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Sources for Biomedical Optics

Spectral coverage?

- ultraviolet - visible - near IR - mid-IR

Temporal profile?
- c.w or pulsed?
- Spectral profile?

Spectral profile?

- Broadband or narrow linewidth?

Convenience
- Lamp or laser?

- portable (LED, diode or diode-pumped-solid-state)?

Narrowband/tunable light sources

Low spatial coherence

Thermal Sources (Lamps) with filters
Filament lamps (Quartz-Tungsten Halogen)

Arc lamps (Hg, Xe, Hg-Xe)

LEDs
High spatial coherence

Lasers
c.w. lasers, Q-switched & mode-locked lasers

Gas, dye, solid-state and semiconductor lasers)

Broadband thermal light sources

High pressure Arc lamps (Hg, Xe) and Quartz-Tungsten Halogen lamp )

Low spatial coherence (source size down to ~ mm)
Very broad spectra {> 50 nm)
High average powers (up to 100's W) but low brightness
Low cost (SIOO's)

http://cc.joensuu.fi/photobio/lamps.html

Spectral standards: Low pressure Hg lamp

300 400
WAVELENGTH

Low spatial coherence (source size down to ~ mm)
Very narrow spectra (high temporal coherence)
Moderate average powers (up to ~ W) but low brightness
Low cost ($100's)

Spectral coverage of lasers: 1960's - 80's
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Spectral coverage of lasers: 1960's - 80's
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Spectral coverage of lasers: 1960's - 80's
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Spectral coverage of lasers: semiconductors
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Tunable solid-state lasers

Cr3*:BeAl2O4 Tm3'

C«3*:YLF/ULuF4 Yb3«:YAG Tm»:GSGG/YAG

Pr3*:YLF Ci*»:Forsterite

Cr3*:LiSAF/LiSGAF/LICAF

Co»:LiSAF/LiCAF T|3*:Sapphire Cr**:YAG

Cr2*:ZnSe

Ct**:ZnS/ZnSe/ZnTe
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Broadband light sources

Low spatial coherence

Thermal Sources (Lamps)
Filament lamps (Quartz-Tungsten Halogen)

Arc lamps (Hg, Xe, Hg-Xe)

LEDs
High spatial coherence

Lasers & laser amplifiers
Mode-locked lasers

ASE sources (fibre and diode amplifiers)

Broadband thermal light sources

High pressure Arc lamps (Hg, Xe) and Quartz-Tungsten Halogen lamp)
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Low spatial coherence (source size down to - mm)
Very broad spectra (> 50 nm) <=> low temporal coherence (< 1 j/m)
High average powers (up to 100's W) but low brightness
Low cost ($100's) http://cc.joensuu.fi/photobio/lamps.html



Broadband LEDs

Materials systems ranging from GaN to PbS (cryogenic, mid-IR)

Moderate spatial coherence (source size down to - 10's pm)
Moderately broad spectra (> 50 nm) o low temporal coherence (< 10 jam)
High average powers (up to 100's mW)
Low cost ($100'$)

ASE sources: high spatial coherence

ASE sources: fibre amplifiers and superluminescent diodes)

High spatial coherence (source size down to - 1 jjm)
Moderately broad spectra (> 20 nm) <=> low temporal coherence (< 20 pm)
Moderate average powers (up to ~ 10 mW) and high brightness
Moderate cost ($10,000's)
Limited spectral coverage SLD
(800- 900 nm, HOOnm, 1300 nm 1500-1600 nm)

Nd:glass fibre ASE source (7 mW)

Mode-locked (ultrafast) lasers

High spatial coherence High spatial coherence (source size down to ~ 1 pm)

Moderate to high broad spectra (-20-300 nm) c^low temporal coherence (<1 - >

Moderate average powers (up to - 100's mW) and high brightness

High cost (~S100,000)

Mode-locked laser —* J L L L U L , ,

L//frabroadband sources:
Femtosecond laser pulse + spectral ca:'.'.wj.'j.'.m
generation in micro-structured fibre

Complex, expensive, but very
broadband (>1000 nm)/short
coherence length (< 1 fim)

Biomedical applications of ultrafast lasers?

High peak power applications
Multi-photon microscopy

Ultrafast laser ablation

Low coherence applications
Optical coherence tomography

Holographic imaging

whole-field 3-D microscopy

Time-resolved applications
Imaging with scattered light

Fluorescence lifetime imaging

Dynamic microscopy

STED

How do ultrafast lasers work?

Ultrashort pulses may be generated by periodically

modulating the loss of a laser cavity at the cavity round trip

frequency — called "mode-locking"

Av=l/T

This can be realised by

Active mode-locking

Passive mode-locking

Av=l/Ax

AT

Active mode-locking

Amplifier ^ —
Loss

modulation

a c/2L

• Repetition rate = 1/cavity round trip time

• Produces pulses > 10's picoseconds (1 ps = 10-12 s)

• Electrical modulation must exactly match cavity period



Passive mode-locking

Amplifier —
Saturable
absorber

c/2L

• Repetition rate = cavity round trip time

• Produces pulses > 4 femtoseconds (1 fs = 0.001 ps = 10~15 s)

How to generate the shortest possible pulses?

Active mode-locking limited to ~ 10's ps
=> use passive mode-locking

Try to find a saturable absorber (i.e. an intensity-dependent loss)

with a response time X as short as possible

We also need broad gain profiles

Ultrafast dye lasers: 1970's - 80's

Continuous wave dye lasers pumped by argon ion lasers:

Bell Labs

1981

Imperial

1981

i
Cornell

1983

Passive mode-locking with slow
saturable absorber:

- sub-100 fs pulses from passively
mode-locked ring dye lasers

- pulses much shorter than T

Mode-locking with a slow saturable absorber

Continuous wave dye lasers pumped by argon ion lasers:

Magic: passive mode-locking with
a slow saturable absorberAmplifier

Gain saturating

gain depleted
absorption
saturating

Passively mode-locked femtosecond dye lasers
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Dispersion in femtosecond lasers

Uncertainty principle: Av.Ax < 1

=> ultrashort pulses have broad linewidths

=> ultrashort pulses consist of a range of different
frequency (wavelength) components

Dispersion: different frequency components travel
at different speeds

Normal
(positive)

dispersion

higher v



Dispersion in femtosecond lasers

Multi-layer
dielectric mirror

Shorter wavelengths experience less delay upon
reflection at dielectric mirrors

Dispersion in femtosecond lasers

Multi-layer
dielectric mirror

Dispersion and reflectivity are modified when mirrors
are used at large angles of incidence

Ar.c.irtqn': • optimisation of negative group velocity dispersion

Adjustable dispersion in femtosecond lasers

Different wavelengths experience different path lengths

- can provide positive or negative group velocity dispersion

Passively mode-locked dye lasers: 1987

First c.w. blue
femtosecond laser
90 fs at 497 nm

Pretty but:
- inconvenient
- difficult
- toxic

Tunable (vibronic) c.w. solid-state lasers:

Ti:Sapphire

Superb thermal &
mechanical properties

Long upper-state lifetime I

- not possible to get
femtosecond pulses by
passive mode-locking

Myth!

Femtosecond pulse generation from
c.w. solid-state lasers?

Active mode-locking only yields picosecond pulses

With passive mode-locking, pulse duration is limited by
recovery time x of saturable absorber

Need absorber with femtosecond recovery time
- use GaAs/AIGaAs MQW saturable absorbers (T > ~ 300 fs)

Use optical Kerr effect to simulate an infinitely fast saturable
absorber via intensity dependent refractive index

- use self-phase modulation and interferometry (CCM, APIA)

- use self-focussing (Self-Mode-locking, Kerr Lens Mode-locking)



Nonlinearity in femtosecond lasers

Nonlinear refractive index: new frequencies generated

Optical Kerr Effect

Nonlinearity in femtosecond lasers

Nonlinear refractive index: new frequencies generated

Kt) Optical Kerr Effect

-*t

So / \ - Soi

A(t)ei(M')+&*(l

d , , d , ,
Frequency chirp: o(D = — ft(t) cc / ( / )

"Soliton-shaping" in femtosecond lasers

Nonlinear refractive index: new frequencies generated

' (<> Optical Kerr Effect

A
Negative dispersion: high frequencies travel faster

r \

GVO < o

Shorter pulse

Soliton-shaping as bunching of high intensity light

Photons interact with their nonlinear medium:
- leads to bunching (pulse compression)

SOLITONS: The high intensity light pulse creates a
moving "valley" of higher refractive index

RUNNING ON A MATTRESS; The moving valley pulls
along slower runners and retards the faster ones

Pulse compression by soliton-shaping in
optical fibres: _____

Nonlinear refractive index: new frequencies generated

Negative dispersion: high frequencies travel faster

Long pulse in Shorter pulse out

Magic!

Soliton laser

Gain
medium

Theoretical model

Amplifier I Optical
Kerr effect

Negative
dispersion



First Femtosecond Tiisapphire laser - mode-locked with
nonlinear external cavity feedback

Gain
medium

Amplifier

A*

Optical
Kerr effect

Positive
dispersion

Moving mirror mode-locking: discovered by accident:

Gain
medium

Amplifier

Moving mirror mode-locking

Gain
medium

Amplifier Magic?

First "self-mode-locked" laser

Gain
medium

Amplifier

Magic:
Self-mode-locking

Kerr Lens Mode-locking

Intensity-dependent refractive index in laser rod

Spatial profile
of laser beam

n = no+n,l

Laser beam is most intense at centre

=> laser rod act as a lens - "self-focussing"

Kerr Lens Mode-locking: passive mode-locking
with infinitely fast saturabie absorber

Strength of self-focussing depends on intensity

I
I

More intense peak of pulse experiences
t stronger lens than less intense wings

=> intensity-dependent loss at aperture



Kerr Lens Mode-locked lasers

Initially developed in Titanium-doped sapphire
lasers, pumped by argon ion gas lasers

Now pumped by diode-pumped solid-state lasers

First user-friendly ultrafast lasers
- suitable for medical applications

Pulses as short as 4.5 fs (argument continues over
how to measure such a short pulse)

Commercial products: -100 fs for - £100,000

Tunable ultrafast solid-state lasers

: Ti3+:Sapphire
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Tunable solid-state lasers
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Evolution of femtosecond lasers

Argon ion laser Dye laser - U . i . i t> t and toxic
large, highly complex

Argon ion laser
Ti:Sapphire

laser

Not for sale

large, less complex
and easier to use

- €100,000

Ti:Sapphire
laser JULLLL,

Compact, robust
and user-friendly

- £100,000

Diode Cr:LiSAF JLJUUUL

More compact, robust
and user friendly

- £10.000 ?

=> many more real-world applications

First diode-pumped femtosecond vibronic laser

Diode-pumped
CrLiSAF laser
passively mode-locked
with MQW saturable
absorber

LFW "Devil" picture

Two pump diodes
at 666 nm

How to build a diode-pumped KLM femtosecond
CrLiSAF laser:

Parts list:
Two pump laser diodes
CnLiSAF laser rod
Prisms for dispersion compensation
Mounts and mirrors

Total cost-$15,000
= - £15,000 = ~ €15,000



Diode-pumped ultrafast solid-state lasers

Diode-pumped
tunable fs laser

I
Diode-pumped
tunable ultrafast
regenerative
amplifier

• > 25 fs
1 <1nJ

• 80 MHz
800-880 nm

i > 200 fs
I >3MJ
1 < 25 kHz
* • 800-880 nm

FLOAT

Goals: • turnkey operation

• portable, compact

• - S 50,000

suitable for e.g.

• micromachining

' biomedical instrumentation

For more information...

For a review of the development of ultrafast laser technology:
French, P.M.W., The Generation ofUltrashort Laser-Pulses. Reports on Progress in
Physics, 1995. 58(2): p. 169-262.

For a review of biomedical optics:
French, P. M, W,, Biomedical Optics in the 21" Century, Physics World, (June 1999) 41-46

JR Lakowicz, Principles of fluorescence spectroscopy 2nd edition (Kluwer)

Brian Herman, Fluorescence Microscopy, 2nd edition (pios Scientific Publishers with Royal
Microscopy Society)

J Pawley 1995 Handbook of Biological Confocal Microscopy 2nd edn (Plenum,
New York)

Brett E. Bouma, Guillermo J. Tearney, Handbook of Optical coherence Tomography (Marcel
Dekker, Inc). 2002.


