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Outline of lesson 3:

Practical (discrete) Fourier Transform in PW-PP calculations

Fast Fourier Transform (FFT) and why it is so important

Beyond conventional matrix diagonalization: iterative diagonalization

Beyond the Hamiltonian in matrix form: dual-space technique



Fourier Transform of a periodic function

Let us consider a 1-d example: a periodically repeated function f(x), with period L. Its
Fourier components:

are nonzero over an infinite set of discrete values of q\

2TT
Qn = n~Ti ~ o c < n < CO

The Fourier components decay to 0 for large q. The inverse Fourier transform has the
form

n n



Discrete Fourier Transform

Our functions are defined over a discrete but finite grid of q. How are they represented in
x space? If we repeat periodically also the q grid, we will automatically have a discrete
grid of x as well:
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The Discrete Fourier Transform can be rewritten as
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Discrete Fourier Transform in 3d

Generalization of the Discrete Fourier Transform to 3 dimensions:

with n\ = 0,.., N\ — 1, n2 = 0,.., N2 — 1, ns = 0,.., N% — 1, and n]_, n^, n^ are n i , 712, 77,3
refolded so that they are centered around the origin (remember: the G—space grid is
also periodic!). G i , G2, G3 are the primitive translations of the unit cell of the reciprocal
lattice.

i 2 ,
r = m i — + m 2 - + m3+ m2 + m3

with mi = 0,.., Ni — 1, 777,2 = 0,.., N2 — 1, m3 = 0,.., N3 — 1. R i , R2, R3 are the
primitive translations of the unit cell. This grid spans the unit cell.



Discrete Fourier Transform in 3d

Original Fourier transform:

/(r) = ,
G

/(G) = ^ / /(r)e-8G'rdr -> /(rai,n2,n3)

Discretized Fourier Transform:

/(mi,m2,m3) =
n\ ri2 VT-3

/(ni,n2,n3) =
7722

Remember that



PW-PP calculations and Discrete Fourier Transform

PW expansion:

E Ck+Gei(k+G)-r, ^ | k + G|2 < Ecut

G

Which grid in G-space? Need to calculate the charge density:

n
G

Fourier components G7 with maxdG'l) = 2max(|G|) appear.



Or we need the product of the potential time a wavefunction:

- G')chk+G,
G>

Again, max(|G — G'|) = 2max(|G|). We need a kinetic energy cutoff for the Fourier
components of the charge and potentials that is four time larger as the cutoff for the PW
basis set:

| 2 4E
Zm

< 4Ecut



Fourier Transform grid

with n\ = 0,.., N\ — 1, U2 = 0,.., N2 — 1, ri3 = 0,.., 7V3 — 1. This grid must be big
enough to include all G—vectors up to a cutoff

G 2 < 4E,
2m

and NOT up to the cutoff of the PW basis set! In general, the grid will also
contain "useless" Fourier components (beyond the above-mentioned cutoff, so that
ra(G) = 0,V(G) = 0 etc.)



Fast Fourier Transform

Computational cost of a conventional Fourier Transform of order n: TCPU = O(n2).

Computational cost of a Fast Fourier Transform of order n: TCPU = O(n\ogn).

Difference: enormous in practical applications.

Advantages of the use of FFT in PW-PP calculations: enormous, especially in conjunction
with iterative techniques and of the "dual-space" technique



Iterative matrix diagonalization

The solution of (H - e ) ^ = 0 for a large N x N matrix costs TCpu = O(N3). Too
much for most applications.

We actually need only the lowest occupied M eigenvectors, with M « N (N is the
number of PWs).

Iterative diagonalization: based on iterative refinement of a trial solution. Refinement is
stopped when the reached accuracy is deemed sufficient. Example: Davidson algorithm.

Very convenient in conjunction with SCF iteration:

• high accuracy not needed in the first iterations

• starting trial wavefunctions available from previous iteration
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Iterative matrix diagonalization

Basic ingredients: evaluation of products 0 = (H — eji/i on trial wavefunctions ^ . Same
ingredient used in direct minimization, Car-Parrinello, etc.

If the product is calculated as a matrix-vector product: TQPU = O(N2) for a single
product, TCPU = O(MN2) in total. Still much better than conventional diagonalization.
But:

• if TV becomes large, storing H becomes unpractical, if not impossible;

• much CPU could be spared if an economical way of calculating Hijj was available

Solution: treat H as an operator, taking advantage of FFTs. There is no longer any need
to store H as a matrix.



Dual space technique

H^ = (T + VNL + Vloc + VH + Vxc)i>

(Tip) : easy in G-space, TCPU = O(N)

c + VH + Vxc)ip : easy in r-space, TCPU = O(N)

• easy in G-space (also in r-space) if V is written in separable form
TCPU = O(mN), m =number of projectors

FFT is used to jump from real to reciprocal space. Operations are performed where it is
easier.
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