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Overview of the Lecture

Ecological regime shifts, thresholds and resilience

Eutrophication (over-fertilization) of lakes, rivers, oceans

A model for the ecological economics of eutrophication

Uncertain thresholds and the challenge of learning

Regime shifts and the precautionary principle
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Exogenous (forced from outside)?

Or both?

Or endogenous (result of internal dynamics)?
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Atlantic Thermohaline Circulation*

Warming climate -> 

Rapid melting of arctic ice ->

Meltwater floats above the
Gulf Stream ->

Heat from Gulf Stream cannot
reach the atmosphere ->

Rapid cooling of Europe

*Taylor, K. 1999. Rapid climate change. American Scientist, 87, 320-327
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Eutrophication (over-fertilization) of lakes, rivers, oceans

A model for the ecological economics of eutrophication

Uncertain thresholds and the challenge of learning

Regime shifts and the precautionary principle

Eutrophication = Over-enrichment of freshwater
with mineral nutrients, especially phosphorus

Example:  Eutrophication of Lakes

Consequences:

Blooms of toxic algae, associated diseases
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Consequences of eutrophication, continued:

Fish kills

Increased costs of water purification for domestic,
agricultural or industrial use

Water supply involves quality as well as quantity.

One third of the world’s people live under water stress
(1.3 billion lack adequate supply of safe water;
2 billion lack access to sanitation).  By 2025, two
thirds of people, mainly in developing nations, will
live under moderate to severe water stress.

Half of world’s available fresh water is used by people; all
of it will be needed by 2035.  70% of this water
is used for irrigation. 

Poor land use is a major cause of water resource degradation.

Source:  UNEP 1998

Fresh Water Problems are Global
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Where does the phosphorus come from?

Mining has doubled the flow of phosphorus from rocks 
(where it is not available) to soils.  Fertilizer can be taken 
up by plants or run off to streams, lakes and oceans.

The accumulation rate of
phosphorus in the world’s
agricultural soils has doubled
in the past century.

Discharge of phosphorus to the world’s oceans has tripled.

U.W.-C.F.L.

Fertilizer Application is Declining in Developed Nations But
Accelerating in Developing Nations
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Source:  Bennett, Carpenter & Caraco, BioScience 2002

Moderate amounts of phosphorus in soils 
increase agricultural production.

Excessive amounts of phosphorus in soils 
increase water pollution and
decrease water quality.



7

Nonpoint Nutrient Runoff to Freshwater Depends on
Land Use, Livestock Density, and Fertilizer Use

?

Reversibility is the key question:  
Can eutrophication be reversed at the same rate it is created?

CLEAR
WATER

TURBID
WATER

Some experiences with reversing eutrophication:

Success is likely in certain types of lakes 
(e.g. deep, fast flushing, low sediment P)

Recovery is delayed, or requires extreme P reduction
(or additional measures) in many lakes

Recycling of phosphorus can impede recovery

In some lakes, reversal has failed (so far)
(e.g. anoxic hypolimnia, slow flushing, high sediment P)

Some sources:  Sas 1989, National Research Council 1992, Cooke et al. 1993
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Conclusion:  Reversibility is not guaranteed.

Reversal of eutrophication may be delayed, may require
massive manipulation, or may sometimes be impossible.

Toxic Algae Bloom

Clear Water

Increase
Phosphorus
Inputs

Variable 
weather

Phosphorus
Builds up

In Sediments

Turbid Water

Buildup of Phosphorus in sediments, plus ongoing input,
shifts the lake to the turbid state:
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Phosphorus buildup in sediments makes the
turbid state permanent 

Accumulation of phosphorus in farmland soil increases 
mean and variance of phosphorus input

Accumulation of phosphorus in lake sediment (mud)
*Decreases resilience of clear-water state
* Increases resilience of turbid-water state
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Soil P

Lake Water P

Sediment P

runoff

recycling

outflow

Minimal Model of 
Lake Eutrophication & Restoration:

Pools and Fluxes

Carpenter, Ludwig & Brock,
Ecological Applications 9: 751-771

Carpenter, 2003, Regime Shifts in
Lakes:  Patterns and Variability.
http://limnology.wisc.edu/regime
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Minimal Model – Key Features:

Carpenter, Ludwig & Brock, 1999, Ecological Applications 9: 751-771

Mass balance for P cycle of soil-water-sediment system

Principal methods for mitigating eutrophication
(Cooke et al. 1993) can be built in by adjusting parameters.

Accounts for management case studies, including the 
delays and failures, with appropriate parameters.

Designed for use in decision analyses, using economic
costs and benefits

Accounts for stochasticity of inputs and variance
of parameter estimates

Decision Analysis of Eutrophication:

Balance two economic flows:

Economic benefits of activities that create P pollution

Economic benefits of water quality

Water for:  * drinking  * health   * irrigation  * industry

General outcome for the eutrophication problem:

Decreasing 
P input is
optimal

High P
Input can be
optimal*

* Analysis does not include downstream impacts
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Consequences of slow reversibility / irreversibility:

Economically optimal P input rates are lower
than if rapid reversibility is assumed.

Because of P buildup in soils and sediments, the
system can be “an accident waiting to happen”

Should decision analyses focus on soil and
sediment phosphorus (the “slow variables”), 
instead of water chemistry (“fast variable”)?

Optimal Inputs are Lower if Variability is Considered
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Uncertainty and Learning

For most ecosystems,
the appropriate model is
unknown, the parameters
are uncertain, the data are
observed with error, and
inputs are subject to large
random shocks.

Therefore, learning could significantly improve management.

Is it possible to “learn by doing”, i.e. reduce uncertainty
while we manage?

Manager

Update model 

Update regulations and 
incentives to 

adjust lake water P

Observation
of the lake

Action to
meet loading

target

Simulation Exercise

Experiments Can Lead to Regime Shifts

Loading Target

P Loading

P Level in Lake
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Recycling Max. Rate

Recycling Half-Saturation

Recycling Index

Regime Shift Improves Parameter Estimates

Marginal Distribution
of Max. Recycling Rate

Lake Mendota Data

Data from 14 lakes
(Nürnberg 1984)

If many similar ecosystems can be studied, uncertainty
may be decreased with less risk of regime shift in
a particular ecosystem.

Observed P Level
in Lake

Recycling Index

Recycling foreshadows regime change, but there is
limited time to adjust, and massive adjustment is needed. 
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Recycling is a “leading indicator” of shift to
the turbid-water state.

Other indicators related to the second derivative 
of P level in the water also provide advance warning.

In other systems, research shows that variance
spectrum “reddens” prior to a regime shift. (e.g.
Kleinen, Held & Petschel-Held, PIK)

Can management institutions respond to these
signals rapidly enough?

Lakes:  1-2 years
Thermohaline circulation:  decades?

In singular (unique) ecosystems, lessons about regime shifts
may come “the hard way”.

Surprises are not rare in ecosystem management.

Carpenter, Brock & Hanson, 1999,  
www.consecol.org/vol3/iss2/art4

Workshop Participants

Lake Management Game
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Experimental management can sustain agriculture and
clear water for extended periods of time. 

This takes flexibility, monitoring, fast responses.

Observations

Inference
and

Action
??

Belief Implications

Nature balanced •Changes are predictable
•Variability can be squashed
•Resilience is infinite
•Control the fast variables

Nature resilient •Prediction is limited
•Embrace variability
•Build resilience
•Tend the slow variables
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Precautionary Principle (Rio Declaration, 1992, Article 15):

“. . . where there are threats of serious and irreversible
damage, lack of full scientific certainty shall not be
used as a reason for postponing cost-effective measures
to prevent environmental degradation.”

Regime shifts and the precautionary principle:

Difficulties:

Which threat?  And how probable?
Serious and irreversible damage to what?
Cost-effective to whom?

Heal & Kriström, 2002, Environment & Resource Economics 22: 3-39

Could regime shifts provide a scientific basis for the
precautionary principle?

Yes, in cases where there are substantial data.

This is most feasible for regime shifts we have
seen often, like lake eutrophication and
fisheries collapse.

* Ironically, these continue to occur, over and over;
lessons never learned?

But completely novel regime shifts have occurred in
the past, and there is no reason to think they will
not occur in the future. 
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Summary

Regime shifts are infrequent, but important, events in
ecosystems.  Regime shifts have thresholds that may
change over time.  Resilience of a regime is measured
by distance to the threshold.

Humans can increase the frequency and intensity of
regime shifts, or build resilience of desired regimes.

Eutrophication is a type of regime shift with well-known
mechanisms and big implications for human well-being.

Optimal policies for clear lakes call for low phosphorus
input near the threshold.

Stochasticity and uncertainty imply even lower optimal
levels of phosphorus input.

Summary, continued

For most ecosystems, the appropriate model is unknown, 
the parameters are uncertain, the data are observed with 
error, and inputs are subject to large random shocks.

Uncertainty can be reduced by experimentation, 
especially when multiple similar ecosystems exist.

Near the threshold, inclusive value is directly related to 
resilience.  The direction of change needed to build 
resilience is known even when parameters are uncertain.

In general, ecological resilience depends on slowly-changing 
variables. Variability is sometimes crucial for resilience.

Economic analysis of ecological regime shifts may
yield a scientific form of the precautionary principle.
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