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Abstract

Demand and supply analysis in fisheries often indicates the pres-
ence of instabilities and multiple equilibria, both in open access condi-
tions and in the socially optimal solution. The associated management
problems are further intensified by uncertainty on the evolution of the
resource stock or on demand conditions. In this paper the fishery
management problem is handled using robust optimal control, where
the objective is to choose a harvesting rule that will work, in the sense
of preventing instabilities and overfishing, under a range of admissible
specifications for the stock recruitment equation. The paper derives
robust harvesting rules, leading to a unique equilibrium, which could
be used to design policy instruments such as transferable quota or
landing fees.

1 Introduction

Demand and supply analysis in fisheries has been associated with instabilities
and multiple equilibria, both in the context of an open access fishery and a
socially optimal managed fishery.1 The source of instability is the emergence
of a backward bending supply curve which is the consequence of biological
overfishing that occurs when effort expands beyond the level corresponding
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1See for example Clark (1990, Ch. 5).
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to the maximum sustainable yield. The combination of a standard down-
ward sloping demand curve with the backward bending supply curve can
produce an odd number of interchanging locally stable and locally unstable
market equilibria in open access fisheries. There exist locally stable equilibria
corresponding to high price and low harvesting, which can be seen as an in-
dication of overfishing. It is interesting to note that a similar picture emerges
in a socially optimal controlled fishery. The discounted supply curve is also
backward bending for positive discount rates. As a result, there are demand
conditions under which multiple equilibria and instabilities are present even
in optimally controlled fisheries.
The problems caused by the emergence of instabilities and overfishing in

fisheries are further intensified by uncertainty, which is an important aspect of
resource economics.2 Uncertainty in this context can be associated with the
evolution of the resource stock or with demand conditions. Thus both supply
and demand shocks could disturb a locally stable fishery and lead to insta-
bilities and overfishing. As Clark (1990) points out, many stock-recruitment
relationships are poorly understood and difficult to estimate given the exist-
ing data, which in most cases are of low quality. This brings into the picture
the issue of scientific uncertainty and its effects on fishery management.
In our analysis, scientific uncertainty 3 relates to the stock recruitment

equation and the possibility that although the estimated model, often re-
ferred to as the approximating or benchmark model, is consistent with the
data, there is a set of alternative models describing the evolution of the re-
source stock, which are also consistent with the data and could be regarded
as possibly true. It is important to stress that if the benchmark model is mis-
specified, and resource stock evolution corresponds to a worse than expected
scenario, then the optimal control solution for the benchmark model could re-
sult in a fishery with instabilities and overfishing. This observation provides
a support for adopting a “precautionary principle” in fishery management in

2For some background analysis see for example Clark (1990, Ch. 11), Conrad and
Clark (1988, Ch. 5), Conrad (2000, Ch. 7).

3Our use of the term uncertainty relates mainly to a situation where the state space of
outcomes is known but the decision maker is unable to assign probabilities. The possibil-
ity of multiple prior distributions has largely been ignored in recent economic literature,
although it is often a more appropriate setting. An example is when a panel of experts
is consulted, since a group of people with divergent beliefs will normally not be able to
reach a consensus on probability distributions Woodward and Bishop (1997). Their paper
analyses circumstances under which rational choices are based in the most extreme pos-
sible outcomes, rather than on midpoint values. It also discusses the intermediate case,
where some information on the set of probability distributions is known. Introducing the
axiom of uncertainty aversion, as in Gilboa and Schmeidler (1989), a maximin model is
obtained for in this case.
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the event of scientific uncertainty. When the extensive collapse of fisheries
over the last century is considered, precaution in designing management rules
for regulating fisheries seems to be desirable.
Managing a fishery in this context suggests formulating the management

problem as a robust control problem along the lines developed by Hansen
and Sargent (2001), Hansen and Sargent (2002), where the objective is to
choose a harvesting rule that will work, in the sense of preventing instabil-
ities and overfishing, under a range of different model specifications of the
stock-recruitment equation. In this case robust control is directly related to
precaution and as Hansen and Sargent (2001) explicitly state “a preference
for robustness induces context-specific precaution”.
The purpose of this paper is to address the issue of scientific uncertainty

and the potentially induced instabilities and overexploitation in fisheries by
introducing robust control methodologies in fishery management. Our main
finding is that by an appropriate choice of the robustness parameter, which is
a parameter indicating preference for robustness, a regulator that manages
a fishery for the social optimum could eliminate multiple equilibria insta-
bilities and potential overfishing. The robust harvesting rules that lead to a
unique equilibrium can be used to design decentralized regulation with policy
instruments such as transferable quota or landing fees.

2 Bionomic Instabilities in Fishery Manage-
ment4

We consider a standard harvest fishery model with a logistic growth function
where biomass evolves deterministically according to

ẋ (t) = F (x (t))− h (t) (1)

where x (t) is fish biomass, h (t) denotes the harvest rate and F (x (t)) =
rx (1− x/k) is the logistic growth function for stock recruitment, with bio-
mass stock at the maximum sustainable yield (msy) defined as xmsy =
argmaxF (x) and xk : F (xk) = 0, xk > 0 denoting the carrying capacity
biomass. Let unit harvest cost, c (x (t)) be a nonincreasing function of the
fish stock x. Then for any price p, the profit flow is determined as5

π = (p− c (x))h (2)
4This section follows Clark (1990, section 5.2), and will serve as background for the

development of robust control methodology in the following section.
5t is dropped to simplify notation.
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The open access supply in equilibrium is determined by the conditions

h = F (x) (3)

p = c (x) (4)

Solving (4) for x to obtain x = x (p) and substituting into (3) we obtain
equilibrium supply as h = F (x (p)) . If demand is given by h = D (p) , D0 < 0
the market equilibrium under open access is determined as:¡

p0, h0
¢
: D

¡
p0
¢
= F

¡
x
¡
p0
¢¢
, p0 = P

¡
h0
¢

As shown by Clark (1990) the supply curve is backward bending for typi-
cal cost functions, so that when combined with a downward sloping demand
multiple equilibria are induced, as shown in figure 1 which reproduces figure
5.11 from Clark (1990). There is bionomic instability at M2 and overfish-
ing at M1. Multiple equilibria could be the result of the prevailing demand
conditions, curve DD, or a demand shock that shifts demand from D0D0 to
DD.
To analyze socially optimal fishery management we introduce a social

planner or a regulator maximizing net surplus defined as U (h) − c (x)h,
where U (h) is the area under the demand curve p = P (h) up to h, or
U (h) =

R h
0
P (u) du with U 0 (h) = P (h) . The welfare maximization problem

is defined as:

max
{h(t)}

Z ∞

0

e−ρt [U (h (t))− c (x (t))h (t)] dt (5)

s.t. ẋ (t) = F (x (t))− h (t) , x (0) = x0 > 0 (6)

The current value Hamiltonian for the problem is:

H = U (h)− c (x)h+ λ [F (x)− h] (7)

with optimality conditions

U 0 (h) = λ+ c (x) , U 0 (h) = P (h) (8)

λ̇ = [ρ− F 0 (x)]λ+ c0 (x)h (9)

along with (6) and the transversality condition at infinity. Differentiating (8)
with respect to time and substituting into (9) we obtain the dynamic system
characterizing the optimal paths of harvest and fish stock. The behaviour of
harvest is given by

ḣ =
1

U 00 (h)
[(ρ− F 0 (x)) (U 0 (h)− c(x)) + c0 (x)F (x) , U 0 (h) = P (h)]

(10)
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whereas stock evolves according to (6). The deterministic steady state equi-
librium is defined as ḣ = ẋ = 0. At the steady state, market equilibrium is
characterized by

P (h) = p = c (x)− c
0 (x)F (x)
ρ− F 0 (x) = Hρ (x) , h = F (x) (11)

Solving the stock equilibrium equation of (11) to obtain x = G (h) , market
equilibrium when the fishery is optimally managed is defined as

(p∗, h∗) : P (h∗) = Hρ (G (h
∗)) , p∗ = P (h∗) (12)

The discounted supply curve determined by (11) is backward bending
as in the case of open access fishery and induces multiple equilibria and
instabilities for demand curves like DD in figure 1 or similar demand shocks.
Multiple equilibria of the fishery are presented in the phase diagram of figure
2. For the ḣ1 = 0 isocline there is a unique steady state which is saddle point
stable. However, a demand shock could shift this isocline to ḣ2 = 0 and
induce multiple equilibria with the middle one being unstable. Furthermore,
if the benchmark model for stock evolution is misspecified, it is possible for
a worse than estimated model for the stock recruitment relationship F (x)
to be realized. Then, both the ẋ = 0 isocline and the ḣ = 0 isocline shift.
If these shifts yield a system such as ẋ2 = 0, ḣ3 = 0, multiple equilibria are
also induced.
The possibility of multiple equilibria at the social optimum presents prob-

lems for regulation. For example, the regulatory instruments could have been
designed to steer the system towardsM1 but due to the realization of a worse
scenario for the stock recruitment relationship, the systems converges towards
M 0
3 which is an overfishing steady state. To prevent such cases a different

type of regulation is required. The idea behind the robust control methodol-
ogy as it is applied in this paper to fishery management, is to help designing
rules which under the worse possible scenario will prevent instabilities and
biological overfishing. As it turns out these rules will be also useful in the
presence of demand shocks.

3 Robust Control and Fishery Management

To develop the robust control methodology we introduce uncertainty in the
stock recruitment equation. Let (Ω,F ,G) be a complete probability space,
and let x (ω, t) , h (ω, t) be the stochastic processes for the fish biomass, and
harvesting and letBt = B (ω, t) be aWiener process, E (dBt) = 0, var(dBt) =
dt.
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The stochastic social optimization problem for the fishery can be defined
as the choice of a nonanticipating harvesting process h (ω, t) that maximizes
the expected value of net surplus, subject to the constraints imposed by
species growth rate6:

max
{h(t)}

E0
Z ∞

0

e−ρt [U (h (ω, t))− c (x (ω, t))h (ω, t)] dt (13)

s.t. dx (t) = [F (x (ω, t))− h (ω, t)] dt+ σdB (ω, t) (14)

σ > 0, x (0) = x0 > 0 nonrandom (15)

xt ≥ 0, ht ≥ 0 (16)

where xt=x (ω, t) ,is the state variable and ht=h (ω, t) is the control variable
of the stochastic control problem.
In equation (14) the term F (xt) − ht represents the expected change

in the fish biomass at any given point in time, while the term σdBt is the
random amount of biomass change, with zero mean and variance σ2. In this
setup, which is a typical stochastic control problem, the manager is assumed
to know the behaviour of stochastic shocks well enough to fully trust the
characterization of the probability distribution implied by 14. This basic
assumption leads to a decision on optimal harvest paths. However, it is quite
possible (indeed likely, given natural system characteristics and information
gaps) that the distribution is only an estimate, so that there is a degree of
uncertainty attached not just to the specific realization of the random shock
but also to the distribution itself. In other words, the planner might want to
consider his own doubts about the model he is using to represent randomness.
Following Hansen, Sargent, Turmuhambetova and Williams (2002), we

regard (14) as a benchmark model. If we assume that the social planner
knows the benchmark model then there are no concerns about robustness to
model misspecification. Otherwise, these concerns for robustness to model
misspecification are reflected by a family of stochastic perturbations to the
Brownian motion {Bt : t ≥ 0} . The perturbation distorts the probabilities G
implied by (14) and replaces G by another probability measure Q. The main
idea is that stochastic processes under Q will be difficult to distinguish from
G using a finite amount of data. The perturbed model is constructed by
replacing Bt in 14 with

Bt = zt +

Z t

0

Rsds, or dBt = dzt +Rtdt (17)

6The basic assumption is that species biomass fluctuates continuously and that these
stochastic influences are adequately represented by Wiener processes.
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where {zt : t ≥ 0} is a Brownian motion and {Rt : t ≥ 0} is a measurable
drift distortion. Changes in the distribution of Bt will be parametrized as
drift distortions to a fixed Brownian motion {zt : t ≥ 0} . The distortions will
be zero under the measure G, in which case Bt and zt coincide.
Now the social planner’s concerns about misspecification of the model

describing the evolution of fish biomass can be expressed using (17) to write
the distorted model

dxt = [F (xt)− ht + σRt]dt+ σdzt (18)

Thus, in the fishery management problem under model misspecification,
equation (14) is replaced by (18). Now, following Hansen et al. (2002), the
corresponding multiplier robust control model for the fishery can be written
as:

max
h
min
R
E
Z ∞

0

e−ρt
·
U (h)− c (x)h+ θ

R2

2

¸
dt (19)

s.t. (18),(15) and (16)

In problem (19) the social planner is the maximizing agent that chooses
harvesting ht to maximize surplus, while “Nature” is the minimizing agent
that chooses the “worst case distortion” to the stock recruitment relationship.
The robustness parameter θ can be interpreted as the Lagrangian multiplier
associated with an entropy constraint, which determines the maximum spec-
ification error in the stock recruitment relationship that the social planner is
willing to accept.7 The robustness parameter will be zero if the constraint is
inactive or infinity if the constraint is violated. A value θ = +∞ signifies no
preference for robustness, while lower values for θ indicate such a preference.
Using the Fleming and Souganidis (1989) result on the existence of a

recursive solution to the multiplier problem, Hansen et al. (2002) show that
problem (19) can be transformed into a stochastic infinite horizon two-player
game where the Bellman-Isaacs conditions imply that the value function
J (x, θ) satisfies

ρJ (x, θ) = max
h
min
R

( h
U (h)− c (x)h+ θR

2

2

i
+

Jx [F (x)− h+ σR] + 1
2
σ2Jxx

)
(20)

= min
R
max
h

( h
U (h)− c (x)h+ θR

2

2

i
+

Jx [F (x)− h+ σR] + 1
2
σ2Jxx

)
A solution for game (20) for any given value of the robustness parameter

θ will determine the socially optimal robust harvesting policy.
7Relative entropy must be limited otherwise the distributions G and Q would be dis-

tinguishable. More rigorously,
R∞
0
e−δuEQ

³
|Ru|2
2

´
du ≤ η (see Hansen et al. (2002)).
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3.1 Robust harvesting rules

The optimality conditions associated with the optimization in the right hand
side of (20) imply

U 0 (h)− c (x) = Jx (21)

R = −σ

θ
Jx (22)

Equation (21) is the usual result that at the optimal harvest the net
marginal benefit of an additional unit of catch must be equal to the resource
cost, whereas equation (22) is the worst possible distortion that is admissible,
which is negative as expected and depends on θ. When θ is large, R is small
and the benchmark model is a good approximation. More specifically, when
θ → ∞ there is no distortion at all and the model yields the same solution
as the typical optimal control model.
Differentiating the value function with respect to x and using (21) and

(22) we obtain8

ρJx = [F (x)− h+ σR]Jxx − c0 (x)h+ F 0 (x)Jx + 1
2
σ2Jxxx (23)

since J (x) is a function of the stochastic variable x we have by Ito’s lemma
for Jx (x)

dJx (x) = Jxxdx+
1

2
Jxxx (dx)

2

Using equation (18), taking expected values, and dividing by dt we obtain

(1/dt) EdJx (x) = Jxx [F (x)− h+ σR] +
1

2
σ2Jxxx

Substituting in (23) and rearranging with (21), the expected evolution of the
resource cost is

(1/dt) EdJx = [ρ− F 0 (x)] (U 0 (h)− c (x)) + c0 (x)h

To express the solution in terms of the expected evolution of harvest and
biomass, apply the differential operator (1/dt) Ed (·) to (21)

(1/dt) Ed (U 0 (h)− c (x)) = (1/dt) EdJx (25)
8For a basic explanation of the methods used in this section see for example Dixit and

Pindyck (1994, Ch.4).
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We need to expand the left hand side of (25), by applying Ito’s lemma to
c (x) and U 0(h), which yields the following second order expansions:

Edc (x) =

·
c0 (x) [F (x)− h+ σR] +

1

2
σ2c00 (x)

¸
dt in expected value terms(26)

dU 0 (h) = U
00
(h) dh+

1

2
U 000 (h) (dh)2 (27)

Since along the optimal path h = h (x) , where x is a stochastic variable,
using Ito’s lemma once again yields

dh =

·
hx [F (x)− h+ σR] +

1

2
σ2hxx

¸
dt+ σhxdz

When taking the expected value, terms of order higher than t go to zero, so
that E (dh)2 = σ2h2xdt, and (27) becomes

EdU 0 (h) = U 00
(h) Edh+ 1

2
U 000 (h)σ2h2xdt (28)

Using equaitions (26) and (28) into (25), as well as (??) we obtain

(1/dt) Edh = 1

U 00 (h)

½
[ρ− F 0 (x)] (U 0 (h)− c (x)) + c0 (x) [F (x) + σR]

+1
2
σ2c00 (x)− 1

2
U 000 (h)σ2h2x

¾
substituting the worst case distortion R from first order condition (22), we
have the differential equation governing the change of the expected value of
robust harvesting along the optimal path.

(1/dt) Edh = 1

U 00 (h)

" h
ρ− F 0 (x)− σ2

θ
c0 (x)

i
(U 0 (h)− c (x)) + c0 (x)F (x)

+1
2
σ2 (c00 (x)− U 000 (h)h2x)

#
(29)

Likewise, the evolution of the expected value of biomass after substituting
R from equation (22) becomes

(1/dt) Edx = F (x)− h− σ2

θ
(U 0 (h)− c (x)) (30)

Equations (29) and (30) describe the evolution of the expected values
of harvesting and biomass under socially optimal management with robust
control.
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4 Robust Equilibrium and Stabilization

In equilibrium (1/dt) Edh = (1/dt) Edx = 0. Using U 0 (h) = P (h) the socially
optimal expected steady state biomass under robust control is determined by:

ρ = F 0 (x) +
σ2

θ
c0 (x)− c

0 (x)F (x) + 1
2
σ2 (c00 (x)− U 000 (h)h2x)

P (h)− c (x) (31)

Under certainty σ = 0, in which case (31) is reduced to the well known rule
for optimal fishery management, equation (11). Similarly, the management
rule under “typical” uncertainty in stock recruitment, without a preference
for robustness, is obtained by setting σ 6= 0 and θ →∞.
Solving (31) for P (h) the robust equilibrium market clearing condition

becomes:

p = P (h) =

c (x)−
"
c0 (x)F (x) + 1

2
σ2 (c00 (x)− U 000 (h)h2x)

ρ− F 0 (x)− σ2

θ
c0 (x)

#
= Hθ (x) (32)

h = G (x, θ) obtained by solving for h (33)

h+
σ2

θ
U 0 (h) = F (x) +

σ2

θ
c (x)

Inverting (33) to obtain x = G−1 (h, θ) and substituting into (32) we
obtain the robust supply curve p = Hθ (G

−1 (h, θ)) = Sθ (h, θ) . Then market
equilibrium is obtained as:

(p∗θ, h
∗
θ) : P (h

∗
θ) = Sθ (h

∗
θ, θ) and p

∗
θ = P (h

∗
θ) (34)

Setting θ → ∞ we obtain the corresponding equilibrium condition under
typical uncertainty. It is interesting to note that the simpler type of random-
ness (assuming a known distribution) affects only the supply curve (32), but
not the stock equilibrium condition (33). However, once we allow for model
uncertainty the stock equilibrium condition is affected by the robustness pa-
rameter, so that both harvest and stock expected paths are affected. The
chosen equilibrium will depend on σ (which is assumed to be exogenous) as
well as θ.
The discussion in section 2 suggests that the dynamic system (29) and

(30) could be associated with multiple equilibria and bionomic instabilities
in expected values. The idea behind using robust control in this context is
to design a management rule that could prevent bionomic instability and
overfishing at the social optimum and then use the result to design decen-
tralized instruments. We use the choice of the robust parameter θ as a basis
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for eliminating multiple equilibria at the social optimum . The idea is that
by selecting an appropriate θ the socially optimal solution would lead to a
unique stable (in the saddle point sense) equilibrium. The robust parame-
ter could also be chosen on the basis of detection error probabilities, as in
Hansen and Sargent (2002), but the stabilization argument seems to provide
another plausible way of choosing this free parameter.9

We proceed in the choice of θ as follows:
(1/dt) Edx = 0 defines, using (30), the curve h = G (x, θ) with slope

dh

dx
=
F 0 (x) + σ2

θ
c0 (x)

1 + σ2

θ
U 00 (h)

(35)

where F 0 (x)
>
=
<
0 as x

>
=
<
xmsy , c

0 (x) < 0 , U 00 (x) = P 0 (x) < 0.

Assume that for a given (estimated) σ2 there exists an interval
¡
θ, θ
¢

such that for any θ ∈ ¡θ, θ¢ , dh
dx
< 0 for all x ≤ xk. If for the same θ the

function h = K (x, θ) defined by the (1/dt) Edh = 0 isocline is monotonic
in θ then under appropriate boundary conditions for G (0, θ) K (0, θ) there
exists a unique steady state in the expected values of harvesting and fish
biomass for the fishery as shown in Figure 3. This result can be contrasted
with the deterministic solution. As shown in figure 2 with an inverted U-
shaped ẋ = 0 isocline and a monotonic ḣ = 0 isocline we could have multiple
equilibria as a result of a demand shock or the emergence of a worse scenario
for the stock-recruitment relationship. Multiple equilibria could also emerge
in the stochastic model without preference for robustness or θ → ∞, since
in this case the (1/dt) Edx = 0 will also have an inverted U-shape. The
(1/dt) Edh = 0 isocline will be different from the deterministic one by the
factor 1

2
σ2 (c00 (x)− U 000 (h)h2x) . Thus the (1/dt) Edh = 0 shifts relative to the

deterministic case and could produce one or multiple equilibria.
On the other hand, robust control introduces the factor σ2

θ
both in har-

vest and biomass dynamics. If a θ∗ exists such that G (x, θ∗) , and K (x, θ∗)
have a unique solution then robust control leads to a unique equilibrium.
If furthermore G (x, θ∗) ,and K (x, θ∗) are monotonic in x then the unique-
ness is preserved under demand shocks. If a unique robust equilibrium is
defined then hR can be used as the quantity limit for designing tradable
quota systems, while JRx which is the costate variable associated with the

9Actually, θ is not a free parameter, as it is the multiplier associated with the constraint
that limits the size of the allowable distortion. Depending on the chosen restriction, we will
have a specific value for θ. However, we can think of choosing θ directly, thus implicitly
setting η in the entropy constraint.
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corresponding Hamiltonian representation can be used for designing landing
fees. Under these instruments the regulated fishery will reproduce the robust
equilibrium avoiding potential instabilities or overfishing.
This result can be related to the safe quota concept introduced by (Homa

andWilen 1997) where the safe quota was determined as hF = max {0, c+ dx} .
In our case the robust (or safe) quota is determined by a policy function
hR = φ (x) which is the function describing the stable manifold MM in
figure 3.

5 Concluding Remarks

Bionomic instability is an inherent characteristic of fishery models induced
by a backward bending supply curve. This instability emerges both in open
access and in optimally controlled fisheries. Given the uncertainties associ-
ated with fisheries, these instabilities could be intensified by demand shocks
or uncertainties associated with the stock-recruitment relationship.
In the present paper we consider the case of scientific uncertainty in the

stock recruitment relationship and we introduce robust control methods in
fishery management. We show that robust control could act as a tool to
prevent instabilities, by an appropriate choice of the robustness parameter.
This is obtained by designing a rule so that the optimally managed fishery is
stable under a worst possible scenario for the stock-recruitment relationship.
Furthermore, the same rule could stabilize the fishery under demand shocks.
The robust management rule can be used to design decentralized policy in-
struments that work better than typical prescriptions at maintaining stable
harvests and avoiding biomass collapse.
The basic model developed here can be extended along different lines,

such as depensation or non-linear cost effects, or by considering the fishery
as a dynamic game between the planner/regulator and the fishermen, and
seeking robust solution with possible heterogenous preferences for robustness.
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