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APROACHES TO MODELLING SOIL AND CROP RESPONSE TO OXIGEN 
DEFICIENCY 

 
INTRODUCTION 
 
Many authors have emphasized the complex nature of anaerobiosis in soils produced by 
waterlogging.  Poor aeration may cause the accumulation of various gases and toxic 
products, but depletion of oxygen below critical levels can be considered as a major effect 
on plant growth and crop production.  From practical, point of view, the questions is “what 
level of oxygen is critical”.  The amount of oxygen in soil is determined by the supply of 
oxygen from the atmosphere and its consumption in the soil.  These aspects are highly 
dynamic and very difficult to quantify. So, a convenient way to develop quantitative theory 
on soil aeration has been to split the diffusion process in macro and micro diffusion.  In 
fact, there is abundant literature on mathematical models to describe these two processes.  
This lecture outlines in a simple way the mathematics of various cases of diffusion which 
have been widely used in modeling soil aeration.  Simplifications of the general equation of 
diffusion (Fick’s law) giving two possible forms of the problem:   planar or one-dimensional 
diffusion and radial diffusion are given.  Furthermore, the solution of diffusion equation is 
obtained by the analogy to the problem of electrical flow (Ohm’s law). Taking into 
consideration the soil respiration process, the continuity equation which accounts for the 
law of conservation of mass is solved.  The purpose of this paper has been to review the 
interrelation soil structure-air movement in waterlogged clay soils, and its consequences 
on plant growth and crop production. Thus, the mathematics of diffusion is presented, and 
then its application to specific cases of soil aeration such as diffusion in the soil profile, soil 
aggregates and roots is given.  The following assumptions are taken into consideration. 
 
Gas flow in soils is basically diffusion-dependent.  Gas-phase diffusion is the major 
mechanism for vertical or longitudinal transport (long distance transport); this means, with 
depth Z in the soil profile (macrodiffusion). 
 
For horizontal transport (short distance transport or microdiffusion) which is assumed to be 
in X direction; in this case, the geometry of aggregates and the liquid phase are the major 
components of resistance for diffusion.  Soil aggregates and roots are considered to be 
spherical and cylindrical in shape respectively. 
 
Soil oxygen consumption, Sr, is taken to be independent of the oxygen concentration and 
considered to proceed at the same rate until oxygen supply drops to critical levels.  Thus, 
aeration problems are assumed to begin when at any time, in the root  zone, the oxygen 
diffusion rate, ODR, becomes less than 30x10-8 -g.cm-2.sec-1 , or the value of redox 
potential Eh is less than +525 mv (Obando, 1990). 
 
Planar Diffusion 
 
The first stages in the soil aeration process in the short term can be described by 
assuming simple steady-state one-dimensional diffusion system in which there is no net 
lateral movement and where a linear gradient of oxygen concentration is developed 
between the atmosphere and an adjacent or more remote sink in the soil profile.  As 
indicated in figure 1 the soil frofile in considered bounded by two parallel planes, e.g. the 
layers at Z=0 and Z=L.  Obviously, these will apply in practice to diffusion into the soil 
profile where effectively all oxygen enters through the surface layer.  An equation 
describing the steady-state linear diffusion from planar source to planar sink of equal area, 
through an isotropic medium in which there is no lateral loss or gain of molecules of the 
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gas can be derived from the differential equation for planar diffusion (equation 1, first 
Fick’s law), which for vertical transport (in Z direction) becomes: 
 

 δc                   δ²c 
_____  = D . _____                               (1)  
  δt                   δZ² 

 
The steady state 
 
Let us consider the case of diffusion through a soil profile of depth L and coefficient 
diffusion Dε, whose layers at Z=0 and Z=L, are maintained at constant concentrations Co 
and Cz respectively.  After a time, a steady state is reached in which the concentration 
remains constant at all points of the profile and provided that Dg is constant, equation (1) 
reduces to:  (Crank, 1975) 
 

δ²c 
____  = 0     (2) 
δZ²  

 
on integrating with respect to Z we have 
 

δc 
____  = constant = K1   (3) 
δ²  

 
 
Where K1 is a constant > 0 confirming that the concentration must change linearly through 
the soil profile from Co to Cz.  Introducing the conditions at Z=0, Z=L, and integrating a 
second time we obtain 
 
  C = K1z + K2     (4) 
 
Where K2 is a second constant of integration. 
 
Applying the boundary conditions C=Co on Z=0 and C=Cz on Z=L then Co=K2 and 
Cz=K1L + Co and hence 
 

            δc          (CZ – Co) 
K1 = _____  =  ________     (5) 
            δz              L 

 
both equations (3) and (5) show that the concentration changes linearly from Co to Cz 
through the soil profile.  Also, the rate of transfer of diffusing substance is the same across 
the whole profile and is given by 
 

                    δc                  (Cz – Co) 
Fε = -  Dε _____  = - Dε  _______        (6) 
                    δz                       L 

 



 4

where Fε , the one-dimensional flux of oxygen is constant through the length of diffusion 
path from Z=0 to Z=L. 
 
If the depth L and the surface concentration Co and Cz are known, Dε can be deduced 
form an observed value of Fε  by using equation (6).  Grafically the plot of C against depth 
Z for this system has the form illustrated in fig (1). 
 
 
 

 
 
Fig. 1. Linear diffusion gradient in simple planar source-sink system.  Oxygen 
source, Co, on Z = 0 and sink, Cz, on Z = L (Armstrong, 1979). 

 
 
In equation (6) δc can be likened to a “force” analogous in part to the potential difference in 
an electric circuit while the term D/ δz is a measure of the conductance (reciprocal to 
resistance). 
 
In equation (6) there is no restricting area term and the conductance D/L is simple a 
measure of the linear conductance between planar layers or compartments.  Providing that 
the areas of these surfaces are equal the units of D/L are (m/s).  The oxygen flux, which 
has dimensions of quantity, area and time may also be written as 
 

             Q                (Co - Cz) 
Fε = ______ =  Dε _________      (7) 
           A .  t                   L 

 
 
where Q = grams, A in m2  and t = seconds, hence equation can be rearranged as 
 

  Q                      (Co - Cz) 
____ = A .  Dε ________      (8) 
   t                           L 
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where the term Q/t is referred to as the diffusion rate (g.s-1) for the finite system of planar 
sectional area A (cm2).  Under steady conditions the flux of gas Q/t, across any surface is 
contant, though the flux density may change if the area available for flow changes.  In fact, 
equation (7) specifies the area through which diffusion takes place and the conductance K 
becomes Dg.A/L and has units of  m3/s.  Thus, conductance K is better expressed as a 
function of area by 
 

                   A 
K = Dε  . ____     (9) 
                   L  

 
then equation 8 becomes 
 

  Q  
____ = K (Co - Cz)     (10) 
  t 

 
from equations 6 and 7 we obtain 
 

     δc           Q 
Fε = - Dε ____ = _____    (11) 

      δz         A . t 
 
by integrating it yields 
 
 
 
     (12) 
 
 
 
using equations 8 and 10 
 
                Q             Dε. A 
               ___ = ___________ = K (Co – Cz)  (13) 
                 t         L (co – Cz) 
 
 
by combining equation 12 and 13 it yields 
 
 
 
 
    (14) 
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    (15) 
 
 
 
 
for simple geometries the integration is straightforward and the conductances determined.  
When diffusion is purely one-dimensional, the area available for flow remains constant with 
distance.  The conductance is therefore planar diffusion: K = Dε/(Z1 – Zo) where the 
subscript following the distance Z indicates a location of  measurement. 
 
Radial diffusion 
 
Radial diffusion is an interesting case for modeling gas transport in soils.  It forms the 
foundation for the development of the so-called micro models.  In fact, the theory of the 
micro site concept for diffusion in soil crumbs, microorganism colonies and roots are based 
on radial diffusion.  In particular, it constitutes the basis for the assessment of data 
obtained using the platinum electrode technique.  The mathematics of the process is 
outlined below. 
 
Difussion in a cylinder:  steady state 
 
Considering a long circular cylinder in which diffusion is everywhere radial, concentration 
is then a function of radius r and time only.  If the medium is formed by a system of coaxial 
cylinders whose radii are ra and rb as indicated in fig. 2, the differential equation describing 
the steady-state condition is: (Crank, 1975) 
 

   1           δ        r . Dδc 
____ . _____  ( ________ ) = 0   (16) 
   r           δr           δr  

 
If the diffusion coefficient D is constant, equation (16) becomes: 
 
                        δc          r. δc 
                      ____    ( _____ ) = 0,              a < r < b  (17) 
                        δc            δc 
 
the general solution of this is 
 
                         C = K1 + K2 lnr,     (18) 
 
where K1 and K2 are constants to be determined for the boundary conditions: C = C1 on 
r=a, C=C0 on r=b and a ≤ r ≤ b. Hence 

 
                      b                       r 
       C1 .  ln (___) + Co . ln (___) 
                      a                       a 
C = ______________________________   (19) 
                            b 
                   ln (____) 
                           a 
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the quantity of diffusing substance Q which diffuses through unit area of the cylinder A in 
time t is equal to the diffusion coefficient times the concentration gradient (Letey and 
Stolzy, 1964; 1967): 
 
 

  Q            Dε(Co - C1) 
_____ = ____________     (20) 
A. t                b 
                ln (___) 
                       a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 The model which is applied in order to explain cylindrical diffusion (After 
Phene, 1986) 
 
 
The oxygen flux for such a coaxial cylindrical model is given by 
 

  Q                    Co - C1 
____ = Dε  . 2π r .  h ____________  (21) 
   t                                            b 
                                    r . ln (___) 
                                                 a 

 
By analogy with equation (8) it may be noted that the conductance K is given by the term 
Dg 2π r.h/rln (b/a) where 2π r.h is the surface area of a cylinder or radius r and length h. 
 
If our observation concerns the diffusion incident upon the inner cylinder of r=a, the 
conductance term becomes Dg. 2π ah/aln(b/a).  We may also note that the terms aln (b/a) 
and blnb/a) are analogous with Lin equations 4.7 and 4.8.  It  may be thought of as the 
effective path length for diffusion. 
 
As indicated in fig. 4.3 for equal increments of the path (b-a), the conductance component 
of DgA/rlnb/a) is distributed in a curvilinear manner and hence at equilibrium the 
concentration prodile between b and a is also curvilinear (Crank, 1975).   This contrast 
with the linear profile in the corresponding planar system.  Application of these equations 
to modeling soil aeration is presented by Letey and Stolzy (1967), Kowalk, (1985). 
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By analogy with equation 4.13 for x direction 
 
 
 
    (22) 
 
 
 
 
when diffusion is cylindrical 
A(x) = 2πrh = 2πxh and A(x) π = 2x per meter of root, where x is the distance from the 
centre.  Using equation 4.18 gives 
 
 
 
    (23) 
 
 
 
 
Assuming the boundary conditions x = a (root or platinum electrode radius) and x = b 
(radial distance from the root axis to the outer boundary of the liquid phase of the soil 
matrix surrounding the root) the solution for equation 19 yields 
 

           2πhDε 
K = ________     (24) 
               a 
        ln (___) 
               b 

for cylindrical systems, the flux per unit length is constant, so K has units of m2/sec and 
flux is per meter of length. 
 
Diffusion in a sphere 
 
Spherical diffusion, as it may be from soil aggregates or fungal masses, has been widely  
used in soil aeration studies.  Its derivation is also presented by Crank (1975).  
Mathematically it is similar to the linear case which can be derived by simple 
transformation. 
 
The differential equation for radial diffusion coefficient is expressed by equation (11) for 
steady-state it becomes 
 

   δ               δc 
_____ (r² . ____) = 0    (25) 
   δr               δr 

 
of which the general solution is 
 
                     C = K2 + K1/r    (26) 
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Where K1 and K2 are constants to be determined from the boundary conditions.  If in the 
hollow sphere, a ≤ r ≤ b, the surface r=a is kept at a constant concentration C1, and r=b on 
C2 , then 
 
                                  aC1 (b – r) + bC2 (r – a) 
                        C = _______________________ (27) 
                                           r (b – a) 
 
The final solution is: 
 

  Q                     a . b  
____ = D . A ________ (C1 – C2)  (28) 
  t                     r² (b - a) 

 
where a ≤ r ≤  b 
The quantity of diffusing substance Q which passes through the spherical wall in time t is 
given by 

  Q                    a . b  
____ = 4π D ________ (C2 - C1)   (29) 
   t                    (b - a) 

 
 
where a  ≤  r  ≤  b. 
The conductance in the radial direction measured in cm3. sec –1 will be 
 

                   a . b 
K = 4π D ________    (30) 
                   (b - a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.3 A curvilinear concentration profile characteristic of a diffusive system in 
which source and sink lie on concentric cylinders (After Crank, 1975). 
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The equation (30) may be obtained by analogy with equation (15).  For spherical diffusion 
A(x) = 4x2, where x is the radial distance from the centre of the sphere.  Integration of 
equation (15) for the boundary conditions x=a and x=b gives the solution for K as 
expressed by equation (30). 
 
It is interesting to note that, for a spherical aggregate, the conductance becomes 
independent of b when b is large compared to the radius of the aggregate.  In other words 
when b >a equation (30) becomes (Campbell, 1985): 
 

K = 4π D . a     (31) 
 
 
Continuity equation including sink terms 
 
The flux of  oxygen is described by Fick’s law but it does not account for oxygen 
consumption.  According to the law of conservation of mass the change of the amount of 
oxygen in the volumetric unit of soil and in the unit of time for one-dimensional flow is 
equal to the change of flux δFx in this elemental volume of soil ∂x mimus the volumetric 
oxygen consumption of soil Sr, according to the equation: 
 

  δQ            δFx 
_____ = - _____ - Sr    (32) 
  δt               δx 

 
 
As the amount of oxygen in the soil Q is taken equal to the amount of oxygen in the gas 
phase of the soil, after neglecting oxygen in the liquid phase and solid phase (  δ(Cε .  ε)) 
and by substitution of this into equation 32 we get: 
 

  δ(Cε .  ε)           δFx  
_________ =  - ______ - Sr   (33) 
        δt                   δx 

 
 
as Fx = Dε∂c/∂x (first Fick´s law) and substituting the right hand side term of this equation 
into equation (33) it yields: 
 

 δ(Cε .  ε)           Dε δc  
_________ = - _________ - Sr         (34) 
       δt                 δx . δx 

 
 
In the three-dimensional space it is written as: 
 

   δQ  
______ = ∇ (Dε . ∇c ) - Sr    (35) 
   δt 
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where ∇ is the nable operator indicating three-dimensional flux. 
 
If we consider only longitudinal transport in Z Direction, that means with depth Z, the one-
dimensional equation (34) becomes. 
 

  δ                          δ(Dε δc)  
____  (Cε . ε) =  __________ - Sr  (36) 
  δt                           δz . δz 

 
 
and for this equation the initial and bounday conditions are: 
  for      t = 0   and   z > 0,     C = Co; 
 for      t > 0   and   z = 0,     C = Co; 
           for      t > 0   and   z = L      δC/δZ = 0 
 
 
additional assumptions are related to the values of εg, Dε  and Sr.  It is known, for 
example, that the oxygen diffusion coefficient Dg is not dependent upon oxygen 
concentration C.  It is assumed that the oxygen respiration Sr is zero if oxygen 
concentration Cis lower than or equal to a certain critical value.  In fact, oxygen uptake Sr 
is not greatly dependent upon oxygen concentration C is higher than few percent (Sr > 0 
for C > 0). 
 
Additional solution of diffusion equation (36) can give the values of C as a function of z, t, 
εg, Dε and Sr.  
 
After assuming that εg and Dε are constant (case of a homogeneous soil profile) from 
Fick’s second law the continuity equation for z direction can be expressed:  (Currie, 1961). 
 

       δc                    δ²c  
ε . ____  = Dε  .  _____ - Sr    (37) 
        δt                     δz² 

 
 
Equation (37) can also be expressed as follows 
 

  δc         Dε           δ²c         Sr 
____ = _____  .  ______ - ____    (38) 
  δt           ε            δz²           ε 

 
 
respiration rate, Sr, may be increased in several ways:  by increasing the amount of readily 
degradable organic matter, by increasing root activity, by watering, in so far this 
encourages microbial and root activity, and by warming the soil (Currie, 1984). 
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Ohm’s law and diffusion analogy 
 
If we have a multilayered soil composed of n layers or elements of thick nesses z1, z2..., zn 
and diffusion coefficients Dε1, Dε2,...Dεn, the fall in concentration through the whole soil 
profile is the sum of the falls through the elements.  Since the rate of transfer F is the same 
across each element, the total drop in concentration can be expressed by 
 
 

Fz1         Fz2               Fzn      
____ + _____  + ....  _____= (R1 + R2 + … + Rn) J,  (39) 
  Dε1       Dε2               Dεn 

 
 
where R1 = Z1/Dε1, etc. may be termed formally the resistance to diffusion of each layer 
(reciprocal of conductance).  Thus, the resistance to diffusion of the whole profile is simply 
the sum of the resistances of the separate layers; assuming that there are not barriers to 
diffusion between them. 
 
There are close similarities between equations (7) and (8) and the expression of Ohm’s 
law for the conduction of electricity through a homogeneous conductor and it is often 
helpful to consider diffusion problems using such electrical analogues; it has also proved 
helpful to develop functional model of diffusion using electrical system (Campbell, 1985).  
In its expanded form Ohm’s law may be written (Armstrong, 1979): 
 
                e                          A 
            ____ = f (Vo – V1) ____     (40) 
                t                            L 
 
where e is the quantity of electricity (coulombs) flowing through a conductor in t (seconds), 
L is the length of the conductor (cm), A is its sectional area (cm2), V0 and V1 represent the 
electrical potential (volts) at the beginning and end of the conductor, and f is the 
conductivity constant, the value of which depends on the quality of the conducting material 
and on temperature.  Comparing equations (8) and (36) it will be apparent that Q/t is 
analogous with e/t, Dε with f, C0 – Cz with V0 – V1, and that diffusive resistance L/DεA is an 
analogue of electrical resistance L/f.   In the condensed version of Ohm’s law e/t is 
reduced to the term I (amperes), V0 –V1 reduces to V, and L/fA becomes R, the resistance 
of the conductor which is measured in ohms (Ω ).  Ohm’s is then written as  
 
                                            
 
 
and is equivalent to a condensed form of equation (8), i.e. Q/t =  δc/R, where  δc 
represents (C0 –Cz) and R represent L/DεA. 
 
At this stage it may be useful to note that just as in an electrical circuit one may calculate 
the voltage drop (V’) along any section of conductor by applying the relationship V’ = IR’ 
where I is the current flowing through the whole conductor and R’ is the resistance in the 
segment; in a diffusion system one may be calculate a localized concentration drop.  For 
homogeneous conductors R’ = R/L where R is the length of the segment, L the length of 
conductor and R its total resistance. 

V 
                              I  =                                       (41) 

R
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For a number of conductors in series Ohm’s law reads: 
 
 
                         V                       V 
     I = _________________ = ____     (42) 
              R’ + R’’ + R’’’ + …         R 
 
 
Similarly, diffusive resistances in series become additive and, as with the flow of electricity 
where only R approaches zero, so too with diffusion: Q/t remains finite at all values of R 
< ∞  .  Therefore R → ∞ J →0; for instance when depth z approach the water table position 
at depth L. 
 
This important principle is illustrated in fig. 4 where the change in diffusion rate consequent 
upon extending the distance between source and sink across an isotropic medium is 
plotted against the change in diffusive resistance.  While diffusive resistance increases 
linearly with increasing path length (depth z) the diffusion rate decreases in a curvilinear 
fashion, certainly, conductors in series are additive in their resistance to flow in both 
electrical and diffusion systems. 
 
Models on soil aeration following this direction are presented by Campbell (1985) and 
Kowalik (1985). 
 
Diffusion in soil aggregates 
 
As declared earlier First Fick´s law is fairly realistic for longitudinal transport within the soil 
profile as a whole.  However, if the gas phase is discontinuous somewhere within the soil 
profile, the assumption of constant Sr/Dg will not hold for a soil profile.  Thus, the 
microconcept is applied for aggregates.  Oxygen supply and oxygen flow into the soil 
aggregates take place in the radial direction from outside to the centre of aggregates, with 
oxygen consumption in the way.  
 
Mathematical description and solution of oxygen diffusion process in spherical aggregates 
was given by Currie (1961a) and kowalik (1985).  Assuming for simplicity a spherical 
crumb.  For an isotropic concentric shell of radius r, the diffusion equation may written: 
 

  δ ε .  Cr         1           δ                δc 
_________ = ____ .  ____ (Dε r² _____) - Sr   (43) 
     δt                r²          δr                δr 
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Fig. 4 Showing how a linear increase in diffusive resistance between source and 
sink in a simple diffusive system is accompanied by a curvilinear decrease in flux 
(After Armstrong, 1979). 
 
Where the symbols are as before but are referring to the properties exclusive to the 
crumbs as opposed to those of the soil as a whole.  Thus, Cr is the concentration of the 
gas in the pore space Eg. 
 
In a soil in equilibrium, the term  δcrδt may be zero (steady-state) and the equation 3.43 
rewritten in the form. 
 

  δ                        δc 
___ (Dε . r²  .  ____ ) =  Sr . r²    (44) 
 δr                       δr 

 
 
Further development of equation 44 is presented by Currie (1961) and kowalik (1985).  By 
assuming Cr = Cx for r = R at the surface of the aggregate the final solution is: 
 

                   Sr  
Cr = Cx - _____ (R² - r²)     (45) 
                  6Dε 

 
 
Equation 45 allows to calculate the oxygen concentration distribution inside the soil 
aggregate as a function of radius of the aggregate R, diffusion coefficient Dg, biological 
respiration Sr and oxygen concentration in the gas phase of the soil profile Cx (it is equal 
to Cz in the equations dealing with oxygen diffusion in the soil profile).  Currie (1984) 
proposed that the difference Cx – Cr could be called an oxygen deficit in the soil 
aggregate.  Taking Cx – Cr = ∆  we have: 
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                           Sr  
∆  = Cx -  Cr = _____ (R² - r²)    (46) 
                          6Dε 

 
And for the maximum deficit at the centre of the aggregate, for r = 0: 
 

          Sr  
∆ = ______ (R² - r²)     (47)                         
          6Dε 

 
Thus, oxygen deficit ∆ is directly proportional to the radius of the aggregate in the second 
power, R2.  This means, lit is quadrupled when the crumb radius is doubled. 
 
For the soil profile, if we want to avoid creating anaerobic conditions inside soil 
aggregates, then the maximal radius of the soil aggregate is determined by:  (Smith, 1977, 
1979; Currie, 1984; Kowalik, 1985). 
 
 

                6Dε  . Cx 
R ≤       _____________      (48) 
                     Sr 

 
 
Diffusion through the water films 
 
The final segment of the diffusion path to roots takes place through the water films or shell 
surrounding the roots.  The geometry of water- films is depicted in figure 4.5, where the 
cylindrical coordinates can be applied.  For steady-state diffusion in cylindrical coordinates, 
we have:  (Letey and Stolzy, 1967) 
 

                       Cp 
Fx = D' ____________              mg.cm-2.s-1      (49) 
                           Rw 
             Rr .  ln (____) 
                           Rr 

where D’ is the coefficient of oxygen diffusion through the water films.  The rest of the 
symbols are indicated in fig. 5.  Instead of Fx the symbol ODR (oxygen diffusion rate) has 
been proposed (Letey and Stolzy, 1964); then 
 

                               Cp 
ODR = 60x10-3. D' ____________       g.cm-2.min-1   (50) 

                                        Rw 
                          Rr .  ln (____) 
                                         Rr 

 
                               Cp/Rr 

ODR = 60x10-3. D' ____________                      (51) 
                          ln (1 + d/Rr) 
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If we consider not only the situation of oxygen respiration at the surface of the root, but 
also take a cylindrical sample of soil with supply of oxygen from outside and oxygen 
diffusion and consumption inside the medium the situation from fig 6 is described by the 
cylindrical form of the diffusion equation: 
 
 

  δ                       1  δ                     δc 
___ (Eg.Cr) =   _____   (Dε . r .  ____ ) =  Sr   (52) 
 δt                       r  δr                     δr 

 
 
and for steady state and appropriate boundary conditions (Lemon, 1962; Kowalik, 1985) 
derived the following equation: 
 
 

                   Sr 
Cr = Cp - _____ ( R²r – r²)    (53) 
                  4 Dg 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Plant root surrounded by water-film (After Hillel, 1980; Kowalik, 1985). 
 
Rr:  radius of plant root or platinum electrode; 
Rw:  radius of outside surface of water. film on the plant root or on the platinum electrode; 
Cp:  oxygen concentration in the soil liquid phase on the border with the gas phase. 
 
From equation (46) it is possible to calculate for which conditions the middle part of the 
root can be anaerobic, having Sr, Dg, Cp and Rr. 
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Fig. 6 cylindrical part of the soil body with oxygen consumption inside and oxygen 
supply from outside (simplified, after Kowalik, 1985) 
 
 
 
 


