Ecological Economics of Water Quality: Mud and Precaution

Steve Carpenter Center for Limnology University of Wisconsin Madison, Wisconsin, 53706 U.S.A.

Contact: srcarpen@wisc.edu http://limnology.wisc.edu

Overview of the Lecture Ecological regime shifts, thresholds and resilience Eutrophication (over-fertilization) of lakes, rivers, oceans A model for the ecological economics of eutrophication Uncertain thresholds and the challenge of learning Regime shifts and the precautionary principle

Ecosystem Type	Alternative State 1	Alternative State 2	References
Freshwater Systems	Clear Water Benthic Vegetation	Turbid Water Blue-green algae	Carpenter 2001 Scheffer et al. 2001
	Oligotrophic macrophytes and algae	Cattails and blue green algae	Gunderson 2001
	Game fish abundant	Game fish absent	Post et al. 2002
Marine Systems	Hard coral	Fleshy Algae	Nyströrn et al. 2000
	Kelp forests	Urchin dominance	Estes and Duggins 1993
	Seagrass beds	Algae and muddy water	Gunderson 2001
	Fish stock abundant	Fish stock depleted	Walters and Kitchell 2001, Steele 1998
Rangelands	Grass structure	Shrub structure	Walker 1993
Forests	Pest outbreak	No pest	Holling 1986
	Pine Trees dominate	Hardwood plants dominate	Peterson in press
	Birch-Spruce succession	Pine dominance	Danell et al. in review
Arctic Systems	Grass dominated	Moss dominated	Zimov et al. 1995

Atlantic Thermohaline Circulation*

Warming climate ->

Rapid melting of arctic ice ->

Meltwater floats above the Gulf Stream ->

Heat from Gulf Stream cannot reach the atmosphere ->

Rapid cooling of Europe

*Taylor, K. 1999. Rapid climate change. American Scientist, 87, 320-327

Overview of the Lecture

Ecological regime shifts, thresholds and resilience

Eutrophication (over-fertilization) of lakes, rivers, oceans

A model for the ecological economics of eutrophication

Uncertain thresholds and the challenge of learning

Regime shifts and the precautionary principle

Some experiences with reversing eutrophication:

Success is likely in certain types of lakes (e.g. deep, fast flushing, low sediment P)

Recovery is delayed, or requires extreme P reduction (or additional measures) in many lakes

Recycling of phosphorus can impede recovery

In some lakes, reversal has failed (so far) (e.g. anoxic hypolimnia, slow flushing, high sediment P)

Some sources: Sas 1989, National Research Council 1992, Cooke et al. 1993

Overview of the Lecture

Ecological regime shifts, thresholds and resilience

Eutrophication (over-fertilization) of lakes, rivers, oceans

A model for the ecological economics of eutrophication

Uncertain thresholds and the challenge of learning

Regime shifts and the precautionary principle

Minimal Model - Key Features:

Mass balance for P cycle of soil-water-sediment system

Principal methods for mitigating eutrophication (Cooke et al. 1993) can be built in by adjusting parameters.

Accounts for management case studies, including the delays and failures, with appropriate parameters.

Accounts for stochasticity of inputs and variance of parameter estimates

Designed for use in decision analyses, using economic costs and benefits

Carpenter, Ludwig & Brock, 1999, Ecological Applications 9: 751-771

Overview of the Lecture

Ecological regime shifts, thresholds and resilience Eutrophication (over-fertilization) of lakes, rivers, oceans A model for the ecological economics of eutrophication Uncertain thresholds and the challenge of learning

Regime shifts and the precautionary principle

13

Uncertainty and Learning

For most ecosystems, the appropriate model is unknown, the parameters are uncertain, the data are observed with error, and inputs are subject to large random shocks.

Therefore, learning could significantly improve management.

Is it possible to "learn by doing", i.e. reduce uncertainty while we manage?

Recycling is a "leading indicator" of shift to the turbid-water state.

Other indicators related to the second derivative of P level in the water also provide advance warning.

In other systems, research shows that variance spectrum "reddens" prior to a regime shift. (e.g. Kleinen, Held & Petschel-Held, PIK)

Can management institutions respond to these signals rapidly enough? Lakes: 1-2 years Thermohaline circulation: decades?

Belief

Nature balanced

Nature resilient

Overview of the Lecture

Ecological regime shifts, thresholds and resilience

Eutrophication (over-fertilization) of lakes, rivers, oceans

A model for the ecological economics of eutrophication

Uncertain thresholds and the challenge of learning

Regime shifts and the precautionary principle

Regime shifts and the precautionary principle:

Precautionary Principle (Rio Declaration, 1992, Article 15):

"... where there are threats of serious and irreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation."

Difficulties:

Which threat? And how probable? Serious and irreversible damage to what? Cost-effective to whom?

Heal & Kriström, 2002, Environment & Resource Economics 22: 3-39

Could regime shifts provide a scientific basis for the precautionary principle?

Yes, in cases where there are substantial data.

This is most feasible for regime shifts we have seen often, like lake eutrophication and fisheries collapse.

> * Ironically, these continue to occur, over and over; lessons never learned?

<u>But</u> completely novel regime shifts have occurred in the past, and there is no reason to think they will not occur in the future.

Summary

Regime shifts are infrequent, but important, events in ecosystems. Regime shifts have thresholds that may change over time. Resilience of a regime is measured by distance to the threshold.

Humans can increase the frequency and intensity of regime shifts, or build resilience of desired regimes.

Eutrophication is a type of regime shift with well-known mechanisms and big implications for human well-being.

Optimal policies for clear lakes call for low phosphorus input near the threshold.

Stochasticity and uncertainty imply even lower optimal levels of phosphorus input.

Summary, continued

Near the threshold, inclusive value is directly related to resilience. The direction of change needed to build resilience is known even when parameters are uncertain.

In general, ecological resilience depends on slowly-changing variables. Variability is sometimes crucial for resilience.

For most ecosystems, the appropriate model is unknown, the parameters are uncertain, the data are observed with error, and inputs are subject to large random shocks.

Uncertainty can be reduced by experimentation, especially when multiple similar ecosystems exist.

Economic analysis of ecological regime shifts may yield a scientific form of the precautionary principle.

Ecological Economics of Water Quality: Mud and Precaution

Steve Carpenter Center for Limnology University of Wisconsin Madison, Wisconsin, 53706 U.S.A.

Contact: srcarpen@wisc.edu http://limnology.wisc.edu