
hx: C°? — (Set), defined on objects by the rule hxU = Hom¢(U, X). The
category in sets over C associated with this functor is the category (C/X),
whose objects are arrows U — X, and whose arrows are commutative dia-
grams

U—V.

N
X

So the situation is the following. From Yoneda’s lemma we see that the
category C is embedded into the category of functors C°? — (Set), while the
category of functors is embedded into the category of fibered categories.

From now we will identify a functor F: C°? — (Set) with the corre-
sponding category fibered in sets over C, and we will (inconsistently) call a
category fibered in sets simply “a functor”.

3.4.1. Categories fibered over an object.

PROPOSITION 3.22. Let G be a category fibered in sets over C, F another
category, F': F — G a functor. Then F is fibered over G if and only if it is
fibered over C via the composition pgo F: F — C.

Furthermore, F is fibered in groupoids over G if and only if it fibered in
groupoids over C, and is fibered in sets over G if and only if it fibered in sets
over C.

PROOF. One sees immediately that an arrow of G is cartesian over its
image in F if and only if it is cartesian over its image in C, and the first
statement follows from this.
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Furthermore, one sees that the fiber of F over an object U of C is the
disjoint union, as a category, of the fibers of F over all the objects of G over
U; if these fiber are groupoids, or sets, so is their disjoint union. [

This is going to be used as follows. Suppose that S is an object of
C, and consider the category fibered in sets (C/S) — C, corresponding to
the representable functor hg: C°? — (Set). By Proposition 3.22, a fibered
category F — (C/S) is the same as a fibered category F — C, together with
a morphism F — C. ,

It is interesting to describe this process for functors. Given a functor
F: (C/S)°® — (Set), this corresponds to a category fibered in sets F —
(C/8); this can be composed with the forgetful functor (C/S) — C to get
a category fibered in sets F' — C, which in turn corresponds to a functor
F': C°? — (Set). What is this functor? One minute’s thought will convince
you that it can be described as follows: F'(U) is the disjoint union of the
F(U 3 8) for all the arrows u: U — S in C. The action of F’ on arrows is
the obvious one.

3.5. Equivalences of fibered categories

3.5.1. Natural transformations of functors. The fact that fibered
categories are categories, and not functors, has strong implications, and
does cause difficulties. As usual, the main problem is that functors between
categories can be isomorphic without being equal; in other words, functors
between two fixed categories form a category, the arrows being given by
natural transformations.

DEFINITION 3.23. Let F and G be two categories fibered over C, F,
G: F — G two morphisms. A base-preserving natural transformation a: F —
G is a natural transformation such that for any object ¢ of F, the arrow
ag: F€ = GE is in G(U), where U & pré = pg(FE) = pg(GE).

An isomorphism of F with G is a base-preserving natural transformation
F — G which is an isomorphism of functors.

It is immediate to check that the inverse of a base-preserving isomor-
phism is also base-preserving.

There is a category whose objects are the morphism from a F to G,
and the arrows are base-preserving natural transformations; we denote it by

Home(F,G).
3.5.2. Equivalences.

DEFINITION 3.24. Let F and G be two fibered categories over C. An
equivalence, or isomorphism, of F with G is a morphism F: F — G, such
that there exists another morphism G: G — F, together with isomorphisms
of G o F with idr and of F o G with idg.

We call G simply an inverse to F.
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PROPOSITION 3.25. Suppose that F, F', G and G' are categories fibered
over C. Suppose that F: F' — F and G: G — G’ are equivalences. Then
there an equivalence of categories

Hom¢(F,G) — Homc(f’,g')
that sends each ®: F — G into the composition
GodoF: F 5 ¢.

The proof is left as an exercise to the reader.
The following is the basic criterion for checking whether a morphism of
fibered categories is an equivalence.

PROPOSITION 3.26. Let F': F — G be a morphism of fibered categories.
Then F is an equivalence if and only if the restriction Fy: F(U) = G(U) is
an equivalence of categories for any object U of C.

PROOF. Suppose that G: G — F is an inverse to F'; the two isomor-
phisms F o G ~ idg and G o F' ~ idf restrict to isomorphisms Fyy o Gy ~
idg(y and Gy o Fy ~ idz(v), so Gy is an inverse to Fy.

Conversely, we assume that Fy: F(U) — G(U) is an equivalence of
categories for any object U of C, and construct an inverse G: G — F. Here
is the main fact that we are going to need.

LEMMA 3.27. Let F: F — G a morphism of fibered categories such that
every restriction Fyy: F(U) — G(U) is fully faithful. Then the functor F is
fully faithful.

PROOF. We need to show that, given two objects ¢/ and 7' of F and an
arrow ¢: F&¢' — Frn' in G, there is a unique arrow ¢': ¢ — 7/ in F with
F¢' = ¢. Set £ = F¢' and n = Fr/. Let 5 — 7 be a pullback of 7’ to
U, mm = Fnj. Then the image 7, — n of 7} — 7' is cartesian, so every
morphism ¢ — 7 factors uniquely as & — n; — 7, where the arrow £ — &
is in G(U). Analogously all arrows £’ — 7' factor uniquely through through
m; since every arrow £ — n; in G(U) lifts uniquely to an arrow ¢’ — 7} in
F(U), we have proved the Lemma. '

For any object & of G pick an object G¢ of F(U), where U = pgé,
together with an isomorphism og: § ~ F(G¢) in G(U); these G¢ and o
exist because Fyy: F(U) — G(U) is an equivalence of categories.

Now, if ¢: £ — 7 is an arrow in G, by the Lemma there is a unique
arrow G¢: GE€ — Gn such that F(G¢) = ayopo agl, that is, such that the
diagram

ok
F(G¢)

F(G§) — F(Gn)

commutes.
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These operations define a functor G: G — F. It is immediate to check
that by sending each object £ to the isomorphism a¢: £ ~ F(GE) we define
an isomorphism of functors idr ~ Fo G: G — G.

We only have left to check that G o F': F — F is isomorphic to the
identity idr.

Fix an object £ of F over an object U of C; we have a canonical isomor-
phism apg: FE ~ F(G(F¢')) in G(U). Since Fy is fully faithful there is a
unique isomorphism fg: ¢’ ~ G(F¢') in F(U) such that FfBy = ape; one
checks easily that this defines an isomorphism of functors 8: GoF ~idg. &

3.5.3. Quasi-functors. As we remarked in 3.4, the notion of category
generalizes the notion of set.

It is also possible to characterize the categories that are equivalent to a
set: these are the equivalence relations.

Suppose that R C X x X is an equivalence relation on a set X. We can
produce a category (X, R) in which X is the set of objects, R is the set of
arrows, and the source and target maps R — X are given by the first and
second projection. Then given z and y in X, there is precisely one arrow
(z,y) if z and y are in the same equivalence class, while there is none if they
are not. Then transitivity assures us that we can compose arrows, while
reflexivity tell us that over each object € X there is a unique arrow (z, z),
which is the identity. Finally symmetry tells us that any arrow (z,y) has
an inverse (y,z). So, (X, R) is groupoid such that from a given object to
another there is at most one arrow.

Conversely, given a groupoid such that from a given object to another
there is at most one arrow, if we call X the set of objects and R the set of
arrows, the source and target maps induce an injective map R - X x X,
that gives an equivalence relation on X.

So an equivalence relation can be thought of as a groupoid such that
from a given object to another there is at most one arrow. Equivalently, an
equivalence relation is a groupoid in which the only arrow from an object
to itself is the identity.

PROPOSITION 3.28. A category is equivalent to a set if and only if it is
an equivalence relation.

ProoF. If a category is equivalent to a set, it is immediate to see that
it is an equivalence relation. If (X, R) is an equivalence relation and X/R
is the set of isomorphism classes of objects, that is, the set of equivalence
classes, one checks immediately that the function X — X/R gives a functor
that is fully faithful and essentially surjective, so it is an equivalence. [

There is an analogous result for fibered categories.

DEFINITION 3.29. A category F over C is a quasi-functor, or that it is
fibered in equivalence relations, if it is fibered, and each fiber F(U) is an
equivalence relation.
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We have the following characterization of quasi-functors.

PROPOSITION 3.30. A category F over C is a quasi-functor if and only
if the following two conditions hold.

(i) Given an object n of F and an arrow f: U — pgn of C, there ezists
an arrow ¢: & = n of F with prdp = f.

(ii) Given two objects & and n of F and an arrow f: pr — prn of C,
there exists at most one arrow & — 1 over f.

The easy proof is left to the reader.

PROPOSITION 3.31. A fibered category over C is a quasi-functor if and
only if it is equivalent to a functor.

PRroOF. This is an application of Proposition 3.26.

Suppose that a fibered category F is equivalent to a functor ®; then every
category F(U) is equivalent to the set ®U, so F is fibered in equivalence
relations over C by Proposition 3.28.

Conversely, assume that F is fibered in equivalence relations. In partic-
ular it is fibered in groupoid, so every arrow in F is cartesian, by Propo-
sition 3.17. For each object U of C, denote by ®U the set of isomorphism
classes of elements in F(U). Given an arrow f: U — V in C, two isomorphic
object n and 1’ of F(V'), and two pullbacks £ and &' of n and 7’ to F(U), we
have that ¢ and £ are isomorphic in F(U); this gives a well defined function
f*: ®V — ®U that sends an isomorphism class [] in F(V') into the isomor-
phism class of pullbacks of 7. It is easy to see that this gives ® the structure
of a functor C°P — (Set). If we think of ® as a category fibered in sets,
we get by construction a morphism F — ®. Its restriction F(U) — ®U is
an equivalence for each object U of C, so by Proposition 3.26 the morphism
F — @ is an equivalence. '

Here are a few useful facts.

PROPOSITION 3.32.
(i) If G is fibered in groupoid, then is Hom¢(F,G) is a groupoid.
(ii) If G is a quasi-functor, then Home(F,G) is an equivalence relation.
(iii) If G is a functor, then Hom¢(F,G) is a set.

We leave the easy proofs to the reader.

In 2-categorical terms, part (iii) says that the 2-category of categories
fibered in sets is in fact just a 1-category, while part (ii) says that the 2-
category of quasi-functors is equivalent to a 1-category.

3.6. Objects as fibered categories and the 2-Yoneda lemma

3.6.1. Representable fibered categories. In 2.1 we have seen how
we can embed a category C into the functor category Func(CP, (Set)), while
in 3.4 we have seen how to embed the category Func(C°P, (Set)) into the 2-
category of fibered categories over C. By composing these embeddings we
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have embedded C into the 2-category of fibered categories: an object X of C
is sent to the fibered category (C/X) — C. Furthermore, an arrow f: X - Y
goes to the morphism of fibered categories (C/f): (C/X) — (C/Y) that

sends an object U — X of (C/X) to the composition U — X LY. The
functor (C/f) sends an arrow

U——>V

N
X

of (C/X) to the commutative diagram obtained by composing both sides
with f: X - Y.
This is the 2-categorical version of the weak Yoneda lemma.

THE WEAK 2-YONEDA LEMMA. The function that sends each arrow
f: X =Y to the functor (C/f): (C/X) = (C/Y) is a bijection.

DEFINITION 3.33. A fibered category over C is representable if it is equiv-
alent to a category of the form (C/X).

So a representable category is necessarily a quasi-functor, by Proposi-
tion 3.31. However, we should be careful: if F and G are fibered categories,
equivalent to (C/X) and (C/Y) for two objects X and Y of C, then

Hom(X,Y) = Hom((C/X),(C/Y)),
and according to Proposition 3.25 we have an equivalence of categories
Hom((C/X),(C/Y)) ~ Hom¢(F, G);

but Hom¢(F,G) need not be a set, it could very well be an equivalence
relation.

3.6.2., The 2-categorical Yoneda lemma. As in the case of func-
tors, we have a stronger version of the 2-categorical Yoneda lemma. Suppose
that F is a category fibered over C, and that X is an object of C. Suppose
that we are given a morphism F: (C/X) — F; to this we can associate
an object F(idx) € F(X). Also, to each base-preserving natural transfor-
mation a: F — G of functors F,G: (C/X) — F we associate the arrow
®idy: F(idx) = G(idx). This defines a functor

Home ((C/X), F) — F(X).

Conversely, given an object £ € F(X) we get a functor F¢: (C/X) — F
as follows. Given an object ¢: U — X of (C/X), we define F¢(¢) = ¢*¢ €
F(U); to an arrow

U—f—*V

N

X
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in (C/X) we associate the only arrow 0: ¢*¢ — ¢*¢ in F(U) making the

diagram
¢*¢ - -
I mf
U——|_ ¢ l
i~ V>¢ I
commutative. We leave it to the reader to check that F; is indeed a functor.

2-YONEDA LEMMA. The two functors above define an equivalence of
categories
Home ((C/X), F) ~ F(X).

PRrROOF. To check that the composition
F(X) — Home ((C/X),F) — F(X)

is isomorphic to the identity, notice that for any object £ € F(X), the com-
position applied to ¢ yields Fe(§) = id% ¢, which is canonically isomorphic
to £. It is easy to check that this defines an isomorphism of functors.

For the composition

Home ((C/X), F) — F(X) — Home((C/X), F)

take a morphism F: (C/X) — F and set £ = F(idx). We need to produce a
base-preserving isomorphism of functors of F with F¢. The identity idx is a
terminal object in the category (C/X), hence for any object ¢: U — X there
is a unique arrow ¢: idy, which is clearly cartesian. Hence it will remain
cartesian after applying F, because F is a functor: this means that F(¢) is a
pullback of ¢ = F(idx) along ¢: U — X, so there is a canonical isomorphism
Fe(¢) = ¢*6 ~ F(¢) in F(U). It is easy to check that this defines a base-
preserving isomorphism of functors, and this ends the proof. [

We have identified an object X with the functor hx: C°® — (Set) it
represents, and we have identified the functor hx with the corresponding
category (C/X): so, to be consistent, we have to identify X and (C/X). So,
we will write X for (C/X).

As for functors, the strong form of the 2-Yoneda lemma can be used
to reformulate the condition of representability. A morphism (C/X) —
F corresponds to an object £ € F(X), which in turn defines the functor
F': (C/X) — F described above; this is isomorphic to the original functor
F. Then F' is an equivalence if and only if for each object U of C the
restriction

F{;: Home(U, X) = (C/X)(U) — F(U)
that sends each f: U — X to the pullback f*¢ € F(U), is an equivalence
of categories. Since Home(U, X) is a set, this is equivalent to saying that
F(U) is a groupoid, and each object of F(U) is isomorphic to the image
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of a unique element of Hom¢(U, X) via a unique isomorphism. Since the
isomorphisms p ~ f*¢ in U correspond to cartesian arrows p — ¢, and in a
groupoid all arrows are cartesian, this means that F is fibered in groupoids,
and for each p € F(U) there exists a unique arrow p — £&. We have proved
the following.

PROPOSITION 3.34. A category fibered in groupoids F in C is repre-
sentable if and only if F is fibered in groupoids, and there is an object X of
C and an object £ of F(U), such that for any object p of F there exists a
unique arrow p — & in F.

3.7. The functors of arrows of a fibered category

Suppose that F — C is a fibered category; if U is an object in C and &,
n are objects of F(U), we denote by Homy(£,n) the set of arrow from £ to
n in F(U).

Let ¢ and 7 be two objects of F over the same object S of C. Let
u1: Uy — S and ug: Uy — S be arrows in C; these are objects of the category
(C/S). Suppose that & — £ and 1, — 7 are pullbacks along u;: U; — S for
i = 1, 2. For each arrow f: Uy — Uz in (C/S), by definition of pullback
there are two arrows, each unique, ay: § — §2 and B;y: 9y — 79, such that
and the two diagrams

B
&1 N €2 and m—2L 5 n

N N
3 3

commute. By Proposition 3.4 (iii) the arrows ay and By are cartesian; we
define a pullback function

f*: HOIIIUZ (52’ 772) — HOII].UI (&11 771)

in which f*¢ is defined as the only arrow f*¢: & — n in F(U;) making
the diagram

& ﬂ)m

laf lﬁf
é
g —— 12

commute. If we are given a third arrow g: Uy — Us in (C/S) with pullbacks
§3 — & and n3 — 1, we have arrows oy: & — &3 and (g: 2 — 73; it is
immediate to check that

agf =agoap: & —+& and fgr=pfyofrim =13
and this implies that

(gf)* = f*g": Homy,(£3,n3) — Homy, (&1, m).
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After choosing a cleavage for F, we can define a functor
Hom(¢,7): (C/5)*® — (Set)

by sending each object u: U — S into the set Homy (u*€, u*n) of arrows in
the category F(U). An arrow f: Uy — Uy from uy: Uy = Stoug: Uy — S
yields a function

f* . Hong ('u';f’ Ugﬂ) — HomU1 (U’Téa UI’I]),

and this defines the effect of Homg(¢,7) on arrows.

It is easy to check that the functor Homg(,n) is independent of the
choice of a cleavage, in the sense that cleavages give canonically isomorphic
functors. Suppose that we have chosen for each f: U — V and each object
¢ in F(V) another pullback fV¢ — ¢: then there is a canonical isomorphism
u*n ~ u'n in F(U) for each arrow u: U — S, and this gives a bijective
correspondence

Homy (u*¢,u*n) ~ Homg(u" €, u'n),

yielding an isomorphism of the functors of arrows defined by the two pull-
backs.

In fact, Homg(&,7n) can be more naturally defined as a quasi-functor
Homg(§,m) = (C/S); this does not require any choice of cleavages.

From this point of view, the objects of Homs(£,n) over some object
u: U — S of (C/S) are triples

(§1 — 57771 -1, d)))

where &, — & and 1; — 7 are cartesian arrows of F over u: U — S, and
¢: & — mp is an arrow in F(U). An arrow from (&, — &m — n,¢1)
over u1: Uy — S and (&3 — &,m2 — n,¢2) over ug: Uy — S is an arrow
f: Uy = Uy in (C/S) such that f*¢a = ¢5.

From Proposition 3.30 we see that Homg(§,7) is a quasi-functor over C,
and therefore, by Proposition 3.31, it is equivalent to a functor: of course
this is the functor Homg(¢,n) obtained by the previous construction.

This can be proved as follows: the objects of Homg(£,7n), thought of
as a category fibered in sets over (C/S) are pairs (¢,u: U — S), where
u: U — § is an object of (C/S) and ¢: v*¢ — w*n is an arrow in F(U);
this also gives an object (u*¢{ — &,u*n — n, @) of Homg(&,n) over U. The
arrows between objects of Homg(£,7n) to another are precisely the arrows
between the corresponding objects of Homg(&,7), so we have an embedding
of Homg (&, n) into Homg(&,n). But every object of Homg(&,n) is isomorphic
to an object of Homg(&,n), hence the two fibered categories are equivalent.



CHAPTER 4

Stacks

4.1. Descent of objects of fibered categories

4.1.1. Glueing continuous maps and topological spaces. The
following is the archetypical example of descent. Take (Cont) to be the
category of continuous maps (that is, the category of arrows in (Top),
as in Example 3.11); this category is fibered on (Top) via the functor
P(Cont): (Cont) — (Top) sending each continuous map to its codomain.
Now, suppose that f: X — U and g: Y — U are two objects of (Cont)
mapping to the same object U in (Top); we want to construct a continuous
map ¢: X — Y over U, that is, an arrow in (Cont)(U) = (Top/U). Sup-
pose that we are given an open covering {U;} of U, and continuous maps
¢i: f~IU; — g~ U; over U;; assume furthermore that the restriction of ¢;
and ¢; to f~Y(U; NU;) — g7 (U; N U;) coincide. Then there is a unique
continuous map ¢: X — Y over U whose restriction to each f~'U; coincides
with fz

This can be written as follows. The category (Cont) is fibered over (Top),
and if f: V — U is a continuos map, X — U an object of (Cont)(U) =
(Top/U), then a pullback of X — U to V is given by the projection V xy
X — V. The functor f*: (Cont)(U) — (Cont)(V') sends each object X — U
to V xy X — V, and each arrow in (Top/U), given by continuous function
¢: X = Y over U, to the continuous function f*¢ =idy Xy f: V xgp X —
V Xy Y.

Suppose that we are given two topological spaces X and Y with contin-
uous maps X — S and Y — §. Consider the functor

Homg(X,Y): (Top/S) — (Set)

from the category of topological spaces over S, defined in Section 3.7. This
sends each arrow U — S to the set of continuous maps Homy (U xs X, U xg
Y) over U. The actions on arrows is obtained as follows: Given a continuous
function f: V — U, we send each continuous function ¢: U xg X — U xgY
to the function

f*gb:idvxg{):VXSX:VXU(UXSX)—)VXU(UXSY)ZVXSY

Then the fact that continuous functions can be constructed locally and
then glued together can be expressed by saying that the functor

Homg(X,Y): (Top/S)™ — (Set)

55



56 4. STACKS

is a sheaf in the classical topology of (Top).
But there is more: not only we can construct continuous functions lo-
cally: we can also do this for spaces, although this is more complicated.

PROPOSITION 4.1. Suppose that we are given a topological space U with
an open covering {U;}; for each triple of indices i, j and k set Uy; = U; NUj;
and Ui, = U; N U; NUg. Assume that for each i we have a continuous map
u;: X; — Uj, and that for each pair of indices i and j we have a homeomor-
phism ¢ u;lUij ~ ui_lUij over Us;, satisfying the cocycle condition

bir = Bij © bjk: up Uije — 'U'j_lUijk — u; Uik
Then there exists a continuous map u: X — U, together with isomorphisms
®;: u‘lUi ~ X;, such that @j =¢;0 (}5;1: ’u,]-_lUij — u‘lUij — uiUij for all
1 and j.

PROOF. Consider the disjoint union U’ of the U;; the fiber product U’ x
U’ is the disjoint union of the U;;. The disjoint union X' of the X;, maps to
U'; consider the subset R C X' x X' consisting of pairs (z;,z;) € X; x X; C
X' x X" such that z; = ¢;;z;. I claim that R is an equivalence relation in X'.
Notice that the cocycle condition ¢;; = ¢;0¢;; implies that ¢;; is the identity
on X;, and this show that the equivalence relation is reflexive. The fact that
$ii = ¢ij © ¢ji, and therefore ¢;; = q’)i_jl, prove that it is symmetric; and
transitivity follows directly from the general cocycle condition. We define
X to be the quotient X'/R.

If two points of X’ are equivalent, then their images in U coincide; so
there is an induced continuous map u: X — U. The restriction to X; C X'
of the projection X’ — X gives a continuous map ¢;: X; — u~'U;, that’s
easily checked to be a homeomorphism. One also sees that ¢;; = ¢; o ]71,
and this completes the proof.

The facts that we can glue continuous maps and topological spaces say
that (Cont) is a stack over (Top).

4.1.2. The category of descent data. Let C be a site. We have
seen that a fibered category over C should be thought of as a contravariant
functor from C to the category of categories, that is, presheaves of categories
over C. A stack is, morally, a sheaf of categories over C.

Let F be a category fibered over C. We will assume that it has given
a cleavage; but we also indicate how the definitions can be given without
resorting to the choice of a cleavage.

Given a covering {¢: U; = U}, set U;; = U; xy U; and Uy, = U; Xy
U; xy Uy for each triple of indices 4, j and k.

DEFINITION 4.2. Let U = {0;: U; — U} be a covering in C. An object
with descent data ({&;},{¢i;}) on U, is a collection of objects & € F(Uj;),
together with isomorphisms ¢;;: pry&; ~ pri&; in F(U; xy Uj), such that
the following cocycle condition is satisfied.
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For any triple of indices i, j and k, we have the equality
Prizdik = Priadij © Prazdjk: Praée — prié;

where the pr,, and pr, are projections on the o' and b factor, or the a't
factor respectively.

The isomorphisms ¢;; are called transition isomorphisms of the object
with descent data.

An arrow between objects with descent data

{ai}: (&} {di}) — ({m}s {¥i5})

is a collection of arrows a;: & — n; in F(U;), with the property that for
each pair of indices ¢, j, the diagram

* prg @) *
pr5&; —— pryn;

l¢i 1 Jf/}i i

* Pry Qi *
pri§ ———— prim

cominutes.

In understanding the definition above it may be useful to contemplate
the cube

(4.1.1) Usje ———22—— Uji
py prys /
Uij > Uj
~ \L
Ui » Uk
Ui e

in which all arrows are given by projections, and every face is cartesian.

There is an obvious way of composing morphisms, that makes objects
with descent data the objects of a category, denoted by F(U) = F{U; —
U}).

For each object ¢ of F(U) we can construct an object with descent data
on a covering {o;: U; — U} as follows. The objects are the pullbacks o7¢;
the isomorphisms ¢;;: prj a;f ~ pr]o;¢ are the isomorphisms that come
from the fact that both prj o7& and prio;¢ are pullbacks of £ to Us;. If
we identify proj¢ with prjo;¢, as is commonly done, then the ¢;; are
identities.

Given an arrow a: ¢ — n in F(U), we get arrows o): 0;¢ — o)n,
yielding an arrow from the object with descent associated with £ to the
associated with 7. This defines a functor F(U) — F({U; — U}).
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It is important to notice that these construction do not depend on the
choice of a cleavage, in the following sense. Given a different cleavage, for
each covering {U; — U} there is a canonical equivalence of the resulting
categories F({U; — U}); and the functors F(U) — F({U; — U}) commute
with these equivalences.

There is a very elegant treatment of descent data that does not depend
on choosing of a cleaving; we will not use this approach, so we will be a little
sketchy. Let {U; — U}icr be a covering. We define an object with descent
data to be a triple of sets

({&}ier, {&is}sjer {&jr }ijker)

in each £, is an object of F(U,), plus a commutative diagram

&ijk — &Gk
| v
&ij T)gj
J, §ik — &
& <

in F for all the triples of indices in which every arrow is cartesian, and such

that when applying pr every arrow maps to the appropriate projection in

the diagram (4.1.1). These form the objects of a category Faesc({U; — U}).
An arrow

{pitier: ({&}s {&is}s &k }) — i}y {miz}s {mijc})

consists of set of arrows with ¢; : & — n; in F(U;), such that for every pair
of indices ¢ and j we have

pri ¢; = pra ¢;: &ij — M5

Alternatively, and perhaps more naturally, we could define an arrow as
a triple (({¢i}ier, {bi}ijer, {ijr }ijker)), where ¢q: o — 1, is an arrow
in F(U,) for each «, with the obvious compatibility conditions with the
various arrows involved in the definition of an object. We leave it to the
reader to check that these two definition of an arrow are equivalent.

Once we have chosen a cleaving, there is a functor from Fyes. ({U; — U})
to f({UfL — U}) Given an object ({fz}, {&'j}, {f”k}) of fdesc({Ui — U}),
the arrows &;; — & and &; — £; induce isomorphisms &;; ~ pri§; and
&; =~ pr5 &;; the resulting isomorphism prj §; ~ prj §; is easily seen to satisfy
the cocycle condition, thus defining an object of F({U; — U}). An arrow
{¢:} in Fyesc({U; — U}) is already an arrow in F{U; — U}).

It is not hard to check that this functor is an equivalence of categories.

We can not define a functor F(U) = Fyesc ({U; — U}) directly, without
the choice of a cleaving. However, let us define another category

fcomp({Ui — U})7
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in which the objects are quadruples (¢, {&:}, {&i;}, {&jk})), where £ is an
object of F(U) and each &, is an object of F(U,), plus a commutative cube

Eijk — &k

iy

Eij————&

1
L/ﬁik ——{-; 3
& —¢

in F for all the triples of indices, in which all the arrows are cartesian, and
whose image in C is the cube (4.1.1). An arrow from (&, {&}, {&;}, {&ijx}))
to (n, {mi},{m;}, {nijx})) can be indifferently defined as an arrow ¢: £ — 7
in F(U), or as collections of arrows £ — 0, & — mi, &j — 155 and &k — Mk
satisfying the obvious commutativity conditions.

There is a functor from Feomp({U; = U}) to F(U) that sends a whole
object (&,{&},{&;},{&jr})) into &, and is easily seen to be an equivalence.
There is also a functor from Feomp({Ui = U}) to Faesc({U; — U}) that
forgets the object of F(U). This takes the place of the functor from F(U)
to F({U; — U}) defined using cleavages.

Yet another definition of objects with descent data can be given as fol-
lows (this was pointed out to me by Behrang Noohi). Let U = {U; —» U} a
covering in C. Define (C/U) to be the category fibered in sets on C associ-
ated with the functor hy: C°? — (Set), defined immediately before Propo-
sition 2.28. This is the full subcategory of (C/U), whose objects are arrows
T — U that factor through some U; — U.

There is a functor Home ((C JU), F ) — Faesc(U), defined as follows. Sup-
pose that we are given a morphism F: (C/U) — (Set). For any triple of
indices %, j and k we have objects U; — U, U;; — U and Uy — U of (C/U);
and each of the projections of (4.1.1) not landing in U is an arrow in (C/U).
Hence we can apply F' and get a diagram

F(Uijk) _ F(Ujk)
| /
F(Uy) —— F(U;)

!
l F(Ui) — F(Uy)

v
F(U;)

giving an object of Fgesc(U). This extends to a functor in the obvious way,
and, using the 2-Yoneda lemma, it is not hard to see that this functor is an
equivalence of categories.

The embedding (C/U) C (C/U) induces a functor

Hom¢ ((C/U), ]—") — Homg ((C/U), .7-');
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if we choose a cleavage, the composition of functors
Home ((C/U), F) — Home ((C/U), F) =~ Faesc(U) ~ F(U)
is isomorphic to the composition
Home ((C/U), F) = F(U) — F(U)
where the first is the equivalence of the 2-Yoneda lemma.

4.1.3. Fibered categories with descent.

DEFINITION 4.3. Let F — C be a fibered category on a site C.
(i) F is a prestack over C if for each covering {U; — U} in C, the functor
F(U) - F{U; — U}) is fully faithful.
(ii) F is a stack over C if for each covering {U; — U} in C, the functor
F(U) —» F({U; — U}) is an equivalence of categories.

This condition can be restated using the functor of arrows of Section 3.7.
The category (C/S) inherits a Grothendieck topology from the given
Grothendieck topology on C; simply, a covering of an object U — S of
(C/8) is a collection of arrows
v, Ly

N
S

such that the collection {f;: U; — U} is a covering in C. In other words, the
coverings of U — S are simply the coverings of U.
Finally, we have the following definition.

DEFINITION 4.4. An object with descent data ({¢;:}, {¢i;}) in F({U; —
U}) is effective if it is isomorphic to the image of an object of F(U).

Another way of saying this is as follows: an object with descent data
({&}, {#i;}) in F({U; — U}) is effective if there exists an object & of F(U),
together with cartesian arrows & —  over o: U; — U, such that the diagram

commutes for all ¢ and j. In fact, the cartesian arrows §; — £ correspond
to isomorphisms &; ~ ¢}¢ in F(U;); and the commutativity of the diagram
above

PROPOSITION 4.5. Let F be a fibered category over a site C.

(i) F is a prestack if and only if for any object S of C and any two objects
¢ and 1 in F(S), the functor Homg(&,n): (C/S) — (Set) is a sheaf.
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(ii) F 1is a stack if and only if it is a prestack, and all objects with descent
data in F are effective.

PROOF. Let us prove the first part. Assume that for any object S of C
and any two objects £ and 7 in F(S), the functor Homg(&,7): (C/S) — (Set)
is a sheaf. Take an object U of C, a covering {U; — U}, and two objects £ and
nof F(U). If we call ({&}, (aij)) and ({n:}, (Bi;)) the descent data associated
with £ and 7 respectively, we see easily that the arrows in F({U; — U}) are
the collections of arrows {¢;: & — 7;} such that the restrictions of ¢; and
¢; to the pullbacks of £ and 1 to U;; coincide. The fact that Hom;, (¢, 1)
insures that this comes from a unique arrow & — 7 in F(U); but this means
precisely that the functor F(U) — F({U; — U}) is fully faithful.

The proof of the opposite implication is similar, and left to the reader.

The second part follows immediately from the first. [ )

Using the description of the category of objects with descent data given
at the end of 4.1.2 we can given the following very elegant characterization
of stacks (this was explained to me by Behrang Noohi).

PROPOSITION 4.6. A fibered category F — C is a stack if and only if for
any covering U in C the functor

Home ((C/U),F) — Home ((C/U), F)
induced by the embedding (C/U) C (C/U) is an equivalence.

An equivalence of fibered categories F ~ G induces an equivalence of
categories F(U) ~ F(U) for all coverings ¢ in C. From this it is not hard to
show the following fact.

PROPOSITION 4.7. If two fibered categories over a site are equivalent,
and one of them is a stack, the other is also a stack.

Stacks are the correct generalization of sheaves, and give the right notion
of “sheaf of categories”. We should of course prove the following statement.

PROPOSITION 4.8. Let C be a site, F': C°° — (Set) a functor; we can
also consider it as a category fibered in sets F — C.

(i) F is a prestack if and only if it is a separated functor.
(ii) F is stack if and only if it is a sheaf.

PrOOF. Consider a covering {U; — U}. The fiber of the category F' — C
over U is precisely the set F/(U), while the category F({U; — U}) is the set of
elements (&;) € [, F(U;) such that the pullbacks of ¢; and §; to F(U; xyUj),
via the first and second projections U; xy U; — U; and U; Xy U; — Uj,
coincide. The functor F(U) — F({U; — U}) is the function that sends each
element & € F(U) to the collection of restrictions (£ |r;)-

Now, to say that a function, thought of as a functor between discrete
categories, is fully faithful is equivalent to saying that it is injective; while
to say that it is an equivalence it is like saying that it is a bijection. From
this both statements follow. [ )
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4.2. Descent theory for quasicoherent sheaves

4.2.1. Descent for modules over commutative rings. Here we de-
velop an affine version of the descent theory for quasicoherent sheaves. It
is only needed to prove Theorem 4.11 below, so it may be a good idea to
postpone reading it until it is necessity arises.

If A is a commutative ring, we will denote by Mod, the category of
modules over A. If N is an A-module, we denote by ty: N®4 B~ B4 N
the usual isomorphism defined by ¢y (n®b) = b®n. Furthermore, we denote
by ap: M — B ® M the homomorphism defined by ap(m) =1 ® m.

Consider a ring homomorphism f: A — B. For each r > 0 set

7 times
A

B =B®sB®us---®4B.

A B-module N becomes a module over B®? in two different ways, as
N ®4 B and B ®4 N; in both cases the multiplication is defined by the
formula (b @ bo)(z1 ® z2) = b1x1 @ byxa. Analogously, N becomes a module
over B®? as N®4B®4B,BR4N®4Band B4 B®4 N (more generally,
N becomes a module over B®" in r different ways; but we will not need
this).

Let us assume that we have a homomorphism of B®2-modules 1/: N ®4
B — B ®4 N. Then there are three associated homomorphism of B®3-
modules

P: BRIy N®,B— B®sB®y N,

Yo N®4 B®4 B — B®4 B®4 N,

PY3: N4 B®4 B —B®, N®B
by inserting the identity in the first, second and third position, respectively.
More explicitly, we have 1; = idp ® ¥, 12 = ¥ ®idp, while we have 2(z; ®
Ta®x3) = 2 Yi®x2®z f Y(x1 ®x3) =), ¥i®2 € B&®4 N. Alternatively,
P = (idB ® LN) oo (idN ® LB).

Let us define a category Mod 4, p as follows. Its objects are pairs (N, v),

where N is a B-module and ¢: N ®4 B ~ B®4 N is an isomorphism of
B®2_modules such that

PYo=1Y10Y3: N4 BR®4 B — B®4B®4N.
An arrow 8: (N,9) — (N',9¢') is a homomorphism of B-modules §: N —
N', making the diagram

N®sB—23B@sN

J«ﬁ®id3 lids ®8

N @, B——B®4N'

commutative.
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We have a functor F': Mods — Mod4_, 5, sending an A-module M into
the pair (B ® 4 M, ), where
Yum: (B®AM)®4B — B4 (B®a M)
is defined by the rule
Pu(d@meb) =0 @m.

It is easily checked that 1, is an isomorphism of B®2-modules, and that
(M ®4 B,v)) is in fact an object of Mod 4 5.

If a: M — M’ is a homomorphism of A-modules, one sees immediately
that idp @ a: B4 M — B®4 M’ is an arrow in Mod4_, 5. This defines
the desired functor F.

THEOREM 4.9. If B is faithfully flat over A, the functor
F: Mody — MOdA__)B

defined above is an equivalence of categories.

PRrROOF. Let us define a functor G: Mods_p — Mods. We send an
object (N,1)) into the A-submodule GN C N consisting of elements n € N
such that 1@ n=9¥(n®1).

Given an arrow 3: (N,¢) — (N',9') in Moda_, g, it follows from the
definition of an arrow that S takes GN to GN'; this defines the functor G.

We need to check that the compositions GF and F'G are isomorphic to
the identity. For this we need the following generalization of Lemma 2.39.
Recall that we have defined the two homomorphism of A-algebras

€1,€2: B->B®usB
by e1(b) =b® 1 and e3(b) =1 ®b.
LEMMA 4.10. Let M be a A-module. Then the sequence

(e1—e2)®idps
—_—

0—sM22Bos M B®2g M

15 exact.

The proof is a simple variant of the proof of Lemma 2.39.

Now notice that
(e1—€2)®idy(b®mM) =bR19mM—-19bdm =9y (b®mM®1)-10bQ®m
for all m and b; and this implies that

(e1 —e2)@idy(z) =9Ypu(z®1) -1Q«z

for all z € B®4 M. Hence G(B ®4 M,py) is the kernel of dy, and the
homomorphism M — B ® M establishes a natural isomorphism between M
and G(M ®4 B) = GF(M), showing that GF is isomorphic to the identity.

Now take an object (N, ) of Mod 4, g, and set M = G(N, ). The fact
that M is an A-submodule of the B-module N induces a homomorphism of
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B-modules §: B4 M — N with the usual rule (m®b) = bm. It is straight-
forward to check that 6 is an arrow in Mod 4_, g, hence it defines a natural
transformation id — F'G. We have to check that € is an isomorphism.

Call o and 8 the homomorphisms N —+ B® N defined by a(n) =1®n
and B(n) = ¥(n ® 1); by definition, M is the kernel of a — 3. There is a
diagram with exact rows

i@id —B)®id
O———)M@B——@E—B—)N@ABMB@N@B

JVHOLM J/'(/J l"pl
0 s N M BNV B Be N

where 1: M — N denotes the inclusion. Let us show that it is commutative.
For the first square, we have

apbipy(mb) =1Q bm
while
P(i ®idp)(m ® b) = 9h(m @ b)
P{(1 ® b)(m ® 1))
= (1®b)p(m & 1)
=(1®b)(1 ®m)
=1® bm.

For the second square, it is immediate to check that ¢;0a®idp = ex®idyop.
On the other hand

$1(B®idp)(n®b) = 1 (Y(n ® 1) ®b)
=1P3(n®1®b)
=1(n®1®Db)
= (e1 ®idn)¥(n ® D).

Both 1 and 1), are isomorphisms; hence 8o 1 is an isomorphism, so 8 is an
isomorphism, as desired.
This finishes the proof of Theorem 4.9. '

4.2.2. Descent for quasicoherent sheaves. Here is the main result
of descent theory for quasicoherent sheaves. It states that quasicoherent
sheaves satisfy descent with respect to the fppf and the fpqc topology; in
other words, they form a stack with respect to either topology. This is
quite remarkable, because quasicoherent sheaves are sheaves in that Zariski
topology, that is much coarser, so a priori one would not expect this to
happen.

Given a scheme S, recall that in Example 3.15 we have constructed the
fibered category (QCoh/S) of quasicoherent sheaves, whose fiber of a scheme
U over S is the category QCoh U of quasicoherent sheaves on U.
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THEOREM 4.11. Let S be a scheme. The fibered category (QCoh/S) over
(Sch/S) is stack with respect to the fppf and the fpgc topology.

For the proof we will use the following criterion, a generalization of that
of Lemma 2.37.

LEMMA 4.12. Let S be a scheme, F be a fibered category over the category
(Sch/S). Suppose that the following conditions are satisfied.
(i) F is a stack with respect to the Zariski topology.
(ii) Whenever V. — U is a flat surjective morphism of affine S-schemes,
the functor
FU) — F(V = U)
18 an equivalence of categories.
Then F is a stack with respect to the fppf and the fpqc topologies.

PROOF. First of all, let us show that F is a prestack. Given an S scheme
T — S and two objects £ and n of F(T), consider the functor

Homp(¢,n): (Sch/T) — (Set).

We see immediately that the two conditions of Lemma 2.37 is satisfied, so
Hom(£,n) is a sheaf, and F is a prestack both in the fppf and the fpqc
topologies.

Now we have to check that every object with descent data is effective.
We start by analyzing the sections of F over the empty scheme §.

LEMMA 4.13. The category F(0) is equivalent to the category with one
object and one morphism.

Equivalently, between any two object of F(0) there is a unique arrow.

PROOF. The scheme () has the empty Zariski covering ¢/ = (. By this I
really mean the empty set, consisting of no morphisms at all, and not the set
consisting of the embedding of @ C @. There is only one object with descent
data (0,0) in F(U), and one one morphism @ from (0,0) to itself. Hence
F(U) is equivalent to the category with one object and one morphism; but
F(0) is equivalent to F(U), because F is a stack in the Zariski topology. @

LEMMA 4.14. If a scheme U 1is a disjoint union of open subschemes
{Us}ic1, then the functor F(U) — [[;c; F(Us;) obtained from the various
restriction functors F(U) — F(U;) is an equivalence of categories.

PROOF. Let £ and 7 be objects of F(U); call &; and 7; their restrictions
to U;. The fact that Homy(£,n): (Sch/T) — (Set) is a sheaf insures that
the function

Homr iy (€,7) — Hﬂom]:(Ui)(gi’ i)

is a bijection; but this means precisely that the functor is fully faithful.
To check that it is essentially surjective, take an object (¢;) in F(U;). We
have U;; = @ when ¢ # j, and U;; = U; when i = j; we can define transition
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isomorphisms ¢;;: prj§; =~ pri§; as the identity when 4 = j, and as the
only arrow from pr3 ¢; to pr} & in F(U;;) = F(0) when ¢ # j. These satisfy
the cocycle condition; hence there is an object ¢ of F(U) whose restriction
to each U; is isomorphic to &. Then the image of ¢ into [[;.; F(U;) is
isomorphic to (¢;), and the functor is essentially surjective.

Given an arbitrary covering {U; = U}, set V =[[.U;, and call f: V —
U the induced morphism. I claim that the functor F(U) —» F(V — U) is
an equivalence if and only if F(U) — F({U; — U}) is. In fact, we will show
that there is an equivalence of categories :

FV -U)— F{U; - U})
such that the composition
FU)—FV =U) — F{U; - U})

is isomorphic to the functor

FU) — FHU; » U}).
This is obtained as follows. We have a natural isomorphism of U-schemes

VxgV >~ HUi xy Uj,

i,

so Lemma 4.14 gives us equivalences of categories

(4.2.1) FV)— [[7w)

and

(4.2.2) f(V Xy V) ——)HF(Uz Xy UJ)
i,J

An object of F(V — U) is a pair (n, ¢), where 7 is an object of F(V') and
¢: pryn =~ pri nin F(V xy V) satisfying the cocycle condition. If ; denotes
the restriction of n to U; for all 4 and ¢;;: prjn ~ pr]n the arrow pulled
back from ¢, the image of ¢ in [], ; F(U; xy Uj) is precisely the collection
(¢i5); it is immediate to see that (¢;;) satisfies the cocycle condition.

In this way we associate to each object (,¢) of F(V — U) an object
({mi},{¢i;}) of F({U; — U}). An arrow a: (n,¢) — (1, ¢’) is an arrow
a:n— 7' in F(V) such that

priaoc¢ =¢oprya: pryn — pri7’;
then one checks immediately that the collection of restrictions {a;: 7; — 7.}
gives an arrow {a;}: ({n:}, {#i;}) = ({mi}, {¢3;})-

Conversely, one can use the inverses of the functors (4.2.1) and (4.2.2)
to define the inverse of the functor constructed above, thus showing that it

is an equivalence (we leave the details to the reader). This equivalence has
the desired properties.
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This means that to check that F is a stack we can restrict consideration
to coverings consisting of one object. Also, if U is an affine scheme over
S, and {U; — U} is a finite coverings by affine schemes, the disjoint union
V = I1,;U; is also affine, hence the functor F(U) — F(V — U) is an
equivalence. We can conclude that the functor F(U) — F({U; — U}) is
also an equivalence.

Given a covering V — U, we choose a Zariski open covering {U;};cs of
U by open affine subschemes, and for each 7 a finite number of affine open
subschemes Vj,, a € A;, of f1U;, so that that the V4, taken all together,
form a covering of V, and {V;, — U;} is a covering for all i (Lemma, 2.38).
If (n, ¢) is an object with descent data for this covering, denote by 7;, the
restriction of 1 to F(Vie). We also set Vigjp = Via Xy Vs, and denote by
Piajp the arrow in F(Viq;p) obtained by restricting ¢.

Fix an index i. The covering {Vi;, — U;}q.ck; is a finite covering by
affine schemes of an affine scheme, hence, because of the discussion above,
every object with descent data is effective. Clearly ({4 }ack;, {®iaib})apek;
forms an object with descent data; hence there exists an object &; of F(U;),
together with cartesian arrows ;4 — &; over V;q — U;, making the diagram

* Biajb "
PIy Nljp ———— Py Mia

! |

b Tia

N

commutative for all pairs of indices a and b.

Now we want to glue the &; together to give an object ¢ of F(U); for
this we need descent data for the Zariski covering {U; C U}.

The rest of the proof will be in the final version of the notes. [ )

It is a standard fact that (QCoh/S) is a stack in the Zariski topology; so
we only need to check that the second condition of Lemma 4.12 is satisfied;
for this, we use the theory of 4.2.1. Take a flat surjective morphism V' — U,
corresponding to a faithfully flat ring homomorphism f: A — B. We have
the standard equivalence of categories QCoh U ~ Mod}’; I claim that there
is also an equivalence of categories QCoh(V — U) ~ Mod‘jlp _,g- A quasico-
herent sheaf M on U corresponds to an A-module M. The inverse images
priM and pry M in V xy B = Spec B ®4 B correspond to the modules
M®aB and B® g4 M, respectively; hence an isomorphism ¢: prj M ~ prj M
corresponds to an isomorphism ¢: M ® 4 BB®4 M. It is easy to see that ¢
satisfies the cocycle condition, so that (M, ¢) is an object of QCoh(V — U),
if and only if ¢ satisfies the condition ;13 = 1)9; this gives us the equiva-
lence QCoh(V — U) ~ Mod®, 5. The functor QCoh U — QCoh(V — U)
corresponds to the functor Mod 4 — Mod 4, g defined in 4.2.1, in the sense
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that the compositions
QCohU — QCoh(V = U) ~ Mod‘;lp_)B
and
(¢}
QCoh U ~ Mod} ~ Mod}, 5
are isomorphic. Since Mod4 —+ Mod 4, g is an equivalence, this finishes the
proof of Theorem 4.11.

4.2.3. Descent for morphisms of schemes.
Consider a site C, a class P of arrows that is stable under pullback, and
the associate category fibered in groupoids P — C, as in Example 3.12.

DEFINITION 4.15. A class of arrows P in C is local if it is stable under
pullback, and the following condition holds. Suppose that you are given a
covering {U; — U} in C and an arrow X — U. Then, if the projections
U; Xy X > U; arein P for all i, X — U is also in P.

The following fact is often useful.

PROPOSITION 4.16. Let C be a subcanonical site, P a local class of arrow.
Then P — C is a prestack.

Recall (Definition 2.36) that a site is subcanonical when every repre-
sentable functor is a sheaf.

PRrROOF. Let {U; — U} be a covering, X — U and Y — V two arrows in
P. The arrows in P(U) are the isomorphisms X ~ Y in C that commute with
the projections to U. Set X; = U; xy X and Xij = Uij xpX = X; Xij, and
analogously for ¥; and Y;;. Suppose that we have isomorphisms f;: X; ~ Y;
in P(U;), such that the isomorphism X;; ~ Y;; induce by f; and f; coincide;
we need to show that there is a unique isomorphism f: X — Y in P(U)

whose restriction X; — Y; coincides with f; for each 1.

The compositions X; EN Y, = Y give sections g; € hy(X;), such that

the pullbacks of g; and g; to X;; coincide. Since hy is a sheaf, {X; — X}
is a covering, and X;; = X; xx X; for any 7 and j, there is a unique arrow

f: X — Y in C, such the composition X; — X i) Y is g;, so that the
diagram

x, 2oy,

L,

X—Y
commutes for all s. We only have to check that f is in P(U).
The fact that f is an isomorphism is proved easily; one constructs the
inverse f~1: Y — X by patching together the fi_l. It is also clear that

the arrows X — U and X —f—> Y — U coincide, since they coincide when
composed with U; — U for all ¢, and since hy; is a sheaf, and in particular
a separated functor. '
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Most of the interesting properties of morphism of schemes are local in
the fppf and in the fpqc, such as for example being flat, being of finite
presentation, being quasi-compact, being proper, being smooth, being affine,
and so on. For each of this properties we get a prestack of morphisms of
schemes over (Sch/S).

The issue of effectiveness of descent data is much more delicate, however.
One can give examples to show that it fails even proper and smooth mor-
phisms. However, using descent theory for quasicoherent sheaves one can
show that it holds for affine morphisms, and also with morphisms equipped
with an invertible sheaf.
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