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9 TRANSPORT OF SOLUTES IN SOILS

In Chapter 3 we acknowledged that the liquid phase of a soil is never just pure
water, and in Chapter 4 and subsequent chapters we rigorously defined soil
water potential to include consideration of the quantity and diversity of solute
species in the soil solution. Nevertheless, up to now, we did not consider the
physical, chemical and biological processes within a soil profile that distribute,
dilute or concentrate solute species within the liquid phase of a soil. Inasmuch
as the relative concentration of solutes in the liquid phase governs not only the
retention and transport of water within soils but also contributes to our
understanding of managing the quality of water within soils as well as that
moving below the recall of plant roots deeper into the vadose zone, we present
here both microscopic and macroscopic considerations of solute behavior in
soils. We limit our discussion to the soil solution and consider transport in the
soil air only when it plays an important part in transport of the soil solution.

Although it has been known for at least a century that water and solutes
do not travel uniformly within field soils (Lawes et al., 1881), relatively few soil
hydrologists individually or collectively made a concerted effort to study and
understand the topic until recent times. A few studies now considered classic
kept the topic alive until the 1950s. In 1900, Means and Holmes (1901) provided
a lucid description of the chemical and physical processes occurring within soils
during and after rainfall and irrigation events. They understood the
complexities of molecular diffusion and convection in a reactive, structured soil
manifesting a heterogeneous pore size distribution. Later, Slichter (1905) noted
of a water soluble chemical or "tracer" added to ground water, "its appearance •••
is gradual" when measured at a downstream well. He explained that the gradual
appearance of the tracer was caused by the fact that the central thread of water in
each capillary pore of the soil moves faster than the water along the walls of the
pore. Thirty years later, Kitagawa (1934) studying the dispersion of sodium
chloride from a point source in a water-saturated sand expressed the mixing
process as a function of the average pore water velocity. Approximately 10 and
20 years later, Bosworth (1948) and Taylor (1953) examined the contributions of
molecular diffusion in cylindrical capillary tubes. During the succeeding forty
years, investigations have accelerated owing to the growing importance of water
quality. In this chapter we limit our discussion to miscible displacement - that is,
when two miscible fluids are brought into contact, the initial abrupt interface
between the two becomes blurred. The abrupt interface disappears owing to a
mixing process dependent upon the properties of the two fluids, the properties
of the porous medium, the nature of the microscopic velocity distributions of
the fluids and the reactions occurring within each fluid as well as between each
fluid and the porous medium.

9.1 SOLUTE INTERACTIONS

We consider here those physical interactions of solutes that play a primary role
in the distribution of solutes within the soil profile.
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9.1.1 Molecular Diffusion

Thermal energy provides a continual, never ending movement of gas and
liquid phases of a soil system. In 1855, Fick provided a theoretical basis for this
movement by showing that molecular diffusiort obeyed the same mathematical
laws that Newton had derived for momentum flux and Fourier for heat flux.
The solid matrix of the soil complicates matters by altering both the diffusion
path length and the cross sectional area available for diffusion as well as
providing an electric field and reactive surfaces that further alter molecular
movement.

Fick's first law of diffusion states that a gaseous or solute species moves
or diffuses relative to a mixture or solution in the direction of decreasing
concentration of that species just as heat flows by conduction in the direction of
decreasing temperature. Hence,

<? = - D A ^ (9.1)

where q is the diffusive flux [MT'1], A the cross sectional area [L2], C the
concentration [ML"3], x the space coordinate [L] and D the molecular coefficient
[L2T"*]. Because concentration in a porous medium can be expressed in a
number of ways, C should be of the same quantity reference as q, and the
volume should be of the same length reference as x and A. Jackson et al. (1963)
provide details for expressing the frame of reference as the entire bulk soil
system or either one of the two fluid phases. Temperature gradients, pressure
gradients and external forces also contribute to the diffusive flux. Gaseous
diffusion coefficients in soil air are almost composition independent, increase
with temperature and vary inversely with pressure. Coefficients in soil water
depend upon concentration, solute species and usually increase with
temperature. Comprehensive treatments of molecular diffusion are available
(e.g. Bird et al., 1960; Crank, 1956; and Currie, 1960).
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Figure 9.1 Idealized cylindrical pore within a solid matrix through which
diffusion occurs.
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The complicated geometry of a soil relative to diffusion path length and
cross sectional area is usually described in terms of two parameters - tortuosity
and porosity. We assume here that isothermal conditions prevail, the bulk
volume of the soil remains constant, the soil solids are inert and for
convenience, we consider gaseous diffusion in one dimension within a
completely dry soil schematically shown in Fig. 9.1. For steady state conditions
with C(0) = Ci and C(L) = C2, the diffusion flux for the cylindrical pore of length
Le from (9.1) becomes

«? = - D A H ^ L ) (9.2)

where Do is the gaseous diffusion coefficient, Ae = APL/Le the cross, sectional
area of the cylindrical pore, P the porosity and A the cross sectional area of the
bulk soil. Similarly, for the bulk soil of length L (9.1) becomes

(9.3)

Equating (9.2) and (9.3) we have

D = D0P{L/Lef (9.4)
which is of a form suggested by Buckingham (1904) where (L/Le)

2 is the called
tortuosity and equals cos2a. Penman's (1940) commonly used value of (L/Le)

2 =
0.66 yields an angle of 0.61 or 35° between the pore and the solid particle of soil.
Marshall (1958) and Millington and Quirk (1959) empirically raised the power of
P to 3/2 and 4/3, respectively, and deleted {L/Le)

2 in (9.4) to account for the
tortuosity of the average diffusion path.

Equations similar to (9.4) are easily derived for diffusion coefficients in
partially water saturated soil as well as for solute diffusion in saturated and
unsaturated soils. For example, Sallam et al. (1984) experimentally showed that
the product P(L/Le)

2 in (9.4) for gaseous diffusion in unsaturated soils is more
nearly equal to azwP'2 rather thanaw/3P-2 (Millington and Quirk, 1959) where a
is the air-filled porosity. Even for isothermal conditions, in addition to the
concentration gradient, we have oversimplified our discussion here by
neglecting pressure gradients and external forces acting unequally on the
various gaseous and solute species. And, we should remember that the value of
a diffusion coefficient depends upon the nature of the counter-diffusing gaseous
or solute species.

9.1.2 Electrostatic and Electrokinetic Forces

Electric force fields always exist within the pore structure of soils owing to the
electric charge possessed by the walls of soil pores. The charge per unit pore wall
area is caused by isomofphous substitution of atoms in the tetrahedral and
octahedral layers of the clay minerals as well as the presence of the Si-O-H
(silanol) group on quartz, kaolin minerals and other surfaces like organic matter
(-OH and -COOH). The magnitude of the former is fixed while that of the latter
depends upon pH and concentration of the soil solution. In general, small
highly charged ions cause the viscosity of the soil solution to increase while
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large monovalent ions cause the viscosity to decrease. The electrostatic fields of
the ions cause polarization and a binding of surrounding water molecules
which alter the kinetic properties of soil water. The hydrophilic nature of most
soil particles is attributed to the attraction of hydrated cations by the electrostatic
field of soil particles and to the hydrogen bonding of water to the clays (Low,
1961). The mobility of both water and ions in the region of the pore walls is
reduced below that in bulk solutions (Kemper, 1960; and Dutt and Low, 1962).
The impact of the electric field on ions and water is more pronounced in clayey
soils and depends upon the ionic concentration and distance from the pore wall.
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Figure 9.2. Distributions of cations and unions in the vicinity of a clay particle
surface for three different solution concentrations.

Gouy (1910) described the distribution of cations as a function of distance
from a negatively charged flat surface by equating the electrostatic force causing
cations to move toward the surface to that from their thermal motion causing
them to diffuse away from the surface. We see in Fig. 9.2 that the extent of the
unequal distribution of cations and anions away from the surface depends
inversely upon the total concentration Co of the solution. And, we note from
Fig 9.3 for cylindrical pores with a wall having a net negative charge and filled
with a solution of concentration Co that the concentration distribution across
the pores depends upon the magnitude of the pore radius. In the center of large
pores the concentrations of cations and anions are identical while in the center
of small pores owing to the electric field, the cationic concentration exceeds that
of anions.
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Figure 9.3. Distributions of cations and onions within capillary tubes having
three different radii.

When redistribution of soil water occurs by air entering larger water-
filled pores, solutes within water films remaining in the "emptied" large pores
diffuse and mix with those in water-filled smaller pores achieving a new
equilibrium which manifests different concentration distributions in all pores -
large and small. Recognizing that the rates of water and solute redistribution are
interdependent, equilibrium distributions of solute and water (hysteresis) both
depend upon the rate at which hydraulic equilibrium is reached (Davidson et
al., 1966).

As water moves through pores, cations and anions unequally distributed
across the pores because of the negatively charged pore walls are swept along
with the water. Consequently, a differential charge builds up along the length of
flow which tends to retard water flow. This differential charge is called
streaming potential. Similarly, if an electrical potential difference is established
across a soil, ions moving within the electric field will create a water flux.
Analytical descriptions of streaming potential, electroosmosis, electrophoresis
and sedimentation potential are found in the literature (e.g. Nerpin and
Tchudnovskii, 1967, and Taylor and Ashcroft, 1972). Each process contributes to
the behavior of solutes and water at the pore scale and offers an opportunity for
understanding and managing solute movement and retention in soil profiles.

9.1.3 Other Reactions

Constituents in the gas, liquid and solid phases of soil continually reacting with
each other through a variety of chemical and biological pathways contribute to
the presence and behavior of particular solutes in soil profiles. Applicable
equilibrium and nonequilibrium chemical concepts such as oxidation-
reduction, solubility-precipitation, association-dissociation, acid-base and
exchange-adsorption are described by Freeze and Cherry (1979) and Luckner and
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Schestakow (1991). Descriptions of microbiological reactions and pathways are
available (e. g. Bazin et al., 1976) as well as those involving root systems of
higher plants (e. g. Nye and Tinker, 1977). A full understanding of solute
transport requires a knowledge of the information contained in these and other
references.

9.2 MISCIBLE DISPLACEMENT IN A CAPILLARY

The oldest approach to analytic descriptions of miscible displacement in soils
and other porous media is that of the displacement of a fluid by a second
miscible fluid within a capillary tube. Consideration was focused upon the
average displacement velocity and geometric boundaries with little concern for
chemical or microbial processes.

9.2.1 Displacement without Molecular Diffusion

From the definition of viscosity, the force per unit area x required to shear a
fluid of viscosity rj is

' dr
where v is the velocity of the fluid and r the coordinate normal to the force. The
velocity distribution within a horizontal capillary tube of radius a during steady,
uniform flow caused by a pressure difference Ap across its length L is the result
of an equilibrium between the pressure and shearing forces acting on the fluid.
Hence, for the capillary tube

nr2Av + 2nrLri—=0 (9.6)
dr

Integrating (9.6) between the limits r = r and r = a (where v = 0), we have the
well known parabolic velocity distribution

(9.7)

where v(0) =lpo-^
/a^tS(0^i^y The volumetric flow rate Q (cm3-s-1) through the

capillary is easily obtained by integrating v{r) with the areal awWsection of the
capillary

or

Q = j°27crv{r)dr = 4nvoj°(r-r3 / a2)dr

Q = a
27tv0 = •

{9.8)

(9.9)

And the average velocity v of fluid flowing within a capillary tube is simply

v = - i y \a2mv{r)dr = % \"{r - r3 / a2)dr (9.10)
na J0 a J°^ 'na

which leads to v = v0.
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If we assume no molecular diffusion and rely solely on (9.7) to describe
the fluid velocity, what will be the distribution of a second fluid of
concentration Co as it displaces a fluid of zero concentration initially within a
capillary? Consider the solution Co enters the tube at x = 0 at time t = 0. The
concentration C averaged over the cross section of the capillary at distance x is

j°"027trC(r)dr

or as a function of distance and time is
(9.11)

DISTANCE x

Figure 9.4. Parabolic velocity distributions of an invading solution Co within a
capillary (upper) give rise to linear average concentration distributions
along the tube (lower).

In Fig. 9.4, the paraboloid of the displacing fluid Co within the capillary gives
rise to a linear concentration distribution. When the invading front of Co has
reached a distance 2L, the average concentration across the plane normal to the
capillary at a distance of L is Co/2. Interestingly, the average concentration of the
fluid moving across the plane L at that instant is not Co/2 but 3C0/4. The
average concentration of fluid moving past x = L (see Fig. 9.5a) is

massofsolute movingpastx=L

" volume of fluidmoving past x=L

c CofQ[2vo(l-?/a2)]2*rdr

j°Q[2v0(l-r
2/a2)]2nrdr

(9.12)
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where r' = fl(l - L/2v2jl/2, the radial boundary between the displacing fluid (C =
CB for r < r') and the original fluid (C = 0 for r > r'). Integrating (9.12) leads to

• C.(t)/C.=0 vot/L<0.5

= l-L2 /4z;0V vJ/L>0.5
or

(9.14)
C(p)/C.=0 p<0.5

= l - l / 4 p 2 p>0.5
where p =vot/L and is the ratio of the volume of fluid passing x = L to the
volume of the capillary between 0 < x < L. Pore volume of effluent or simply
pore volume is the name commonly used for p. The value of C = 3C0/4 for p = 1
and approaches unity as p -*«>, see Fig. 9.5b. Even for such a simple geometry as
a capillary tube, the concentration distribution within the tube (Fig. 9.4b) is not
easily reconciled with the shape of the concentration elution curve (Fig. 9.5b).

U r'

c = o

DISTANCE x

PORE VOLUME pv

Figure 9.5. a. Cross sectional diagram of an elementary volume of fluid moving
within a capillary, b. Average relative concentration of fluid leaving a
capillary of length L as a function of pore volume of effluent.
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9.2.2 Displacement with Molecular Diffusion

Taylor (1953) provided insights to separate dispersion of a solute within a
capillary caused by molecular diffusion from that by the velocity distribution of
the fluid. Assuming that the solute concentration within a capillary is
symmetric about its central axis and the velocity of the fluid is described by (9.7),
the mixing of a solute by both diffusion and convection are described by

(9.15)

where we assume the molecular diffusion coefficient Dm is independent of
concentration. The following initial and boundary conditions approximate our
assumption that the displacing solution Co enters a long capillary at a uniform
rate at x = 0 starting at time t = 0:

C=0 f=0 x>0 0<r<a

c=cc
C=0

fSO
fSO

x=0 0<r<a
0<r<a (9-16)

f>0 r=0 andr=af-
Details of a numerical solution of (9.15) subject to (9.16) are given by
Amanthakrishnan et al. (1965). The limiting case for a very small fluid velocity
when v —> 0 is the analytic solution

(9.17)

where erfc is the complementary error function defined by

. (9.18)

For small velocities considerably greater than zero, Taylor (1953) assumed
that solute mixing by longitudinal molecular diffusion could be neglected
compared with that owing to convection and suggested an alternative
experimental procedure for measuring the molecular diffusion coefficient.
Assuming that 9*0/ dx2 - 0 in (9.15), making the Galilean transformation [x\ =
(x-vot)] to change the coordinate from the cylinder to the fluid and further
assuming that

he found that the flux density of solute at x\ is

• 48Dm«2V i y a y j

This equation shows that a solute is dispersed relative to a plane which moves
with a velocity v0 exactly as though it were being mixed by molecular diffusion
[compare with (9.1)] but with an apparent diffusion coefficient Da defined by

D =
48D,

(9.20)
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Aris (1956) extended the above analysis for irregularly shaped capillaries which
also included the mixing contribution from longitudinal molecular diffusion.
His analysis, allowing a non parabolic local velocity distribution within the
irregular capillaries and a concentration-dependent molecular diffusion
coefficient, gives the apparent diffusion coefficient

(9.21)
m

where a is a dimensionless number which depends upon the cross section, a
the effective radius and v0 the mean flow velocity.
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Figure 9.6. Spreading or dispersion of a solute caused by convective transport in
a simplified soil a. and a 2-dimensional network of square soil particles b.
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93 MISCIBLE DISPLACEMENT IN SURROGATE POROUS MEDIA

The mixing and interactive processes described in section 9.1 for simple, well-
defined geometries and materials provide a basis for understanding transport in
soils. Unfortunately, the rigor of solutions exemplified by those of Taylor (1953)
gives way to that of empirical or statistical formulations owing to our inability
to mathematically define the geometry of the soil pore system or to measure
parameters descriptive of the displacement processes that can be translated from
the pore scale through intermediate scales (including that of a REV) to that of a
pedon or field. Miscible flow in a porous medium differs from that in a single
capillary owing to meandering paths of water and solutes within and between
irregularly shaped pores. The spreading or dispersion of the solute caused by
convective transport with the water can be qualitatively visualized in Fig. 9.6a
for a simplified soil, or in Fig. 9.6b for an idealized 2-dimensional network of
square soil particles. In both figures, the invading stream of solute partitions
itself according to the microscopic pore water velocities occurring between the
soil particles. At still a smaller scale, the water velocity is zero at the particle
surface, departs markedly from the mean flow direction and approaches a zero
value in the vicinity of dead-end pores (Fig. 9.7). These pathways and pore water
velocities, severely altered with slight changes of water content, have yet to be
quantitatively evaluated. In the near future, computer-aided micro tomography
and nuclear magnetic resonance techniques will provide an opportunity to
ascertain the exact nature of the velocities at the pore scale. Without such
observations, our understanding of certain facets of miscible displacement in
soils has been enhanced by considering surrogate porous media having
simplified or empirical pore geometries. These equations developed to describe
the displacement of fluids in such media are usually deficient of physical and
mathematical rigor at the pore scale and often contain empirical coefficients not
easily related to natural soils.

Figure 9.7. Examples of microscopic pathways and dead-end pores.
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9.3.1 Displacement in Capillary Networks

Descriptions of idealized soil pores having capillary shapes include some
mechanism for transport between parallel capillaries or allow one or more
capillary tubes of differing radii to be joined at their ends at common junctions
(e. g. Marie and Defrenne, 1960). The concept of random networks of capillary
tubes provides insights to the meandering paths of displacing fluids.

Figure 9.8. Diagram of pore space, a. Tetrahedral pore between four spheres, b.
pore schematized by a canal bifurcation and c. random path chosen by a
solute particle through the canal system.

The capillary tube network (de Josselin de Jong, 1958) illustrated in Fig. 9.8
stems from the tetrahedral pore between four closely packed spheres being
represented by a junction of four capillaries. The randomness of the capillaries
originates from the assumption that their positions are dictated by a random
arrangement of soil particles. With z being the direction of principal flow, the
direction of each segment of the capillary network is described by the angles ct\
and at. de Josselin de Jong neglected molecular diffusion and assumed that the
velocity of a fluid particle was that of the mean velocity across the capillary
diameter. Assuming that every capillary segment is of length I and the fluid
velocity within each segment is proportional to cos i6c2, the residence time U for a
fluid particle in segment i is U = JR/COS ai where JR is the minimum residence
time of a fluid particle traveling in a segment oriented in the direction of
principal flow. Hence, a fluid particle traveling in a segment oriented in the
direction (ct\, aj) for a time At with a velocity (//{R)COS ai will deviate from the
mean flow path by
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_ lAtcos2a2

and

(9.22)

(9.23)

These deviations lie on a sphere centered at I At/2tR having a radius I At/2tR .
The dispersion of many fluid particles having passed through a large

number of capillary segments resembles that of Brownian movement, but
translated in the direction of the principal flow. Hence, the maximum
concentration of an injected solute travels at the mean velocity of the fluid
l/(3tR). With this simple capillary network composed of segments of invariant
length, de Josselin de Jong was the first to show that the transverse apparent
diffusion coefficient is smaller than the longitudinal apparent diffusion
coefficient. He also showed that the magnitude of the longitudinal apparent
diffusion coefficient depends upon the distance traveled. Subsequently, Saffman
(1959, 1960) derived a similar, but more general model where the path of the
fluid particle was regarded as a random walk with the direction, length and
duration of each step being random variables. He accounted for pure molecular
diffusion and the interaction between molecular diffusion and fluid convection.

9.3.2 Miscible Displacement as a Random Walk Process

Statistical concepts have been applied to solute and water transport through
porous media at the pore scale primarily because of the difficulty of integrating
differential equations of motion with poorly or undefined complex boundary
conditions. Danckwerts (1953), Scheidegger (1954) and others have assumed that
a simple random walk stochastic process can be used to describe transport in a
fluid-saturated homogeneous, isotropic porous medium generally considered
chemically inert. Here the exact nature of the path followed by fluid particles
theoretically obeying Navier-Stokes equation in the porous system is not
known. The velocity or position of a water or solute particle is the random
variable and as the particle passes through the porous system, it eventually
encounters all situations that are possible at any one given time. The probability
distribution function w for any water particle at various points along the
random path (Scheidegger, 1954) is given by

w(x,y,z,t) =
(4*Dt)

[-\(x-vxtf+{y-vyt)\(z-v2t)
2]

(9.24)

where vx, vy and vz are the Darcy velocity components [components of q in
(5.32) each divided by 8] in directions x, y and z, and D = o2/2f where o2 is the
variance of w(x, y, z, t). Day (1956) described in detail the connection between
w(x, y, z, t) and the macroscopic concentration of a solute being displaced in a
saturated sand.

Recognizing that (9.24) is proportional to the solute concentration and
knowing that (9.24) satisfies classical diffusion equations, Danckwerts (1953)
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used solutions of

<9.25)dt " dX2

subject to appropriate initial and boundary conditions to describe the
displacement of solutes through fluid-saturated porous media where X = (x-
vxt). He noted that the value of D must be determined empirically and would
presumably depend upon the viscosity, density and velocity of the fluid, and on
the size and shape of the solid particles. He called D the "diffusivity" while
Scheidegger named it the "factor of dispersion".

9.3.3 Displacement in a Representative Elementary Volume

The random capillary models described above were made somewhat more
physically realistic [Bear and Bachmat, 1967] by deriving the idea of a
representative elementary volume at the macroscopic scale from microscopic
quantities at the pore scale averaged over many pores. Molecular diffusion and
convection of solutes and water flowing within individual pores are described
at the pore scale while the spreading or dispersion of solutes with water as it
curves around and between soil particles through sequences of pores occurs at
the macroscopic scale.

Bear and Bachmat envisioned the porous medium as a network of
randomly interconnected narrow channels of varying length, cross section and
orientation. The chemically inert, non compressible liquid of variable viscosity
and density saturating the pores obeys Poiseulle's law and has two components -
a solvent and a solute. No surface phenomena between the solid particles and
the liquid take place. After deriving and averaging mass conservation and
movement equations for the liquid in and across a channel, these local
equations were averaged in a REV to obtain macroscopic equations. Details of all
assumptions and the various averaging processes that lead to macroscopic
equations containing average non random variables and parameters assigned to
the centroid of the REV are given by Bear (1969). We repeat here their final
equation of mass conservation in one direction avoiding the second-rank
tensorial notation necessary for a three dimensional analysis

:

where v and C are average values within the REV and Dc and Dm are the
coefficient of convective (or mechanical) dispersion [L T'2] and coefficient of
molecular diffusion [L T"2], respectively. Combining the latter coefficients into a
single term Da (commonly called the hydrodynamic dispersion coefficient or
the apparent diffusion coefficient), we have

for which many investigators have sought theoretical or experimental
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relationships between the value of Da (which embraces solute mixing at both
the pore scale and the pore-sequence scale within an REV) and the value of v
(the average pore water velocity usually estimated by the ratio of the Darcian
flux density and water content 6).

The results of several studies summarized by Pfannkuch (1962) related
the value of DB to the Peclet number of molecular diffusion Pe equal to vd/Dm

where d is the mean solid particle size or other characteristic length of the
porous medium. Recognizing that the effects of both molecular diffusion and
convection on solute mixing in typical one-dimensional experiments were
difficult separate, Fried and Combarnous (1971) suggested five ranges of Peclet
numbers or zones to delineate the relative magnitudes of each process. For
laboratory or field soils, we suggest that the following four zones will generally
suffice except under some field conditions when turbulent flow down large
fissures and cracks prevails during periods of rapid infiltration:

Zonel Pe<0.3 Da=Dm Dc«Dm

Zone 2 0.3<Pe<5 Da = (Dm + Dc) Dc~Dm

Zone3 5<Pe<20 Dc < Da < (Dc + Dm) Dc>Dm
Zone 4 Pe < 20 DB=D, D,»DB
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Figure 9.9. Breakthrough curves o/36Clfor the displacement of 0.10 N NaQ at
two flow rates through a uniform column of glass beads.

Zones 1 and 2 are illustrated in Fig. 9.9 for a miscible displacement
experiment conducted with a column uniformly packed with 390u glass beads
initially saturated with 0.10 N NaCl. This initial solution was displaced at two
different pore water velocities (0.499 and 7.80 cmh'1) with a chemically identical
solution containing Na36Cl to observe the mixing process and to match the
concentration distribution measured at x = 30 <:m with the solution of (9.27)
subject to conditions
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C = 0 x > 0
{9.28)

( = 0
C = C0 x = 0 t > 0
C = 0 x-*°° t>0

where Co is the concentration of 36C1. For each of the two pore water velocities.
Fig. 9.9 shows measured values of the relative concentration C/Co and smooth
curves satisfying (9.27) and (9.28) fitted to the data through the selection of the
only unmeasured entity Da in

' X+Vt ' {9.29)A
where erfc the complementary error function has been defined earlier by (9.18).
Values of Da for each value of v satisfy the equation (Fried and Combarnous,
1971)

where Dm = 1.98 • 10"5 ernes'1 (Wang, 1952) and d = 3.9 • 10"2 cm. Experimentally
determined values of a = 0.51 and n = 1.02 agree with those suggested by Fried
and Combarnous {1971). For the slower pore water velocity (0.499 cm-h"1) with
Pe = 0.27 (corresponding to the upper end of Zone 1), 83% of the mixing is
caused by molecular diffusion. For the faster velocity {7.80 cm-h'1) with Pe = 0.43
(corresponding to the lower end of Zone 2), only 23 % of the mixing is caused by
molecular diffusion.

Equation (9.30) is frequently reduced to
D,=0.67Dn+pv" {9.31)

for Zones 3 and 4 with the molecular diffusion term neglected and the value of
n taken as unity. In such instances, p is called the dispersivity.

Various investigators have used {9.27) or many similar diffusion type
equations such as (9.25) with particular assumptions regarding the -role of
longitudinal and transverse molecular diffusion to theoretically or
experimentally relate Da to some function of v such as (9.30) or {9.31). Twenty
five years ago Simpson (1969), writing a review article on the relationship
between pore water velocity and the value of the longitudinal dispersion
coefficient, stated, "The critical experiments remain to be performed: a
systematic investigation of the effect on dispersion of changes in the molecular
diffusivity". Somewhat later Sposito et al. (1979) presented a critical review of
different theories used to describe solute transport through porous media. His
remarks relative to theories based upon fluid mechanics and kinematic
approaches employing various statistical techniques reveal major opportunities
to improve our understanding of miscible displacement in surrogate porous
materials. Earlier reviews by Fried and Combarnous {1971) and Bear (1969) also
provide additional insights for future research.
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9.4 ONE-DIMENSIONAL LABORATORY OBSERVATIONS

The displacement of one fluid by another miscible fluid in a soil studied either
in the laboratory or the field offers theoretical and experimental challenges that
have only partially been explored despite 30 years of recent investigation. For
water infiltrating into a deep, homogeneous, water-saturated soil, we see in Fig.
9.10 that a solute of concentration Co maintained at a point on the soil surface is
dispersed vertically and horizontally. The velocity of the soil solution varies in
both magnitude and direction owing to the distribution of irregularly shaped
pores within the soil. Along transect A-A1, the initial concentration Co at z = 0
gradually diminishes to zero. Similarly, the concentration distribution normal
to the average flow along transect B-B' gradually broadens with soil depth.

CONCENTRATION C

0

DISTANCE ALONG HORIZONTAL
TRANSECT B-B'

Figure 9.10. A solution of concentration Co being introduced at one point on the
surface of a uniform, water-saturated soil during steady state infiltration.
Right: Concentration distribution along vertical transect A-A'. Bottom:
Concentration distribution along horizontal transect B-B'.

One dimensional soil columns studied in the laboratory provide a simple
means of quantifying the mixing, spreading or attenuation of the solute
schematically presented in Fig. 9.10. An apparatus is required to maintain steady
state flow and invariant soil water content conditions when the initial soil
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VACUUM AND
MANOMETER

Figure 9.11. Laboratory apparatus for conducting miscible displacement
experiments.

solution is invaded and eventually displaced by a second miscible solution. No
mixing of the two solutions should occur at their boundary before entering the
soil column, and samples of effluent to be analyzed for solute concentration has
to be collected without disturbing the steady state flow conditions. A cross
sectional sketch of a typical apparatus is given in Fig. 9.11. Details of its
construction and operation are available (e. g. Nielsen and Biggar, 1961).

9.4.1 Breakthrough Curves

Without first considering specific physical, chemical or biological mechanisms
involved in miscible displacement, much can be learned from a general
description of continuous flow systems (Danckwerts, 1953). Let the volume of
the soil column occupied by soil solution be Vo [L

3] and the rate of inflow and
outflow of the soil solution be Q [L3 T'1]. If the initial soil solution identified by a
solute concentration C, is suddenly displaced by an incoming solution Co, the
fraction of this incoming solute in the effluent at time t [T] will be (C - C,)/(C<, -
C,), or for an initial concentration of zero, simply C/Co. Plots of C/Co versus
pore volume of effluent (Qf/V0), commonly called breakthrough curves,
describe the relative times taken for the incoming solution to flow through the
soil column. Note that the definition of pore volume of effluent is not restricted
to water-saturated conditions but is applicable to all soil water contents. Any
experimentally measured breakthrough curve may be considered one or a
combination of any of the five curves shown in Fig. 9.12.

For Fig. 9.12a-c, the solute spreads only as a result of molecular diffusion
and microscopic variations of the velocity of the soil solution, i. e. there is no
interaction between the solute, water and soil particle surfaces. In these cases

ft = l t9-32)
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regardless of the shape of the curve. This equation expresses the fact that the
original soil solution occupied exactly one pore volume or that the quantity of
solute within the soil column that will eventually reach a chemical equilibrium
with that in the influent and effluent is C0VO. Note also that the area under the
breakthrough curve up to one pore volume' (area A in Fig. 9.12b and c) equals
that above the curve for all values greater than one pore volume (area B),
regardless of the shape of the curve. This latter statement is a direct result of
(9.32), i.e.

Danckwerts (1953) defined holdback Hi, as the left hand term of (9.33) having a
range 0 < H), < 1 for non reacting solutes. The concept of holdback is a useful
qualitative description whenever interactions between solute, water and soil
solids are minimal. It indicates the amount of the soil water or solutes not easily
displaced. Values of Hj, for unsaturated soils have been evaluated to be 3 to 4
times greater than those for saturated soils.

PISTON FLOW NORMAL DISTRIBUTION BI-MODAL DISTRIBUTION
1.0

o
SJO

u
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-

CHEMICAL REACTION
1.0 1.0
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1.0

0.5
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0 1

SOLUTE EXCLUSION

J
-

B .

2

0 1 2
FORE VOLUME (QtlV0)

0 1 2
PORE VOLUME (QtlVo)

Figure 9.12. Types of breakthrough curves for miscible displacement. C/Co is the
relative concentration of the invading fluid measured in the effluent and
pore volume is the ratio of the volume of effluent to the volume of fluid
in the sample.

Piston flow (Fig. 9.12a) never occurs owing to solute mixing that takes
place by molecular diffusion and variations in water velocity at the microscopic
level within soil pores. A breakthrough curve obtained from a water-saturated
Oakley sand (Fig. 9.13a) is characteristic of the longitudinal dispersion shown in
Fig. 9.12b. Evidence for lack of solute-solid interaction is the fact that the areas
described by (9.33) are nearly identical. A water-saturated soil composed of equal-
sized aggregates manifesting a bimodal pore water velocity distribution yields
the breakthrough curve given in Fig. 9.13b that illustrates the curve of Fig. 9.12c.
With the areas of (9.33) for this curve being comparable, any interaction between
the solute and the soil particles is negligible.
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Figure 9.13. Chloride breakthrough curves for water-saturated a. Oakley sand
and b. Aiken clay loam.

Figure 9.14 presents breakthrough curves for Cl" and tritium (as tritiated
water) from Columbia silt loam at two water contents and an average pore
water velocity of approximately 0.4 cnvh'1. At a saturated water content of 0.482
cm3-cm'3 (Fig. 9.14a), the Cl" curve was measured to the left of one pore volume
(given by the vertical broken line) and the tritium curve to the right of one pore
volume. The translation of the CT curve to the left of one pore volume is
characteristic of the curve in Fig. 9.12d and results from the repulsion of the
negatively charged Cl ions from the negatively charged soil particle surfaces.
The translation of the tritium curve to the right of one pore volume is
characteristic of the curve in Fig. 9.12e and results from adsorption and
exchange of tritium in the soil. Despite these different interactions, the close
proximity of the curves at C/Co = 0 and their relative shapes near C/Co = 1
indicate the more complete mixing of the tritium having the greater molecular
diffusion coefficient. A solute having the greater diffusion coefficient mixes
more completely with the water in stagnant and slowly conducting zorves, thus
delaying its appearance in the effluent. In this case, the initial breakthrough of
the solute having the greater molecular diffusion coefficient is translated to the
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Figure 9.14. Chloride and tritium breakthrough curves for Columbia silt loam at
soil water contents a. 0.482 cm3-cm-3 and b. 0.472 cm3-cm-3. The vertical
broken lines designate 1 pore volume.

right of that of the other solute. It should not be expected that the relative
behavior of solutes described above would be the same for all velocities and
different soils. For example, if one solute has a diffusion coefficient much
greater than the other, it would be possible for it to not only invade the nearly
stagnant zones but also diffuse downstream ahead of the other solute. In this
case the faster diffusing solute will appear in the effluent earlier that the more
slowly diffusing solute.

In Fig. 9.14b, decreasing the water content by only 0.01 cm3-cm"3 translated
both Cl" and tritium curves to the left of one pore volume. Unsaturating the
soil alters the pore water velocity distribution, allows some of the solute to
arrive downstream earlier and increases the magnitude of holdback manifested
by area A in Fig. 9.12. Desaturation eliminates larger flow channels and
increases the volume of water within the soil which does not readily move.
These almost stagnant water zones act as sinks to molecular diffusion. Later we
shall discuss the opportunity afforded by controlling the water content and pore
water velocity to change the leaching efficiency of field soils.

A more illustrative example of curves b, c and d in Fig. 9.12 are given in
Fig. 9.15 from two columns of Oakley sand initially fully saturated with Ca2+
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Figure 9.15. Chloride and magnesium breakthrough curves for initially Ca-
saturated Oakley sand at soil water contents a. 0.327 cm3-cm'3 and b. 0.235
cm3-cm~3. The two vertical, broken lines designate 1 pore volume for the
chloride and the cation exchange capacity, respectively.

[cation exchange capacity of 3.75 me-(lOOg)-1] and 0.1 N calcium acetate flowing
through them at a constant velocity while maintaining a constant water
content. Breakthrough curves of Cl" and Mg2+ for-0.10 N MgCh displacing the
calcium solution at water contents of 0.327 and 0.235 cm3-cnr3 are presented in
Fig. 9.15a and 9.15b, respectively. The positions of the Cl" curves appear in the
vicinity of the vertical lines representing the volume of solution in each soil
column, while those of Mg2+ appear further to the right in the vicinity of
another vertical line accounting for the cation exchange capacity. For the greater
soil water content (Fig. 9.15a) the Mg2+ curve has the same characteristics as the
Cl" curve (similar to Fig. 9.12b) even though it is flatter and is displaced to the
right {similar to Fig. 9.12d). Desaturating the soil water content (Fig. 9.15b)
produces a Cl" curve similar to Fig.. 9.12c and a Mg2+ curve having the shape of
Fig. 9.12c but a position illustrated in Fig. 9.l2d. Depending upon the
concentration and velocity of the displacing solution and the prevailing soil
water content, the shapes and positions of breakthrough curves are governed by
the characteristics of the cation exchange process as well as the mixing which
occurs by the pore water velocity distribution, molecular or ionic diffusion and
the spatial and temporal interaction of these processes.
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Figure 9.16. Breakthrough curves of36Clfor 0.01 N NaCl displacing 0.01 N NaCl
and for 4.0 N NaCl displacing 4.0 N NaCl in horizontal columns of water-
saturated glass beads.

9.4.2 Magnitude of the Diffusion Coefficient

The majority of inorganic cations, anions and solutes in soil solutions have
diffusion coefficients in the order of 10'5 cm^s'1 while organic cations, anions
and solutes usually manifest much smaller values. These coefficients are
moderately temperature dependent and slightly concentration dependent. The
importance of their different magnitudes is apparent only at relatively small
pore water velocities and often difficult to measure except under rigorously
controlled laboratory conditions.

For a 30-cm long column of 390 n glass beads, the results of two
experiments observing the displacement of 0.01 N NaCl by an identical solution
identified with a tracer of "Cl" and the displacement of 4.00 N NaCl by a
similarly observed identical solution containing 36C1" are given in Fig. 9.16.
With the pore water velocity for each experiment conducted at 25 ±1°C being
about 0.48 cm-lr1 (Zone 1 described in section 9.3.3) and the densities and
viscosities of the displacing and displaced solutions being virtually identical,
distinctly separate curves for each experiment are obtained owing primarily to
the different self diffusion coefficients of 36C1" (1.98-10"5 and 1.24-10"5 ernes'1 for
the concentrations of 0.01 and 4.00 N NaCl, respectively). At greater pore water
velocities (Zones 2 through 4) where mixing by convection progressively
dominates the displacement process, the importance of diffusion lessens.
Accordingly, for most infiltration and redistribution events following rainfall or
irrigation in field soils, a nominal value of the diffusion coefficient is assigned
to either an inorganic or organic solute without discriminating between solute
species or their concentrations. The impact of temperature on diffusional
mixing remains obscure from investigation.
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9.4.3 The Impact of Density and Viscosity

The existence of concentration gradients of inorganic salts in the soil solution
responsible for solute transfer by diffusion or as a result of convection
guarantees that the displacing and displaced solutions do not generally have
identical values of density or viscosity no matter how close their values. In
soils, it is not uncommon to experience solutions of unequal density and
viscosity. During the extraction of water from soil profiles by plants or by
evaporation at the soil surface, the density and viscosity of the soil solution
increase continually. Conversely the infiltration of rain or many irrigation
waters causes the soil solution to be diluted. Fertilizers and other agrochemicals
also alter these properties of the soil solution. The density and viscosity of the
soil solution also differ from those of the bulk solution owing to the interaction
of water and the soil particle surfaces especially in unsaturated soils or those
soils having large clay contents (Dutt and Low, 1962).

When two superposed solutions of unequal density are accelerated in a
direction perpendicular to their interface, the surface may be stable or unstable.
Differences in density provide unbalanced forces while differences in viscosities
account for unequal drag forces. For example, unstable flow occurs for particular
velocities vertically downward when a dense, more viscous fluid displaces a less
dense, less viscous fluid. Here, the unbalanced forces tend to accelerate the
denser fluid into the less dense fluid below with the viscous drag of the lower
fluid unable to counter-balance this acceleration. With this action "fingers" of
the more viscous fluid invade those pore sequences occupied by the less dense
fluid. For a 30 cm long vertical column of 390 H glass beads, the breakthrough
curve in Fig. 9.17 obtained for 0.01 N NaCl flowing upward at a velocity of 6.07
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Figure 9.17. Breakthrough curves of36Clfor 0.01 N NaCl displacing 0.10 N NaCl
vertically upwards at two different flow velocities in columns of water-
saturated glass beads. The broken line is a breakthrough curve for stable
flow similar to that in Fig. 9.16.
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cnvh'1 and displacing the more dense and viscous 0.10 N NaCl exhibits unstable
flow compared to that for stable flow (a curve from Fig. 9.16 shown as a broken
line).

The stability of the displacement depends upon the viscosities and
densities of the fluids, the permeability of the soil, and the direction and
velocity of the displacement. If Darcy's equation is obeyed for steady movement
with average pore water velocity v vertically upwards through a soil of
permeability Kp, the interface between the two solutions will be unstable for

( ^ { ) 0 - (9-34)
where p is the density, \i the viscosity and g the gravitational acceleration
(Taylor, 1950). The subscripts 1 and 2 refer to the displaced and displacing fluids,
respectively. Except for signs owing to the direction of the velocity, (9.34) also
applies to movement vertically downward. Inequality (9.34) has been used
extensively for immiscible fluids (e.g. Oatmans, 1962) and for miscible fluids
(e. g. Wooding, 1959, and Brigham et al., 1961). For the immiscible fluids water
displacing air during ordinary infiltration at the soil surface, the same principles
apply for the potential development of fingers of water moving ahead of the
average wetting front into the unsaturated soil profile. For miscible fluids, the
thickness of the interface region is not constant and tends to increases owing to
molecular diffusion. Hence, with the viscosity and density of the interfacial
fluid being neither those of the displacing nor displaced fluid and with the pore
geometry only implicitly considered through the value of Kp, (9.34) holds only
approximately for soils.

9.4.4 Influences of Solution Concentration and pH

Recalling from section 9.1.2, the surface charge characteristics of soil particles
and colloids are of two general types - one having a constant surface charge and
a variable surface potential, and the other having a constant surface potential
and a variable surface charge (Bolt, 1979).

The interplay of these chemical effects on transport during the
displacement of pulses of solution containing 36C1" through a water-saturated
Oxisol (Nkedi-Kizza, 1979) is shown in Fig. 9.18. In Fig. 9.18a, as the
concentration of the soil solution decreases from 0.1 to 0.001 N CaCl2, the 36C1~
elution curves shift to the right with their maxima decreasing. At a pH of 4, Cl"
is adsorbed. Owing to the fact that an equal number of negative and positive
exchange sites exists at pH 3.6 for this soil, we expect 36C1' to be exchanged for
their non radioactive isotopes on the clay surfaces. Differences in shapes and
positions of the curves in Fig. 9.18a are a result of the concentration of the soil
solution rather than caused by hydrodynamic and geometric aspects of the flow
regime.

As the pH of the soil increases above 3.6, the relative proportion of
negative to positive exchange sites increases. Thus, as shown in Fig. 9.18b for a
constant soil solution concentration of 0.001 N, the 36C1~ elution curve shifts to
the left as the pH increases. At pH 9, the early arrival of 36C1" is indicative of a
solute that is repelled from the predominantly negatively charged clay surfaces.
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Figure 9.18. Breakthrough curves for a tvater-saturated, Casaturated Oxisol. a. *CJ in
a CaCl2 solution displacing a solution of an identical chemical composition for
three different concentrations at a pH of 4. b. MCl in a 0.001 N CaCl,
displacing a solution of an identical chemical composition for three different
values of pH.

Although arid soils usually are dominated by constant charge colloids
and tropical soils by those of constant potential, all soils are mixtures of both,
and hence their behavior under conditions that induce shifts in pH cannot be
ignored.

9.4.5 Influence of Displacement Length

The mixing and attenuation of a solute by convection depend upon the pore
size distribution and the number of bifurcations experienced by the soil solution
as water flows through its system of microscopic pores (recall Fig. 9.6). The
greater the total macroscopic displacement length, the greater will be the
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Figure 9.19. Chloride and tritium breakthrough curves for 30, 90 and 120 cm
long , water-saturated sandstone columns.

opportunity for both convective and diffusive mixing. As the displacement
length increases, both the number of bifurcations in the pore system and the
time for molecular diffusion increase.

Corey et al. (1963) examined such a displacement as well as the nature of
the pore structure of a uniform, consolidated sandstone by using five column
lengths. Breakthrough curves for 75-ml pulses of tritiated CaCh solution (Fig.
9.19) displaced through three of the columns illustrate the progressive
attenuation of the initial concentration Co as the solute is displaced through
greater macroscopic lengths. Having traveled 150 cm, the relative concentration
was reduced to about 0.4. A practical implication of such attenuation is the
dilution of a solute within a soil profile without leaching any of its total mass
beyond a desired depth.

Note in Fig. 9.19 that the chloride appears earlier in the effluent than the
tritium and the separation between the data increases with column length. This
behavior demonstrates the differences of the interactions between each of the
solutes and the sandstone matrix. By conducting displacement experiments
with homogeneous columns of different lengths, the relative amounts of
convective and molecular diffusive mixing can also be ascertained when a
series of different average pore water velocities are employed. Corey et al.
avoided the difficulty of packing long soil columns with sufficent uniformity by
using a naturally occurring homogeneous sandstone.
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9.5 THEORETICAL DESCRIPTIONS

With soil physicists continuing their propensity to focus on geometric
considerations, soil chemists focusing on chemical reactions and ignoring
geometric effects and soil microbiologists and plant nutritionists limiting their
investigations to biotic absorption, our understanding of the leaching process in
soil profiles remains incomplete. This deficiency reflects our present-day
inability to integrate simultaneously the most relevant physical, chemical and
biological processes in a unified theoretical framework. Only recently have there
been attempts to model transport in multicomponent systems with
consideration of microbial activity and chemical reactions (e.g. Yeh and
Tripathi, 1991, Richter et al., 1992, and Simdnek and Suarez, 1994). Several
theoretical opportunities provide a basis for future experiments and analyses.

9.5.1 The Convective-Diffusion Equation

Here we derive the cornerstone of most theoretical descriptions of solute
transport in porous media recognizing its form is tentative in several aspects
besides being fraught with uncertainties of applicable temporal (Skopp, 1986)
and spatial scales (Dagan, 1986) that are not easily resolved.

We begin with the prism element having edges of length Ax, Ay and Az
given previously in Chapter 5 (Fig. 5.14). The difference between the mass of
solute entering the prism and that leaving the prism equals the difference of the
solute stored in the prism in time At providing that we account for any
appearance (source) or disappearance (sink) of the solute within the prism by
mechanisms other than transport. Hence, we obtain similar to (5.62) the
equation of continuity of solutes S [M L'3]

at \ax ay az J ,
where ]x, }y and Jz are the flux densities of solute in directions x, y and z and 0;
[ML^T'1] the i-th source or sink occurring within the prism usually considered
irreversible during the time period over which the equation applies.

In general, soil solutes exist in both gaseous and aqueous phases as well as
being associated with the solid organic and inorganic phases of the soil. Here, we
neglect the fact that non aqueous polar and non polar liquids can also reside in
soils and participate in the displacement process. We assume that at least some
solutes in the soil solution are sufficiently volatile to consider their content or
transport in the gaseous phase. Hence, the total solute concentration S in (9.35)

is
<9.36)

where pr is the soil bulk density [M L"3], Cs the solute adsorbed or exchanged on
the soil solids [M (M of dry soil)'1], 6 the volumetric soil water content, and C
the solute in solution [M L"3], P the porosity and Cc the solute in the soil air
[ML"3].
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The solute flux density / in (9.35) relative to the prism AxAyAz is difficult
to define unambiguously owing to the fact that the representative elementary
volumes of each of the terms in / and S are not necessarily equal nor known,
particularly for structured field soils. Each of the directional components of / is
comprised of contributions of solute movement within the gaseous and liquid
phases as well as along particle surfaces of the solid phase. We assume that
solute movement along soil particle surfaces is nil or can be accounted for by
functions relating the concentration of solutes in solution to that associated
with the solid phase in (9.36). Hence, the solute flux density consists of three
terms, one describing the bulk transport of the solute moving with the flowing
soil solution, the second describing the solute moving by molecular diffusion
and meandering convective paths within the soil solution and the third
accounting for molecular diffusion in the gaseous phase. For the z-direction, we
have

j z = ^ - (P - e)DG & (9.37)

where qz is the Darcian flux, Dc and Dm are the coefficients of convective

dispersion and molecular diffusion in the soil solution, respectively, Dc the
molecular diffusion coefficient in the soil air and Cc the gaseous solute
concentration in the soil air. Equations for ]x and /y are identical to (9.37) when z
has been replaced by x and y, respectively. We continue the analysis here for
only the vertical soil profile direction z avoiding vectorial and tensorial
notation.

Substituting (9.36) and (9.37) into (9.35), we obtain for a solute of the soil
solution that does not volatilize into the soil air

The first term of (9.38) describes the rate at which a solute reacts or exchanges
with the soil solids. Its exact form (Helfferich, 1962) continues to be debated. We
discuss both equilibrium and kinetic rate terms commonly used to describe this
adsorption-exchange process in the next section.

With Dfl = (Dc+ Dm), (9.38) reduces to

Although the source-sink term 0,- in (9.38) or (9.39) has most often been
considered in the absence of the rest of the equation in many disciplines, it is
often approximated by zero- or first-order rate terms

<pi = ye + rsp+nec + n^jC, (9.40)

where 7 and ys are rate constants for zero-order decay or production in the soil
solution and solid phases, respectively, and n and/zs are similar first-order rate
constants for the two phases. For radioactive decay, physicists may safely assume
that \i and \is are identical as well as assuming that both 7 and ys are nil.
Microbiologists, considering organic and inorganic transformations of soil
solutes in relation to growth, maintenance and waste metabolism of soil
microbes as a Michaelis-Menten process, often simplify their considerations to
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that of 0; in (9.40). McLaren (1970) provided incentives to study such reactions
as functions of both space and time in soil systems - a task not yet achieved by
soil microbiologists, especially when the individual characteristics of each
microbial species is quantified and not lumped together as a-parameter of the
entire microbial community. Agronomic or plant scientists consider 0,- as an
irreversible sink and source of solutes taking place in the vicinity of the
rhizosphere of cultivated or uncultivated plants as a function of soil depth and
time as well as some empirical function defining the root distribution.

For a solute that does not appreciably react with the soil particles, does not
exist in the soil air and does not appear or disappear in sources or sinks,
respectively, (9.39) reduces to

dC = d_( dC\_ d(vC)

dt dz{ " dz) dz
(9.41)

<9.42)

which is identical to (9.27) of Bachmat and Bear. For steady state flow in a
homogeneous soil at constant water content, {9.41) reduces still further to

dC _. d2C dC

which has been extensively used to develop empirical relations between the
apparent diffusion coefficient Da and the average pore water velocity v.

An intensively measured, field scale miscible displacement experiment
conducted to ascertain the distributions of Dtt and v was reported by Biggar and
Nielsen (1976). During steady state water flow conditions, they measured the
leaching of water soluble salts at six soil depths to 1.8 m within 20 subplots of a
150-ha field. For times 0 < t < ti the soil was leached steadily with water having a
concentration Co (chloride or nitrate). For times t < 0 and t > t\ the soil was
leached with water having a concentration C,-. In view of the large pore water
velocities measured in their experiment, the appropriate initial and boundary
conditions for the solution of (9.42) were

C=Q z>0 f=0
C=C0 z=0 0<t<t! <9.43)

C=Q z=0 t>h
The measured concentration C(z, t) was fitted to the solution of (9.42) subject to
(9.43)

(9.44)

at different locations within the field to obtain 359 values of {Da, v) which are
plotted against each other in Fig. 9.20. Values of Da were logarithmically
normally distributed with a mode of 4.0, a median of 85.1 and a mean of 367.6
cm^d'1. Values of v were also logarithmically normally distributed having a
mode of 4.3, a median of 20.3 and a mean of 44.2 cm-d*1 (see Fig. 9.25). The solid
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Figure 9.20. a. Field-measured values of the apparent diffusion coefficient Da
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coefficient and d is the mean soil particle diameter.

line in Fig. 9.20a obtained by regressing ln(Ds - 0.6) versus lni> is of the same
form as (9.31). The value of 0.6 represents the molecular diffusion coefficient for
the unsaturated soil taking into account the average tortuosity and the average
soil water content during displacement. The same data plotted as DaD^ versus
vdD~l (Peclet number) in Fig. 9.20b where d is the mean soil particle diameter
can be compared to those reported by Pfannkuch (1962) measured by several
investigators in the laboratory using homogeneously packed columns. With the
value of the coefficient /J = 2.93 being two orders of magnitude greater that
found in the majority of laboratory column studies, the impact of soil structure
and the large range of particle diameters and pore sizes on the dispersion of
solutes in natural field soils is abundantly evident.
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9.5.1.1 Solutes in Continual Equilibrium with the Solid Phase

Instantaneous adsorption or exchange reactions included irt the first term of
(9.38) are described by equilibrium isotherms CS{C) of several different forms -
mass action, linear, Freundlich, Langmuir or other functional forms (van
Genuchten et al., 1974; Bolt, 1979; and Travis and Etnier, 1981).

The most common approach for modeling the first term of (9.38) has
been to assume instantaneous adsorption or exchange as well as simple linearity
between Cs and C [Cs = kC where k is the slope of the isotherm CS{C) often
referred to as the distribution coefficient Kd\. If we put this linear isotherm in
(9.39) we have

which reduces to
d2C (9.46)

for steady state flow in a homogeneous soil and where R is a retardation factor
(= 1 + pjkO~l) • Equation (9.46) has been solved for many conditions for both
finite and semi-infinite systems (van Genuchten and Alves, 1982; Javandel et
al., 1984). While the simplicity of a linear isotherm is a convenient feature for
mathematically modeling, its limitations are clearly apparent owing to
adsorption and exchange processes usually being nonlinear and depending
upon the competing species in the soil solution (see Reardon, 1981; Miller and
Benson, 1983; and Valocchi, 1984).

9.5.1.2 Solutes Not in Equilibrium with the Solid Phase

Diffusion-controlled or chemically controlled kinetic rate reactions included in
the first term of (9.38) have been described in a variety of equations. We
consider here three of the more popular formulations.

The most simplest formulation is that of a first order linear kinetic
reaction where (9.39) is replaced by two coupled equations. Here, for steady state
flow through a homogeneous soil without sources or sinks, we have

. dC „ d2C dC

e dt ' dt
dCs

dt

dz

= a{kC-Cs)

<9.47)

where a is a first order rate constant. The success of this and similar rate models
(e. g. Davidson and McDougal, 1973; van Genuchten et al., 1974) has been best
when miscible displacement experiments have been carried out at relatively
slow velocities when mixing is dominated by molecular diffusion.
Nevertheless, under such conditions the values of a and k may indeed be biased
owing to the use of an average value of v which -does not embrace the spatial
distribution of the solute influencing the rate reaction within soil pores at the
microscopic scale.
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The second formulation gives more consideration to the microscopic
pore water velocity by defining a bimodal distribution which partitions the soil
water into mobile and immobile phases. In the mobile phase where soil water
flows, solute behavior is described by a convective-diffusion equation.
Inasmuch as water is stagnant in the immobile phase, solutes move in and out
of this phase only by molecular diffusion. Zones of stagnant water derive from
thin liquid films around soil particles, dead-end pores, non moving intra-
aggregate water or isolated regions associated with unsaturated conditions.
Miscible displacement equations based on first order exchange of solute between
mobile and immobile phases initially discussed by Coats and Smith (1964) were
extended by van Genuchten and Wierenga (1976) to include Freundlich type
equilibrium adsorption-desorption processes. Their equations are

at eimRim at = emDa - emvm
(9.48)

where the subscripts m and im refer to the mobile and immobile phases,
respectively. The retardation factors account for equilibrium type adsorption
processes similar to that in (9.46) while the mass transfer coefficient a embraces
a diffusion coefficient and an average diffusional path length. Although (9.48)
was used successfully by van Genuchten and Wierenga and by Gaudet et al.
(1977) as well as many others more recently to describe laboratory column
studies, its use in structured field soils has been limited owing to the difficulty
of obtaining reliable values of a which depend upon the geometry of the soil
pore structure (van Genuchten, 1985). For laboratory experiments, the value of
a may well be confounded with nonlinear isotherm and chemically kinetic
exchange effects. Moreover, the fraction of 6 considered to be immobile is
sensitive to hysteresis, the concentration of the soil solution, the soil water
content and the soil water flux. From the experimental studies of Nkedi-Kizza
mentioned earlier in section 9.4.1.4, Fig. 9.21 clearly shows the impact of the
solution .concentration and the average pore water velocity on the amount of
soil water considered to be immobile.

The third formulation considers the first term of (9.38) having two
components - one for exchange sites (type 1) on a fraction of the soil particle
surfaces that involve instantaneous, equilibrium reactions and another for type
2 exchange sites involving first order kinetics or those assumed to be time-
dependent (Selim et al., 1976; Cameron and Klute, 1977). Following Nkedi-Kizza
et al. (1984) we have

where F is the mass fraction of all sites being occupied with type 1 sites, and
where subscript 2 refers to type 2 sites. With values of a and F usually being
dependent upon the average displacement velocity v, values of F appropriate
for (9.49) cannot be obtained from equilibrium batch studies. The use of an
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CONCENTRATION C (N)

Figure 9.21. Fraction of immobile water versus solute concentration and average
pore water velocity.

average value of v masks any effect of the microscopic pore water velocity
distribution on the exchange process.

Comparison of (9.48) and (9.49) shows that they can be put in the same
dimensionless form by means of equation-specific dimensionless parameters.
With this information Nkedi-Kizza et al. (1984) proved that effluent curves
from laboratory soil columns alone cannot be used to differentiate between the
specific physical and chemical phenomena that cause an apparent non
equilibrium situation during miscible displacement. The similarity of the two
sets of equations allows an oftentimes satisfactory empirical description of the
mixing of solutes at the macroscopic scale by either equation without
ascertaining the exact nature of the particular chemical or physical process at the
microscopic scale. The exact nature of the processes awaits further research
using micro tomography or other techniques of observation at the microscopic
scale.

9.5.1.3 Dual-Porosity Models for Structured Soils

Dual porosity models {also called bi-modal porosity models) assume that a soil
can be separated into two distinct pore systems superpositioned over the same
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soil volume with each system being a homogeneous medium having its own
water and solute transport properties (Dykhuizen, 1987). We assume that the
same type of mathematical expressions can be used to describe both systems of
pores inasmuch as similar capillary effects take place in the pores of both
systems (Othmer et al., 1991). With the two systems exchanging water and
solutes in response to hydraulic and concentration gradients, the soil is
characterized by two water velocities, two hydraulic heads, two water contents
and two solute concentrations. Gerke and van Genuchten (1993) provide a
comprehensive review of various theoretical and experimental attempts to deal
with water and solute movement in saturated and unsaturated structured soils
during steady and transient water flow conditions. The basis of their numerical
simulations demonstrating the complicated nature of solute leaching in
structured, unsaturated soils during transient water flow are summarized here
to provide future opportunities for field research in soil hydrology.

Figure 9.22. Schematic diagram of a structured soil at the microscopic level.
Macro-pores, interaggregate pores and fracture pores appear between
sliaded-areas representing soil aggregates. Arrows represent water and
solute movement through a. the surface of an aggregate, through b. the
fracture pore, between c. aggregates, between d. continuous and stagnant
pores and inside e. an aggregate.

Microscopically, a structured soil (see Fig. 9.22 and our discussion in
sections 2.4, 4.3.3 and 5.3.2) consists of soil aggregates (shaded irregular areas)
surrounded by inter-aggregate pores (dotted areas) which form a more or less
continuous network. The pore network is geometrically a combination of inter-
aggregate and intra-aggregate pores further complicated by the presence of
distinct mineral and organic particles discussed earlier. Here we use subscript M
to denote the inter-aggregate system and subscript m to denote the intra-
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aggregate system. We refer the reader to the original article of Gerke and van
Genuchten (1993) for a complete description of the hydraulic properties of the
structured soil and the details of the solute transport equations only briefly
described here.

Solute transport with linear adsorption and first order decay is described
by

(9.50)
d{0mRmCm)_ d

^ &{"«-: dz ) M
where /i is a first order decay coefficient, Ts a solute mass transfer term to which
both molecular diffusion and convective transport contributes and wM is the
ratio of the volume of the interaggregate pores to that of the total volume of all
pores With the exception of rs which is defined as the mass of solutes per unit
volume of bulk soil per unit time, all variables in (9.50) are defined relative to
the partial volume of each pore system.

Although this model and its numerical solution can simulate transport
related to specific chemical and physical properties of the soil, its large number
of parameters not easily measured experimentally remain a topic of future
laboratory and field research.

9.5.1.4 Consecutive Convective-Diffusion Equations

Equation (9.39) is oftentimes sequentially repeated when organic or inorganic
products are of interest, especially when the products form a consecutive chain
of reactions, e. g. for nitrogen (urea -> NH4+ -> NO3" -> N2). In such cases a set
of simultaneous equations stemming from (9.39) becomes

dt • ~dT~~dz{"°< dz) dz T'~l '•
where; = 2,3, ••• n when n is the number of species considered in the reaction
chain. The equations are linked to-each other by their mutual fy terms. These
equations have been applied to consecutive decay reactions of soil nitrogen
species (e. g. Cho, 1971; Misra et al., 1974; Starr et al., 1974), organic phosphates
(Castro and Rolston, 1977) and pesticides (Bromilow and Leistra, 1980).

We illustrate the application of (9.51) with an investigation conducted by
Waeenet et al. (1977) who extended the mathematical analysis of Cho <1971) and
the experimental techniques of Mansell et al. {1968) and Misra et al. (1974) to
trace the fate of nitrogen applied as a pulse of 95% ^-enriched urea fertilizer to
an unsaturated soil column during steady state leaching conditions, ihe
concentration of oxygen within the partially air-filled pores wassmvultaneously
controlled at a desired constant value (Wagenet and Starr, 1977). The transport
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Figure 9.23. Concentration distributions of different nitrogen species identified
in the effluent and soil from a pulse of 15N-enriched urea solution
displaced through a column under controlled laboratory conditions.

and transformation of urea, NHjand NO; were identified by isotopic dilution
techniques. Based upon complementary experiments, the enzymatic hydrolysis
of urea Cj, the microbial oxidation of ammonium C2 and the microbial
reduction of nitrate C3 were each considered first order rate reactions. For their
study, (9.51) become
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d G

(9.52)

where R\ and R2 are the retardation factors for urea and ammonium (see {9.46)],
respectively, Da assumed to be identical for each of the chemical species and k\,
ki and k$ are the rate constants describing the processes of urea hydrolysis,
ammonium oxidation and nitrate reduction, respectively.

Elution curves for the three chemical species identified by the 15N tracer
introduced as a 100-ml pulse of urea solution (C,° = 1000 mg-1'1) into a soil
column having 20% oxygen in its air-filled pores are shown in Fig. 9.23a.
Theoretical and measured concentrations of NHJ-N and NOj-N in the soil
solution and those of adsorbed NHJ-N in the soil column at the conclusion of
the displacement process (f = 186 h) are given in Fig. 9.23b and c, respectively.
Details of the methodology to ascertain values of v, Da, R\, R2, k\, ki and £3 used
in the solutions of (9.5W) subject to appropriate initial and boundary conditions
are given by Wagenet et al. The rate of nitrification in the presence of 20%
oxygen was one order of magnitude greater than that of denitrification. Of the
100 mg 15N applied to the soil, a mass balance of the 15N in the chemical species
measured in the effluent and in the soil at the conclusion of the experiment was
within less than 3 mg.

With consecutive equations such as (9.52), field studies in the presence of
higher plants provide opportunities to better understand agro-ecosystems. For
example, Mishra and Misra (1993) learned how liming a cultivated field of corn
modified the values of ki and £3 as a function of soil depth and time in the
presence and absence of crop roots. A better understanding of microbial-induced
transformations of other chemical species for transient flow and nonisothermal
conditions await investigation in both the laboratory and the field.

9.5.2 Chromatographic Formulations

Descriptions of the transport of fluids with their dissolved constituents through
beds of reactive porous solids based upon chromatographic plate formulations
stem primarily from those derived by chemical engineers nearly one-half
century ago (e.g. Wilson, 1940; DeVault, 1943; Thomas, 1944, Glueckauf, 1949;
Lapidus and Amundson, 1952; and Heister and Vermeulen, 1952). Subsequent
studies in soil hydrology focused first on laboratory soil columns and later were
applied in the field for reclaiming saline and sodic soils. For example, to describe
cation exchange and ionic distributions within soil columns, Rible and Davis
(1955) used De Vault's theory while Bower et al. (1957) used that of Heister and
Vermeulen. Van der Molen (1956) predicted the reclamation of saline soils
during winter rainfall periods using the theory of Glueckauf. Dutt and Tanji
(1962) introduced computer-based chromatographic formulations that were
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followed by those of Kovda and Szabolcs (1979) and Oster and Frenkel (1980)
which were applied to soil reclamation. Shaffer (1977) extended the model of
Dutt to apply to cropped, tile-drained field soils.

z = 0
\

Az2

Az{

•

Figure 9.24. Illustration of a chromatographic formulation to describe the
displacement and mixing of tlie soil solution during leaching.

The chromatographic formulation introduced by Dutt and Tanji (1962) is
illustrated in Fig. 9.24 where a vertical, homogeneous soil column of length L of
unit cross-sectional area is made up of n segments (plates) each of length Azv

The concentration C, of a number of solute species / entering the column in
each leaching aliquot AQm (where m is the number of the aliquot) changes as the
solutes mix, react and pass through each segment. The first aliquot infiltrates
into the first segment, and fills it to some prescribed soil water content. The
second aliquot of infiltrating water displaces the soil water from the first
segment into the second segment, and so forth. If the amount of solution AQ in
each segment 4z, is identical during infiltration, the final concentration C* of
solute species / in the first aliquot AQ1 leached from the column will be

(9.53)
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where ACij is the change in concentration of solute ; when the aliquot AQ\ is
passed through segment Azi. As n -»°°, the last term in (9.53) is the integral of
the change in solute concentration from z = 0 to z = L. Assuming that the
solution is in chemical equilibrium with the soil in each segment, the difference
in concentration between the equilibrium solution and that entering each
segment is calculated. If n in (9.53) is considered finite, the average
concentration of the aliquots AQm is calculated by progressively equilibrating the
solution of AQm with each of the n segments assuming that piston flow (Fig.
9.12a) takes place within each segment. The dispersion of the solutes associated
with pore water velocity distributions and molecular diffusion are implicitly
and empirically included by choosing the number of segments or plates n. Tanji
et al. (1972) utilized the concept of holdback H(, (see (9.33)] to allow only a
fraction of the soil water in each segment to be displaced into the next after
chemical equilibrium. They also designated variable segment thicknesses AZJ
corresponding to soil sampling depth intervals or soil horizons as well as
choosing the value of n based upon the dispersion of measured chloride
breakthrough curves.

Because transient perturbations of the pore water velocity distribution
and soil water content are ignored during infiltration and redistribution,
chromatographic formulations of solute transport have more recently
emphasized the need to study the kinetic aspects of chemical reactions, exchange
processes and dissolution and precipitation. Even when these kinetic aspects
have been articulated, the enigma of choosing the number and thickness of the
segments to reconcile the omission of the pore water velocity distribution
remains the objective of future research.

9.5.3 Stochastic Considerations

Because of the naturally occurring heterogeneity of field soils, deterministic
formulations of solute transport processes presented above generally must be
modified to describe pedon or field scale solute transport. Contemporary
research efforts are based upon the consideration that transport phenomena are
intrinsically erratic processes susceptible to quantitative characterization by
stochastic models. Common to all stochastic models of pedon or field scale
transport is the assumption that parameters observed in the field are functions
with values distributed in space represented as random variables with discrete
values assigned according to a probability distribution. The probability
distribution functions at each point in space are usually unknown and cannot
be evaluated from only one or a few observations within close proximity of the
location. Reviews by Jury (1983) and Dagan (1986) provide pedagogic details.
Many other statistical approaches are also described in the literature [e.g.
continuous Markov processes (Knighton and Wagenet, 1987), random walk
formulations (Kinzelbach, 1988), moment analyses (Cvetkovic, 1991) and
hierarchical methods (Wheatcraft and Cushman, 1991). Here, we consider three
approaches that are available to deal with spatial and temporal variability in
addition to the state-space equations previously described in Chapters 7 and 8.
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9.5.3.1 Monte Carlo Simulations

Monte Carlo simulations of a solution of a deterministic equation such as (9.42)
allow coefficients to be random variables of the nature expected within a
heterogeneous field soil. The variable may be independent, spatially or
temporally correlated and perhaps manifest a variance structure. Based upon an
initial sampling, parameters selected for the assumed probability density
function (pdf) permit repeated solutions (i = l, 2, •••) of the deterministic
equation [e.g. Cfat)] to be calculated. These solutions d{z, t) are then used to
calculate sample moments (mean, variance) which are assumed to represent the
statistical properties of the underlying stochastic process.

120

60

0 100 200 400
Da (cm2-d4)

0 SO 100 150
v (cm-d'1)

Figure 9.25. Probability distribution functions ofDa and v presented in Fig. 9.20.

RELATIVE CONCENTRATION Cl Co
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Da (cm^d"1) v (cm-d"1)
— mode 4.0 4.3

median 85.1 20.3
mean 367.6 44.2

Figure 9.26. Solute concentration distributions within a field soil. a. Monte Carlo
simulation and b. Deterministic equation (9.44). Measured values and
their standard deviations are represented by solid circles and horizontal
bars, respectively.
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Amoozegar et al. (1982) relied on the initially measured observations of
Dfl and v shown in Fig. 9.20a and their pdfs shown in Fig. 9.25 together with the
normal pdf of 6- to estimate the solute concentration distribution C(z, t)/C0

expected at any location within a field. The average solute concentration
distribution C(z,t)/C0 expected for the entire field was derived from repeated
calculations of (9.44) using the following Monte Carlo step-wise procedure:

1. Draw a random value from the normal distribution with mean zero
and standard deviation 1 {Maisel and Gnugnoli, 1972).
2. Find random values of lnD, \nv and/or 9 from their respective
statistical distributions represented by the equation y = fkr + {i where /} is
the value with mean zero and standard deviation 1, and y is the random
value with mean \i and standard deviation a.
3. Calculate the random value of C/Co from (9.44) using the above values
of Da, v and 6 for each z and t..
4. Repeat steps 1 through 3 above 2000 times and calculate the mean
value of C/Co for each z and t..

The average solute concentration distribution C{z,f)/C0 expected for the entire
field at time t = 2 d for a pulse input of solute concentration Co for t\ = 0.4 d is
shown in Fig. 9.26a together with the field values measured by Biggar and
Nielsen (1976). Note that these distributions differ markedly from those in Fig.
9.26b calculated from (9.44) using constant values of Da, v and ft The spreading
of the solute averaged over the entire field is dominated by variations in pore
water velocity (Bresler and Dagan, 1979, and Dagan and Bresler, 1979).

Two kinds of solute distributions are of interest. The first kind is that of
C(z, Vj/Co realized at any location within a field, and the second is that of
C{z,f)/C0 obtained by averaging a large number of C,(z, t)/C0 across a field. The
former is important because it is associated with a particular soil pedon location,
a single crop plant or a small community of plants. With site-specific crop and
soil management practices, each location can indeed be treated and managed
individually across the entire field in order to account for local variations of soil
properties (Robert et al., 1993). The latter is important because it is the
expectation of solute retention and emission of solutes from an entire field
considered as a single domain. Although there is general appreciation of the
latter, a farmer is also appreciative of the former owing to the desire to provide
optimum growing conditions for each and every crop plant within the
cultivated field.

Present-day research within soil mapping units focusing on auto- and
cross-correlation lengths of soil properties and variables [such as those in (9.44)]
will eventually allow the delineation of the extent of a field characterized by a
single simulation. The opportunities afforded by Monte Carlo simulations
hinge upon the development of methods to measure and ascertain pdfs of the
transport coefficients within prescribed limits of vadose zone depths and times.
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9.5.3.2 Stochastic Continuum Equations

Recognizing the paucity of solute concentration data usually available in soils
and other subsurface environments coupled with their natural geometric
complexities and heterogeneity, Gelhar et al. (1979) initiated stochastic
continuum formulations to describe transport processes in water-saturated
aquifers. Unlike the above Monte Carlo methods which assume that the
random parameters or variables have no spatial correlation, stochastic
continuum formulations assume that a random variable can be represented by
the sum of its mean and a spatially correlated random fluctuation.

We illustrate the approach with Darcy's equation that describes the mean
vertical water flux density q in a saturated soil (5.5) as

dH (9.54)

where , q, Ks and H are expected mean values. Assuming that the values of z
and its derivative are measurable and known determirustically within desired,
prescribed limits of accuracy, (9.54j) can be written as

<7 = l (9.55)

where each of the terms q, Ks and H are random, spatially autocorrelated
functions and have a zero mean value. Subtracting (9.54) from (9.55) yields

. _ F dH i dH * dH

The terms in such an equation evaluated by deriving a first-order equation for
the fluctuations are solved with Fourier transforms (Gelhar et al., 1979).

When a random parameter such as Da in (9.42) is represented by the sum
of its mean value and a random fluctuation, a mean transport model with
additional terms is obtained. By solving the stochastic equation of the local-scale
water and solute transport, the functional form of Da for macroregions is related
to the statistics describing the variability. A macro-scale value of Da is reached
asymptotically as distance and/or time increase. From such an analysis the long-
term, large-scale solute transport can be described using the stochastically
derived value of D« in the deterministic equation (9.42).

A limited number of field aquifer experiments (e.g. Sudicky et al. 1985,
and Freyberg, 1986) have shown that the value of Da increases with solute travel
time and travel distance and gradually approaches a constant asymptote
consistent with the analysis proposed by Gelhar et al. The application of
stochastic continuum research for unsaturated soils appears promising (e.g.
Russo, 1993, and Yeh et al., 1985a, b and c) but not yet sufficiently developed to
be a proven field technology.
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9.5.3.3 Stochastic Convective Equations

The displacement and attenuation of a solute distribution within a vertical soil
profile during infiltration can be considered the result of a stochastic convective
flow process with its formulation based upon a solute travel time probability
density function. The advantage of such formulations is that they do not require
an explicit accounting of all of the various physical, chemical and biological
processes occurring in the complex, heterogeneous soil environment. Although
many stochastic convective models have been used in different scientific
disciplines, those initiated by Simmons (1982) and Jury (1982) stimulated
research in soil hydrology during the past decade. Here we introduce the
stochastic convective concept as a transfer function Qury, 1982) which can easily
be obtained for a nonreactive solute by a single, simple field calibration to
measure the travel time distribution. It is assumed that no dispersion of the
solute takes place other than that which is represented by the travel time
variations within the soil.

Assuming that the depth reached by a solute applied in water at the soil
surface depends upon the net amount of water applied, the probability that the
solute will reach depth L after a net amount of water / has been applied to the
soil surface is

pL^)=\lfd}')dl (9.57)

where fi{T) is the probability density function. fi(l) is the average concentration
at soil depth z = L in response to a narrow pulse (Dirac 5-function) of solute C/jv
= C08(I) applied at I = 0 at the soil surface. A set of observations of /L(I) can be
obtained by measuring the soil solution concentration at depth L at various
locations within a field to determine the amount of uniformly applied water /
required to move the solute pulse from the soil surface to depth L. The average
concentration Ci(I) at z = L for arbitrary variations of solute C/N applied at the
soil surface is

Q.(;)=J~c/N(J-J')fL(n^'- (9-58)
The integrand is the probability fi{V) of reaching z = L between V and (/' + dV),
and multiplied by the concentration C/N(/ - /') of solution displacing at /'. For
spatially variable water application rates Jury used a joint probability function in
(9.58).

We assume that the distribution of physical processes -contributing to the
probability density fi(I) between z = 0 and z = L is the same for all soil depths.
Hence the probability that an applied solute will reach any depth z after an
amount of water 1 = h has infiltrated the soil surface is equal to the probability of
reaching z = L after / = JjLz"1 has infiltrated. For example, the probability of
reaching a depth of 50 cm with 10 cm of infiltrated Water is equal to the
probability of reaching 100 cm with 20 cm of infiltrated water. Hence, from {9.57)

(9.59)

To predict the average solute concentration as a function of any depth z * L, we
relate the probability density function fz(I) to the reference density function fi by
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and obtain

(9.60)

(9.61)

CALIBRATION FROM
z = 0 TO z = L

- TRANSFER TO
2 = Z

z =

/

y

L

rifa

1
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— - i o — - i o
NET AMOUNT OF WATER APPLIED I

Figure 9.27. The concept of a transfer function calibrated at depth L to predict the
arrival of a solute pulse from the soil surface at depth z as a function of
the net amount of water applied,at the soil surface. The broken curves
each represent a distribution measured at a specific location within the
field.

The concept is illustrated in Fig. 9.27 where the broken lines in the graphs
for z = L and z = z represent concentration distributions measured at individual
locations within the field.

If the transport properties are statistically similar for all depths, only one
calibration /L is needed. On the other hand, if they are dissimilar owing to
strongly developed horizons or textural and structural differences, additional
calibrations / a r e required or a more robust calibration/•, for-all depths can be
made at depth L below the strongly stratified soil.

Relatively few distributions of solute transport parameters have been
measured in the field. Some of them appear to be lognormal. For such
distributions the travel time density function fz(t) is

fl(t)= exp
-{\nt-nf

2a2 (9.62)

where \i is the mean of the distribution of Inf and a2 the corresponding
variance. On the other hand (9.44) for the same boundary and initial conditions
yields the travel time density function/z(f)

A(0= exp
-(L-vtf

ADat
(9.63)

Although the above functions are nearly identical when calibrated at the same
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depth (Simmons, 1982), they yield distinctly different predictions of solute
movement at depths z * L. Jury and Sposito (1985) have shown that the
variances of the travel time for (9.62) and (9.63) are

v a r ^ [t]=z2L~2 exp(2jz )[exp(2tT2)-exp(cr2)] (9.64)
and

c M , (9.65)
respectively. Inasmuch as var2ml [t] increases as the square of the depth z while
that of (9.44) increases linearly with depth, the lognormal transfer function
model predicts the greater amount of solute spreading for the same depth.
Present-day field experimentation for different soils and local conditions is
sufficiently limited to preclude a preferred choice of the two models (e.g. see
Jury and Sposito, 1985).

Presently, stochastic-convective formulations are being extended to
include the transport of adsorbing and decaying solutes, two component
chemical nonequilibrium models, physical nonequilibrium models and other
nonlinear processes. See a review by Sardin et al. (1991) as well as a more recent
contribution by Roth and Jury (1993).

9.6 IMPLICATIONS FOR WATER AND SOLUTE MANAGEMENT

Although our understanding and theoretical description of solute transport in
soils remain incomplete, we have nevertheless sufficient knowledge to derive a
few principles or guidelines for managing solute retention or leaching in the
field. Whether solutes accumulate or leach depends primarily upon the
processes by which they enter, react and leave the soil profile relative to their
association with water. Here, we make no attempt to discuss the well-known
principles of managing salinity and drainage from irrigated agricultural lands
used for crop production inasmuch as excellent texts are abundantly available.
Disregarding horizontal surface and subsurface water flow, we focus our
attention on transport owing to the water content and flux density conditions at
the soil surface occurring naturally owing to local weather conditions and being
deliberately modified by irrigation.

Summarizing the more important points of this chapter, we conclude the
following regarding the relative movements of soil water and its dissolved
constituents:

a. As water moves more slowly through a soil, there is a greater
opportunity for more complete mixing and chemical reactions to
take place within the entire microscopic pore structure owing to
the relative importance of molecular diffusion compared with that
of convection.
b. Microscopic pore water velocity distributions manifest their
greatest divergence for water-saturated soil conditions. Hence,
under water-saturated conditions, the greatest proportion of water
moving through the soil matrix occurs within the largest pore
sequences.
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c. Under water-saturated soil conditions, when the average pore
water velocity is large compared with transport by molecular
diffusion, the relative amount of solute being displaced depends
upon the solute concentration of the invading water.
d. The concept of preferential flow paths occurs at all degrees of
water-unsaturation even though their existence is usually only
demonstrated for macropores near water-saturation. At each
progressively smaller water content, the larger pore sequences
remaining full of water establish still another set of preferential
flow paths.
e. Any attempt to measure the solute concentration based on
extraction methods carried out either in the laboratory or the field
will be dependent upon the rate of extraction and the soil water
content during the extraction process.
f. Inasmuch as rainfall infiltration usually occurs at greater soil
water contents and greater average pore water velocities than does
evaporation at the soil surface, the amount of solutes transported
near the soil surface per unit water moving through the soil
surface is greater for evaporation than for infiltration.

Each of the above six points have been verified one way or another in
numerous publications before and after the observations made in a field
experiment conducted by Miller et al. (1965) which we describe below.

A level 0.4-ha site of Panoche clay loam was divided into 0.004-ha plots
statistically replicated in five complete blocks. Potassium chloride uniformly
applied to the soil surface was leached and redistributed within the profile with
four different methods of water application: a. the soil surface continuously
ponded with water, b. the soil surface intermittently ponded with repeated
applications of 15-cm of water, c. the soil surface intermittently ponded with
repeated applications of 5-cm of water and d. the soil surface continuously
sprinkled at a rate less than Ks and equal to 0.3 cm-h'1. The intermittent
applications were made weekly when the soil water pressure head at the 30-cm
soil depth reached a value of -150 cm. Each method gave rise to different soil
water content distributions 8(z,t) and different water flux density distributions

q(z,t). Average values 6{z,t) and q{z,t) for each method were a. 0.48 and 0.6, b.
0.44 and 0.09, c. 0.42 and 0.03 and d. 0.42 cm3-cm'3 and 0.3 cm-h'1, respectively.
Soil solution samples taken every 30 cm to a depth of 150 cm were frequently
extracted and analyzed in the laboratory for their chloride content. From the
five plots of each treatment about 3500 samples were analyzed. Additional
details regarding the exact nature of the infiltration, redistribution and soil
water content profiles are available (Nielsen et al., 1967).

The chloride concentration distributions from the four water application
methods manifest significant differences (Fig. 9.28). Although some chloride
leached to great depths in the continuously ponded soil after 15 cm water had
infiltrated, most all of the solute resided in the top 50 cm of soil. In the other
three treatments for the same amount of water infiltrated, large quantities of the
solute had been dispersed twice the depth to 100 cm. For 60 cm of infiltration,
the center of the solute mass is displaced to greater depths as 6{z,t) decreases.
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Figure 9.28. Field-measured chloride concentration distributions from a surface
application of potassium chloride being leached through the profile as a
result of four different water application treatments. Values associated
with each curve correspond to cumulative amounts of water infiltrated

That is, for the continuously ponded case, the relative maximum chloride
concentration is just below 100 cm while those for the intermittent 5-cm
ponding and for continuous sprinkling were both below 150 cm. Indeed, the
concentration of solute for the latter two treatments for 60 cm of water
infiltrated is everywhere less than that of the continuously ponded case when as
much as 90 cm of water had infiltrated. Under the continuously ponded
condition, judging the small solute concentration to a depth of 90 cm when a
depth of 90 cm of water had been applied, its behavior conformed to the
recommendation, "It takes a cm of water to leach a cm of soil". Here we note
that for unsaturated, slow leaching conditions, it took only 60 cm of water to
leach the same amount of solute as was required for 90 cm of water under near-
saturated ponded conditions. The distribution curves for intermittent 5-cm
ponding and for continuous sprinkling are remarkably similar. Even though
their values of cj(z,t) differed by one order of magnitude, at such slow flow rates
relative differences in mixing by molecular diffusion are apparently
insignificant to the spreading of solute at nearly identical 0(z,t).

Two additional comments are appropriate for the data presented in Fig.
9.28. First, consider the 15-cm curve for continuous ponding, the 45-cm curve
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for 15-cm intermittent ponding and the 30-cm curve for 5-cm intermittent
ponding. If we assume that a nitrate fertilizer instead of a chloride salt had been
applied to the soil surface, three entirely different solute distributions could
have achieved different purposes. For continuous ponding, the fertilizer is
leached in a concentrated solution for the benefit of a shallow-rooted crop. For
5-cm intermittent ponding, fertilizer is leached to the roots of a deep-rooted crop
( e.g. a fruit tree crop) and not in the vicinity of an associated, shallow-rooted
cover crop. The 45-cm curve for 15-cm intermittent ponding illustrates uniform
fertilization to a 125-cm soil depth - a desired result for both deeper-rooted and
shallow-rooted crops growing in the same community. Second, consider the
curves for continuous ponding and those for 5-cm intermittent ponding. If we
assume that a chlorinated pesticide moves approximately like chloride and has
a lethal dose equivalent to 100 meq-1'1 chloride, we note that pests such as
nematodes are killed to a depth greater than 100 cm if we leach the pesticide
with intermittent ponding. On the other hand, by adding the' same quantity of
pesticide to the soil surface and leaching it under continuously ponded
conditions, nematodes thrive at depths below 60 cm.

Although the solute distributions and their interpretations above support
many of the six points made in this section, they remain empirical and
speculative owing to the fact that such distributions cannot at this time be
accurately predicted based upon our present knowledge of soil hydrology.
Different results will no doubt be obtained for different soils, solutes and local
conditions. Even for the above experiment, had the intermittent applications of
water been made at intervals greater than one week, entirely different results
would have occurred. That is, it is known based upon the analysis of the soil
water behavior in this study (Nielsen et al., 1967) that at the end of one week,
evaporation at the soil surface together with gravitational redistribution of soil
water allowed a net vertically upward movement of water from the 90-cm soil
depth. Hence, at those smaller soil water contents and water flux densities, the
chloride would have started to move more efficiently to the soil surface. In such
a case,, continually ponding the soil surface would have more efficiently leached
the soluble solute per unit water infiltrated from the 150-cm soil profile.

Fig. 9.29 shows an example of the chloride concentrations measured
within the soil profiles from which the distributions given in Fig. 9.28 were
derived. The figure pertains to the intermittently 15-cm ponded treatment for
soil depths of 30, 90 and 150 cm. A distinctive characteristic of the curves for the
30- and 90-cm depths is the relative minimum reached soon after the initiation
of each 15-cm water application. Similarly, a relative maximum is reached near
400 h soon after the third 15-cm water application. This behavior is associated
with the sampling technique. When soil solution is extracted, the bulk of the
flow takes place in the larger water-filled pore sequences. Hence, at the
shallower depths, the more solute-free infiltrating water flowing through the
larger water-filled pores and extracted by the soil solution samplers during
infiltration yields a solution that is, indeed, more dilute than the average solute
concentration at that depth. Similarly, the more concentrated solution from the
shallower depths temporarily taken into the soil solution samplers at the
greater depth is greater than the average solute concentration at that depth.
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Figure 9.29. Chloride concentration distributions measured at depths of 30, 90
and 150 cm. Zero time represents the time when the first 15-cm ponded
water application was initiated. The vertical arrows indicate the other
times when additional 15-cm applications were initiated.

Acknowledging that the efficiency of solute leaching obeys the principles
discussed here, Dahiya et al. (1985) nevertheless recommend that leaching of
saline soils be carried out under continuously ponded conditions based upon
their experiments with different plot sizes. They argue that under practical
situations in which reclamation is carried out in large field domains, controlled
slower, uniform infiltration at smaller soil water contents would require more
labor and time.

Except for the post script that follows, we conclude our book with the
admonishment that observations and theories of soil hydrology have not yet
completely reconciled different scales of space and time in the management of
fresh water retained at continental surfaces.

PROBLEMS
1. Considering a soil column in the laboratory to be equivalent to a bundle of

independent capillary tubes, calculate breakthrough curves similar to that
shown in Fig. 9.5b for a. a column composed of equal-sized capillary tubes
and b. a column composed of two tubes of radius 0.1 cm and 4000 tubes of
radius 0.001 cm. Discuss your answer in terms of "preferential flow".

2. By changing variables (X, t) of (9.24) to [(z - vt), t] and substituting Da for D,
derive (9.42).

3. Assume that (9.44) describes a pulse of solute ( t\ - 0.4 d) being leached
through a homogeneous, water-saturated soil column of length 2 m. For
an average pore water velocity v = 40 cm-d'1, you measured at z = 1 m a
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relative maximum concentration [(C - Q)(,C0 - C,)'1] = 0.22. What is the
value of Dfl? Hint: First obtain dC/ dz and set it equal to zero.

3. a. Experimentally for the above problem, how could you best establish the
boundary condition C = Q [0, (0 < t < ti)]? b. Similarly, how could you best
experimentally establish the constant solute flux density boundary
condition [vC - Da dC/dz = constant) at z = 0? In each case, explain the
limitations of alternative techniques.

4. Show that for large values of v DJ1, (9.44) reduces to

z-vt -erfc
z-v{t-h)

Hint: lim exp(x)erfc(x)=0.

5. You are interested in simulating with (9.44) the spreading of a solute pulse
(initially of thickness vt\ = 15 cm in the topsoil) moving below plant
roots in the vadose zone of a semi-arid environment. The long-term
average net amount of water moving past the zero flux plane in the soil
profile is only 0.01 cm-d'1. You first assumed that Dc»Dm and
approximated Da in (9.44) by flv using a published field-estimated value
of the dispersivity j8 = 3 cm. Next, you assumed that Dc = Dm = 0.6 cm2-d'l
a. With your first assumption, calculate the distribution of the solute
{[C(z) - Ci][C0 - C,]"1} in the vadose zone for times t = 100 and 1000 y. b.
With your second assumption, calculate the distribution of the solute
{[C(z) - Ci][C0 - C,]'1} in the vadose zone for the same times. Which
assumption do you believe is more realistic, and why?

6. Discuss the implications of using temporal and spatial average values of Da
• and v in the above problem.

7. The term 0; in (9.35) sometimes represents the growth of soil microbes with
the Michaelis-Menten process having the form

where Km is the product of a maximum growth rate constant and the
biomass of the microbes and Km is a "saturation" constant, a. For a
concentrated soil solution, show that the above equation reduces to a
zero-order equation with a constant value 0 = k0- b. For a dilute soil
solution, show that the above equation reduces to a first-order equation
with 0 = kC as was assumed in (9.52).


