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Outline of lesson 3:

e Practical (discrete) Fourier Transform in PW-PP calculations
e Fast Fourier Transform (FFT) and why it is so important
e Beyond conventional matrix diagonalization: iterative diagonalization

e Beyond the Hamiltonian in matrix form: dual-space technique



Fourier Transform of a periodic function

Let us consider a 1-d example: a periodically repeated function f(z), with period L. Its
Fourier components:

flo) = [ fa)eds

are nonzero over an infinite set of discrete values of g:
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The Fourier components decay to 0 for large gq. The inverse Fourier transform has the

form N | o
fla) =3 Flanei® =37 Fretmera/



Discrete Fourier Transform

Our functions are defined over a discrete but finite grid of q. How are they represented in
x space? If we repeat periodically also the ¢ grid, we will automatically have a discrete
grid of x as well:

flx) = fin=f(xm), xm:m%, m=20,..,.N —1
fl@) = fo=Fflan), qnzn%ﬁ, n=0,.,N—1

The Discrete Fourier Transform can be rewritten as
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Discrete Fourier Transform in 3d

Generalization of the Discrete Fourier Transform to 3 dimensions:
G = ’I’L’lGl + n’2G2 + néGg

withny =0,..,Ny—1,ne=0,.., Ny —1, ng =0,.., Ng — 1, and n’, n5, n% are ny,ny, ng
refolded so that they are centered around the origin (remember: the G—space grid is

also periodic!). G1, Go, Gz are the primitive translations of the unit cell of the reciprocal

lattice.
R, N R N R;
r = mi— + mo— + ma—
‘N, TN, TN,
with m; = 0,..,. Ny —1, my =0,...No—1, mz3 =0,..,.N3—1. Ri,Rs,R3 are the

primitive translations of the unit cell. This grid spans the unit cell.



Discrete Fourier Transform in 3d

Original Fourier transform:

7(G) = % / F)e ST dr = Fng,ng, ns)

Discretized Fourier Transform:

f(mi,ma,m3) = S: S: S: f(nl, na, n3)ei(zmlml/Nl)ei(277”2m2/N2)ei(27m3m3/N3)
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Remember that G; - Rj = 271'57;]'.



PW-PP calculations and Discrete Fourier Transform

PW expansion:

) ‘T h2

Which grid in G-space? Need to calculate the charge density:

n(G') = Z Z i k€ k1 GCik+G+G!

G ik

Fourier components G’ with max(|G’|) = 2max(|G|) appear.



Or we need the product of the potential time a wavefunction:

(V) (G) =D V(G - G)eipra
G/

Again, max(|G — G'|) = 2max(|G|). We need a kinetic energy cutoff for the Fourier
components of the charge and potentials that is four time larger as the cutoff for the PW
basis set:

h2
—|G|2 < A4F .+



Fourier Transform grid

G = TL’lGl + n’2G2 + néGg
with ny = 0,.., Ny —1, no =0,.., Ny — 1, ng = 0,.., N3 — 1. This grid must be big
enough to include all G—vectors up to a cutoff

h2
_|G|2 S 4Ecut
2m

and NOT up to the cutoff of the PW basis set! In general, the grid will also
contain “useless” Fourier components (beyond the above-mentioned cutoff, so that

n(G) = 0,V(G) = 0 etc.)



Fast Fourier Transform

Computational cost of a conventional Fourier Transform of order n: Topy = O(n?).
Computational cost of a Fast Fourier Transform of order n: Tepy = O(nlogn).

Difference: enormous in practical applications.

Advantages of the use of FFT in PW-PP calculations: enormous, especially in conjunction
with iterative techniques and of the “dual-space” technique



Iterative matrix diagonalization

The solution of (H — €)1); = 0 for a large N x N matrix costs Tcpy = O(N?). Too
much for most applications.

We actually need only the lowest occupied M eigenvectors, with M << N (N is the
number of PWs).

Iterative diagonalization: based on iterative refinement of a trial solution. Refinement is
stopped when the reached accuracy is deemed sufficient. Example: Davidson algorithm.

Very convenient in conjunction with SCF iteration:

e high accuracy not needed in the first iterations

e starting trial wavefunctions available from previous iteration
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Iterative matrix diagonalization

Basic ingredients: evaluation of products ¢ = (H — €)1 on trial wavefunctions ¢). Same
ingredient used in direct minimization, Car-Parrinello, etc.

If the product is calculated as a matrix-vector product: Topy = O(N?) for a single
product, Topiy = O(MN?) in total. Still much better than conventional diagonalization.
But:

e if N becomes large, storing H becomes unpractical, if not impossible;

e much CPU could be spared if an economical way of calculating H was available

Solution: treat H as an operator, taking advantage of FFTs. There is no longer any need
to store H as a matrix.
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Dual space technique

Hip = (T + Vi + Viee + Vi + Vi)

(T'y) : easy in G-space, Topy = O(N)
(Viee + Vig + Vo) @ easy in r-space, Topy = O(N)

(VNsz) . easy in G-space (also in r-space) if V is written in separable form
Tepy = O(mN), m =number of projectors

FFT is used to jump from real to reciprocal space. Operations are performed where it is
easler.
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