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1 Hilbert and Quot functors

Introduction

Any scheme X defines a contravariant functor hx (called the functor of points of the
scheme X) from the category of schemes to the category of sets, which associates
to any scheme T the set Mor(T, X) of all morphisms from T to X. The scheme X
can be recovered (upto a unique isomorphism) from hx by the Yoneda lemma.

It is often easier to describe the functor hx than to give the scheme X. Such is
typically the case with various parameter schemes and moduli schemes, where we
can directly define a contravariant functor (p from the category of schemes to the
category of sets which would be the functor of points of the scheme in question,
without knowing whether such a scheme exists.

This raises the problem of representability of contravariant functors from the cat-
egory of schemes to the category of sets. An important necessary condition for
representability come from the fact that the functor hx satisfies faithfully flat de-
scent including strict descent. This condition is often easy to verify for a given
functor (p, but it is not a sufficient condition for representability.

It is therefore a subtle and technically difficult problem in Algebraic Geometry
to construct schemes which represent various important functors, such as moduli
functors. Grothendieck addressed the issue by proving the representability of certain
basic functors, namely, the Hilbert and Quot functors. The representing schemes
that he constructed, known as Hilbert and Quot schemes, are the starting points
of the representability of most moduli functors (whether as schemes or as algebraic

The techniques used by Grothendieck are the techniques of descent and cohomology
developed by him. In a sequence of talks in the Bourbaki seminar, collected under
the title 'Foundations of Algebraic Geometry' (see [FGA]) he gave a sketch of the
techniques of descent, the construction of Hilbert and Quot schemes, and application
to the construction of Picard scheme (and also a sketch of formal schemes and some
quotient techniques).

The following notes are devoted to the construction of Hilbert and Quot schemes.
We assume that the reader is familiar with the basics of the language of schemes
and cohomology, say at the level of chapters 2 and 3 of Hartshorne's 'Algebraic
Geometry' [H]. The lecture course by Vistoli [V] on the theory of descent in this
summer school contains in particular the background we need on descent. Certain
advanced techniques of projective geometry, namely Castelnuovo-Mumford regular-
ity and flattening stratification (to each of which we devote one lecture) are nicely
given in Mumford's 'Lectures on Curves on an Algebraic Surface' [M], which can
serve as good course on Algebraic Geometry for somebody familiar with the basics at
the level of Hartshorne [H]. The book 'Neron Models' by Bosch, Lutkebohmert, Ray-
naud [B-N-R] contains an exposition of descent, quot schemes, and Picard schemes,
which I found particularly useful. The reader of these lecture notes is strongly urged
to read Grothendieck's original presentation in [FGA].



The functors

The main problem addressed in this series of lectures, in its simplest form, is as
follows. If S is a locally noetherian scheme, a family of subschemes of P™
parametrised by 5* will mean a closed subscheme Y C P^ = Pg x S such that Y
is flat over S. If / : T —>• S is any morphism of locally noetherian schemes, then by
pull-back we get a family YT = Y x§ T C P^ parametrised by T from a family Y
parametrised by S. This defines a contravariant functor fiilbpn from the category
of all locally noetherian schemes to the category of sets, which associates to any 5
the set of all such families

Sjilbpn(S) = {Y C Fn
s I Y is flat over S}

Question: Is the functor Sjilbpn representable?

Grothendieck proved that this question has an affirmative answer, that is, there
exists a locally noetherian scheme Hilbpn together with a family Z C Pg x Hilbpn
parametrised by Hilbpn, such that any family Y over S is obtained as the pull-back
of Z by a uniquely determined morphism cpY : S —> Hilbpn. In other words, fiilbpn
is isomorphic to the functor Mor (—, Hilbpn).

The functors Quot^rQ^

A family Y of subschemes of P" parametrised by S is the same as a coherent quotient
sheaf q : Opn —>• Oy on Pg, such that Oy is flat over S. This way of looking at the
functor Sjilbpn has the following fruitful generalisation.

Let r be any positive integer. A family of quotients of QrOpn parametrised by
a locally noetherian scheme S will mean a pair (JF, q) consisting of

(i) a coherent sheaf T on Pg which is flat over S, and

(ii) a surjective Cpg-linear homomorphism of sheaves q : OrOpn —> T.

Two such families (JF, q) and (JF, q) parametrised by S will be regarded as equivalent
if there exists an isomorphism / : T ^ T' which takes q to q', that is, the following
diagram commutes.

®TO¥n 4 T

II if
Qropn ^ r

This is the same as the condition ker(g) = ker(g'). We will denote by {F,q) an
equivalence class. If T —>• S is a morphism of locally noetherian schemes, then
pulling back the quotient q : (BrOpn —>• JF defines a family qT : QrOpn —>• JFT over
T, which makes sense as tensor product is right-exact and preserves flatness. The
operation of pulling back respects equivalence of families, therefore it gives rise to a
contravariant functor £luoter0rn from the category of all locally noetherian schemes
to the category of sets, by putting

0.uoter0rn(S) = { All (J-,q) parametrised by S}



It is immediate that the functor Quot^o^ satisfies faithfully flat descent including
strict descent. Grothendieck proved that in fact the above functor is representable
on the category of all locally noetherian schemes by a scheme

The functors Sjilbx/s a n d O.uotE/x/s
The above functors Sjilbpn and Quot^o^ admit the following simple generalisa-
tions. Let S be a noetherian scheme and let X —>• S be a finite type scheme over
it. Let E be a coherent sheaf on X. Let Schs denote the category of all locally
noetherian schemes over S. For any T —>• S in Schs, a family of quotients of E
parametrised by T will mean a pair (JF, q) consisting of
(i) a coherent sheaf T on XT = X xs T such that the schematic support of T is
proper over T and T is flat over T, together with

(ii) a surjective 0xT-linear homomorphism of sheaves q : ET —> T where ET is the
pull-back of E under the projection XT —>• X.

Two such families (T, q) and (J-, q) parametrised by T will be regarded as equivalent
if ker(g) = ker(g')), and {T,q) will denote an equivalence class. Then as properness
and flatness are preserved by base-change, and as tensor-product is right exact, the
pull-back of (JF, q) under an S'-morphism T" —>• T is well-defined, which gives a
set-valued contravariant functor Q.uotE/x/s '• Schs —>• Sets under which

T H> { All (JF, 5) parametrised by T}

When E = Ox, the functor £luot0x/x/s '• Schs —>• Sets associates to T the set of all
closed subschemes Y C XT that are proper and flat over T. We denote this functor
by fiilbx/s-
Note in particular that we have

S p e c Z and £}uoter0rn = Q.uot9r0rn/¥n/SpecZ

It is clear that the functors O.uotE/x/s a n d S^ilbx/s satisfy faithfully flat descent in-
cluding strict descent, so it makes sense to pose the question of their representability.

Stratification by Hilbert polynomials

Let X be a finite type scheme over a field k, together with a line bundle L. Recall
that if F is a coherent sheaf on X whose support is proper over k, then the Hilbert
polynomial $ 6 Q[A] of F is defined by the function

®m)$(m) = x(F(m)) = ^2(-iy dimfc H^X, F <g> L®
i=0

where the dimensions of the cohomologies are finite because of the coherence and
properness conditions.

Let X —>• S be a finite type morphism of noetherian schemes, and let L be a line
bundle on X. Let T be any coherent sheaf on X whose schematic support is proper
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over S. Then for each s G S1, we get a polynomial $ s G Q[A] which is the Hilbert
polynomial of the restriction Ts = F\Xa of T to the fiber Xs over s, calculated
with respect to the line bundle Ls = L\Xs. If T is flat over S then the function
s \—>• $ s from the set of points of S to the polynomial ring Q[A] is known to be
locally constant on S.

This shows that the functor Q.uotE/x/s naturally decomposes as a co-product

QuotE/x/s = Y[ &uot<Efx/s

where for any polynomial $ e Q[A], the functor O.uotE^x,s associates to any T
the set of all equivalence classes of families (JF, q) such that at each t G T the
Hilbert polynomial of the restriction JFt, calculated using the pull-back of L, is
$. Correspondingly, the representing scheme Q\iotE/x/s, when it exists, naturally
decomposes as a co-product

Note We will generally take X to be (quasi-)projective over S1, and L to be a
relatively ample line bundle. Then indeed the Hilbert and Quot functors are repre-
sentable by schemes, but not in general.

Elementary examples, Exercises

(1) P^ as a Quot scheme Show that the scheme Pg = Proj Z[x0 , . . . ,xn] repre-
sents the functor cp from schemes to sets, which associates to any S the set of all
equivalence classes (F, q) of quotients q : (Bn+lOs —> 3~, where T is an invertible Os-
module. As coherent sheaves on S which are S-flat are the same as the locally free
sheaves, cp is the functor Quot^n+iQ Q. This shows that Quot^n+i^ o = Pg. The uni-

versal family on Quot^n+i^ o = Pg is the tautological quotient ©n+10pg —>• 0pg(l)

More generally, show that if E is a locally free sheaf on a noetherian scheme S,
the functor £luotE,s,s is represented by the S'-scheme F(E) = Proj SymOs(E), and
the universal family on Quot^/c/^ is the tautological quotient TT*(E) —>• OY{E){^)

 o n

F(E).

(2) Grassmannian as a Quot scheme For any integers r > d > 1, an ex-
plicit construction the Grassmannian scheme Grass(r, d) over Z, together with the
tautological quotient u : ©r 0Grass(r,d) ~> U where U is a rank d locally free sheaf
on Grass(r, d), has been given at the end of this section. A proof of the proper-
ness of n : Grass(r, d) —> SpecZ is given there, together with a closed embedding
Grass(r, d) ^ P(^* det W) = P^ where m = Q.

Show that Grass(r, d) together with the quotient u : ©r 0Grass(r,d) —> U represents
the contravariant functor

(Srass(r, d) =



from schemes to sets, which associates to any T the set of all equivalence classes
(J-, q) of quotients q : ©r OT —>• T where T is a locally free sheaf on T of rank d.
Therefore, Quot f f i,0specz /SpecZ/SpecZ exists, and equals Grass(r, d).

Show that for any ring A, the action of the group GLr(A) on the free module ©rA
induces an action of GLr(A) on the set 0rass(r, d)(A), such that for any ring ho-
momorphism A —> B, the set-map &rass(r, d)(A) —>• 0rass(r,d)(B) is equivaraint
with respect to the group homomorphism GLr(A) —>• GLr(B). (In schematic terms,
this means we have an action of the group-scheme GLr^ on Grass(r, d).)

Using the above show that, more generally, if S is a scheme and E is a locally
free C^-module of rank r, the functor <3rass(E, d) = Q.uot%iSis on all S'-schemes
which by definition associates to any T the set of all equivalence classes (J7, q) of
quotients q : ET —> T where T is locally free of rank d, is representable. The
representing scheme is denoted by Grass(i?, d) and is called the rank d relative
Grassmannian of E over S. It parametrises a universal quotient n*E —>• T where
7T : Grass(i?, d) —> S is the projection. Show that the determinant line bundle AdF
on Grass(i?, d) is relatively very ample over S, and it gives a closed embedding
Grass(E,d) M- P(TTH< A

d T) C P(Ad£). (The properness of the embedding follows
from the properness of n : Grass(£1, d) —>• S, which follows locally over S by base-
change from properness of Grass(r, d) over Z - see Exercise (5) or (7) below.)

By locally expressing a coherent sheaf as a quotient of a vector bundle, show that
£tuot^,s,s is representable even when E is a coherent sheaf on S which is not
necessarily locally free.

(3) Grassmannian as a Hilbert scheme Let $ = 1 e Q[A]. Then the Hilbert
scheme Hilbpn is Pg itself. More generally, let $ r = (r+A) G Q[A] where r > 0. The
Hilbert scheme Hilb*^ is isomorphic to the Grassmannian scheme Grass(n + 1 , r +1)
over Z. This can be seen via the following steps, whose detailed verification is left
to the reader as an exercise.

(i) The Grassmannian scheme Grass(n-\-1, r + 1) over Z parametrises a tautological
family of subschemes of Pn with Hilbert polynomial $ r . Therefore we get a natural
transformation /iGrass(n+i,r+i) -> SdilbpT

n.

(ii) Any closed subscheme Y C ¥% with Hilbert polynomial $ r , where k is any field,
is isomorphic to P£ embedded linearly in P^ over k. If V is a vector bundle over
a noetherian base S1, and if F C P(V) is a closed subscheme fiat over S with each
schematic fiber Ys an r-dimensional linear subspace of the projective space F(VS),
then Y is defines a rank r + 1 quotient vector bundle V = 7r*0p(y)(l) —>• TT*CV(1)

where n : ¥(V) —> S denotes the projection. This gives a natural transformation
SjUb-pn —> /iGrass(ra+l,r+l)-

(iii) The above two natural transformations are inverses of each other.

(4) Hilbert scheme of hypersurfaces in P" Let $ d = (n+A) - (n"^+A) G Q[A]
where d>l. The Hilbert scheme Hilb*^ is isomorphic to P^1 where m = i^+

d
d) ~ 1-

This can be seen from the following steps, which are left as exercises.

(i) Any closed subscheme Y C P^ with Hilbert polynomial $^5 where k is any field,



is a hypersurface of degree d in P£. i/m£: If Y C P£ is a closed subscheme with
Hilbert polynomial of degree n — 1, then show that the schematic closure Z of the
hight 1 primary components is a hypersurface in P^ with deg(Z) = deg(F).
(ii) Any family Y C Pg is a Cartier divisor in Pg. It gives rise to a line subbundle
7r*(/y ® Opn((i)) c 7r*(9pg(<f), which defines a natural morphism fY : £ —>• P™ where
m = (n~jjd) — 1. This gives a morphism of functors Sjilbpi —>• Pm where we denote
/iPm simply by Pm .

(iii) The scheme P™ parametrises a tautological family of hypersurfaces of degree d,
which gives a morphism of functors Pm —>• fiilbpi in the reverse direction. These are
inverses of each other.

(5) Base-change property of Hilbert and Quot schemes Let S be a noethe-
rian scheme, X a finite-type scheme over S1, and E a coherent sheaf on X. If T —>• S
is a morphism of noetherian schemes, then show that there is a natural isomor-
phism of functors O.uotET/xT/T —>• O.uotE/x/s x/t s^r- Consequently, if Q\iotE/x/s

exists, then so does QuotE ix iT, which is naturally isomorphic to

One can prove a similar statement involving £}uotE',x,s. In particular, Hilbx/s a n d

Hilb^',^, when they exist, base-change correctly.

(6) Descent and effective descent Show that the functor O.uotE/X/s satisfies
descent and effective descent in the fpqc topology.

(7) Valuative criterion for properness When X —>• S is proper, show that the
morphism of functors Q.uotE/x/s —>• hs satisfies the valuative criterion of properness
with respect to discrete valuation rings, that is, if R is a discrete valuation ring
together with a given morphism Spec R —>• S making it an S-scheme, show that the
restriction map Q.uotE/x/$ (Spec R) —> QuotE/x/s (Spec if) is bijective, where K is
the quotient field of R and Spec K is regarded as an S'-scheme in the obvious way.

(8) Counterexample of Hironaka Hironaka constructed a 3-dimensional smooth
proper scheme X over complex numbers C, together with a free action of the group
G = Z/(2), for which the quotient X/G does not exist as a scheme. (See Example
3.4.1 in Hartshorne [H] Appendix B for construction of X. We leave the definition
of the G action and the proof that X/G does not exist to the reader.) In particular,
this means the Hilbert functor 9)ilbx/c is not representable by a scheme.

Construction of Grassmannian
Note The following explicit construction of the Grassmannian scheme Grass (r,d)
over Z is best understood as the construction of a quotient GL^^Sy, where V is
the scheme of all d x r matrices of rank d, and the group-scheme GL^ acts on V
on the left by matrix multiplication. However, we will not use this language here.

The reader can take d = 1 in what follows, in a first reading, to get the special case
Grass(r, 1) = Pg"1, which has another construction as Proj Z[xi , . . . , xr].

Construction by gluing together affine patches For any integers r > d > 1,
the Grassmannian scheme Grass(r, d) over Z, together with the tautological quotient



u : ©r 0Grass(r,d) —> U where U is a rank o? locally free sheaf on Grass(r, <f), can be
explicitly constructed as follows.

If M is a d x r-matrix, and / C { 1 , . . . , r} with cardinality # ( / ) equal to d, the / th
minor Mj of M will mean the d x d minor of M whose columns are indexed by / .

For any subset / C { 1 , . . . , r} with # ( / ) = d, consider the d x r matrix X1 whose
/ the minor X\ is the d x d identity matrix ldxd? while the remaining entries of X1

are independent variables x1 over Z. Let Z[X7] denote the polynomial ring in the
variables rr7^, and let U1 = SpecZ[X7], which is non-canonically isomorphic to the

affine space A g ~ '.

For any J C { 1 , . . . , r} with # ( J) = d, let P j = det(Xj) G Z[X7] where X 7 is the
J th minor of X1. Let f/J = SpecZ[X7,1/Pf] the open subscheme of U1 where Pj
is invertible. This means the d x d-matrix Xj admits an inverse (X7.)^1 on Uj.

For any / and J, a ring homomorphism 0j;j : Z[XJ , 1/P/] —̂  Z[X7 ,1/Pj] is defined
as follows. The images of the variables xJ

pq are given by the entries of the matrix
formula 8iyJ(X

J) = (X7.)^1 X1. In particular, we have 9IyJ(Pf) = 1/Pf, so the map
extends to Z[XJ,l/Pf].
Note that OJJ is identity on Uj = U1, and we leave it to the reader to verify that
for any three subsets / , J and K of { 1 , . . . , r} of cardinality d, the cocycle condition
9I,K = 6I,J6J,K is satisfied. Therefore the schemes U1, as / varies over all the Q
different subsets of { 1 , . . . , r} of cardinality d, can be glued together by the cocycle
{Oirj) to form a finite-type scheme Grass(r, d) over Z. As each U1 is isomorphic to
Ag ~ \ it follows that Grass(r, d) —>• SpecZ is smooth of relative dimension d(r — d).

Separatedness It can be seen that the intersection of the diagonal of Grass (r,d)
with U1 x UJ is the closed subscheme A/ ;j C U1 x UJ defined by entries of the
matrix formula Xj X1 — XJ = 0, and so Grass(r, d) is a separated scheme.

Properness We now show that n : Grass(r, d) —>• SpecZ is proper. It is enough to
verify the valuative criterion of properness for discrete valuation rings. Let 71 be a
dvr, K, its quotient field, and let if : Spec/C —>• Grass(r, d) be a morphism. This is
given by a ring homomorphism / : Z[X7] —>• K for some / . Having fixed one such
/ , next choose J such that v(f{Pj)) is minimum, where j / : K ^ - Z U {°°} denotes
the discrete valuation. As Pj = 1, note that v(f{Pj)) < 0, therefore f(Pj) ^ 0 in
K, and so the matrix f{XI

J) lies in GLd(JC).

Now consider the homomorphism g : Z[XJ] —>• K defined by entries of the matrix
formula

Then g defines the same morphism f : Spec/C —>• Grass(r, d), and moreover all
d x d minors XJ

K satisfy u(g(P^)) > 0. As the minor Xj is identity, it follows
from the above that in fact v{g(xpq)) > 0 for all entries of XJ. Therefore, the map
g : Z[XJ] —>• KL factors uniquely via 1Z C /C. The resulting morphism of schemes
Spec 1Z —> UJ °->- Grass(r, d) prolongs if : Spec/C —>• Grass(r, d). We have already
checked separatedness of Grass(r, d), so now we see that Grass(r,d) —>• SpecZ is
proper.



Universal quotient We next define a rank d locally free sheaf U on Grass(r, d)
together with a surjective homomorphism ©r 0Grass(r,d) —> U. On each U1 we define
a surjective homomorphism u1 : ©r Ovi —>• ©^ 0^/ by the matrix X7 . Compatible
with the cocycle (#/,j) for gluing the affine pieces U1, we give gluing data (giyj) for
gluing together the trivial bundles ®d

 OJJI by putting

9l,j = (Xj)-1 e GLd(U
Jj)

This is compatible with the homomorphisms u1, so we get a surjective homomor-
phism U : ©r £>Grass(r,d) -> U.

Projective embedding As U is given by the transition functions gIyJ described
above, the determinant line bundle det(W) is given by the transition functions
det(#/;j) = 1/Pj G GLi(Uj). For each / , we define a global section

07 e r(Grass(r,d),det(W))

by putting CT/IJJJ = Pf E Y(UJ\OJJJ) in terms of the trivialization over the open
cover (UJ). We leave it to the reader to verify that the sections 07 form a linear
system which is base point free and separates points relative to SpecZ, and so gives
an embedding of Grass(r, d) into P™ where m = Q) — 1. This is a closed embedding
by the properness of TT : Grass(r, d) —>• SpecZ. In particular, det(li) is a relatively
very ample line bundle on Grass(r, d) over Z.

Note It is possible to show that the sections 07 in fact form a free basis of F(Grass(r, d),
The homogeneous coordinates on P™ corresponding to 07 are called as the Pliicker coordinates, and
it is known that the image of the above closed embedding of Grass(r, d) into P™ is the subscheme
defined by certain quadratic polynomials in the Pliicker coordinates known as the Pliicker relations.
We will not need these facts.



2 Castelnuovo-Mumford regularity

Mumford's deployment of m-regularity led to a simplification in the construction
of Quot schemes. The original construction of Grothendieck had instead relied on
Chow coordinates.

Let A; be a field and let T be a coherent sheaf on the projective space Fn over k. Let
m be an integer. The sheaf T is said to be m-regular if we have

if^P™, T{m -i)) = 0 for each i > 1.

The definition, which may look strange at first sight, is suitable for making inductive
arguments on n = dim(Pn) by restriction to a suitable hyperplane. If if C P™ is a
hyperplane which does not contain any associated point of !F, then we have a short
exact sheaf sequence

0 ->• T{m - % - 1) A T(m - i) ->• TH{m - i) ->• 0

where the map a is locally given by multiplication with a defining equation of H,
hence is injective. The resulting long exact cohomology sequence

. . . ->• i f ^ P " , T{m - i)) ->• H'l(Fn, TH{m - %)) ->• Hi+1(Fn, T{m - % - 1)) ->• . . .

shows that if T is m-regular, then so is its restriction Tu (with the same value for
m) to a hyperplane H ~ p™-1 which does not contain any associated point of T.
Note that whenever T is coherent, the set of associated points of T is finite, so there
will exist at least one such hyperplane H when the field k is infinite.

The following lemma is due to Castelnuovo, according to Mumford's Curves on a
surface.

Lemma 2.1 If T is an m-regular sheaf on Fn then the following statements hold:

(a) The canonical map H°(Fn, OPn(l)) <g> H°(Fn, F(r)) ->• H°(Fn, F(r + 1)) is sur-
jective whenever r > m.

(b) We have ifJ(P", J-(r)) = 0 whenever i > 1 and r > m — i. In other words, if T
is m-regular, then it is m'-regular for all m' > m.

(c) The sheaf T(r) is generated by its global sections, and all its higher cohomologies
vanish, whenever r > m.

Proof As the cohomologies base-change correctly under a field extension, we can
assume that the field k is infinite. We argue by induction on n. The statements
(a), (b) and (c) clearly hold when n = 0, so next let n > 1. As A; is infinite, there
exists a hyperplane H which does not contain any associated point of J-, so that the
restriction !FH is again m-regular as explained above. As H is isomorphic to P^""1,
by the inductive hypothesis the assertions of the lemma hold for the sheaf TH •

When r = m - i, the equality Hl(Fn, F(r)) = 0 in statement (b) follows for all
n > 0 by definition of m-regularity. To prove (b), we now proceed by induction on
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r where r > m — i + 1. Consider the exact sequence

iT (F", T{r - 1)) ->• iT (F", J-(r)) ->• ̂ ( / f , J f l ( r ) )

By inductive hypothesis for r — 1 the first term is zero, while by inductive hypothesis
for n—l the last term is zero, which shows that the middle term is zero, completing
the proof of (b).
Now consider the commutative diagram

H(r)) ® H°(H,OH(1))

H°(Pn,T(r)) 4 H°(Pn,F(r + l)) "41 H°{H,TH{r +1))

The top map a is surjective, for the following reason: By m-regularity of T and
using the statement (b) already proved, we see that _ff1(Pn, T{r — 1)) = 0 for r > m,
and so the restriction map vr : iJ°(P", J-{r)) —> H°(H, JFff(r)) is surjective. Also,
the restriction map p : H°(Vn, Opn(lj) ->• # ° ( # , CM1)) is surjective. Therefore the
tensor product a = vr ® /? of these two maps is surjective.

The second vertical map r is surjective by inductive hypothesis for n — 1 = dim(H).

Therefore, the composite r o a is surjective, so the composite z/r+1 o /i is surjective,
hence H°(Pn, T{r + 1)) = im(/i) + ker(^r+1). As the bottom row is exact, we get
H°(Pn, T{r + 1)) = im(/i) + im(a). However, we have im(a) C im(/i), as the map
a is given by tensoring with a certain section of Cpn(l) (which has divisor if).
Therefore, if°(Pn, JT(r + 1)) = im(/x). This completes the proof of (a) for all n.

To prove (c), consider the map H° (P», T{r)) ® H° (Pn, OPn (p)) ->• if ° (Pn, J"(r + p)),
which is surjective for r > m and p > 0 as follows from a repeated use of (a). For
p > 0, we know that if°(Pn, Tir + p)) is generated by its global sections. It follows
that if°(Pn, J-(r)) is also generated by its global sections for r > m. We already
know from (b) that H%(Fn, J-(r)) = 0 for i > 1 when r > m. This proves (c),
completing the proof of the lemma. •

Remark 2.2 The following fact, based on the diagram used in the course of the
above proof, will be useful later: With notation as above, let the restriction map
vr : H°(Fn, T{r)) ->• H°(H, TH{r)) be surjective. Also, let TH be r-regular, so that
by Lemma 2.1.(a) the map H°(H,OH(l)) ® HQ{H,FH(r)) ->• HQ{H,FH{r + 1)) is
surjective. Then the restriction map vr+1 : H°(Tn,T{r + 1)) -> H°(H,FH(r + 1))
is again surjective. As a consequence, if Tu is m regular and if for some r > m the
restriction map vT : H°(Pn,!F(r)) —> H°{H,TH{T)) is surjective, then the restriction
map up : H°(W\ F{p)) ->• H°(H, TH{p)) is surjective for all p > r.

Exercise Find all the values of m for which the invertible sheaf Opn(r) is m-regular.

Exercise Suppose 0 —>• T' —>• T —> T" —>• 0 is an exact sequence of coherent
sheaves on P". Show that if T' and T" are m-regular, then T is also m-regular, if
T' is (m + l)-regular and T is m-regular, then T" is m-regular, and if T is m-regular
and T" is (m — l)-regular, then T' is m-regular.

11



The use of m-regularity for making Quot schemes is via the following theorem.

Theorem 2.3 (Mumford) For any non-negative integers p and n, there exists a
polynomial Fp>n in n + 1 variables with integral coefficients, which has the following
property:

Let k be any field, and let P™ denote the n-dimensional projective space over k. Let
J- be any coherent sheaf on ¥n, which is isomorphic to a subsheaf of (BpOpn. Let the
Hilbert polynomial of T be written in terms of binomial coefficients as

where CLQ,..., an 6 Z.

Then T is m-regular, where m is given by the formula

m = FPyn(a0,.. .,an).

Proof (From Mumford's Curves on a surface.) As before, we can assume that k
is infinite. We argue by induction on n. When n = 0, clearly we can take FPj0 to
be any polynomial. Next, let n > 1. Let if C P™ be a hyperplane which does not
contain any of the finitely many associated points of ®vO^njT (such an H exists as
k is infinite). Then we have

and so the sequence 0 —>• T —>• (BpOpn —>• (BpOpn/'T —>• 0 restricts to H to give a
short exact sequence 0 ->• TH ->• ®POH ->• ®POH/FH ->• 0. This shows that TH

is isomorphic to a subsheaf of @pO¥n-i (under an identification of H with P ^ 1 ) ,
which is a basic step needed for our inductive argument.

Note that T is torsion free if non-zero, and so we have a short exact sequence
0 —>• T{—1) —>• J- —>• J-R -^ 0. From the associated cohomology sequence we get

X(Hr)) - xW ~ 1)) = ELo^C) " ELô C"1) = Elo^Cl) =
where the coefficients bo,... ,bn_i have expressions bj = gj(a0,... ,an)

where the gj are polynomials with integral coefficients independent of the field k
and the sheaf T. {Exercise : Write down the gj explicitly.)

By inductive hypothesis on n — 1 there exists a polynomial FPyn_i(xo,... ,rrn_i)
such that TH is mo-regular where m0 = FPjn_1(6o, • • •, &ra-i)- Substituting bj =
gj(a0,..., an), we get m0 = G(a 0 , . . . , an), where G is a polynomial with integral
coefficients independent of the field k and the sheaf T.
For m > m0 — 1, we therefore get a long exact cohomology sequence

0 -»• H°(f(m - 1)) ->• H°(F(m)) ^ H°(fH(m)) ->• Hl{F{m - 1)) -»• ̂ (^(m)) -»• 0 ->• ...

which for « > 2 gives isomorphisms Hl(T(m — 1)) ^> Hl(!F(m)). As we have
f (jF(m)) = 0 for m 3> 0, these equalities show that

)) = 0 for alH > 2 and m > m0 - 2.

12



The surjections ^{^{ni — 1)) —>• -ff1(JF(m)) show that the function h}(J-(m)) is
a monotonically decreasing function of the variable m for m > mo — 2. We will in
fact show that for m > m0, the function /^(.^(m)) is strictly decreasing till its value
reaches zero, which would imply that

H\T(m)) = 0 for m > m0 + / i 1 ^ ) ) .

Next we will put a suitable upper bound on hl(J-(mo)) to complete the proof of
the theorem. Note that /i1(JF(m — 1)) > /i1(JF(m)) for m > m0, and moreover
equality holds for some m > m0 if and only if the restriction map vm : H°(!F(m)) —>
H°(!FH(m)) is surjective. As Tu is m-regular, it follows from Remark 2.2 that
the restriction map Vj : H°(!F(j)) —> H0(TH{J)) is surjective for all j > m, so
hl{F{j - 1)) = hl{T{j)) for all j > m. As hl{T{j)) = 0 for j > 0, this establishes
our claim that hl(J-(m)) is strictly decreasing for m > m0 till its value reaches zero.

To put a bound on hl(T{mQ)), we use the fact that as J C (BpOpn we must
have hQ{T{r)) < ph°(OPn(r)) = p(n+r). From the already established fact that
hl(J-(m)) = 0 for alii > 2 and m > m0 — 2, we now get

/m0
S P[ I - > a d •n / t^ V *
= P(a o , . . .a n)

where P(a 0 , . . . , an) is a polynomial expression in a0 , . . . , an, obtained by substitut-
ing 7770 = G(a0,..., an) in the second line of the above (in)equalities. Therefore, the
coefficients of the corresponding polynomial P(x0,... ,xn) are again independent of
the field k and the sheaf T. Note moreover that as hl(F(m0)) > 0, we must have
P(ao,...,an) > 0.

Substituting in an earlier expression, we get

Hl(T{m)) = 0 for m > G(a0,..., an) + P(a0,..., an)

Taking FPjTl(xo,..., xn) to be G(XQ, . . . , xn) + P(XQ, ..., xn), and noting the fact that
P(a0,..., an) > 0, we see that T is FPjn(a0,..., an)-regular.

This completes the proof of the theorem. •

Exercise Write down such polynomials Fpn.
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3 Semi-continuity and base-change

Base-change without flatness
The following lemma on base-change does not need any flatness hypothesis. The
price paid is that the integer r0 may depend on <p.

Lemma 3.1 Let <fi : T —>• S be a morphism of noetherian schemes, let T a coherent
sheaf on Pg; and let TT denote the pull-back of T under the induced morphism
P£ ->• Pg. Let ns : P£ ->• S and nT : P£ ->• T denote i/ie projections. Then there
exists an integer r$ such that the base-change homomorphism

is an isomorphism for all r > r0.

Proof As base-change holds for open embeddings, using a finite affine open cover
Ui of S and a finite affine open cover V^j of each 0~1([/j) (which is possible by
noetherian hypothesis), it is enough to consider the case where S and T are affine.

Note that for all integers i, the base-change homomorphism

is an isomorphism. Moreover, if a and b are any integers and if / : Cpg(a) —>• Cpg(6)
is any homomorphism and fT : 0pj(a) —>• 0p«(6) denotes its pull-back to PJ, then
for all i we have the following commutative diagram where the vertical maps are
base-change isomorphisms.

I

As S is noetherian and affine, there exists an exact sequence

©p0Pg(a) A ®qOPn(b) A T ->• 0

for some integers a, 6, p > 0, 5 > 0. Its pull-back to P^ is an exact sequence

®pOVn(a) UA ®qOVn(b) % TT -+ 0

Let Q = ker(w) and let V, = kei(vT). For any integer r, we get exact sequences

7rs*®pOPn(a + r) ->• ns*®qOPn(b + r) ->• 7rs,J"(r) -^ ^ ^ ^ ( r )

and

7TT* ©p OP f (a + r) ->• 7rT» ©« C*Pf (b + r) -^ 7rT^T ( r ) ->• R^T^r)
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There exists an integer r0 such that E}i{s*Q{r) = 0 and R17VT*'U(r) = 0 for all
r > r0. Hence for all r > r0, we have exact sequences

and

nT, ®p OPn(a + r) "T*Ar(r) ^ ©9 0Pn(& + r) " T *4 ( r ) nT^T(r) -> 0

Pulling back the second-last exact sequence under <j) : T —> S, we get the commuta-
tive diagram with exact rows

cf)*nSjf ©^0Pg(a + r) ^ " </>*©« O^(b + r) ^ T </>V5^(r) -> 0

in which first row is exact by the right-exactness of tensor product. The vertical
maps are base-change homomorphisms, the first two of which are isomorphisms for
all r. Therefore by the five lemma, (f)*ns*J-(r) —> 7rTi(ijrT(r) is an isomorphism for
all r >r0. •

The following elementary proof of the above result is taken from Mumford [M]: Let M be the

graded Cg-module (Bmez'n's*3r(m), so that T = M~. Let <f>* M be the graded Cy-module which

is the pull-back of M. Then we have TT = (<^*M)~. On the other hand, let N = ffimGz7TT*^rT('7i),

so that we have TT = N~. Therefore, in the category of graded OT[XQ, • • • ,a;n]-modules, we get

an induced equivalence between <f>*M and N, which means the natural homomorphisms of graded

pieces (<f)*M)m —> Nm are isomorphisms for all m S> 0. •

Flatness of T from local freeness of i

Lemma 3.2 Let S be a noetherian scheme and let IF be a coherent sheaf on Pg.
Suppose that there exists some integer N such that for all r > N the direct image
ir*T{r) is locally free. Then J- is flat over S.

Proof Consider the graded module M = ®r>NMr over Os, where Mr = 7r*JF(r).
The sheaf T is isomorphic to the sheaf M~ on P^ = Proj^ Os[xo,... ,xn] made
from the graded sheaf M of Cs-modules. As each Mr is flat over Os, so is M.
Therefore for any Xj the localisation MXi is flat over Os- There is a grading on
MXi, indexed by Z, defined by putting deg(vp/xj) = p — q for vp E Mp (this is
well-defined). Hence the component (MXi)0 of degree zero, being a direct summand
of MXi, is again flat over Os- But by definition of M~, this is just r(C/j, J-), where
Ui = Spec s Os[xo/xi,... ,xn/xj] C P§. As the Ui form an open cover of Pg, it
follows that T is fiat over Os- •

Exercise Show that the converse of the above lemma holds: if T is flat then Tx*T{r)
is locally free for all sufficiently large r.
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Grothendieck complex for semi-continuity

The following is a very important basic result of Grothendieck, and the complex K'
occurring in it is called the Grothendieck complex.

Theorem 3.3 Let n : X —>• S be a proper morphism of noetherian schemes where
S = Spec A is affine, and let T be a coherent Ox-module which is flat over Os-
Then there exists a finite complex

0 - > • K ° -> • K1 -> • . . . -> • Kn -> • 0

of finitely generated projective A-modules, together with a functorial A-linear iso-
morphism

Hp(X, F®AM)^ Hp(K- ®A M)

on the category of all A-modules M.

The above theorem is the foundation for all results about direct images and base-
change for flat families of sheaves, such as Theorem 3.7.

As another consequence of the above theorem, we have the following.

Proposition 3.4 ([EGA] 7.7.6) Let S be a noetherian scheme and n : X —>• S a
proper morphism. Let T be a coherent sheaf on X which is flat over S. Then there
exists a coherent sheaf C on S together with a functorial Os-linear isomorphism

QQ : K,{T®OX **G) ->• Hom0r(C,G)

on the category of all quasi-coherent sheaves Q on S. By its universal property, the
pair (C, 9) is unique upto a unique isomorphism.

Proof If S = Spec A, then we can take C to be the coherent sheaf associated to
the yl-module C which is the cokernel of the transpose <9V : (Kl)y —>• (K°)v where
d : K° —>• K1 is the differential of any chosen Grothendieck complex of A-modules
0 —>• K° —>• K1 —> ... —>• Kn —> 0 for the sheaf T', whose existence is given by
Theorem 3.3. For any A-module M, the right-exact sequence (Kl)y —> (K°)v —>
C —>• 0 with M gives on applying HomA(—, M) a left-exact sequence

0 -)• HomA(C, M)^K°®AM ->• K1 ®A M

Therefore by Theorem 3.3, we have an isomorphism

9i : H°(XA, TA ®A M) -> HomA(C, M)

Thus, the pair (C, 6A) satisfies the theorem when S = Spec A. More generally, we
can cover S by affine open subschemes. Then on their overlaps, the resulting pairs
(C, 9) glue together by their uniqueness. •
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A linear scheme V —>• S over a noetherian base scheme S is a scheme of the form
Spec SymOg(C) where C is a coherent sheaf on S. This is naturally a group scheme.
Linear schemes generalise the notion of (geometric) vector bundles, which are the
special case where C is locally free of constant rank.

The zero section Vo C V of a linear scheme V = Spec Sym0 (C) is the closed
subscheme defined by the ideal generated by C. Note that the projection Vo —>• S
is an isomorphism, and Vo is just the image of the zero section 0 : S —>• V of the
group-scheme.

Proposition 3.5 ([EGA] 7.7.8, 7.7.9) Let S be a noetherian scheme andir : X —>• S
a proper morphis Let S be a noetherian scheme and n : X —>• S a protective mor-
phism. Let £ and T be coherent sheaves on X. Consider the set-valued contravariant
functor $jom(£, T) on S-schemes, which associates to any T —> S the set of all OxT-
linear homomorphisms HomXT(£T, 3~T) where £T and TT denote the pull-backs of £
and T under the projection XT —> X. If T is flat over S, then the above functor is
representable by a linear scheme V over S.

Proof First note that if £ is moreover a locally free Cx-module, then fyom(£, T)
is the functor T H> H°(XT, (T ®Ox £V)T)- The sheaf T ®Ox £v is again flat over
S, so we can apply Proposition 3.4 to get a coherent sheaf C, such that we have
n^(J-<S>ox £V ®ox K*Q) = Hom0 (C, Q) for all quasi-coherent sheaves Q on S. In
particular, if / : Spec R —>• S is any morphism then taking Q = f*OR we get

Mors(Spec R, SpecSym^C)) = Hom0s-mod(C, f*OR)

= H°{XR,{F®Ox£

R\cR,j-R).

This shows that the linear scheme V = Spec Sym^ (C) is the required linear scheme
when £ is locally free on X. More generally for an arbitrary coherent £, over any
affine open U C S there exist vector bundles E' and E" on XJJ and a right exact
sequence E' —>• E" —>• £ —>• 0. (This is where we need projectivity of X —> S.
Instead, we could have assumed just properness together with the condition that
locally over S we have such a resolution of £.) Then applying the above argument,
we get linear schemes V and V" over U, with a linear morphism (f) : V" —>• V
induced by E' —> E". Let Yv = ker(</>), which is the closed subscheme of V
obtained as the inverse image of the zero section of V". More directly, if C and C"
are the coherent sheaves on U made as above, we have a homomorphism C" —> C,
and take Cu to be its cokernel, and put Vj/ = SpecSymo (Cu)- The scheme *Vu
has the desired universal property over U. Therefore, all such V[/, as U varies over
an affine open cover of S, patch together to give the desired linear scheme V. •

Remark 3.6 In particular, note that the zero section Vo C V is where the
universal homomorphism vanishes. If / e ifomxT(^T,^rr) defines a morphism
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iff : T —>• V, then the inverse image / 1Vo is a closed subscheme T" of T with
the universal property that if £/ —>• T is any morphism of schemes such that the
pull-back of / is zero, then U —>• T factors via T".

Base-change for flat sheaves

The following is the main result of Grothendieck on base change for flat families of
sheaves, which is a consequence of Theorem 3.3.

Theorem 3.7 Let TT : X —> S be a proper morphism of noetherian schemes, and let
T be a coherent Ox-module which is flat over Os- Then the following statements
hold:

(1) For any integer i, the function s \—>• dimre(s) H
l(Xs, J-s) is upper semi-continuous

on S.

(2) The function s i—>• ^(—l) ldimB( s) Hl{Xs,Ts) is locally constant on S.

(3) If for some integer i, there is some integer d > 0 such that dimK(s) H'l(Xs, !FS) = d
for all s G S, then TVix^T is locally free of rank d, and (Rt~lrK*J:)s —> Ht~1(Xs, !FS)
is an isomorphism for all s G 5.

(4) If for some integer % and point s G S the map (i?l7r*JF)s —>• iJ*(Xs,jFs) is
surjective, then it is an isomorphism and the same is true for all s' in an open
neighbourhood of s in S.

(5) If for some integer i and point s G S the map (Kln^!F)s —> iJ*(Xs,jFs) is
surjective, then the following conditions (a) and (b) are equivalent:

(a) The map (Rl~17v*J-')s —> H%~l{Xs^J:
s) is surjective.

(b) The sheaf R1TI^T is locally free in a neighbourhood of s in S.

Proof See for example Hartshorne [H] Chapter III, Section 12. •
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4 Generic flatness and flattening stratification

Lemma on Generic Flatness
Lemma 4.1 Let A be a noetherian domain, and B a finite type A algebra. Let M
be a finite B-module. Then there exists an f G A, f ^ 0, such that the localisation
Mf is a free module over Aj.

Proof Over the quotient field K of A, the K-algebra BK = K 0A B is of finite
type, and MK = K 0 A M is a finite module over BK. Let n be the dimension
of the support of MK over Spec BK. We argue by induction on n, starting with
n = — 1 which is the case when MK = 0. In this case, as K 0 A M = S~XM where
S = A — {0}, each v E M is annihilated by some non-zero element of A. Taking a
finite generating set, and a common multiple of corresponding annihilating elements,
we see there exists an / ^ 0 in A with fM = 0. Hence Mf = 0, proving the lemma
when n = —1.

Now let n > 0, and let the lemma be proved for smaller values. As B is noetherian
and M is assumed to be a finite 5-module, there exists a finite filtration

0 = M0C ...CMr = M

where each Mi is a 5-submodule of M such that for each i > 1 the quotient module
Mj/Mj_i is isomorphic to B/pi for some prime ideal pj in B.

Note that if 0 ->• M' ->• M ->• M" ->• 0 is a short exact sequence of S-modules,
and if / ' and / " are non-zero elements of A such that Mf, and M'L are free over
respectively Af> and Af», then Mf is a free module over Af where / = / ' / " • We
will use this fact repeatedly. Therefore it is enough to prove the result when M is
of the form B/p for a prime ideal p in B. This reduces us to the case where B is a
domain and M = B.

As by assumption K ®A B has dimension n > 0 (that is, K ®A B is non-zero),
the map A —> B must be injective. By Noether normalisation lemma, there exist
elements &i,..., bn e B, such that K ®A B is finite over its subalgebra K\bi,..., bn]
and the elements b\,... ,bn are algebraically independent over K. (For simplicity
of notation, we write 1 0 b simply as b.) If g ^ 0 in A is chosen to be a 'common
denominator' for coefficients of equations of integral dependence satisfied by a finite
set of algebra generators for K ®A B over K\b\,..., bn], we see that Bg is finite over
A g [ b i , . . . , b n ] .

Let m be the generic rank of the finite module Bg over the domain Ag[bi,..., bn].
Then we have a short exact sequence of Ag[b\,..., 6n]-modules of the form

0 ->• Ag[bu ..., bnf
m ^Bg^T^0

where T is a finite torsion module over Ag\bi,..., bn]. Therefore, the dimension of
the support of K ®Ag T as a K ®A9 (S9)-module is strictly less than n. Hence by
induction on n (applied to the data Agi Bg, T), there exists some h ̂  0 in A with
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T/j free over Agh. Taking / = gh, the lemma follows from the above short exact
sequence. •

The above theorem has the following consequence, which follows by restricting at-
tention to a non-empty affine open subscheme of S.

Corollary 4.2 Let S be a noetherian and integral scheme. Let p : X —>• S be a finite
type morphism, and let T be a coherent sheaf of Ox-modules. Then there exists a
non-empty open subscheme U C S such that the restriction of T to Xu = p~l(U) is
flat over OJJ.

Exercise Show by an example that the above result does not hold without the
assumption of integrality of S.

Existence of Flattening Stratification

Theorem 4.3 Let S be a noetherian scheme, and let T be a coherent sheaf on the
projective space P§ over S. Then the set L of Hilbert polynomials of restrictions of
T to fibers ofF^^-S is a finite set. Moreover, for each f G / there exist a locally
closed subscheme Sf of S, such that the following conditions are satisfied.

(i) Point-set: The underlying set \Sf\ of Sf consists of all points s E S where
the Hilbert polynomial of the restriction of IF to P™ is f. In particular, the subsets
\Sf\ C \S\ are disjoint, and their set-theoretic union is \S\.

(ii) Universal property: Let S' = ]J Sf be the coproduct of the Sf, and let
% : S' —>• S be the morphism induced by the inclusions Sf °->- S. Then the sheaf i*(J-)
on Fg, is flat over S'. Moreover, i : S' —>• S has the universal property that for any
morphism cp : T —>• S the pullback ip*(J-) on P^ is flat over T if and only if (p factors
through i : S1 —>• S. The subscheme Sf is uniquely determined by the polynomial f.
(iii) Closure of strata: Let the set I of Hilbert polynomials be given a total
ordering, defined by putting f < g whenever f(n) < g(n) for all n ^$> 0. Then the
closure in S of the subset \Sf\ is contained in the union of all \Sg\ where f < g.

Proof It is enough to prove the theorem for open subschemes of S which cover S,
as the resulting strata will then glue together by their universal property.

Special case: Let n = 0, so that Pg = S. For any s e S, the fiber T\s of T over
s will mean the pull-back of T to the subscheme Spec K(S), where K(S) is the residue
field at s. (This is obtained by tensoring the stalk of T at s with the residue field
at s, both regarded as 0s)S-modules.) The Hilbert polynomial of the restriction of
J- to the fiber over s is the degree 0 polynomial e G Q[A], where e = dimK(s) T\s.

By Nakayama lemma, any basis of JF|S prolongs to a neighbourhood U of s to give
a set of generators for F\u- Repeating this argument, we see that there exists a
smaller neighbourhood V of s in which there is a right-exact sequence
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Let Ie C Oy be the ideal sheaf formed by the entries of the e x m matrix (iftij) of

the homomorphism Oym —> Oye. Let Ve be the closed subscheme of V defined by
Ie. For any morphism of schemes / : T —>• V, the pull-back sequence

4 c 4 fT ->• o

is exact, by right-exactness of tensor products. Hence the pull-back j*T is a locally
free C^-module of rank e if and only if f*%p = 0, that is, / factors via the subscheme
Ve "—>• V defined by the vanishing of all entries ipij. Thus we have proved assertions
(i) and (ii) of the theorem.

As the rank of the matrix (V'ij) is lower semicontinuous, it follows that the function e
is upper semicontinuous, which proves the assertion (iii) of the theorem, completing
its proof when n = 0.

General case: We now allow the integer n to be arbitrary. The idea of the proof
is as follows: We show the existence of a stratification of S which is a 'g.c.d.' of the
flattening stratifications for direct images Ti^!F(i) for alH > N for some integer N
(where the flattening stratifications for Ti^Tij) exist by case n = 0 which we have
treated above). This is the desired flattening stratification of T over S, as follows
from Lemma 3.2.

As S is noetherian, it is a finite union of irreducible components, and these are closed
in S. Let Y be an irreducible component of S, and let U be the non-empty open
subset of Y which consists of all points which do not lie on any other irreducible
component of S. Let U be given the reduced subscheme structure. Note that
this makes U an integral scheme, which is a locally closed subscheme of S. By
Corollary 4.2 on generic flatness, U has a non-empty open subscheme V such that the
restriction of T to fv is flat over Oy- Now repeating the argument with S replaced
by its reduced closed subscheme S — V, it follows by noetherian induction on S that
there exist finitely many reduced, locally closed, mutually disjoint subschemes Vi of
S such that set-theoretically 15*1 is the union of the \Vi\ and the restriction of T to ¥y.
is flat over Oy%. As each Vi is a noetherian scheme, and as the Hilbert polynomials
are locally constant for a flat family of sheaves, it follows that only finitely many
polynomials occur in Vi in the family of Hilbert polynomials Ps(m) = x(P™, J-S(m))
as s varies over points of Vi. This allows us to conclude the following:

(A) Only finitely many distinct Hilbert polynomials Ps(m) = x(P™,JTs(m)) occur,
as s varies over all of 5.

By the semi-continuity theorem applied to the flat families Ty. = T\pn parametrised
by the finitely many noetherian schemes Vi, we get the following:

(B) There exists an integer N\ such that RrTi^T{m) = 0 for all r > 1 and m > N\,
and moreover fT(P™, ^ ( m ) ) = 0 for all s e S.

For each Vi, by Lemma 3.1 there exists an integer r,i > JVi with the property that
for any m > T{ the base change homomorphism
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is an isomorphism, where Tyi denotes the restriction of T to Py, and TT̂  : Py —>• Vi
the projection. As the higher cohomologies of all fibers (in particular, the first
cohomology) vanish by (B), it follows by semi-continuity theory for the flat family
Tyi over Vi that for any s G Vi the base change homomorphism

is an isomorphism for m > T{. Taking A" to be the maximum of all T{ over the finitely
many non-empty Vi, and composing the above two base change isomorphisms, we
get the following.

(C) There exists an integer N > Ni such that the base change homomorphism

is an isomorphism for all m > N and s G S.

Note We now forget the subschemes Vi but retain the facts (A), (B), (C) which
were proved using the V{.

Let 7T : Pg —>• S denote the projection. Consider the coherent sheaves Eo,..., En on
S, defined by

E{ = n*F(N + i) for i = 0 , . . . , n.

By applying the special case of of the theorem (where the relative dimension n of
Pg is 0) to the sheaf Eo on P° = S, we get a stratification (Weo) of S indexed by
integers e0, such that for any morphism / : T —>• S the pull-back f*E0 is a locally
free C^-module of rank e0 if and only if / factors via Weo °->- S. Next, for each
stratum Weo, we take the flattening stratification (We0)ei) for E\\Weo, and so on.
Thus in n + 1 steps, we obtain finitely many locally closed subschemes

Weo,...,en C S

such that for any morphism / : T —> S the pull-back f*Ei for i = 0 , . . . , n is a locally
free C^-modules of of constant rank ê  if and only if / factors via WeOv..!en M> S1.

For any integer Â  and n where n > 0, there is a bijection from the set of numerical
polynomials / G Q[A] of degree < n to the set Zn + 1 , given by

/ H-> (e 0 , . . . , en) where ê  = /(AT + i).

Thus, each tuple (e 0 , . . . , en) G Z n + 1 can be uniquely replaced by a numerical poly-
nomial / G Q[A] of degree < n, allowing us to re-designate W/

eo,...,en C S as Wf C S.

Note that at any point s G S, by (B) we have fT(P™,Ts(m)) = 0 for all r > 1 and
m> N. The polynomial Ps(m) = x(P",Ts(m)) has degree < n, so it is determined
by its n + 1 values PS(N),... ,PS(N + n). This shows that at any point s G W/, the
Hilbert polynomial Ps{m) equals / . The desired locally closed subscheme Sf C S,
whose existence is asserted by the theorem, will turn out to be a certain closed
subscheme Sf C Wf whose underlying subset is all of \Wf\. The scheme structure
of Sf (which may in general differ from that of Wf) is defined as follows.
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For any i > 0 and s E S, the base change homomorphism

is an isomorphism by statement (C). Hence each ir^J-{N -\-i) has fibers of constant
rank f(N + i) on the subscheme Wf. However, this does not mean 7r*JF(/V + i)
restricts to a locally constant sheaf of rank f(N + i). But it means that Wf has a
closed subscheme Wj, whose underlying set is all of \Wf\, such that n^T^N + i) is

locally free of rank f(N + i) when restricted to Wf , and moreover has the property
that any base-change T —> S under which n^T^N + i) pulls back to a locally free
sheaf of rank f(N + i) factors via W). The scheme structure of wi is defined by
a coherent ideal sheaf Jj C Owr Let / C Owf be the sum of the Ij over i > 0. By
noetherian condition, the increasing sequence

Jo C Jo + h C /0 + h + h C . . .

terminates in finitely many steps, showing / is again a coherent ideal sheaf. Let
Sf C Wf be the closed subscheme defined by the ideal sheaf / . Note therefore that
\Sf\ = \Wf\ and for alH > 0, the sheaf 7r*J"(/V + i) is locally free of rank f(N + i)
when restricted to Sf.

It follows that from their definition that the Sf satisfy property (i) of the theorem.

We now show that the morphism TJ, Sf —> S indeed has the property (ii) of the
theorem. By Lemma 3.1, there exists some N' > N such that for all i > TV', the
base-change (-K*J:(i))\ss —>• (nsf)*J-sf(i) is an isomorphism for each Sf. Therefore
Tsf is fl^ over Sf by Lemma 3.2, as the direct images TT^J7^) for all i > N' are
locally free over Sf. Conversely, if <fi : T —>• S is a morphism such that TT is flat,
then the Hilbert polynomial is locally constant over T. Let Tf be the open and
closed subscheme of T where the Hilbert polynomial is / . Clearly, the set map
Tf\ —>• |5 | factors via \Sf\. But as the direct images (TTT) * J~T(J)

 a r e locally free of
rank f(i) on Tf, it follows in fact that the schematic morphism Tf —>• S factors via
Sf, proving the property (ii) of the theorem.

As by (A) only finitely many polynomials / occur, there exists some p > N such
that for any two polynomials / and g that occur, we have / < g if and only if
f(p) < d(p)- As Sf is the flattening stratification for Ti*T(p), the property (iii) of
the theorem follows from the corresponding property in the case n = 0, applied to
the sheaf 7r*JF(p) on S.

This completes the proof of the theorem. •

Exercise What is the flattening stratification of S for the coherent sheaf OSred on
S, where Sred is the underlying reduced scheme of SI
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5 Construction of Quot schemes

Notions of projectivity

Let S be a noetherian scheme. Recall that as defined by Grothendieck, a morphism
X —>• S is called a projective morphism if there exists a coherent sheaf E on
S, together with a closed embedding of X into F(E) = Proj SymOs (E) over S.
Equivalently, X —> S is projective when it is proper and there exists a relatively
very ample line bundle L on X. These conditions are related by taking L to be the
restriction of C?p(£)(l) to X, or in the reverse direction, taking E to be the direct
image of L on S. A morphism X —>• S is called quasi-projective if it factors as an
open embedding X -̂> F followed by a projective morphism F —>• S.

A stronger version of projectivity was introduced by Altman and Kleiman: a mor-
phism X —y S of noetherian schemes is called strongly projective (respectively,
strongly quasi-projective) if there exists a vector bundle E on S together with
a closed embedding (respectively, a locally closed embedding) X C F(E) over S.

Finally, the strongest version of (quasi-)projectivity is as follows (used for example
in the textbook [H] by Hartshorne): it requires that X admits a (locally-)closed
embedding into P^ for some n.

Exercises (i) Gives examples to show that the above three notions of projectivity
are in general distinct.

(ii) Show that if X —>• S is projective and flat, where S is noetherian, then X —> S
is strongly projective.

(iii Note that if every coherent sheaf of C^-modules is the quotient of a vector
bundle, then the above three notions of projectivity over S are equivalent to each
other. In particular, show that this is the case when L admits an ample line bundle
(for example, if S is quasi-projective over an affine base).

Main Existence Theorems

Grothendieck's original theorem on Quot schemes, whose proof is outlined in [FGA]
TDTE-IV, is the following.

Theorem 5.1 (Grothendieck) Let S be a noetherian scheme, TT : X —>• S a pro-
jective morphism, and L a relatively very ample line bundle on X. Then for any
coherent Ox-module E and any polynomial $ G Q[A]; the functor £±uot^x,s is
representable by a projective S-scheme Quot^,',^,^.

Altman and Kleiman gave a complete and detailed proof of the existence of Quot
schemes in [A-K 2]. They could remove the noetherian hypothesis, by instead as-
suming strong (quasi-)projectivity of X —> S together with an assumption about
the nature of the coherent sheaf E, and deduce that the scheme Quot^',^,^ is then
strongly (quasi-)projective over 5.

For simplicity, in these lecture notes we state and prove the result in [A-K 2] in the
noetherian context.
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Theorem 5.2 (Altman-Kleiman) Let S be a noetherian scheme, X a closed sub-
scheme of F{V) for some vector bundle V on S, L = 0p(y)(l)|x, E a coherent
quotient sheaf of n* (W) (z/) where W is a vector bundle on S and v is an integer,
and $ G Q[A]. Then the functor Q.uot^x,s is representable by a scheme Quot*',1^
which can be embedded over S as a closed subscheme ofP(F) for some vector bundle
F onS.

The vector bundle F can be chosen to be an exterior power of the tensor product of
W with a symmetric powers ofV.

Taking both V and W to be trivial in the above, we get the following.

Corollary 5.3 If S is a noetherian scheme, X is a closed subscheme 0/P5 for some
n > 0, L = Opn(\)\x, E is a coherent quotient sheaf of ®pOx{v) for some integers
p > 0 and v, and $ G Q[A], then the the functor Q.uotE',x,s is representable by a

scheme Quot^',^^ which can be embedded over S as a closed subscheme of P^ for
some r > 0.

The rest of this section is devoted to proving Theorem 5.2, with extra noetherian
hypothesis. At the end, we will remark on how the proof also gives us the original
version of Grothendieck.

Reduction to the case of Q.uotnlw

It is enough to prove Theorem 5.2 in the special case that X = F(V) and E = n*(W)
where V and W are vector bundles on S, as a consequence of the next lemma.

Lemma 5.4 (i) Let v be any integer. Then tensoring by Lu gives an isomorphism of
functors from £±uot^x,s to £^ot*^\ , x , 5 where the polynomial ^ G Q[A] is defined

() ( )

(ii) Let 4> : E —>• G be a surjective homomorphism of coherent sheaves on X. Then
the corresponding natural transformation £luot^x,s —>• £±uotE'^x,s is a closed em-
bedding.

Proof The statement (i) is obvious. The statement (ii) just says that given any
locally noetherian scheme T and a family (J-,q) G £luotE',x,s(T), there exists a
closed subscheme T' C T with the following universal property: for any locally
noetherian scheme U and a morphism / : U —> T, the pulled back homomorphism
of OXJJ -modules qu : Eu —> T\j factors via the pulled back homomorphism (pu :
Ev ->• Gu if and only if U ->• T factors via V ^ T. This is satisfied by taking V
to be the vanishing scheme for the composite homomorphism ker((/>) °->- E —>• J- of
coherent sheaves on XT (see Remark 3.6), which makes sense here as both ker(</>)
and T are coherent on XT and F is flat over T. •

Therefore if Huotnlw,¥,vys is representable, then for any coherent quotient E of

7r*VF(z )̂|x, we can take Quot*',1^ to be a closed subscheme of
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Use of ra-regularity

We consider the sheaf E = n*(W) on X = T(V) where V is a vector bundle on S,
and take L = 0p(y)(l). For any field k and a ^-valued point s of S, we have an
isomorphism V(V)S ~ P£ where n = rank(V) — 1, and the restricted sheaf Es on
V{V)S is isomorphic to ©p0p(y)s where p = ra.nk(W). It follows from Theorem 2.3
that given any $ G Q[A], there exists an integer m which depends only on rank(V),
rank(VF) and $, such that for any field k and a fc-valued point s of S1, the sheaf
Eg on F(V)S is m-regular, and for any coherent quotient q : Es —> T on F(V)S

with Hilbert polynomial $, the sheaf T and the kernel sheaf Q C Es of q are both
m-regular. In particular, it follows from the Castelnuovo Lemma 2.1 that for r > m,
all cohomologies H^X^E^r)), H^X^^r)), and H\Xs,g(r)) are zero for i > 1,
and H°(Xs,Ea(r)), H°(XS, J"(r)), and H°(Xs,g(r)) are generated by their global
sections.

From the above it follows by Theorem 3.7 that if T is an S'-scheme and q : E? —>• ^
is a T-flat coherent quotient with Hilbert polynomial $, then we have the following,
where Q C ET is the kernel of q.

(*) The sheaves ITT*G(T), nT*ET(r), nT*J-(r) are locally free of fixed ranks de-
termined by the data n, p, r, and $, the homomorphisms 7VT*^T*(Q(T~)) ~^ G(r),
KT*KT*{ET{r)) —> ET{r), 7rr*7rTi(i(jr(r)) —>• T(r) are surjective, and the higher direct
images RlnTt.Q(r), Rl7rTt.ET(r), Rl7rT*J-(r) are zero, for all r > m and i > 1.

(**) In particular we have the following commutative diagram of locally sheaves
on XT-, in which both rows are exact, and all three vertical maps are surjective.

0 ^ Q(r) -+ E(r) - > • ^ ( r ) ^ 0

Embedding Quot into Grassmannian

We now fix a positive integer r such that r > m. Note that the rank of nT*J~(r)
is <fr(r) and n*E{r) = W ®os Sym r(y). Therefore the surjective homomorphism
nT*ET(r) —>• TTTifT(r) defines an element of the set 0rass(W®o s Symr (y), $(r))(T).
We thus get a morphism of functors

a : Q.uot%fx/S ->• 0rass( iy ®Os Symr(V), $(r))

It associates to g : £"r —>• ^ the quotient 7Tr*(?(^)) : ̂ T*ET{r) —>• -KT*J~{r).
The above morphism a is injective because the quotient g
from TTT*(q(r)) : iiT*ET(r) —> iiTifT(r) as follows.

If G = Grass(W /®0sSym r(l /),$(r)) with projection pG

U denotes the universal quotient on G with kernel v
homomorphism iiT*^T*{Gij)) ~^ T^T*^T*ET(J) can be recovered from the morphism
T —>• G as the pull-back of v : /C —>• {pc)*E. Let /i be the composite 7TT*7rr*(̂ (?')) —>•
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-KT*T^T*{ET{T)) —>• ET(r). As a consequence of the properties of the diagram (**),
the following is a right exact sequence on XT

and so q(r) : ET{r) —>• T(r) can be recovered as the cokernel of h. Finally, twisting
by —r, we recover q, proving the desired injectivity of the morphism of functors
a : Quot%fx/S ->• <5rass(W 0Os Symr(l/), $(r)).

Use of flattening stratification

We will next prove that a : O.uot^x,s —>• (5rass(W 0os Symr(V), $(r)) is relatively
representable. In fact, we will show that given any locally noetherian S'-scheme T
and a surjective homomorphism / : WT ®OT Symr(T^r) —>• J where J is a locally
free 0 r-module of rank $(r), there exists a locally closed subscheme T' of T with
the following universal property (F) :

(F) Given any locally noetherian S'-scheme Y and an S-morphism <fi : Y —>• T, let
j Y be the pull-back of / , and let K,Y = ker(/y) = <^*ker(/). Let TTY : XY -^ 7 be
the projection, and let h : (?ry)*/Cy —>• EY be the composite map

(nYyiCY -> {nY)*{W ®Os Symr(T/)) = {nY)*(nY)*EY -> £ y

Let g : £"y —>• T be the cokernel of /i. Then JF is flat over Y with its Hilbert
polynomial on all fibers equal to $ if and only if (f) : Y —>• T factors via Y' ^ Y.

The existence of such a locally closed subscheme T" of T is given by Theorem 4.3,
which shows that T" is the stratum corresponding to Hilbert polynomial $ for the
flattening stratification over T for the sheaf T on X^.

When we take T to be Grass(W/ ®os Symr(V), $(r)) with universal quotient w :
(PG)*E —>• W, the corresponding locally closed subscheme T" represents the functor

^ by its construction.

Hence we have shown that Q.uotE',x,s is represented by a locally closed subscheme
of GrassfW ®Os Symr(V), $(r)). As Grass(jy <g>Os Sym r(F), $(r)) embeds as a
closed subscheme of F^A^^W ®os Sym r(y)), we get a locally closed embedding of
S'-schemes

lf C F(A*W(W®os Symr(T/)))

In particular, the morphism Quot^,',^ ,5 —>• S is separated and of finite type.

Valuative criterion for properness

The original reference for the following argument is EGA IV (2) 2.8.1.

The functor Q.uotE',x,s satisfies the following valuative criterion for properness over
S: given any discrete valuation ring R over S with quotient field K, the restriction
map

Quot E',x,s (Spec R) —>• QuotE',x ,s (Spec K)
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is bijective. This can be seen as follows. Given any coherent quotient q : EK —y T
on XR which defines an element (J-,q) of QuotE',x,s(Specif). Let T be the image
of the composite homomorphism ER —> j*(EK) —> j.¥T where j : XK <-^- XR is the
open inclusion. Let q : ER —> J- be the induced surjection. Then we leave it to
the reader to verify that (J-,q) is an element of Q.uot E,x,s (Spec R) which maps to
(T, q), and is the unique such element. (Use the basic fact that being flat over a
dvr is the same as being torsion-free.)

As S is noetherian and as we have already shown that Quot^,',^ ,s —>• S is of finite

type, it follows that Quot*'/^,5 —>• S is a proper morphism. Therefore the embedding

of QuotJ';
L

x/5 into P(A*M(W ®Os Symr(y))) is a closed embedding.

This completes the proof of Theorem 5.2. •

The version of Grothendieck

We now describe how to get Theorem 5.1 from the above proof. As S is noetherian,
we can find a common m such that given any field-valued point s : Spec k —> S and
a coherent quotient q : Es —>• T on Xs with Hilbert polynomial <fr, the sheaves Es(r),
JF(r), Q(r) (where Q = ker(g)) are generated by global sections and all their higher
cohomologies vanish, whenever r > m. This follows from the theory of m-regularity,
and semi-continuity.

Because we have such a common m, we get as before an embedding of £±uot^x,s
into the Grassmannian functor (5rass(7T*£'(r), $(r)). The sheaf 7r*£'(r) is coherent,
but need not be the quotient of a vector bundle on S. Consequently, the scheme
Grass(7r*i£(r), $(r)) is projective over the base, but not necessarily strongly projec-
tive.

Finally, the use of flattening stratification, which can be made over an affine open
cover of S, gives a locally closed subscheme of Grass(7r*.E(r), $(r)) which represents
Q.uotE\x,s, which is in fact a closed subscheme by the valuative criterion. Thus, we

get Q^oiEfx/s
 a s a projective scheme over S.

28



6 Some variants and applications

Quot scheme in quasi-projective case

Exercise Let n : Z —> S be a proper morphism of noetherian schemes. Let Y G Z
be a closed subscheme, and let T be a coherent sheaf on Z. Then there exists an
open subscheme S' C S with the universal property that a morphism T —>• S factors
through 5" if and only if the support of the pull-back TT on ZT = Z xs T is disjoint
from YT = Y xsT.

Exercise As a consequence of the above, show the following: If n : Z —>• S is a
proper morphism with S noetherian, if X C Z is an open subscheme, and if E is a
coherent sheaf on Z, then O.uotE\x/x/s is a n open subfunctor of O.uotE/z/s-

Corollary 6.1 Let S be a noetherian scheme, X a locally closed subscheme of¥(V)
for some vector bundle V on S, L = 0p(y)(l)|x> E a coherent quotient sheaf of
n*(W){y)\x where W is a vector bundle on S and v is an integer, and $ G
Then the functor Q.uotE',x,s is representable by a scheme Q\iotE',x,s which can be
embedded over S as a locally closed subscheme of P(F) for some vector bundle F
on S. Moreover, the vector bundle F can be chosen to be an exterior power of the
tensor product of V with a symmetric powers ofW.

Proof Let ~X C JP(V) be the schematic closure of X C F(V), and let E~ be the
coherent sheaf on X defined as the image of the composite homomorphism

Then we get a quotient ^*iW){y)\-^ —> E which restricts on X C X to the given
quotient ii*(W)(v)\x —>• E. Therefore by the above exercise, £}uotE/x/s is a n open
subfunctor of O.uot-^i^is. Now the corollary follows from the Theorem 5.2. •

Scheme of morphisms

We recall the following basic facts about flatness.

Lemma 6.2 (1) Any finite-type flat morphism between noetherian schemes is open.

(2) Let n : Y —> X be a finite-type morphism of noetherian schemes. Then all
y £ Y such that n is flat at y (that is, Oy,y is a flat Ox,-K(y)-m°dule) form an open
subset ofY.

(3) Let S be a noetherian scheme, and let f : X —>• S and g : Y —> S be finite type
flat morphisms. Let n : Y —> X be any morphism such that g = f on. Let y EY, let
x = 7v(y), and let s = g(y) = f(x). If the restricted morphism ns : Ys —> Xs between
the fibers over s is flat at y £ Ys, then vr is flat at y 6 Y.
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Proof See for example Altman and Kleiman [A-K 1] Introduction to Grothendieck
duality theory, Chapter V. The statement (3) is a consequence of what is known
as the local criterion for flatness. •

Proposition 6.3 Let S be a noetherian scheme, and let f : X —>• S and g : Y —>• 5
be proper flat morphisms. Let n : Y —>• X be any projective morphism with g = /OTT.
Then S has open subschemes S2 C Si C S with the following universal properties:

(a) For any locally noetherian S-scheme T, the base change HT '• YT —>• XT is a flat
morphism if and only if the structure morphism T —>• S factors via S\. (This does
not need n to be projective.)

(b) For any locally noetherian S-scheme T, the base change TTT '• YT —>• XT is an
isomorphism if and only if the structure morphism T —>• S factors via S2.

Proof (a) By Lemma 6.2.(2), all y G Y such that n is flat at y form an open
subset Y' C Y. Let S\ = S — g(Y — Y'). As g is proper, this is an open subset
of S. It follows from the local criterion of flatness (Lemma 6.2.(3)) that S\ exactly
consists of all s G S such that the restricted morphism ns : Ys —>• Xs between the
fibers over s is flat. Therefore again by the local criterion of flatness, S\ has the
desired universal property.

(b) Let TTI : Yx —>• X\ be the pull-back of n under the inclusion Si ^ S where Si
is given the open subscheme structure. Let L be a relatively very ample line bundle
for the projective morphism TTI : Y —> X. Then by noetherianness there exists an
integer m > 1 such that ni.tL

m is generated by its global sections and FCKI^L"1 = 0
for all z > 1. By flatness of TTI, it follows that nit.L

m is a locally free sheaf. Let
U C X\ be the open subschemes such that i\\jfL

m is of rank 1 on U. Finally, let
S2 = S\ — f(Xi — U), which is open as / is proper. We leave it to the reader to
verify that S2 has the required universal property (b) . •

If X and Y are schemes over a base S, then for any S'-scheme T, an S'-morphism
from X to Y parametrised by T will mean a T-morphism from X x$ T to
Y xsT. The set of all such will be denoted by 9Jlors(X,Y)(T). The association
T i->- 9Jlors(X, Y)(T) defines a contra-functor 9Jlors(X, Y) from S-schemes to Sets.

Exercise Let A; be a field, let S = Spec£[[£]], X = Speck = Spec(k[[t]]/(t)), and
let Y = P^. Is mors(X, Y) representable?

Theorem 6.4 Let S be a noetherian scheme, let X be a projective scheme over S,
and let Y be quasi-projective scheme over S. Assume moreover that X is flat over S.
Then the functor dJlors(X, Y) is representable by an open subscheme MOTs(X,Y)
of
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Proof We can associate to each morphism / : X? —>• YT (where T is a scheme over
S) its graph TT(f) C (X xs Y)T. This defines a set-map TT : Ttars(X,Y)(T) ->•
SjilbXxsY/s(T) which is functorial in T, so we obtain a morphism of functors

Given any element of S*)ilbxxsY/s(T), represented by a family Z C (X xs Y)Tl it
follows by Proposition 6.3.(b) that T has an open subscheme T" with the following
universal property: for any base-change U —>• T, the pull-back ZJJ C (X x$ Y)u
projects isomorphically on XJJ under the projection p : (X xs Y)u —> Xv if and
only if U —>• T factors via T'. Then over T", the scheme ZT> is the same as the graph
of a uniquely determined morphism XTi —>• F r / .

This shows that V : 9Jlors(X, Y) —>• F)ilbxxsY/s is a n open embedding, and therefore
the scheme Mor,$(X, F) exists as an open subscheme of HilbxXsy/5- D

Exercise Let S be a noetherian scheme, and let X —>• S* a flat projective mor-
phism. Then show that there exists an S'-scheme of automorphisms of X. In other
words, consider the set-valued contravariant functor Qlutx/s o n locally noetherian
S'-schemes, which associates to any T the set of all automorphisms of XT over T.
Show that this functor is representable.

Exercise Let S be a noetherian scheme, and let / : X —>• S and g : Y —>• S be proper
flat morphisms. Let TT : F —>• X be any quasi-projective morphism with g = f o vr.
Consider the set-valued contravariant functor functor Lly/x/s1 on locally noetherian
S'-schemes, which associates to any T the set of all sections of TYT '• YT —> XT. Show
that this functor is representable.

Quotient by a flat projective equivalence relation

Let X be a scheme over a base S. A schematic equivalence relation on X over
S will mean an S'-scheme R together with a morphism / : R —>• X x$ X over S
such that for any S'-scheme T the set map f(T) : R(T) —>• X(T) x X(T) is injective
and its image is the graph of an equivalence relation on X(T). (Here, we denote by
Z(T) the set Mors(T, Z) = hz(T) of all T-valued points of Z, where Z and T are
S'-schemes.)

We will say that a morphism q : X —> Y of S'-schemes is a quotient for a schematic
equivalence relation / : R —>• X xsX over S if q is a co-equaliser for the component
morphisms fi,f2'.R^tXoif:R—>XxsX. By definition, this means that given
any S'-scheme Z and an S'-morphism g : X —> Z such that gof\ = gof2, there exists
a unique S'-morphism h : Y —> Z such that g = h o q. By its universal property,
note that a quotient is unique upto a unique isomorphism.

Caution Even if q : X —> Y is a schematic quotient for R, for a given T the
map q[T) : X(T) —>• Y(T) may not be a quotient for R(T) in the category of sets.
The map q(T) may fail to be surjective, and moreover it may identify two distinct
equivalence classes. Exercise: Give examples where such phenomena occur.
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We will say that the quotient q : X —> Y is effective if the induced morphism
(/ij I2) '• R ~~̂  X Xy X is an isomorphism of ^-schemes. In particular, it will ensure
that distinct equivalence classes do not get identified under q(T) : X(T) —> Y(T).
But q(T) can still fail to be surjective, as can happen in the following example.

Exercise Let S = SpecZ, and let X C Ag be the complement of the zero section
of Ag. Note that for any ring B, a 5-valued point of X (element of X(B)) is a
vector u E Bn such that at least one component of u is invertible in B. Show that
X xs X has a closed subscheme R whose B-valued points for any ring B are all
pairs (u,v) G X(B) x X(B) such that there exists an invertible element A e Bx

with Xu = v. Show that a quotient q : X —>• Y exists, and that R is an effective
equivalence relation on X over S. Show that q(Y) : X(Y) —>• Y(Y) is not surjective.

The idea of using Hilbert schemes to make quotients of flat projective equivalence
relations is due to Grothendieck, who used it in his construction of a relative Picard
scheme. (This is much simpler than the GIT construction of moduli of stable vector
bundles applied to the rank 1 case.) The following strongly projective form of the
theorem was proved by Altman and Kleiman in [A-K 2].

Theorem 6.5 Let S be a noetherian scheme, and let X —>• S be a strongly quasi-
projective morphism. Let f : R —>• X xs X be a schematic equivalence relation on
X over S, such that the projections / i , /2 : R ^ X are proper and flat. Then a
schematic quotient X —>• Y exists over S. Moreover, the equivalence relation R is
effective, the morphism X —>• Y is faithfully flat and strongly projective, and Y is
strongly quasi-projective over S.

Proof Using the projections /1 and /2, we can regard R as a proper flat family of
closed subschemes of X parametrised by X. Let H be the union of components of
the Hilbert scheme Hilbx/s with the finitely many Hilbert polynomials which occur
in this family. Then H is a strongly quasi-projective scheme over S by the basic
existence theorem on Hilbert schemes (see Corollary 6.1).

Let D C X xs H be the universal closed subscheme. Note that the projection
p : D —> H is is proper and faithfully flat. The family /x : R —> X corresponds to a
classifying morphism g : X —>• H, with (idx Xs g)*D = R.

Consider the graph morphism (idx, g) '• X —>• X x# H, which is a closed embedding.
It factors through D C X x§ H, giving a closed subscheme Z C D. It can be seen
from the associated functor of points that the closed subscheme Z C D satisfies
the condition necessary for the descent of a closed subscheme under the fppf cover
D —>• H, so there is a closed subscheme Y C H such that Z is the pull-back of Y
under D —> H. The composite morphism X —> Z —>• Y is the the required schematic
quotient. Being a closed subscheme of H, the scheme Y is strongly quasi-projective
over S. It follows from general properties of faithfully flat descent X —> Y has all
the stated properties. •
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